blob: 8bc3f026853cc85799bfe5eb66d8cb3f5dc042a1 [file] [log] [blame]
//===- DirectiveEmitter.cpp - Directive Language Emitter ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// DirectiveEmitter uses the descriptions of directives and clauses to construct
// common code declarations to be used in Frontends.
//
//===----------------------------------------------------------------------===//
#include "llvm/TableGen/DirectiveEmitter.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <numeric>
#include <vector>
using namespace llvm;
namespace {
// Simple RAII helper for defining ifdef-undef-endif scopes.
class IfDefScope {
public:
IfDefScope(StringRef Name, raw_ostream &OS) : Name(Name), OS(OS) {
OS << "#ifdef " << Name << "\n"
<< "#undef " << Name << "\n";
}
~IfDefScope() { OS << "\n#endif // " << Name << "\n\n"; }
private:
StringRef Name;
raw_ostream &OS;
};
} // namespace
// Generate enum class. Entries are emitted in the order in which they appear
// in the `Records` vector.
static void GenerateEnumClass(const std::vector<Record *> &Records,
raw_ostream &OS, StringRef Enum, StringRef Prefix,
const DirectiveLanguage &DirLang,
bool ExportEnums) {
OS << "\n";
OS << "enum class " << Enum << " {\n";
for (const auto &R : Records) {
BaseRecord Rec{R};
OS << " " << Prefix << Rec.getFormattedName() << ",\n";
}
OS << "};\n";
OS << "\n";
OS << "static constexpr std::size_t " << Enum
<< "_enumSize = " << Records.size() << ";\n";
// Make the enum values available in the defined namespace. This allows us to
// write something like Enum_X if we have a `using namespace <CppNamespace>`.
// At the same time we do not loose the strong type guarantees of the enum
// class, that is we cannot pass an unsigned as Directive without an explicit
// cast.
if (ExportEnums) {
OS << "\n";
for (const auto &R : Records) {
BaseRecord Rec{R};
OS << "constexpr auto " << Prefix << Rec.getFormattedName() << " = "
<< "llvm::" << DirLang.getCppNamespace() << "::" << Enum
<< "::" << Prefix << Rec.getFormattedName() << ";\n";
}
}
}
// Generate enums for values that clauses can take.
// Also generate function declarations for get<Enum>Name(StringRef Str).
static void GenerateEnumClauseVal(const std::vector<Record *> &Records,
raw_ostream &OS,
const DirectiveLanguage &DirLang,
std::string &EnumHelperFuncs) {
for (const auto &R : Records) {
Clause C{R};
const auto &ClauseVals = C.getClauseVals();
if (ClauseVals.size() <= 0)
continue;
const auto &EnumName = C.getEnumName();
if (EnumName.size() == 0) {
PrintError("enumClauseValue field not set in Clause" +
C.getFormattedName() + ".");
return;
}
OS << "\n";
OS << "enum class " << EnumName << " {\n";
for (const auto &CV : ClauseVals) {
ClauseVal CVal{CV};
OS << " " << CV->getName() << "=" << CVal.getValue() << ",\n";
}
OS << "};\n";
if (DirLang.hasMakeEnumAvailableInNamespace()) {
OS << "\n";
for (const auto &CV : ClauseVals) {
OS << "constexpr auto " << CV->getName() << " = "
<< "llvm::" << DirLang.getCppNamespace() << "::" << EnumName
<< "::" << CV->getName() << ";\n";
}
EnumHelperFuncs += (llvm::Twine(EnumName) + llvm::Twine(" get") +
llvm::Twine(EnumName) + llvm::Twine("(StringRef);\n"))
.str();
EnumHelperFuncs +=
(llvm::Twine("llvm::StringRef get") + llvm::Twine(DirLang.getName()) +
llvm::Twine(EnumName) + llvm::Twine("Name(") +
llvm::Twine(EnumName) + llvm::Twine(");\n"))
.str();
}
}
}
static bool HasDuplicateClauses(const std::vector<Record *> &Clauses,
const Directive &Directive,
llvm::StringSet<> &CrtClauses) {
bool HasError = false;
for (const auto &C : Clauses) {
VersionedClause VerClause{C};
const auto insRes = CrtClauses.insert(VerClause.getClause().getName());
if (!insRes.second) {
PrintError("Clause " + VerClause.getClause().getRecordName() +
" already defined on directive " + Directive.getRecordName());
HasError = true;
}
}
return HasError;
}
// Check for duplicate clauses in lists. Clauses cannot appear twice in the
// three allowed list. Also, since required implies allowed, clauses cannot
// appear in both the allowedClauses and requiredClauses lists.
static bool
HasDuplicateClausesInDirectives(const std::vector<Record *> &Directives) {
bool HasDuplicate = false;
for (const auto &D : Directives) {
Directive Dir{D};
llvm::StringSet<> Clauses;
// Check for duplicates in the three allowed lists.
if (HasDuplicateClauses(Dir.getAllowedClauses(), Dir, Clauses) ||
HasDuplicateClauses(Dir.getAllowedOnceClauses(), Dir, Clauses) ||
HasDuplicateClauses(Dir.getAllowedExclusiveClauses(), Dir, Clauses)) {
HasDuplicate = true;
}
// Check for duplicate between allowedClauses and required
Clauses.clear();
if (HasDuplicateClauses(Dir.getAllowedClauses(), Dir, Clauses) ||
HasDuplicateClauses(Dir.getRequiredClauses(), Dir, Clauses)) {
HasDuplicate = true;
}
if (HasDuplicate)
PrintFatalError("One or more clauses are defined multiple times on"
" directive " +
Dir.getRecordName());
}
return HasDuplicate;
}
// Check consitency of records. Return true if an error has been detected.
// Return false if the records are valid.
bool DirectiveLanguage::HasValidityErrors() const {
if (getDirectiveLanguages().size() != 1) {
PrintFatalError("A single definition of DirectiveLanguage is needed.");
return true;
}
return HasDuplicateClausesInDirectives(getDirectives());
}
// Count the maximum number of leaf constituents per construct.
static size_t GetMaxLeafCount(const DirectiveLanguage &DirLang) {
size_t MaxCount = 0;
for (Record *R : DirLang.getDirectives()) {
size_t Count = Directive{R}.getLeafConstructs().size();
MaxCount = std::max(MaxCount, Count);
}
return MaxCount;
}
// Generate the declaration section for the enumeration in the directive
// language
static void EmitDirectivesDecl(RecordKeeper &Records, raw_ostream &OS) {
const auto DirLang = DirectiveLanguage{Records};
if (DirLang.HasValidityErrors())
return;
OS << "#ifndef LLVM_" << DirLang.getName() << "_INC\n";
OS << "#define LLVM_" << DirLang.getName() << "_INC\n";
OS << "\n#include \"llvm/ADT/ArrayRef.h\"\n";
if (DirLang.hasEnableBitmaskEnumInNamespace())
OS << "#include \"llvm/ADT/BitmaskEnum.h\"\n";
OS << "#include <cstddef>\n"; // for size_t
OS << "\n";
OS << "namespace llvm {\n";
OS << "class StringRef;\n";
// Open namespaces defined in the directive language
llvm::SmallVector<StringRef, 2> Namespaces;
llvm::SplitString(DirLang.getCppNamespace(), Namespaces, "::");
for (auto Ns : Namespaces)
OS << "namespace " << Ns << " {\n";
if (DirLang.hasEnableBitmaskEnumInNamespace())
OS << "\nLLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();\n";
// Emit Directive associations
std::vector<Record *> associations;
llvm::copy_if(
DirLang.getAssociations(), std::back_inserter(associations),
// Skip the "special" value
[](const Record *Def) { return Def->getName() != "AS_FromLeaves"; });
GenerateEnumClass(associations, OS, "Association",
/*Prefix=*/"", DirLang, /*ExportEnums=*/false);
// Emit Directive enumeration
GenerateEnumClass(DirLang.getDirectives(), OS, "Directive",
DirLang.getDirectivePrefix(), DirLang,
DirLang.hasMakeEnumAvailableInNamespace());
// Emit Clause enumeration
GenerateEnumClass(DirLang.getClauses(), OS, "Clause",
DirLang.getClausePrefix(), DirLang,
DirLang.hasMakeEnumAvailableInNamespace());
// Emit ClauseVal enumeration
std::string EnumHelperFuncs;
GenerateEnumClauseVal(DirLang.getClauses(), OS, DirLang, EnumHelperFuncs);
// Generic function signatures
OS << "\n";
OS << "// Enumeration helper functions\n";
OS << "Directive get" << DirLang.getName()
<< "DirectiveKind(llvm::StringRef Str);\n";
OS << "\n";
OS << "llvm::StringRef get" << DirLang.getName()
<< "DirectiveName(Directive D);\n";
OS << "\n";
OS << "Clause get" << DirLang.getName()
<< "ClauseKind(llvm::StringRef Str);\n";
OS << "\n";
OS << "llvm::StringRef get" << DirLang.getName() << "ClauseName(Clause C);\n";
OS << "\n";
OS << "/// Return true if \\p C is a valid clause for \\p D in version \\p "
<< "Version.\n";
OS << "bool isAllowedClauseForDirective(Directive D, "
<< "Clause C, unsigned Version);\n";
OS << "\n";
OS << "constexpr std::size_t getMaxLeafCount() { return "
<< GetMaxLeafCount(DirLang) << "; }\n";
OS << "Association getDirectiveAssociation(Directive D);\n";
if (EnumHelperFuncs.length() > 0) {
OS << EnumHelperFuncs;
OS << "\n";
}
// Closing namespaces
for (auto Ns : llvm::reverse(Namespaces))
OS << "} // namespace " << Ns << "\n";
OS << "} // namespace llvm\n";
OS << "#endif // LLVM_" << DirLang.getName() << "_INC\n";
}
// Generate function implementation for get<Enum>Name(StringRef Str)
static void GenerateGetName(const std::vector<Record *> &Records,
raw_ostream &OS, StringRef Enum,
const DirectiveLanguage &DirLang,
StringRef Prefix) {
OS << "\n";
OS << "llvm::StringRef llvm::" << DirLang.getCppNamespace() << "::get"
<< DirLang.getName() << Enum << "Name(" << Enum << " Kind) {\n";
OS << " switch (Kind) {\n";
for (const auto &R : Records) {
BaseRecord Rec{R};
OS << " case " << Prefix << Rec.getFormattedName() << ":\n";
OS << " return \"";
if (Rec.getAlternativeName().empty())
OS << Rec.getName();
else
OS << Rec.getAlternativeName();
OS << "\";\n";
}
OS << " }\n"; // switch
OS << " llvm_unreachable(\"Invalid " << DirLang.getName() << " " << Enum
<< " kind\");\n";
OS << "}\n";
}
// Generate function implementation for get<Enum>Kind(StringRef Str)
static void GenerateGetKind(const std::vector<Record *> &Records,
raw_ostream &OS, StringRef Enum,
const DirectiveLanguage &DirLang, StringRef Prefix,
bool ImplicitAsUnknown) {
auto DefaultIt = llvm::find_if(
Records, [](Record *R) { return R->getValueAsBit("isDefault") == true; });
if (DefaultIt == Records.end()) {
PrintError("At least one " + Enum + " must be defined as default.");
return;
}
BaseRecord DefaultRec{(*DefaultIt)};
OS << "\n";
OS << Enum << " llvm::" << DirLang.getCppNamespace() << "::get"
<< DirLang.getName() << Enum << "Kind(llvm::StringRef Str) {\n";
OS << " return llvm::StringSwitch<" << Enum << ">(Str)\n";
for (const auto &R : Records) {
BaseRecord Rec{R};
if (ImplicitAsUnknown && R->getValueAsBit("isImplicit")) {
OS << " .Case(\"" << Rec.getName() << "\"," << Prefix
<< DefaultRec.getFormattedName() << ")\n";
} else {
OS << " .Case(\"" << Rec.getName() << "\"," << Prefix
<< Rec.getFormattedName() << ")\n";
}
}
OS << " .Default(" << Prefix << DefaultRec.getFormattedName() << ");\n";
OS << "}\n";
}
// Generate function implementation for get<ClauseVal>Kind(StringRef Str)
static void GenerateGetKindClauseVal(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
for (const auto &R : DirLang.getClauses()) {
Clause C{R};
const auto &ClauseVals = C.getClauseVals();
if (ClauseVals.size() <= 0)
continue;
auto DefaultIt = llvm::find_if(ClauseVals, [](Record *CV) {
return CV->getValueAsBit("isDefault") == true;
});
if (DefaultIt == ClauseVals.end()) {
PrintError("At least one val in Clause " + C.getFormattedName() +
" must be defined as default.");
return;
}
const auto DefaultName = (*DefaultIt)->getName();
const auto &EnumName = C.getEnumName();
if (EnumName.size() == 0) {
PrintError("enumClauseValue field not set in Clause" +
C.getFormattedName() + ".");
return;
}
OS << "\n";
OS << EnumName << " llvm::" << DirLang.getCppNamespace() << "::get"
<< EnumName << "(llvm::StringRef Str) {\n";
OS << " return llvm::StringSwitch<" << EnumName << ">(Str)\n";
for (const auto &CV : ClauseVals) {
ClauseVal CVal{CV};
OS << " .Case(\"" << CVal.getFormattedName() << "\"," << CV->getName()
<< ")\n";
}
OS << " .Default(" << DefaultName << ");\n";
OS << "}\n";
OS << "\n";
OS << "llvm::StringRef llvm::" << DirLang.getCppNamespace() << "::get"
<< DirLang.getName() << EnumName
<< "Name(llvm::" << DirLang.getCppNamespace() << "::" << EnumName
<< " x) {\n";
OS << " switch (x) {\n";
for (const auto &CV : ClauseVals) {
ClauseVal CVal{CV};
OS << " case " << CV->getName() << ":\n";
OS << " return \"" << CVal.getFormattedName() << "\";\n";
}
OS << " }\n"; // switch
OS << " llvm_unreachable(\"Invalid " << DirLang.getName() << " "
<< EnumName << " kind\");\n";
OS << "}\n";
}
}
static void
GenerateCaseForVersionedClauses(const std::vector<Record *> &Clauses,
raw_ostream &OS, StringRef DirectiveName,
const DirectiveLanguage &DirLang,
llvm::StringSet<> &Cases) {
for (const auto &C : Clauses) {
VersionedClause VerClause{C};
const auto ClauseFormattedName = VerClause.getClause().getFormattedName();
if (Cases.insert(ClauseFormattedName).second) {
OS << " case " << DirLang.getClausePrefix() << ClauseFormattedName
<< ":\n";
OS << " return " << VerClause.getMinVersion()
<< " <= Version && " << VerClause.getMaxVersion() << " >= Version;\n";
}
}
}
static std::string GetDirectiveName(const DirectiveLanguage &DirLang,
const Record *Rec) {
Directive Dir{Rec};
return (llvm::Twine("llvm::") + DirLang.getCppNamespace() +
"::" + DirLang.getDirectivePrefix() + Dir.getFormattedName())
.str();
}
static std::string GetDirectiveType(const DirectiveLanguage &DirLang) {
return (llvm::Twine("llvm::") + DirLang.getCppNamespace() + "::Directive")
.str();
}
// Generate the isAllowedClauseForDirective function implementation.
static void GenerateIsAllowedClause(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
OS << "\n";
OS << "bool llvm::" << DirLang.getCppNamespace()
<< "::isAllowedClauseForDirective("
<< "Directive D, Clause C, unsigned Version) {\n";
OS << " assert(unsigned(D) <= llvm::" << DirLang.getCppNamespace()
<< "::Directive_enumSize);\n";
OS << " assert(unsigned(C) <= llvm::" << DirLang.getCppNamespace()
<< "::Clause_enumSize);\n";
OS << " switch (D) {\n";
for (const auto &D : DirLang.getDirectives()) {
Directive Dir{D};
OS << " case " << DirLang.getDirectivePrefix() << Dir.getFormattedName()
<< ":\n";
if (Dir.getAllowedClauses().size() == 0 &&
Dir.getAllowedOnceClauses().size() == 0 &&
Dir.getAllowedExclusiveClauses().size() == 0 &&
Dir.getRequiredClauses().size() == 0) {
OS << " return false;\n";
} else {
OS << " switch (C) {\n";
llvm::StringSet<> Cases;
GenerateCaseForVersionedClauses(Dir.getAllowedClauses(), OS,
Dir.getName(), DirLang, Cases);
GenerateCaseForVersionedClauses(Dir.getAllowedOnceClauses(), OS,
Dir.getName(), DirLang, Cases);
GenerateCaseForVersionedClauses(Dir.getAllowedExclusiveClauses(), OS,
Dir.getName(), DirLang, Cases);
GenerateCaseForVersionedClauses(Dir.getRequiredClauses(), OS,
Dir.getName(), DirLang, Cases);
OS << " default:\n";
OS << " return false;\n";
OS << " }\n"; // End of clauses switch
}
OS << " break;\n";
}
OS << " }\n"; // End of directives switch
OS << " llvm_unreachable(\"Invalid " << DirLang.getName()
<< " Directive kind\");\n";
OS << "}\n"; // End of function isAllowedClauseForDirective
}
static void EmitLeafTable(const DirectiveLanguage &DirLang, raw_ostream &OS,
StringRef TableName) {
// The leaf constructs are emitted in a form of a 2D table, where each
// row corresponds to a directive (and there is a row for each directive).
//
// Each row consists of
// - the id of the directive itself,
// - number of leaf constructs that will follow (0 for leafs),
// - ids of the leaf constructs (none if the directive is itself a leaf).
// The total number of these entries is at most MaxLeafCount+2. If this
// number is less than that, it is padded to occupy exactly MaxLeafCount+2
// entries in memory.
//
// The rows are stored in the table in the lexicographical order. This
// is intended to enable binary search when mapping a sequence of leafs
// back to the compound directive.
// The consequence of that is that in order to find a row corresponding
// to the given directive, we'd need to scan the first element of each
// row. To avoid this, an auxiliary ordering table is created, such that
// row for Dir_A = table[auxiliary[Dir_A]].
std::vector<Record *> Directives = DirLang.getDirectives();
DenseMap<Record *, int> DirId; // Record * -> llvm::omp::Directive
for (auto [Idx, Rec] : llvm::enumerate(Directives))
DirId.insert(std::make_pair(Rec, Idx));
using LeafList = std::vector<int>;
int MaxLeafCount = GetMaxLeafCount(DirLang);
// The initial leaf table, rows order is same as directive order.
std::vector<LeafList> LeafTable(Directives.size());
for (auto [Idx, Rec] : llvm::enumerate(Directives)) {
Directive Dir{Rec};
std::vector<Record *> Leaves = Dir.getLeafConstructs();
auto &List = LeafTable[Idx];
List.resize(MaxLeafCount + 2);
List[0] = Idx; // The id of the directive itself.
List[1] = Leaves.size(); // The number of leaves to follow.
for (int I = 0; I != MaxLeafCount; ++I)
List[I + 2] =
static_cast<size_t>(I) < Leaves.size() ? DirId.at(Leaves[I]) : -1;
}
// Some Fortran directives are delimited, i.e. they have the form of
// "directive"---"end directive". If "directive" is a compound construct,
// then the set of leaf constituents will be nonempty and the same for
// both directives. Given this set of leafs, looking up the corresponding
// compound directive should return "directive", and not "end directive".
// To avoid this problem, gather all "end directives" at the end of the
// leaf table, and only do the search on the initial segment of the table
// that excludes the "end directives".
// It's safe to find all directives whose names begin with "end ". The
// problem only exists for compound directives, like "end do simd".
// All existing directives with names starting with "end " are either
// "end directives" for an existing "directive", or leaf directives
// (such as "end declare target").
DenseSet<int> EndDirectives;
for (auto [Rec, Id] : DirId) {
if (Directive{Rec}.getName().starts_with_insensitive("end "))
EndDirectives.insert(Id);
}
// Avoid sorting the vector<vector> array, instead sort an index array.
// It will also be useful later to create the auxiliary indexing array.
std::vector<int> Ordering(Directives.size());
std::iota(Ordering.begin(), Ordering.end(), 0);
llvm::sort(Ordering, [&](int A, int B) {
auto &LeavesA = LeafTable[A];
auto &LeavesB = LeafTable[B];
int DirA = LeavesA[0], DirB = LeavesB[0];
// First of all, end directives compare greater than non-end directives.
int IsEndA = EndDirectives.count(DirA), IsEndB = EndDirectives.count(DirB);
if (IsEndA != IsEndB)
return IsEndA < IsEndB;
if (LeavesA[1] == 0 && LeavesB[1] == 0)
return DirA < DirB;
return std::lexicographical_compare(&LeavesA[2], &LeavesA[2] + LeavesA[1],
&LeavesB[2], &LeavesB[2] + LeavesB[1]);
});
// Emit the table
// The directives are emitted into a scoped enum, for which the underlying
// type is `int` (by default). The code above uses `int` to store directive
// ids, so make sure that we catch it when something changes in the
// underlying type.
std::string DirectiveType = GetDirectiveType(DirLang);
OS << "\nstatic_assert(sizeof(" << DirectiveType << ") == sizeof(int));\n";
OS << "[[maybe_unused]] static const " << DirectiveType << ' ' << TableName
<< "[][" << MaxLeafCount + 2 << "] = {\n";
for (size_t I = 0, E = Directives.size(); I != E; ++I) {
auto &Leaves = LeafTable[Ordering[I]];
OS << " {" << GetDirectiveName(DirLang, Directives[Leaves[0]]);
OS << ", static_cast<" << DirectiveType << ">(" << Leaves[1] << "),";
for (size_t I = 2, E = Leaves.size(); I != E; ++I) {
int Idx = Leaves[I];
if (Idx >= 0)
OS << ' ' << GetDirectiveName(DirLang, Directives[Leaves[I]]) << ',';
else
OS << " static_cast<" << DirectiveType << ">(-1),";
}
OS << "},\n";
}
OS << "};\n\n";
// Emit a marker where the first "end directive" is.
auto FirstE = llvm::find_if(Ordering, [&](int RowIdx) {
return EndDirectives.count(LeafTable[RowIdx][0]);
});
OS << "[[maybe_unused]] static auto " << TableName
<< "EndDirective = " << TableName << " + "
<< std::distance(Ordering.begin(), FirstE) << ";\n\n";
// Emit the auxiliary index table: it's the inverse of the `Ordering`
// table above.
OS << "[[maybe_unused]] static const int " << TableName << "Ordering[] = {\n";
OS << " ";
std::vector<int> Reverse(Ordering.size());
for (int I = 0, E = Ordering.size(); I != E; ++I)
Reverse[Ordering[I]] = I;
for (int Idx : Reverse)
OS << ' ' << Idx << ',';
OS << "\n};\n";
}
static void GenerateGetDirectiveAssociation(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
enum struct Association {
None = 0, // None should be the smallest value.
Block, // The values of the rest don't matter.
Declaration,
Delimited,
Loop,
Separating,
FromLeaves,
Invalid,
};
std::vector<Record *> associations = DirLang.getAssociations();
auto getAssocValue = [](StringRef name) -> Association {
return StringSwitch<Association>(name)
.Case("AS_Block", Association::Block)
.Case("AS_Declaration", Association::Declaration)
.Case("AS_Delimited", Association::Delimited)
.Case("AS_Loop", Association::Loop)
.Case("AS_None", Association::None)
.Case("AS_Separating", Association::Separating)
.Case("AS_FromLeaves", Association::FromLeaves)
.Default(Association::Invalid);
};
auto getAssocName = [&](Association A) -> StringRef {
if (A != Association::Invalid && A != Association::FromLeaves) {
auto F = llvm::find_if(associations, [&](const Record *R) {
return getAssocValue(R->getName()) == A;
});
if (F != associations.end())
return (*F)->getValueAsString("name"); // enum name
}
llvm_unreachable("Unexpected association value");
};
auto errorPrefixFor = [&](Directive D) -> std::string {
return (Twine("Directive '") + D.getName() + "' in namespace '" +
DirLang.getCppNamespace() + "' ")
.str();
};
auto reduce = [&](Association A, Association B) -> Association {
if (A > B)
std::swap(A, B);
// Calculate the result using the following rules:
// x + x = x
// AS_None + x = x
// AS_Block + AS_Loop = AS_Loop
if (A == Association::None || A == B)
return B;
if (A == Association::Block && B == Association::Loop)
return B;
if (A == Association::Loop && B == Association::Block)
return A;
return Association::Invalid;
};
llvm::DenseMap<const Record *, Association> AsMap;
auto compAssocImpl = [&](const Record *R, auto &&Self) -> Association {
if (auto F = AsMap.find(R); F != AsMap.end())
return F->second;
Directive D{R};
Association AS = getAssocValue(D.getAssociation()->getName());
if (AS == Association::Invalid) {
PrintFatalError(errorPrefixFor(D) +
"has an unrecognized value for association: '" +
D.getAssociation()->getName() + "'");
}
if (AS != Association::FromLeaves) {
AsMap.insert(std::make_pair(R, AS));
return AS;
}
// Compute the association from leaf constructs.
std::vector<Record *> leaves = D.getLeafConstructs();
if (leaves.empty()) {
llvm::errs() << D.getName() << '\n';
PrintFatalError(errorPrefixFor(D) +
"requests association to be computed from leaves, "
"but it has no leaves");
}
Association Result = Self(leaves[0], Self);
for (int I = 1, E = leaves.size(); I < E; ++I) {
Association A = Self(leaves[I], Self);
Association R = reduce(Result, A);
if (R == Association::Invalid) {
PrintFatalError(errorPrefixFor(D) +
"has leaves with incompatible association values: " +
getAssocName(A) + " and " + getAssocName(R));
}
Result = R;
}
assert(Result != Association::Invalid);
assert(Result != Association::FromLeaves);
AsMap.insert(std::make_pair(R, Result));
return Result;
};
for (Record *R : DirLang.getDirectives())
compAssocImpl(R, compAssocImpl); // Updates AsMap.
OS << '\n';
auto getQualifiedName = [&](StringRef Formatted) -> std::string {
return (llvm::Twine("llvm::") + DirLang.getCppNamespace() +
"::Directive::" + DirLang.getDirectivePrefix() + Formatted)
.str();
};
std::string DirectiveTypeName =
std::string("llvm::") + DirLang.getCppNamespace().str() + "::Directive";
std::string AssociationTypeName =
std::string("llvm::") + DirLang.getCppNamespace().str() + "::Association";
OS << AssociationTypeName << " llvm::" << DirLang.getCppNamespace()
<< "::getDirectiveAssociation(" << DirectiveTypeName << " Dir) {\n";
OS << " switch (Dir) {\n";
for (Record *R : DirLang.getDirectives()) {
if (auto F = AsMap.find(R); F != AsMap.end()) {
Directive Dir{R};
OS << " case " << getQualifiedName(Dir.getFormattedName()) << ":\n";
OS << " return " << AssociationTypeName
<< "::" << getAssocName(F->second) << ";\n";
}
}
OS << " } // switch(Dir)\n";
OS << " llvm_unreachable(\"Unexpected directive\");\n";
OS << "}\n";
}
// Generate a simple enum set with the give clauses.
static void GenerateClauseSet(const std::vector<Record *> &Clauses,
raw_ostream &OS, StringRef ClauseSetPrefix,
Directive &Dir,
const DirectiveLanguage &DirLang) {
OS << "\n";
OS << " static " << DirLang.getClauseEnumSetClass() << " " << ClauseSetPrefix
<< DirLang.getDirectivePrefix() << Dir.getFormattedName() << " {\n";
for (const auto &C : Clauses) {
VersionedClause VerClause{C};
OS << " llvm::" << DirLang.getCppNamespace()
<< "::Clause::" << DirLang.getClausePrefix()
<< VerClause.getClause().getFormattedName() << ",\n";
}
OS << " };\n";
}
// Generate an enum set for the 4 kinds of clauses linked to a directive.
static void GenerateDirectiveClauseSets(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_DIRECTIVE_CLAUSE_SETS", OS);
OS << "\n";
OS << "namespace llvm {\n";
// Open namespaces defined in the directive language.
llvm::SmallVector<StringRef, 2> Namespaces;
llvm::SplitString(DirLang.getCppNamespace(), Namespaces, "::");
for (auto Ns : Namespaces)
OS << "namespace " << Ns << " {\n";
for (const auto &D : DirLang.getDirectives()) {
Directive Dir{D};
OS << "\n";
OS << " // Sets for " << Dir.getName() << "\n";
GenerateClauseSet(Dir.getAllowedClauses(), OS, "allowedClauses_", Dir,
DirLang);
GenerateClauseSet(Dir.getAllowedOnceClauses(), OS, "allowedOnceClauses_",
Dir, DirLang);
GenerateClauseSet(Dir.getAllowedExclusiveClauses(), OS,
"allowedExclusiveClauses_", Dir, DirLang);
GenerateClauseSet(Dir.getRequiredClauses(), OS, "requiredClauses_", Dir,
DirLang);
}
// Closing namespaces
for (auto Ns : llvm::reverse(Namespaces))
OS << "} // namespace " << Ns << "\n";
OS << "} // namespace llvm\n";
}
// Generate a map of directive (key) with DirectiveClauses struct as values.
// The struct holds the 4 sets of enumeration for the 4 kinds of clauses
// allowances (allowed, allowed once, allowed exclusive and required).
static void GenerateDirectiveClauseMap(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_DIRECTIVE_CLAUSE_MAP", OS);
OS << "\n";
OS << "{\n";
for (const auto &D : DirLang.getDirectives()) {
Directive Dir{D};
OS << " {llvm::" << DirLang.getCppNamespace()
<< "::Directive::" << DirLang.getDirectivePrefix()
<< Dir.getFormattedName() << ",\n";
OS << " {\n";
OS << " llvm::" << DirLang.getCppNamespace() << "::allowedClauses_"
<< DirLang.getDirectivePrefix() << Dir.getFormattedName() << ",\n";
OS << " llvm::" << DirLang.getCppNamespace() << "::allowedOnceClauses_"
<< DirLang.getDirectivePrefix() << Dir.getFormattedName() << ",\n";
OS << " llvm::" << DirLang.getCppNamespace()
<< "::allowedExclusiveClauses_" << DirLang.getDirectivePrefix()
<< Dir.getFormattedName() << ",\n";
OS << " llvm::" << DirLang.getCppNamespace() << "::requiredClauses_"
<< DirLang.getDirectivePrefix() << Dir.getFormattedName() << ",\n";
OS << " }\n";
OS << " },\n";
}
OS << "}\n";
}
// Generate classes entry for Flang clauses in the Flang parse-tree
// If the clause as a non-generic class, no entry is generated.
// If the clause does not hold a value, an EMPTY_CLASS is used.
// If the clause class is generic then a WRAPPER_CLASS is used. When the value
// is optional, the value class is wrapped into a std::optional.
static void GenerateFlangClauseParserClass(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_CLAUSE_PARSER_CLASSES", OS);
OS << "\n";
for (const auto &C : DirLang.getClauses()) {
Clause Clause{C};
if (!Clause.getFlangClass().empty()) {
OS << "WRAPPER_CLASS(" << Clause.getFormattedParserClassName() << ", ";
if (Clause.isValueOptional() && Clause.isValueList()) {
OS << "std::optional<std::list<" << Clause.getFlangClass() << ">>";
} else if (Clause.isValueOptional()) {
OS << "std::optional<" << Clause.getFlangClass() << ">";
} else if (Clause.isValueList()) {
OS << "std::list<" << Clause.getFlangClass() << ">";
} else {
OS << Clause.getFlangClass();
}
} else {
OS << "EMPTY_CLASS(" << Clause.getFormattedParserClassName();
}
OS << ");\n";
}
}
// Generate a list of the different clause classes for Flang.
static void GenerateFlangClauseParserClassList(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_CLAUSE_PARSER_CLASSES_LIST", OS);
OS << "\n";
llvm::interleaveComma(DirLang.getClauses(), OS, [&](Record *C) {
Clause Clause{C};
OS << Clause.getFormattedParserClassName() << "\n";
});
}
// Generate dump node list for the clauses holding a generic class name.
static void GenerateFlangClauseDump(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_DUMP_PARSE_TREE_CLAUSES", OS);
OS << "\n";
for (const auto &C : DirLang.getClauses()) {
Clause Clause{C};
OS << "NODE(" << DirLang.getFlangClauseBaseClass() << ", "
<< Clause.getFormattedParserClassName() << ")\n";
}
}
// Generate Unparse functions for clauses classes in the Flang parse-tree
// If the clause is a non-generic class, no entry is generated.
static void GenerateFlangClauseUnparse(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_CLAUSE_UNPARSE", OS);
OS << "\n";
for (const auto &C : DirLang.getClauses()) {
Clause Clause{C};
if (!Clause.getFlangClass().empty()) {
if (Clause.isValueOptional() && Clause.getDefaultValue().empty()) {
OS << "void Unparse(const " << DirLang.getFlangClauseBaseClass()
<< "::" << Clause.getFormattedParserClassName() << " &x) {\n";
OS << " Word(\"" << Clause.getName().upper() << "\");\n";
OS << " Walk(\"(\", x.v, \")\");\n";
OS << "}\n";
} else if (Clause.isValueOptional()) {
OS << "void Unparse(const " << DirLang.getFlangClauseBaseClass()
<< "::" << Clause.getFormattedParserClassName() << " &x) {\n";
OS << " Word(\"" << Clause.getName().upper() << "\");\n";
OS << " Put(\"(\");\n";
OS << " if (x.v.has_value())\n";
if (Clause.isValueList())
OS << " Walk(x.v, \",\");\n";
else
OS << " Walk(x.v);\n";
OS << " else\n";
OS << " Put(\"" << Clause.getDefaultValue() << "\");\n";
OS << " Put(\")\");\n";
OS << "}\n";
} else {
OS << "void Unparse(const " << DirLang.getFlangClauseBaseClass()
<< "::" << Clause.getFormattedParserClassName() << " &x) {\n";
OS << " Word(\"" << Clause.getName().upper() << "\");\n";
OS << " Put(\"(\");\n";
if (Clause.isValueList())
OS << " Walk(x.v, \",\");\n";
else
OS << " Walk(x.v);\n";
OS << " Put(\")\");\n";
OS << "}\n";
}
} else {
OS << "void Before(const " << DirLang.getFlangClauseBaseClass()
<< "::" << Clause.getFormattedParserClassName() << " &) { Word(\""
<< Clause.getName().upper() << "\"); }\n";
}
}
}
// Generate check in the Enter functions for clauses classes.
static void GenerateFlangClauseCheckPrototypes(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_CLAUSE_CHECK_ENTER", OS);
OS << "\n";
for (const auto &C : DirLang.getClauses()) {
Clause Clause{C};
OS << "void Enter(const parser::" << DirLang.getFlangClauseBaseClass()
<< "::" << Clause.getFormattedParserClassName() << " &);\n";
}
}
// Generate the mapping for clauses between the parser class and the
// corresponding clause Kind
static void GenerateFlangClauseParserKindMap(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_CLAUSE_PARSER_KIND_MAP", OS);
OS << "\n";
for (const auto &C : DirLang.getClauses()) {
Clause Clause{C};
OS << "if constexpr (std::is_same_v<A, parser::"
<< DirLang.getFlangClauseBaseClass()
<< "::" << Clause.getFormattedParserClassName();
OS << ">)\n";
OS << " return llvm::" << DirLang.getCppNamespace()
<< "::Clause::" << DirLang.getClausePrefix() << Clause.getFormattedName()
<< ";\n";
}
OS << "llvm_unreachable(\"Invalid " << DirLang.getName()
<< " Parser clause\");\n";
}
static bool compareClauseName(Record *R1, Record *R2) {
Clause C1{R1};
Clause C2{R2};
return (C1.getName() > C2.getName());
}
// Generate the parser for the clauses.
static void GenerateFlangClausesParser(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
std::vector<Record *> Clauses = DirLang.getClauses();
// Sort clauses in reverse alphabetical order so with clauses with same
// beginning, the longer option is tried before.
llvm::sort(Clauses, compareClauseName);
IfDefScope Scope("GEN_FLANG_CLAUSES_PARSER", OS);
OS << "\n";
unsigned index = 0;
unsigned lastClauseIndex = DirLang.getClauses().size() - 1;
OS << "TYPE_PARSER(\n";
for (const auto &C : Clauses) {
Clause Clause{C};
if (Clause.getAliases().empty()) {
OS << " \"" << Clause.getName() << "\"";
} else {
OS << " ("
<< "\"" << Clause.getName() << "\"_tok";
for (StringRef alias : Clause.getAliases()) {
OS << " || \"" << alias << "\"_tok";
}
OS << ")";
}
OS << " >> construct<" << DirLang.getFlangClauseBaseClass()
<< ">(construct<" << DirLang.getFlangClauseBaseClass()
<< "::" << Clause.getFormattedParserClassName() << ">(";
if (Clause.getFlangClass().empty()) {
OS << "))";
if (index != lastClauseIndex)
OS << " ||";
OS << "\n";
++index;
continue;
}
if (Clause.isValueOptional())
OS << "maybe(";
OS << "parenthesized(";
if (Clause.isValueList())
OS << "nonemptyList(";
if (!Clause.getPrefix().empty())
OS << "\"" << Clause.getPrefix() << ":\" >> ";
// The common Flang parser are used directly. Their name is identical to
// the Flang class with first letter as lowercase. If the Flang class is
// not a common class, we assume there is a specific Parser<>{} with the
// Flang class name provided.
llvm::SmallString<128> Scratch;
StringRef Parser =
llvm::StringSwitch<StringRef>(Clause.getFlangClass())
.Case("Name", "name")
.Case("ScalarIntConstantExpr", "scalarIntConstantExpr")
.Case("ScalarIntExpr", "scalarIntExpr")
.Case("ScalarExpr", "scalarExpr")
.Case("ScalarLogicalExpr", "scalarLogicalExpr")
.Default(("Parser<" + Clause.getFlangClass() + ">{}")
.toStringRef(Scratch));
OS << Parser;
if (!Clause.getPrefix().empty() && Clause.isPrefixOptional())
OS << " || " << Parser;
if (Clause.isValueList()) // close nonemptyList(.
OS << ")";
OS << ")"; // close parenthesized(.
if (Clause.isValueOptional()) // close maybe(.
OS << ")";
OS << "))";
if (index != lastClauseIndex)
OS << " ||";
OS << "\n";
++index;
}
OS << ")\n";
}
// Generate the implementation section for the enumeration in the directive
// language
static void EmitDirectivesFlangImpl(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
GenerateDirectiveClauseSets(DirLang, OS);
GenerateDirectiveClauseMap(DirLang, OS);
GenerateFlangClauseParserClass(DirLang, OS);
GenerateFlangClauseParserClassList(DirLang, OS);
GenerateFlangClauseDump(DirLang, OS);
GenerateFlangClauseUnparse(DirLang, OS);
GenerateFlangClauseCheckPrototypes(DirLang, OS);
GenerateFlangClauseParserKindMap(DirLang, OS);
GenerateFlangClausesParser(DirLang, OS);
}
static void GenerateClauseClassMacro(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
// Generate macros style information for legacy code in clang
IfDefScope Scope("GEN_CLANG_CLAUSE_CLASS", OS);
OS << "\n";
OS << "#ifndef CLAUSE\n";
OS << "#define CLAUSE(Enum, Str, Implicit)\n";
OS << "#endif\n";
OS << "#ifndef CLAUSE_CLASS\n";
OS << "#define CLAUSE_CLASS(Enum, Str, Class)\n";
OS << "#endif\n";
OS << "#ifndef CLAUSE_NO_CLASS\n";
OS << "#define CLAUSE_NO_CLASS(Enum, Str)\n";
OS << "#endif\n";
OS << "\n";
OS << "#define __CLAUSE(Name, Class) \\\n";
OS << " CLAUSE(" << DirLang.getClausePrefix()
<< "##Name, #Name, /* Implicit */ false) \\\n";
OS << " CLAUSE_CLASS(" << DirLang.getClausePrefix()
<< "##Name, #Name, Class)\n";
OS << "#define __CLAUSE_NO_CLASS(Name) \\\n";
OS << " CLAUSE(" << DirLang.getClausePrefix()
<< "##Name, #Name, /* Implicit */ false) \\\n";
OS << " CLAUSE_NO_CLASS(" << DirLang.getClausePrefix() << "##Name, #Name)\n";
OS << "#define __IMPLICIT_CLAUSE_CLASS(Name, Str, Class) \\\n";
OS << " CLAUSE(" << DirLang.getClausePrefix()
<< "##Name, Str, /* Implicit */ true) \\\n";
OS << " CLAUSE_CLASS(" << DirLang.getClausePrefix()
<< "##Name, Str, Class)\n";
OS << "#define __IMPLICIT_CLAUSE_NO_CLASS(Name, Str) \\\n";
OS << " CLAUSE(" << DirLang.getClausePrefix()
<< "##Name, Str, /* Implicit */ true) \\\n";
OS << " CLAUSE_NO_CLASS(" << DirLang.getClausePrefix() << "##Name, Str)\n";
OS << "\n";
for (const auto &R : DirLang.getClauses()) {
Clause C{R};
if (C.getClangClass().empty()) { // NO_CLASS
if (C.isImplicit()) {
OS << "__IMPLICIT_CLAUSE_NO_CLASS(" << C.getFormattedName() << ", \""
<< C.getFormattedName() << "\")\n";
} else {
OS << "__CLAUSE_NO_CLASS(" << C.getFormattedName() << ")\n";
}
} else { // CLASS
if (C.isImplicit()) {
OS << "__IMPLICIT_CLAUSE_CLASS(" << C.getFormattedName() << ", \""
<< C.getFormattedName() << "\", " << C.getClangClass() << ")\n";
} else {
OS << "__CLAUSE(" << C.getFormattedName() << ", " << C.getClangClass()
<< ")\n";
}
}
}
OS << "\n";
OS << "#undef __IMPLICIT_CLAUSE_NO_CLASS\n";
OS << "#undef __IMPLICIT_CLAUSE_CLASS\n";
OS << "#undef __CLAUSE_NO_CLASS\n";
OS << "#undef __CLAUSE\n";
OS << "#undef CLAUSE_NO_CLASS\n";
OS << "#undef CLAUSE_CLASS\n";
OS << "#undef CLAUSE\n";
}
// Generate the implemenation for the enumeration in the directive
// language. This code can be included in library.
void EmitDirectivesBasicImpl(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_DIRECTIVES_IMPL", OS);
OS << "\n#include \"llvm/Support/ErrorHandling.h\"\n";
// getDirectiveKind(StringRef Str)
GenerateGetKind(DirLang.getDirectives(), OS, "Directive", DirLang,
DirLang.getDirectivePrefix(), /*ImplicitAsUnknown=*/false);
// getDirectiveName(Directive Kind)
GenerateGetName(DirLang.getDirectives(), OS, "Directive", DirLang,
DirLang.getDirectivePrefix());
// getClauseKind(StringRef Str)
GenerateGetKind(DirLang.getClauses(), OS, "Clause", DirLang,
DirLang.getClausePrefix(),
/*ImplicitAsUnknown=*/true);
// getClauseName(Clause Kind)
GenerateGetName(DirLang.getClauses(), OS, "Clause", DirLang,
DirLang.getClausePrefix());
// get<ClauseVal>Kind(StringRef Str)
GenerateGetKindClauseVal(DirLang, OS);
// isAllowedClauseForDirective(Directive D, Clause C, unsigned Version)
GenerateIsAllowedClause(DirLang, OS);
// getDirectiveAssociation(Directive D)
GenerateGetDirectiveAssociation(DirLang, OS);
// Leaf table for getLeafConstructs, etc.
EmitLeafTable(DirLang, OS, "LeafConstructTable");
}
// Generate the implemenation section for the enumeration in the directive
// language.
static void EmitDirectivesImpl(RecordKeeper &Records, raw_ostream &OS) {
const auto DirLang = DirectiveLanguage{Records};
if (DirLang.HasValidityErrors())
return;
EmitDirectivesFlangImpl(DirLang, OS);
GenerateClauseClassMacro(DirLang, OS);
EmitDirectivesBasicImpl(DirLang, OS);
}
static TableGen::Emitter::Opt
X("gen-directive-decl", EmitDirectivesDecl,
"Generate directive related declaration code (header file)");
static TableGen::Emitter::Opt
Y("gen-directive-impl", EmitDirectivesImpl,
"Generate directive related implementation code");