blob: a7e99fa4c05068c64a65fe62161b91ed9a81c8cd [file] [log] [blame]
//===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits information about intrinsic functions.
//
//===----------------------------------------------------------------------===//
#include "Basic/CodeGenIntrinsics.h"
#include "Basic/SequenceToOffsetTable.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ModRef.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/StringToOffsetTable.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <map>
#include <optional>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
cl::OptionCategory GenIntrinsicCat("Options for -gen-intrinsic-enums");
cl::opt<std::string>
IntrinsicPrefix("intrinsic-prefix",
cl::desc("Generate intrinsics with this target prefix"),
cl::value_desc("target prefix"), cl::cat(GenIntrinsicCat));
namespace {
class IntrinsicEmitter {
RecordKeeper &Records;
public:
IntrinsicEmitter(RecordKeeper &R) : Records(R) {}
void run(raw_ostream &OS, bool Enums);
void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
void EmitArgKind(raw_ostream &OS);
void EmitIITInfo(raw_ostream &OS);
void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS);
void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS);
void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints,
bool IsClang, raw_ostream &OS);
};
} // End anonymous namespace
//===----------------------------------------------------------------------===//
// IntrinsicEmitter Implementation
//===----------------------------------------------------------------------===//
void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) {
emitSourceFileHeader("Intrinsic Function Source Fragment", OS);
CodeGenIntrinsicTable Ints(Records);
if (Enums) {
// Emit the enum information.
EmitEnumInfo(Ints, OS);
// Emit ArgKind for Intrinsics.h.
EmitArgKind(OS);
} else {
// Emit IIT_Info constants.
EmitIITInfo(OS);
// Emit the target metadata.
EmitTargetInfo(Ints, OS);
// Emit the intrinsic ID -> name table.
EmitIntrinsicToNameTable(Ints, OS);
// Emit the intrinsic ID -> overload table.
EmitIntrinsicToOverloadTable(Ints, OS);
// Emit the intrinsic declaration generator.
EmitGenerator(Ints, OS);
// Emit the intrinsic parameter attributes.
EmitAttributes(Ints, OS);
// Emit code to translate GCC builtins into LLVM intrinsics.
EmitIntrinsicToBuiltinMap(Ints, true, OS);
// Emit code to translate MS builtins into LLVM intrinsics.
EmitIntrinsicToBuiltinMap(Ints, false, OS);
}
}
void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS) {
// Find the TargetSet for which to generate enums. There will be an initial
// set with an empty target prefix which will include target independent
// intrinsics like dbg.value.
const CodeGenIntrinsicTable::TargetSet *Set = nullptr;
for (const auto &Target : Ints.Targets) {
if (Target.Name == IntrinsicPrefix) {
Set = &Target;
break;
}
}
if (!Set) {
std::vector<std::string> KnownTargets;
for (const auto &Target : Ints.Targets)
if (!Target.Name.empty())
KnownTargets.push_back(Target.Name);
PrintFatalError("tried to generate intrinsics for unknown target " +
IntrinsicPrefix +
"\nKnown targets are: " + join(KnownTargets, ", ") + "\n");
}
// Generate a complete header for target specific intrinsics.
if (IntrinsicPrefix.empty()) {
OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n";
} else {
std::string UpperPrefix = StringRef(IntrinsicPrefix).upper();
OS << "#ifndef LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n";
OS << "#define LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n\n";
OS << "namespace llvm {\n";
OS << "namespace Intrinsic {\n";
OS << "enum " << UpperPrefix << "Intrinsics : unsigned {\n";
}
OS << "// Enum values for intrinsics\n";
for (unsigned i = Set->Offset, e = Set->Offset + Set->Count; i != e; ++i) {
OS << " " << Ints[i].EnumName;
// Assign a value to the first intrinsic in this target set so that all
// intrinsic ids are distinct.
if (i == Set->Offset)
OS << " = " << (Set->Offset + 1);
OS << ", ";
if (Ints[i].EnumName.size() < 40)
OS.indent(40 - Ints[i].EnumName.size());
OS << " // " << Ints[i].Name << "\n";
}
// Emit num_intrinsics into the target neutral enum.
if (IntrinsicPrefix.empty()) {
OS << " num_intrinsics = " << (Ints.size() + 1) << "\n";
OS << "#endif\n\n";
} else {
OS << "}; // enum\n";
OS << "} // namespace Intrinsic\n";
OS << "} // namespace llvm\n\n";
OS << "#endif\n";
}
}
void IntrinsicEmitter::EmitArgKind(raw_ostream &OS) {
if (!IntrinsicPrefix.empty())
return;
OS << "// llvm::Intrinsic::IITDescriptor::ArgKind\n";
OS << "#ifdef GET_INTRINSIC_ARGKIND\n";
if (auto RecArgKind = Records.getDef("ArgKind")) {
for (auto &RV : RecArgKind->getValues())
OS << " AK_" << RV.getName() << " = " << *RV.getValue() << ",\n";
} else {
OS << "#error \"ArgKind is not defined\"\n";
}
OS << "#endif\n\n";
}
void IntrinsicEmitter::EmitIITInfo(raw_ostream &OS) {
OS << "#ifdef GET_INTRINSIC_IITINFO\n";
std::array<StringRef, 256> RecsByNumber;
auto IIT_Base = Records.getAllDerivedDefinitionsIfDefined("IIT_Base");
for (auto Rec : IIT_Base) {
auto Number = Rec->getValueAsInt("Number");
assert(0 <= Number && Number < (int)RecsByNumber.size() &&
"IIT_Info.Number should be uint8_t");
assert(RecsByNumber[Number].empty() && "Duplicate IIT_Info.Number");
RecsByNumber[Number] = Rec->getName();
}
if (IIT_Base.size() > 0) {
for (unsigned I = 0, E = RecsByNumber.size(); I < E; ++I)
if (!RecsByNumber[I].empty())
OS << " " << RecsByNumber[I] << " = " << I << ",\n";
} else {
OS << "#error \"class IIT_Base is not defined\"\n";
}
OS << "#endif\n\n";
}
void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS) {
OS << "// Target mapping\n";
OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n";
OS << "struct IntrinsicTargetInfo {\n"
<< " llvm::StringLiteral Name;\n"
<< " size_t Offset;\n"
<< " size_t Count;\n"
<< "};\n";
OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n";
for (const auto &Target : Ints.Targets)
OS << " {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset
<< ", " << Target.Count << "},\n";
OS << "};\n";
OS << "#endif\n\n";
}
void IntrinsicEmitter::EmitIntrinsicToNameTable(
const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
OS << "// Intrinsic ID to name table\n";
OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
OS << " // Note that entry #0 is the invalid intrinsic!\n";
for (unsigned i = 0, e = Ints.size(); i != e; ++i)
OS << " \"" << Ints[i].Name << "\",\n";
OS << "#endif\n\n";
}
void IntrinsicEmitter::EmitIntrinsicToOverloadTable(
const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
OS << "// Intrinsic ID to overload bitset\n";
OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
OS << "static const uint8_t OTable[] = {\n";
OS << " 0";
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
// Add one to the index so we emit a null bit for the invalid #0 intrinsic.
if ((i + 1) % 8 == 0)
OS << ",\n 0";
if (Ints[i].isOverloaded)
OS << " | (1<<" << (i + 1) % 8 << ')';
}
OS << "\n};\n\n";
// OTable contains a true bit at the position if the intrinsic is overloaded.
OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
OS << "#endif\n\n";
}
/// ComputeFixedEncoding - If we can encode the type signature for this
/// intrinsic into 32 bits, return it. If not, return ~0U.
static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
std::vector<unsigned char> &TypeSig) {
if (auto *R = Int.TheDef->getValue("TypeSig")) {
for (auto &a : cast<ListInit>(R->getValue())->getValues()) {
for (auto &b : cast<ListInit>(a)->getValues())
TypeSig.push_back(cast<IntInit>(b)->getValue());
}
}
}
static void printIITEntry(raw_ostream &OS, unsigned char X) {
OS << (unsigned)X;
}
void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS) {
// If we can compute a 32-bit fixed encoding for this intrinsic, do so and
// capture it in this vector, otherwise store a ~0U.
std::vector<unsigned> FixedEncodings;
SequenceToOffsetTable<std::vector<unsigned char>> LongEncodingTable;
std::vector<unsigned char> TypeSig;
// Compute the unique argument type info.
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
// Get the signature for the intrinsic.
TypeSig.clear();
ComputeFixedEncoding(Ints[i], TypeSig);
// Check to see if we can encode it into a 32-bit word. We can only encode
// 8 nibbles into a 32-bit word.
if (TypeSig.size() <= 8) {
bool Failed = false;
unsigned Result = 0;
for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
// If we had an unencodable argument, bail out.
if (TypeSig[i] > 15) {
Failed = true;
break;
}
Result = (Result << 4) | TypeSig[e - i - 1];
}
// If this could be encoded into a 31-bit word, return it.
if (!Failed && (Result >> 31) == 0) {
FixedEncodings.push_back(Result);
continue;
}
}
// Otherwise, we're going to unique the sequence into the
// LongEncodingTable, and use its offset in the 32-bit table instead.
LongEncodingTable.add(TypeSig);
// This is a placehold that we'll replace after the table is laid out.
FixedEncodings.push_back(~0U);
}
LongEncodingTable.layout();
OS << "// Global intrinsic function declaration type table.\n";
OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";
OS << "static const unsigned IIT_Table[] = {\n ";
for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
if ((i & 7) == 7)
OS << "\n ";
// If the entry fit in the table, just emit it.
if (FixedEncodings[i] != ~0U) {
OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", ";
continue;
}
TypeSig.clear();
ComputeFixedEncoding(Ints[i], TypeSig);
// Otherwise, emit the offset into the long encoding table. We emit it this
// way so that it is easier to read the offset in the .def file.
OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
}
OS << "0\n};\n\n";
// Emit the shared table of register lists.
OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
if (!LongEncodingTable.empty())
LongEncodingTable.emit(OS, printIITEntry);
OS << " 255\n};\n\n";
OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL
}
namespace {
std::optional<bool> compareFnAttributes(const CodeGenIntrinsic *L,
const CodeGenIntrinsic *R) {
// Sort throwing intrinsics after non-throwing intrinsics.
if (L->canThrow != R->canThrow)
return R->canThrow;
if (L->isNoDuplicate != R->isNoDuplicate)
return R->isNoDuplicate;
if (L->isNoMerge != R->isNoMerge)
return R->isNoMerge;
if (L->isNoReturn != R->isNoReturn)
return R->isNoReturn;
if (L->isNoCallback != R->isNoCallback)
return R->isNoCallback;
if (L->isNoSync != R->isNoSync)
return R->isNoSync;
if (L->isNoFree != R->isNoFree)
return R->isNoFree;
if (L->isWillReturn != R->isWillReturn)
return R->isWillReturn;
if (L->isCold != R->isCold)
return R->isCold;
if (L->isConvergent != R->isConvergent)
return R->isConvergent;
if (L->isSpeculatable != R->isSpeculatable)
return R->isSpeculatable;
if (L->hasSideEffects != R->hasSideEffects)
return R->hasSideEffects;
if (L->isStrictFP != R->isStrictFP)
return R->isStrictFP;
// Try to order by readonly/readnone attribute.
uint32_t LK = L->ME.toIntValue();
uint32_t RK = R->ME.toIntValue();
if (LK != RK)
return (LK > RK);
return std::nullopt;
}
struct FnAttributeComparator {
bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
return compareFnAttributes(L, R).value_or(false);
}
};
struct AttributeComparator {
bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
if (std::optional<bool> Res = compareFnAttributes(L, R))
return *Res;
// Order by argument attributes.
// This is reliable because each side is already sorted internally.
return (L->ArgumentAttributes < R->ArgumentAttributes);
}
};
} // End anonymous namespace
/// EmitAttributes - This emits the Intrinsic::getAttributes method.
void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS) {
OS << "// Add parameter attributes that are not common to all intrinsics.\n";
OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
// Compute unique argument attribute sets.
std::map<SmallVector<CodeGenIntrinsic::ArgAttribute, 0>, unsigned>
UniqArgAttributes;
OS << "static AttributeSet getIntrinsicArgAttributeSet("
<< "LLVMContext &C, unsigned ID) {\n"
<< " switch (ID) {\n"
<< " default: llvm_unreachable(\"Invalid attribute set number\");\n";
for (const CodeGenIntrinsic &Int : Ints) {
for (auto &Attrs : Int.ArgumentAttributes) {
if (Attrs.empty())
continue;
unsigned ID = UniqArgAttributes.size();
if (!UniqArgAttributes.try_emplace(Attrs, ID).second)
continue;
assert(is_sorted(Attrs) && "Argument attributes are not sorted");
OS << " case " << ID << ":\n";
OS << " return AttributeSet::get(C, {\n";
for (const CodeGenIntrinsic::ArgAttribute &Attr : Attrs) {
switch (Attr.Kind) {
case CodeGenIntrinsic::NoCapture:
OS << " Attribute::get(C, Attribute::NoCapture),\n";
break;
case CodeGenIntrinsic::NoAlias:
OS << " Attribute::get(C, Attribute::NoAlias),\n";
break;
case CodeGenIntrinsic::NoUndef:
OS << " Attribute::get(C, Attribute::NoUndef),\n";
break;
case CodeGenIntrinsic::NonNull:
OS << " Attribute::get(C, Attribute::NonNull),\n";
break;
case CodeGenIntrinsic::Returned:
OS << " Attribute::get(C, Attribute::Returned),\n";
break;
case CodeGenIntrinsic::ReadOnly:
OS << " Attribute::get(C, Attribute::ReadOnly),\n";
break;
case CodeGenIntrinsic::WriteOnly:
OS << " Attribute::get(C, Attribute::WriteOnly),\n";
break;
case CodeGenIntrinsic::ReadNone:
OS << " Attribute::get(C, Attribute::ReadNone),\n";
break;
case CodeGenIntrinsic::ImmArg:
OS << " Attribute::get(C, Attribute::ImmArg),\n";
break;
case CodeGenIntrinsic::Alignment:
OS << " Attribute::get(C, Attribute::Alignment, " << Attr.Value
<< "),\n";
break;
case CodeGenIntrinsic::Dereferenceable:
OS << " Attribute::get(C, Attribute::Dereferenceable, "
<< Attr.Value << "),\n";
break;
}
}
OS << " });\n";
}
}
OS << " }\n";
OS << "}\n\n";
// Compute unique function attribute sets.
std::map<const CodeGenIntrinsic *, unsigned, FnAttributeComparator>
UniqFnAttributes;
OS << "static AttributeSet getIntrinsicFnAttributeSet("
<< "LLVMContext &C, unsigned ID) {\n"
<< " switch (ID) {\n"
<< " default: llvm_unreachable(\"Invalid attribute set number\");\n";
for (const CodeGenIntrinsic &Intrinsic : Ints) {
unsigned ID = UniqFnAttributes.size();
if (!UniqFnAttributes.try_emplace(&Intrinsic, ID).second)
continue;
OS << " case " << ID << ":\n"
<< " return AttributeSet::get(C, {\n";
if (!Intrinsic.canThrow)
OS << " Attribute::get(C, Attribute::NoUnwind),\n";
if (Intrinsic.isNoReturn)
OS << " Attribute::get(C, Attribute::NoReturn),\n";
if (Intrinsic.isNoCallback)
OS << " Attribute::get(C, Attribute::NoCallback),\n";
if (Intrinsic.isNoSync)
OS << " Attribute::get(C, Attribute::NoSync),\n";
if (Intrinsic.isNoFree)
OS << " Attribute::get(C, Attribute::NoFree),\n";
if (Intrinsic.isWillReturn)
OS << " Attribute::get(C, Attribute::WillReturn),\n";
if (Intrinsic.isCold)
OS << " Attribute::get(C, Attribute::Cold),\n";
if (Intrinsic.isNoDuplicate)
OS << " Attribute::get(C, Attribute::NoDuplicate),\n";
if (Intrinsic.isNoMerge)
OS << " Attribute::get(C, Attribute::NoMerge),\n";
if (Intrinsic.isConvergent)
OS << " Attribute::get(C, Attribute::Convergent),\n";
if (Intrinsic.isSpeculatable)
OS << " Attribute::get(C, Attribute::Speculatable),\n";
if (Intrinsic.isStrictFP)
OS << " Attribute::get(C, Attribute::StrictFP),\n";
MemoryEffects ME = Intrinsic.ME;
// TODO: IntrHasSideEffects should affect not only readnone intrinsics.
if (ME.doesNotAccessMemory() && Intrinsic.hasSideEffects)
ME = MemoryEffects::unknown();
if (ME != MemoryEffects::unknown()) {
OS << " Attribute::getWithMemoryEffects(C, "
<< "MemoryEffects::createFromIntValue(" << ME.toIntValue() << ")),\n";
}
OS << " });\n";
}
OS << " }\n";
OS << "}\n\n";
OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";
// Compute the maximum number of attribute arguments and the map
typedef std::map<const CodeGenIntrinsic *, unsigned, AttributeComparator>
UniqAttrMapTy;
UniqAttrMapTy UniqAttributes;
unsigned maxArgAttrs = 0;
unsigned AttrNum = 0;
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
const CodeGenIntrinsic &intrinsic = Ints[i];
maxArgAttrs =
std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
unsigned &N = UniqAttributes[&intrinsic];
if (N)
continue;
N = ++AttrNum;
assert(N < 65536 && "Too many unique attributes for table!");
}
// Emit an array of AttributeList. Most intrinsics will have at least one
// entry, for the function itself (index ~1), which is usually nounwind.
OS << " static const uint16_t IntrinsicsToAttributesMap[] = {\n";
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
const CodeGenIntrinsic &intrinsic = Ints[i];
OS << " " << UniqAttributes[&intrinsic] << ", // " << intrinsic.Name
<< "\n";
}
OS << " };\n\n";
OS << " std::pair<unsigned, AttributeSet> AS[" << maxArgAttrs + 1 << "];\n";
OS << " unsigned NumAttrs = 0;\n";
OS << " if (id != 0) {\n";
OS << " switch(IntrinsicsToAttributesMap[id - 1]) {\n";
OS << " default: llvm_unreachable(\"Invalid attribute number\");\n";
for (auto UniqAttribute : UniqAttributes) {
OS << " case " << UniqAttribute.second << ": {\n";
const CodeGenIntrinsic &Intrinsic = *(UniqAttribute.first);
// Keep track of the number of attributes we're writing out.
unsigned numAttrs = 0;
for (const auto &[AttrIdx, Attrs] :
enumerate(Intrinsic.ArgumentAttributes)) {
if (Attrs.empty())
continue;
unsigned ID = UniqArgAttributes.find(Attrs)->second;
OS << " AS[" << numAttrs++ << "] = {" << AttrIdx
<< ", getIntrinsicArgAttributeSet(C, " << ID << ")};\n";
}
if (!Intrinsic.canThrow ||
(Intrinsic.ME != MemoryEffects::unknown() &&
!Intrinsic.hasSideEffects) ||
Intrinsic.isNoReturn || Intrinsic.isNoCallback || Intrinsic.isNoSync ||
Intrinsic.isNoFree || Intrinsic.isWillReturn || Intrinsic.isCold ||
Intrinsic.isNoDuplicate || Intrinsic.isNoMerge ||
Intrinsic.isConvergent || Intrinsic.isSpeculatable ||
Intrinsic.isStrictFP) {
unsigned ID = UniqFnAttributes.find(&Intrinsic)->second;
OS << " AS[" << numAttrs++ << "] = {AttributeList::FunctionIndex, "
<< "getIntrinsicFnAttributeSet(C, " << ID << ")};\n";
}
if (numAttrs) {
OS << " NumAttrs = " << numAttrs << ";\n";
OS << " break;\n";
OS << " }\n";
} else {
OS << " return AttributeList();\n";
OS << " }\n";
}
}
OS << " }\n";
OS << " }\n";
OS << " return AttributeList::get(C, ArrayRef(AS, NumAttrs));\n";
OS << "}\n";
OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
}
void IntrinsicEmitter::EmitIntrinsicToBuiltinMap(
const CodeGenIntrinsicTable &Ints, bool IsClang, raw_ostream &OS) {
StringRef CompilerName = (IsClang ? "Clang" : "MS");
StringRef UpperCompilerName = (IsClang ? "CLANG" : "MS");
typedef std::map<std::string, std::map<std::string, std::string>> BIMTy;
BIMTy BuiltinMap;
StringToOffsetTable Table;
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
const std::string &BuiltinName =
IsClang ? Ints[i].ClangBuiltinName : Ints[i].MSBuiltinName;
if (!BuiltinName.empty()) {
// Get the map for this target prefix.
std::map<std::string, std::string> &BIM =
BuiltinMap[Ints[i].TargetPrefix];
if (!BIM.insert(std::pair(BuiltinName, Ints[i].EnumName)).second)
PrintFatalError(Ints[i].TheDef->getLoc(),
"Intrinsic '" + Ints[i].TheDef->getName() +
"': duplicate " + CompilerName + " builtin name!");
Table.GetOrAddStringOffset(BuiltinName);
}
}
OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n";
OS << "// This is used by the C front-end. The builtin name is passed\n";
OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n";
OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << UpperCompilerName << "_BUILTIN\n";
OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName
<< "Builtin(const char "
<< "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";
if (Table.Empty()) {
OS << " return Intrinsic::not_intrinsic;\n";
OS << "}\n";
OS << "#endif\n\n";
return;
}
OS << " static const char BuiltinNames[] = {\n";
Table.EmitCharArray(OS);
OS << " };\n\n";
OS << " struct BuiltinEntry {\n";
OS << " Intrinsic::ID IntrinID;\n";
OS << " unsigned StrTabOffset;\n";
OS << " const char *getName() const {\n";
OS << " return &BuiltinNames[StrTabOffset];\n";
OS << " }\n";
OS << " bool operator<(StringRef RHS) const {\n";
OS << " return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n";
OS << " }\n";
OS << " };\n";
OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n";
// Note: this could emit significantly better code if we cared.
for (auto &I : BuiltinMap) {
OS << " ";
if (!I.first.empty())
OS << "if (TargetPrefix == \"" << I.first << "\") ";
else
OS << "/* Target Independent Builtins */ ";
OS << "{\n";
// Emit the comparisons for this target prefix.
OS << " static const BuiltinEntry " << I.first << "Names[] = {\n";
for (const auto &P : I.second) {
OS << " {Intrinsic::" << P.second << ", "
<< Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n";
}
OS << " };\n";
OS << " auto I = std::lower_bound(std::begin(" << I.first << "Names),\n";
OS << " std::end(" << I.first << "Names),\n";
OS << " BuiltinNameStr);\n";
OS << " if (I != std::end(" << I.first << "Names) &&\n";
OS << " I->getName() == BuiltinNameStr)\n";
OS << " return I->IntrinID;\n";
OS << " }\n";
}
OS << " return ";
OS << "Intrinsic::not_intrinsic;\n";
OS << "}\n";
OS << "#endif\n\n";
}
static void EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS) {
IntrinsicEmitter(RK).run(OS, /*Enums=*/true);
}
static TableGen::Emitter::Opt X("gen-intrinsic-enums", EmitIntrinsicEnums,
"Generate intrinsic enums");
static void EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS) {
IntrinsicEmitter(RK).run(OS, /*Enums=*/false);
}
static TableGen::Emitter::Opt Y("gen-intrinsic-impl", EmitIntrinsicImpl,
"Generate intrinsic information");