blob: 1440863ea5618f9a00d8930e1753d463b3d59c4c [file] [log] [blame]
//===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting the memory fold tables of
// the X86 backend instructions.
//
//===----------------------------------------------------------------------===//
#include "Common/CodeGenInstruction.h"
#include "Common/CodeGenTarget.h"
#include "X86RecognizableInstr.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/X86FoldTablesUtils.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <set>
using namespace llvm;
using namespace X86Disassembler;
namespace {
// Represents an entry in the manual mapped instructions set.
struct ManualMapEntry {
const char *RegInstStr;
const char *MemInstStr;
uint16_t Strategy;
};
// List of instructions requiring explicitly aligned memory.
const char *ExplicitAlign[] = {"MOVDQA", "MOVAPS", "MOVAPD", "MOVNTPS",
"MOVNTPD", "MOVNTDQ", "MOVNTDQA"};
// List of instructions NOT requiring explicit memory alignment.
const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD",
"PCMPESTRM", "PCMPESTRI", "PCMPISTRM",
"PCMPISTRI"};
const ManualMapEntry ManualMapSet[] = {
#define ENTRY(REG, MEM, FLAGS) {#REG, #MEM, FLAGS},
#include "X86ManualFoldTables.def"
};
const std::set<StringRef> NoFoldSet = {
#define NOFOLD(INSN) #INSN,
#include "X86ManualFoldTables.def"
};
static bool isExplicitAlign(const CodeGenInstruction *Inst) {
return any_of(ExplicitAlign, [Inst](const char *InstStr) {
return Inst->TheDef->getName().contains(InstStr);
});
}
static bool isExplicitUnalign(const CodeGenInstruction *Inst) {
return any_of(ExplicitUnalign, [Inst](const char *InstStr) {
return Inst->TheDef->getName().contains(InstStr);
});
}
class X86FoldTablesEmitter {
RecordKeeper &Records;
CodeGenTarget Target;
// Represents an entry in the folding table
class X86FoldTableEntry {
const CodeGenInstruction *RegInst;
const CodeGenInstruction *MemInst;
public:
bool NoReverse = false;
bool NoForward = false;
bool FoldLoad = false;
bool FoldStore = false;
enum BcastType {
BCAST_NONE,
BCAST_W,
BCAST_D,
BCAST_Q,
BCAST_SS,
BCAST_SD,
BCAST_SH,
};
BcastType BroadcastKind = BCAST_NONE;
Align Alignment;
X86FoldTableEntry() = default;
X86FoldTableEntry(const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst)
: RegInst(RegInst), MemInst(MemInst) {}
void print(raw_ostream &OS) const {
OS.indent(2);
OS << "{X86::" << RegInst->TheDef->getName() << ", ";
OS << "X86::" << MemInst->TheDef->getName() << ", ";
std::string Attrs;
if (FoldLoad)
Attrs += "TB_FOLDED_LOAD|";
if (FoldStore)
Attrs += "TB_FOLDED_STORE|";
if (NoReverse)
Attrs += "TB_NO_REVERSE|";
if (NoForward)
Attrs += "TB_NO_FORWARD|";
if (Alignment != Align(1))
Attrs += "TB_ALIGN_" + std::to_string(Alignment.value()) + "|";
switch (BroadcastKind) {
case BCAST_NONE:
break;
case BCAST_W:
Attrs += "TB_BCAST_W|";
break;
case BCAST_D:
Attrs += "TB_BCAST_D|";
break;
case BCAST_Q:
Attrs += "TB_BCAST_Q|";
break;
case BCAST_SS:
Attrs += "TB_BCAST_SS|";
break;
case BCAST_SD:
Attrs += "TB_BCAST_SD|";
break;
case BCAST_SH:
Attrs += "TB_BCAST_SH|";
break;
}
StringRef SimplifiedAttrs = StringRef(Attrs).rtrim("|");
if (SimplifiedAttrs.empty())
SimplifiedAttrs = "0";
OS << SimplifiedAttrs << "},\n";
}
#ifndef NDEBUG
// Check that Uses and Defs are same after memory fold.
void checkCorrectness() const {
auto &RegInstRec = *RegInst->TheDef;
auto &MemInstRec = *MemInst->TheDef;
auto ListOfUsesReg = RegInstRec.getValueAsListOfDefs("Uses");
auto ListOfUsesMem = MemInstRec.getValueAsListOfDefs("Uses");
auto ListOfDefsReg = RegInstRec.getValueAsListOfDefs("Defs");
auto ListOfDefsMem = MemInstRec.getValueAsListOfDefs("Defs");
if (ListOfUsesReg != ListOfUsesMem || ListOfDefsReg != ListOfDefsMem)
report_fatal_error("Uses/Defs couldn't be changed after folding " +
RegInstRec.getName() + " to " +
MemInstRec.getName());
}
#endif
};
// NOTE: We check the fold tables are sorted in X86InstrFoldTables.cpp by the
// enum of the instruction, which is computed in
// CodeGenTarget::ComputeInstrsByEnum. So we should use the same comparator
// here.
// FIXME: Could we share the code with CodeGenTarget::ComputeInstrsByEnum?
struct CompareInstrsByEnum {
bool operator()(const CodeGenInstruction *LHS,
const CodeGenInstruction *RHS) const {
assert(LHS && RHS && "LHS and RHS shouldn't be nullptr");
const auto &D1 = *LHS->TheDef;
const auto &D2 = *RHS->TheDef;
return std::tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
std::tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
}
};
typedef std::map<const CodeGenInstruction *, X86FoldTableEntry,
CompareInstrsByEnum>
FoldTable;
// Table2Addr - Holds instructions which their memory form performs
// load+store.
//
// Table#i - Holds instructions which the their memory form
// performs a load OR a store, and their #i'th operand is folded.
//
// BroadcastTable#i - Holds instructions which the their memory form performs
// a broadcast load and their #i'th operand is folded.
FoldTable Table2Addr;
FoldTable Table0;
FoldTable Table1;
FoldTable Table2;
FoldTable Table3;
FoldTable Table4;
FoldTable BroadcastTable1;
FoldTable BroadcastTable2;
FoldTable BroadcastTable3;
FoldTable BroadcastTable4;
public:
X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {}
// run - Generate the 6 X86 memory fold tables.
void run(raw_ostream &OS);
private:
// Decides to which table to add the entry with the given instructions.
// S sets the strategy of adding the TB_NO_REVERSE flag.
void updateTables(const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst, uint16_t S = 0,
bool IsManual = false, bool IsBroadcast = false);
// Generates X86FoldTableEntry with the given instructions and fill it with
// the appropriate flags, then adds it to a memory fold table.
void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst, uint16_t S,
unsigned FoldedIdx, bool IsManual);
// Generates X86FoldTableEntry with the given instructions and adds it to a
// broadcast table.
void addBroadcastEntry(FoldTable &Table, const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst);
// Print the given table as a static const C++ array of type
// X86FoldTableEntry.
void printTable(const FoldTable &Table, StringRef TableName,
raw_ostream &OS) {
OS << "static const X86FoldTableEntry " << TableName << "[] = {\n";
for (auto &E : Table)
E.second.print(OS);
OS << "};\n\n";
}
};
// Return true if one of the instruction's operands is a RST register class
static bool hasRSTRegClass(const CodeGenInstruction *Inst) {
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
return OpIn.Rec->getName() == "RST" || OpIn.Rec->getName() == "RSTi";
});
}
// Return true if one of the instruction's operands is a ptr_rc_tailcall
static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) {
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
return OpIn.Rec->getName() == "ptr_rc_tailcall";
});
}
static uint8_t byteFromBitsInit(const BitsInit *B) {
unsigned N = B->getNumBits();
assert(N <= 8 && "Field is too large for uint8_t!");
uint8_t Value = 0;
for (unsigned I = 0; I != N; ++I) {
BitInit *Bit = cast<BitInit>(B->getBit(I));
Value |= Bit->getValue() << I;
}
return Value;
}
static bool mayFoldFromForm(uint8_t Form) {
switch (Form) {
default:
return Form >= X86Local::MRM0r && Form <= X86Local::MRM7r;
case X86Local::MRMXr:
case X86Local::MRMXrCC:
case X86Local::MRMDestReg:
case X86Local::MRMSrcReg:
case X86Local::MRMSrcReg4VOp3:
case X86Local::MRMSrcRegOp4:
case X86Local::MRMSrcRegCC:
return true;
}
}
static bool mayFoldToForm(uint8_t Form) {
switch (Form) {
default:
return Form >= X86Local::MRM0m && Form <= X86Local::MRM7m;
case X86Local::MRMXm:
case X86Local::MRMXmCC:
case X86Local::MRMDestMem:
case X86Local::MRMSrcMem:
case X86Local::MRMSrcMem4VOp3:
case X86Local::MRMSrcMemOp4:
case X86Local::MRMSrcMemCC:
return true;
}
}
static bool mayFoldFromLeftToRight(uint8_t LHS, uint8_t RHS) {
switch (LHS) {
default:
llvm_unreachable("Unexpected Form!");
case X86Local::MRM0r:
return RHS == X86Local::MRM0m;
case X86Local::MRM1r:
return RHS == X86Local::MRM1m;
case X86Local::MRM2r:
return RHS == X86Local::MRM2m;
case X86Local::MRM3r:
return RHS == X86Local::MRM3m;
case X86Local::MRM4r:
return RHS == X86Local::MRM4m;
case X86Local::MRM5r:
return RHS == X86Local::MRM5m;
case X86Local::MRM6r:
return RHS == X86Local::MRM6m;
case X86Local::MRM7r:
return RHS == X86Local::MRM7m;
case X86Local::MRMXr:
return RHS == X86Local::MRMXm;
case X86Local::MRMXrCC:
return RHS == X86Local::MRMXmCC;
case X86Local::MRMDestReg:
return RHS == X86Local::MRMDestMem;
case X86Local::MRMSrcReg:
return RHS == X86Local::MRMSrcMem;
case X86Local::MRMSrcReg4VOp3:
return RHS == X86Local::MRMSrcMem4VOp3;
case X86Local::MRMSrcRegOp4:
return RHS == X86Local::MRMSrcMemOp4;
case X86Local::MRMSrcRegCC:
return RHS == X86Local::MRMSrcMemCC;
}
}
static bool isNOREXRegClass(const Record *Op) {
return Op->getName().contains("_NOREX");
}
// Function object - Operator() returns true if the given Reg instruction
// matches the Mem instruction of this object.
class IsMatch {
const CodeGenInstruction *MemInst;
const X86Disassembler::RecognizableInstrBase MemRI;
bool IsBroadcast;
const unsigned Variant;
public:
IsMatch(const CodeGenInstruction *Inst, bool IsBroadcast, unsigned V)
: MemInst(Inst), MemRI(*MemInst), IsBroadcast(IsBroadcast), Variant(V) {}
bool operator()(const CodeGenInstruction *RegInst) {
X86Disassembler::RecognizableInstrBase RegRI(*RegInst);
const Record *RegRec = RegInst->TheDef;
const Record *MemRec = MemInst->TheDef;
// EVEX_B means different things for memory and register forms.
// register form: rounding control or SAE
// memory form: broadcast
if (IsBroadcast && (RegRI.HasEVEX_B || !MemRI.HasEVEX_B))
return false;
// EVEX_B indicates NDD for MAP4 instructions
if (!IsBroadcast && (RegRI.HasEVEX_B || MemRI.HasEVEX_B) &&
RegRI.OpMap != X86Local::T_MAP4)
return false;
if (!mayFoldFromLeftToRight(RegRI.Form, MemRI.Form))
return false;
// X86 encoding is crazy, e.g
//
// f3 0f c7 30 vmxon (%rax)
// f3 0f c7 f0 senduipi %rax
//
// This two instruction have similiar encoding fields but are unrelated
if (X86Disassembler::getMnemonic(MemInst, Variant) !=
X86Disassembler::getMnemonic(RegInst, Variant))
return false;
// Return false if any of the following fields of does not match.
if (std::tuple(RegRI.Encoding, RegRI.Opcode, RegRI.OpPrefix, RegRI.OpMap,
RegRI.OpSize, RegRI.AdSize, RegRI.HasREX_W, RegRI.HasVEX_4V,
RegRI.HasVEX_L, RegRI.IgnoresVEX_L, RegRI.IgnoresW,
RegRI.HasEVEX_K, RegRI.HasEVEX_KZ, RegRI.HasEVEX_L2,
RegRI.HasEVEX_NF, RegRec->getValueAsBit("hasEVEX_RC"),
RegRec->getValueAsBit("hasLockPrefix"),
RegRec->getValueAsBit("hasNoTrackPrefix")) !=
std::tuple(MemRI.Encoding, MemRI.Opcode, MemRI.OpPrefix, MemRI.OpMap,
MemRI.OpSize, MemRI.AdSize, MemRI.HasREX_W, MemRI.HasVEX_4V,
MemRI.HasVEX_L, MemRI.IgnoresVEX_L, MemRI.IgnoresW,
MemRI.HasEVEX_K, MemRI.HasEVEX_KZ, MemRI.HasEVEX_L2,
MemRI.HasEVEX_NF, MemRec->getValueAsBit("hasEVEX_RC"),
MemRec->getValueAsBit("hasLockPrefix"),
MemRec->getValueAsBit("hasNoTrackPrefix")))
return false;
// Make sure the sizes of the operands of both instructions suit each other.
// This is needed for instructions with intrinsic version (_Int).
// Where the only difference is the size of the operands.
// For example: VUCOMISDZrm and VUCOMISDrm_Int
// Also for instructions that their EVEX version was upgraded to work with
// k-registers. For example VPCMPEQBrm (xmm output register) and
// VPCMPEQBZ128rm (k register output register).
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
// Instructions with one output in their memory form use the memory folded
// operand as source and destination (Read-Modify-Write).
unsigned RegStartIdx =
(MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0;
bool FoundFoldedOp = false;
for (unsigned I = 0, E = MemInst->Operands.size(); I != E; I++) {
Record *MemOpRec = MemInst->Operands[I].Rec;
Record *RegOpRec = RegInst->Operands[I + RegStartIdx].Rec;
if (MemOpRec == RegOpRec)
continue;
if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec) &&
((getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec)) ||
(isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec))))
return false;
if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec) &&
(getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec)))
return false;
if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec) &&
(MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type")))
return false;
// Only one operand can be folded.
if (FoundFoldedOp)
return false;
assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec));
FoundFoldedOp = true;
}
return FoundFoldedOp;
}
};
} // end anonymous namespace
void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table,
const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst,
uint16_t S, unsigned FoldedIdx,
bool IsManual) {
assert((IsManual || Table.find(RegInst) == Table.end()) &&
"Override entry unexpectedly");
X86FoldTableEntry Result = X86FoldTableEntry(RegInst, MemInst);
Record *RegRec = RegInst->TheDef;
Result.NoReverse = S & TB_NO_REVERSE;
Result.NoForward = S & TB_NO_FORWARD;
Result.FoldLoad = S & TB_FOLDED_LOAD;
Result.FoldStore = S & TB_FOLDED_STORE;
Result.Alignment = Align(1ULL << ((S & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT));
if (IsManual) {
Table[RegInst] = Result;
return;
}
Record *RegOpRec = RegInst->Operands[FoldedIdx].Rec;
Record *MemOpRec = MemInst->Operands[FoldedIdx].Rec;
// Unfolding code generates a load/store instruction according to the size of
// the register in the register form instruction.
// If the register's size is greater than the memory's operand size, do not
// allow unfolding.
// the unfolded load size will be based on the register size. If that’s bigger
// than the memory operand size, the unfolded load will load more memory and
// potentially cause a memory fault.
if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec))
Result.NoReverse = true;
// Check no-kz version's isMoveReg
StringRef RegInstName = RegRec->getName();
unsigned DropLen =
RegInstName.ends_with("rkz") ? 2 : (RegInstName.ends_with("rk") ? 1 : 0);
Record *BaseDef =
DropLen ? Records.getDef(RegInstName.drop_back(DropLen)) : nullptr;
bool IsMoveReg =
BaseDef ? Target.getInstruction(BaseDef).isMoveReg : RegInst->isMoveReg;
// A masked load can not be unfolded to a full load, otherwise it would access
// unexpected memory. A simple store can not be unfolded.
if (IsMoveReg && (BaseDef || Result.FoldStore))
Result.NoReverse = true;
uint8_t Enc = byteFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits"));
if (isExplicitAlign(RegInst)) {
// The instruction require explicitly aligned memory.
BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize");
Result.Alignment = Align(byteFromBitsInit(VectSize));
} else if (!Enc && !isExplicitUnalign(RegInst) &&
getMemOperandSize(MemOpRec) > 64) {
// Instructions with XOP/VEX/EVEX encoding do not require alignment while
// SSE packed vector instructions require a 16 byte alignment.
Result.Alignment = Align(16);
}
// Expand is only ever created as a masked instruction. It is not safe to
// unfold a masked expand because we don't know if it came from an expand load
// intrinsic or folding a plain load. If it is from a expand load intrinsic,
// Unfolding to plain load would read more elements and could trigger a fault.
if (RegRec->getName().contains("EXPAND"))
Result.NoReverse = true;
Table[RegInst] = Result;
}
void X86FoldTablesEmitter::addBroadcastEntry(
FoldTable &Table, const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst) {
assert(Table.find(RegInst) == Table.end() && "Override entry unexpectedly");
X86FoldTableEntry Result = X86FoldTableEntry(RegInst, MemInst);
DagInit *In = MemInst->TheDef->getValueAsDag("InOperandList");
for (unsigned I = 0, E = In->getNumArgs(); I != E; ++I) {
Result.BroadcastKind =
StringSwitch<X86FoldTableEntry::BcastType>(In->getArg(I)->getAsString())
.Case("i16mem", X86FoldTableEntry::BCAST_W)
.Case("i32mem", X86FoldTableEntry::BCAST_D)
.Case("i64mem", X86FoldTableEntry::BCAST_Q)
.Case("f16mem", X86FoldTableEntry::BCAST_SH)
.Case("f32mem", X86FoldTableEntry::BCAST_SS)
.Case("f64mem", X86FoldTableEntry::BCAST_SD)
.Default(X86FoldTableEntry::BCAST_NONE);
if (Result.BroadcastKind != X86FoldTableEntry::BCAST_NONE)
break;
}
assert(Result.BroadcastKind != X86FoldTableEntry::BCAST_NONE &&
"Unknown memory operand for broadcast");
Table[RegInst] = Result;
}
void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst,
uint16_t S, bool IsManual,
bool IsBroadcast) {
Record *RegRec = RegInst->TheDef;
Record *MemRec = MemInst->TheDef;
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
// Instructions which Read-Modify-Write should be added to Table2Addr.
if (!MemOutSize && RegOutSize == 1 && MemInSize == RegInSize) {
assert(!IsBroadcast && "Read-Modify-Write can not be broadcast");
// X86 would not unfold Read-Modify-Write instructions so add TB_NO_REVERSE.
addEntryWithFlags(Table2Addr, RegInst, MemInst, S | TB_NO_REVERSE, 0,
IsManual);
return;
}
// Only table0 entries should explicitly specify a load or store flag.
// If the instruction writes to the folded operand, it will appear as
// an output in the register form instruction and as an input in the
// memory form instruction. If the instruction reads from the folded
// operand, it will appear as in input in both forms.
if (MemInSize == RegInSize && MemOutSize == RegOutSize) {
// Load-Folding cases.
// If the i'th register form operand is a register and the i'th memory form
// operand is a memory operand, add instructions to Table#i.
for (unsigned I = RegOutSize, E = RegInst->Operands.size(); I < E; I++) {
Record *RegOpRec = RegInst->Operands[I].Rec;
Record *MemOpRec = MemInst->Operands[I].Rec;
// PointerLikeRegClass: For instructions like TAILJMPr, TAILJMPr64,
// TAILJMPr64_REX
if ((isRegisterOperand(RegOpRec) ||
RegOpRec->isSubClassOf("PointerLikeRegClass")) &&
isMemoryOperand(MemOpRec)) {
switch (I) {
case 0:
assert(!IsBroadcast && "BroadcastTable0 needs to be added");
addEntryWithFlags(Table0, RegInst, MemInst, S | TB_FOLDED_LOAD, 0,
IsManual);
return;
case 1:
IsBroadcast
? addBroadcastEntry(BroadcastTable1, RegInst, MemInst)
: addEntryWithFlags(Table1, RegInst, MemInst, S, 1, IsManual);
return;
case 2:
IsBroadcast
? addBroadcastEntry(BroadcastTable2, RegInst, MemInst)
: addEntryWithFlags(Table2, RegInst, MemInst, S, 2, IsManual);
return;
case 3:
IsBroadcast
? addBroadcastEntry(BroadcastTable3, RegInst, MemInst)
: addEntryWithFlags(Table3, RegInst, MemInst, S, 3, IsManual);
return;
case 4:
IsBroadcast
? addBroadcastEntry(BroadcastTable4, RegInst, MemInst)
: addEntryWithFlags(Table4, RegInst, MemInst, S, 4, IsManual);
return;
}
}
}
} else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) {
// Store-Folding cases.
// If the memory form instruction performs a store, the *output*
// register of the register form instructions disappear and instead a
// memory *input* operand appears in the memory form instruction.
// For example:
// MOVAPSrr => (outs VR128:$dst), (ins VR128:$src)
// MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src)
Record *RegOpRec = RegInst->Operands[RegOutSize - 1].Rec;
Record *MemOpRec = MemInst->Operands[RegOutSize - 1].Rec;
if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) &&
getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec)) {
assert(!IsBroadcast && "Store can not be broadcast");
addEntryWithFlags(Table0, RegInst, MemInst, S | TB_FOLDED_STORE, 0,
IsManual);
}
}
}
void X86FoldTablesEmitter::run(raw_ostream &OS) {
// Holds all memory instructions
std::vector<const CodeGenInstruction *> MemInsts;
// Holds all register instructions - divided according to opcode.
std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts;
ArrayRef<const CodeGenInstruction *> NumberedInstructions =
Target.getInstructionsByEnumValue();
for (const CodeGenInstruction *Inst : NumberedInstructions) {
const Record *Rec = Inst->TheDef;
if (!Rec->isSubClassOf("X86Inst") || Rec->getValueAsBit("isAsmParserOnly"))
continue;
if (NoFoldSet.find(Rec->getName()) != NoFoldSet.end())
continue;
// Promoted legacy instruction is in EVEX space, and has REX2-encoding
// alternative. It's added due to HW design and never emitted by compiler.
if (byteFromBitsInit(Rec->getValueAsBitsInit("OpMapBits")) ==
X86Local::T_MAP4 &&
byteFromBitsInit(Rec->getValueAsBitsInit("explicitOpPrefixBits")) ==
X86Local::ExplicitEVEX)
continue;
// - Instructions including RST register class operands are not relevant
// for memory folding (for further details check the explanation in
// lib/Target/X86/X86InstrFPStack.td file).
// - Some instructions (listed in the manual map above) use the register
// class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure
// safe mapping of these instruction we manually map them and exclude
// them from the automation.
if (hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst))
continue;
// Add all the memory form instructions to MemInsts, and all the register
// form instructions to RegInsts[Opc], where Opc is the opcode of each
// instructions. this helps reducing the runtime of the backend.
const BitsInit *FormBits = Rec->getValueAsBitsInit("FormBits");
uint8_t Form = byteFromBitsInit(FormBits);
if (mayFoldToForm(Form))
MemInsts.push_back(Inst);
else if (mayFoldFromForm(Form)) {
uint8_t Opc = byteFromBitsInit(Rec->getValueAsBitsInit("Opcode"));
RegInsts[Opc].push_back(Inst);
}
}
// Create a copy b/c the register instruction will removed when a new entry is
// added into memory fold tables.
auto RegInstsForBroadcast = RegInsts;
Record *AsmWriter = Target.getAsmWriter();
unsigned Variant = AsmWriter->getValueAsInt("Variant");
auto FixUp = [&](const CodeGenInstruction *RegInst) {
StringRef RegInstName = RegInst->TheDef->getName();
if (RegInstName.ends_with("_REV") || RegInstName.ends_with("_alt"))
if (auto *RegAltRec = Records.getDef(RegInstName.drop_back(4)))
RegInst = &Target.getInstruction(RegAltRec);
return RegInst;
};
// For each memory form instruction, try to find its register form
// instruction.
for (const CodeGenInstruction *MemInst : MemInsts) {
uint8_t Opc =
byteFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode"));
auto RegInstsIt = RegInsts.find(Opc);
if (RegInstsIt == RegInsts.end())
continue;
// Two forms (memory & register) of the same instruction must have the same
// opcode.
std::vector<const CodeGenInstruction *> &OpcRegInsts = RegInstsIt->second;
// Memory fold tables
auto Match =
find_if(OpcRegInsts, IsMatch(MemInst, /*IsBroadcast=*/false, Variant));
if (Match != OpcRegInsts.end()) {
updateTables(FixUp(*Match), MemInst);
OpcRegInsts.erase(Match);
}
// Broadcast tables
StringRef MemInstName = MemInst->TheDef->getName();
if (!MemInstName.contains("mb") && !MemInstName.contains("mib"))
continue;
RegInstsIt = RegInstsForBroadcast.find(Opc);
assert(RegInstsIt != RegInstsForBroadcast.end() &&
"Unexpected control flow");
std::vector<const CodeGenInstruction *> &OpcRegInstsForBroadcast =
RegInstsIt->second;
Match = find_if(OpcRegInstsForBroadcast,
IsMatch(MemInst, /*IsBroadcast=*/true, Variant));
if (Match != OpcRegInstsForBroadcast.end()) {
updateTables(FixUp(*Match), MemInst, 0, /*IsManual=*/false,
/*IsBroadcast=*/true);
OpcRegInstsForBroadcast.erase(Match);
}
}
// Add the manually mapped instructions listed above.
for (const ManualMapEntry &Entry : ManualMapSet) {
Record *RegInstIter = Records.getDef(Entry.RegInstStr);
Record *MemInstIter = Records.getDef(Entry.MemInstStr);
updateTables(&(Target.getInstruction(RegInstIter)),
&(Target.getInstruction(MemInstIter)), Entry.Strategy, true);
}
#ifndef NDEBUG
auto CheckMemFoldTable = [](const FoldTable &Table) -> void {
for (const auto &Record : Table) {
auto &FoldEntry = Record.second;
FoldEntry.checkCorrectness();
}
};
CheckMemFoldTable(Table2Addr);
CheckMemFoldTable(Table0);
CheckMemFoldTable(Table1);
CheckMemFoldTable(Table2);
CheckMemFoldTable(Table3);
CheckMemFoldTable(Table4);
CheckMemFoldTable(BroadcastTable1);
CheckMemFoldTable(BroadcastTable2);
CheckMemFoldTable(BroadcastTable3);
CheckMemFoldTable(BroadcastTable4);
#endif
#define PRINT_TABLE(TABLE) printTable(TABLE, #TABLE, OS);
// Print all tables.
PRINT_TABLE(Table2Addr)
PRINT_TABLE(Table0)
PRINT_TABLE(Table1)
PRINT_TABLE(Table2)
PRINT_TABLE(Table3)
PRINT_TABLE(Table4)
PRINT_TABLE(BroadcastTable1)
PRINT_TABLE(BroadcastTable2)
PRINT_TABLE(BroadcastTable3)
PRINT_TABLE(BroadcastTable4)
}
static TableGen::Emitter::OptClass<X86FoldTablesEmitter>
X("gen-x86-fold-tables", "Generate X86 fold tables");