blob: ff508d6487333069f18630ee07b07b6799a05ed6 [file] [log] [blame]
//===- DAGISelMatcherEmitter.cpp - Matcher Emitter ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains code to generate C++ code for a matcher.
//
//===----------------------------------------------------------------------===//
#include "Basic/SDNodeProperties.h"
#include "Common/CodeGenDAGPatterns.h"
#include "Common/CodeGenInstruction.h"
#include "Common/CodeGenRegisters.h"
#include "Common/CodeGenTarget.h"
#include "Common/DAGISelMatcher.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
using namespace llvm;
enum {
IndexWidth = 6,
FullIndexWidth = IndexWidth + 4,
HistOpcWidth = 40,
};
cl::OptionCategory DAGISelCat("Options for -gen-dag-isel");
// To reduce generated source code size.
static cl::opt<bool> OmitComments("omit-comments",
cl::desc("Do not generate comments"),
cl::init(false), cl::cat(DAGISelCat));
static cl::opt<bool> InstrumentCoverage(
"instrument-coverage",
cl::desc("Generates tables to help identify patterns matched"),
cl::init(false), cl::cat(DAGISelCat));
namespace {
class MatcherTableEmitter {
const CodeGenDAGPatterns &CGP;
SmallVector<unsigned, Matcher::HighestKind + 1> OpcodeCounts;
std::vector<TreePattern *> NodePredicates;
std::vector<TreePattern *> NodePredicatesWithOperands;
// We de-duplicate the predicates by code string, and use this map to track
// all the patterns with "identical" predicates.
MapVector<std::string, TinyPtrVector<TreePattern *>, StringMap<unsigned>>
NodePredicatesByCodeToRun;
std::vector<std::string> PatternPredicates;
std::vector<const ComplexPattern *> ComplexPatterns;
DenseMap<Record *, unsigned> NodeXFormMap;
std::vector<Record *> NodeXForms;
std::vector<std::string> VecIncludeStrings;
MapVector<std::string, unsigned, StringMap<unsigned>> VecPatterns;
unsigned getPatternIdxFromTable(std::string &&P, std::string &&include_loc) {
const auto It = VecPatterns.find(P);
if (It == VecPatterns.end()) {
VecPatterns.insert(std::pair(std::move(P), VecPatterns.size()));
VecIncludeStrings.push_back(std::move(include_loc));
return VecIncludeStrings.size() - 1;
}
return It->second;
}
public:
MatcherTableEmitter(const Matcher *TheMatcher, const CodeGenDAGPatterns &cgp)
: CGP(cgp), OpcodeCounts(Matcher::HighestKind + 1, 0) {
// Record the usage of ComplexPattern.
MapVector<const ComplexPattern *, unsigned> ComplexPatternUsage;
// Record the usage of PatternPredicate.
MapVector<StringRef, unsigned> PatternPredicateUsage;
// Record the usage of Predicate.
MapVector<TreePattern *, unsigned> PredicateUsage;
// Iterate the whole MatcherTable once and do some statistics.
std::function<void(const Matcher *)> Statistic = [&](const Matcher *N) {
while (N) {
if (auto *SM = dyn_cast<ScopeMatcher>(N))
for (unsigned I = 0; I < SM->getNumChildren(); I++)
Statistic(SM->getChild(I));
else if (auto *SOM = dyn_cast<SwitchOpcodeMatcher>(N))
for (unsigned I = 0; I < SOM->getNumCases(); I++)
Statistic(SOM->getCaseMatcher(I));
else if (auto *STM = dyn_cast<SwitchTypeMatcher>(N))
for (unsigned I = 0; I < STM->getNumCases(); I++)
Statistic(STM->getCaseMatcher(I));
else if (auto *CPM = dyn_cast<CheckComplexPatMatcher>(N))
++ComplexPatternUsage[&CPM->getPattern()];
else if (auto *CPPM = dyn_cast<CheckPatternPredicateMatcher>(N))
++PatternPredicateUsage[CPPM->getPredicate()];
else if (auto *PM = dyn_cast<CheckPredicateMatcher>(N))
++PredicateUsage[PM->getPredicate().getOrigPatFragRecord()];
N = N->getNext();
}
};
Statistic(TheMatcher);
// Sort ComplexPatterns by usage.
std::vector<std::pair<const ComplexPattern *, unsigned>> ComplexPatternList(
ComplexPatternUsage.begin(), ComplexPatternUsage.end());
stable_sort(ComplexPatternList, [](const auto &A, const auto &B) {
return A.second > B.second;
});
for (const auto &ComplexPattern : ComplexPatternList)
ComplexPatterns.push_back(ComplexPattern.first);
// Sort PatternPredicates by usage.
std::vector<std::pair<std::string, unsigned>> PatternPredicateList(
PatternPredicateUsage.begin(), PatternPredicateUsage.end());
stable_sort(PatternPredicateList, [](const auto &A, const auto &B) {
return A.second > B.second;
});
for (const auto &PatternPredicate : PatternPredicateList)
PatternPredicates.push_back(PatternPredicate.first);
// Sort Predicates by usage.
// Merge predicates with same code.
for (const auto &Usage : PredicateUsage) {
TreePattern *TP = Usage.first;
TreePredicateFn Pred(TP);
NodePredicatesByCodeToRun[Pred.getCodeToRunOnSDNode()].push_back(TP);
}
std::vector<std::pair<TreePattern *, unsigned>> PredicateList;
// Sum the usage.
for (auto &Predicate : NodePredicatesByCodeToRun) {
TinyPtrVector<TreePattern *> &TPs = Predicate.second;
stable_sort(TPs, [](const auto *A, const auto *B) {
return A->getRecord()->getName() < B->getRecord()->getName();
});
unsigned Uses = 0;
for (TreePattern *TP : TPs)
Uses += PredicateUsage[TP];
// We only add the first predicate here since they are with the same code.
PredicateList.push_back({TPs[0], Uses});
}
stable_sort(PredicateList, [](const auto &A, const auto &B) {
return A.second > B.second;
});
for (const auto &Predicate : PredicateList) {
TreePattern *TP = Predicate.first;
if (TreePredicateFn(TP).usesOperands())
NodePredicatesWithOperands.push_back(TP);
else
NodePredicates.push_back(TP);
}
}
unsigned EmitMatcherList(const Matcher *N, const unsigned Indent,
unsigned StartIdx, raw_ostream &OS);
unsigned SizeMatcherList(Matcher *N, raw_ostream &OS);
void EmitPredicateFunctions(raw_ostream &OS);
void EmitHistogram(const Matcher *N, raw_ostream &OS);
void EmitPatternMatchTable(raw_ostream &OS);
private:
void EmitNodePredicatesFunction(const std::vector<TreePattern *> &Preds,
StringRef Decl, raw_ostream &OS);
unsigned SizeMatcher(Matcher *N, raw_ostream &OS);
unsigned EmitMatcher(const Matcher *N, const unsigned Indent,
unsigned CurrentIdx, raw_ostream &OS);
unsigned getNodePredicate(TreePredicateFn Pred) {
// We use the first predicate.
TreePattern *PredPat =
NodePredicatesByCodeToRun[Pred.getCodeToRunOnSDNode()][0];
return Pred.usesOperands()
? llvm::find(NodePredicatesWithOperands, PredPat) -
NodePredicatesWithOperands.begin()
: llvm::find(NodePredicates, PredPat) - NodePredicates.begin();
}
unsigned getPatternPredicate(StringRef PredName) {
return llvm::find(PatternPredicates, PredName) - PatternPredicates.begin();
}
unsigned getComplexPat(const ComplexPattern &P) {
return llvm::find(ComplexPatterns, &P) - ComplexPatterns.begin();
}
unsigned getNodeXFormID(Record *Rec) {
unsigned &Entry = NodeXFormMap[Rec];
if (Entry == 0) {
NodeXForms.push_back(Rec);
Entry = NodeXForms.size();
}
return Entry - 1;
}
};
} // end anonymous namespace.
static std::string GetPatFromTreePatternNode(const TreePatternNode &N) {
std::string str;
raw_string_ostream Stream(str);
Stream << N;
return str;
}
static unsigned GetVBRSize(unsigned Val) {
if (Val <= 127)
return 1;
unsigned NumBytes = 0;
while (Val >= 128) {
Val >>= 7;
++NumBytes;
}
return NumBytes + 1;
}
/// EmitVBRValue - Emit the specified value as a VBR, returning the number of
/// bytes emitted.
static unsigned EmitVBRValue(uint64_t Val, raw_ostream &OS) {
if (Val <= 127) {
OS << Val << ", ";
return 1;
}
uint64_t InVal = Val;
unsigned NumBytes = 0;
while (Val >= 128) {
OS << (Val & 127) << "|128,";
Val >>= 7;
++NumBytes;
}
OS << Val;
if (!OmitComments)
OS << "/*" << InVal << "*/";
OS << ", ";
return NumBytes + 1;
}
/// Emit the specified signed value as a VBR. To improve compression we encode
/// positive numbers shifted left by 1 and negative numbers negated and shifted
/// left by 1 with bit 0 set.
static unsigned EmitSignedVBRValue(uint64_t Val, raw_ostream &OS) {
if ((int64_t)Val >= 0)
Val = Val << 1;
else
Val = (-Val << 1) | 1;
return EmitVBRValue(Val, OS);
}
// This is expensive and slow.
static std::string getIncludePath(const Record *R) {
std::string str;
raw_string_ostream Stream(str);
auto Locs = R->getLoc();
SMLoc L;
if (Locs.size() > 1) {
// Get where the pattern prototype was instantiated
L = Locs[1];
} else if (Locs.size() == 1) {
L = Locs[0];
}
unsigned CurBuf = SrcMgr.FindBufferContainingLoc(L);
assert(CurBuf && "Invalid or unspecified location!");
Stream << SrcMgr.getBufferInfo(CurBuf).Buffer->getBufferIdentifier() << ":"
<< SrcMgr.FindLineNumber(L, CurBuf);
return str;
}
/// This function traverses the matcher tree and sizes all the nodes
/// that are children of the three kinds of nodes that have them.
unsigned MatcherTableEmitter::SizeMatcherList(Matcher *N, raw_ostream &OS) {
unsigned Size = 0;
while (N) {
Size += SizeMatcher(N, OS);
N = N->getNext();
}
return Size;
}
/// This function sizes the children of the three kinds of nodes that
/// have them. It does so by using special cases for those three
/// nodes, but sharing the code in EmitMatcher() for the other kinds.
unsigned MatcherTableEmitter::SizeMatcher(Matcher *N, raw_ostream &OS) {
unsigned Idx = 0;
++OpcodeCounts[N->getKind()];
switch (N->getKind()) {
// The Scope matcher has its kind, a series of child size + child,
// and a trailing zero.
case Matcher::Scope: {
ScopeMatcher *SM = cast<ScopeMatcher>(N);
assert(SM->getNext() == nullptr && "Scope matcher should not have next");
unsigned Size = 1; // Count the kind.
for (unsigned i = 0, e = SM->getNumChildren(); i != e; ++i) {
const unsigned ChildSize = SizeMatcherList(SM->getChild(i), OS);
assert(ChildSize != 0 && "Matcher cannot have child of size 0");
SM->getChild(i)->setSize(ChildSize);
Size += GetVBRSize(ChildSize) + ChildSize; // Count VBR and child size.
}
++Size; // Count the zero sentinel.
return Size;
}
// SwitchOpcode and SwitchType have their kind, a series of child size +
// opcode/type + child, and a trailing zero.
case Matcher::SwitchOpcode:
case Matcher::SwitchType: {
unsigned Size = 1; // Count the kind.
unsigned NumCases;
if (const SwitchOpcodeMatcher *SOM = dyn_cast<SwitchOpcodeMatcher>(N))
NumCases = SOM->getNumCases();
else
NumCases = cast<SwitchTypeMatcher>(N)->getNumCases();
for (unsigned i = 0, e = NumCases; i != e; ++i) {
Matcher *Child;
if (SwitchOpcodeMatcher *SOM = dyn_cast<SwitchOpcodeMatcher>(N)) {
Child = SOM->getCaseMatcher(i);
Size += 2; // Count the child's opcode.
} else {
Child = cast<SwitchTypeMatcher>(N)->getCaseMatcher(i);
++Size; // Count the child's type.
}
const unsigned ChildSize = SizeMatcherList(Child, OS);
assert(ChildSize != 0 && "Matcher cannot have child of size 0");
Child->setSize(ChildSize);
Size += GetVBRSize(ChildSize) + ChildSize; // Count VBR and child size.
}
++Size; // Count the zero sentinel.
return Size;
}
default:
// Employ the matcher emitter to size other matchers.
return EmitMatcher(N, 0, Idx, OS);
}
llvm_unreachable("Unreachable");
}
static void BeginEmitFunction(raw_ostream &OS, StringRef RetType,
StringRef Decl, bool AddOverride) {
OS << "#ifdef GET_DAGISEL_DECL\n";
OS << RetType << ' ' << Decl;
if (AddOverride)
OS << " override";
OS << ";\n"
"#endif\n"
"#if defined(GET_DAGISEL_BODY) || DAGISEL_INLINE\n";
OS << RetType << " DAGISEL_CLASS_COLONCOLON " << Decl << "\n";
if (AddOverride) {
OS << "#if DAGISEL_INLINE\n"
" override\n"
"#endif\n";
}
}
static void EndEmitFunction(raw_ostream &OS) {
OS << "#endif // GET_DAGISEL_BODY\n\n";
}
void MatcherTableEmitter::EmitPatternMatchTable(raw_ostream &OS) {
assert(isUInt<16>(VecPatterns.size()) &&
"Using only 16 bits to encode offset into Pattern Table");
assert(VecPatterns.size() == VecIncludeStrings.size() &&
"The sizes of Pattern and include vectors should be the same");
BeginEmitFunction(OS, "StringRef", "getPatternForIndex(unsigned Index)",
true /*AddOverride*/);
OS << "{\n";
OS << "static const char *PATTERN_MATCH_TABLE[] = {\n";
for (const auto &It : VecPatterns) {
OS << "\"" << It.first << "\",\n";
}
OS << "\n};";
OS << "\nreturn StringRef(PATTERN_MATCH_TABLE[Index]);";
OS << "\n}\n";
EndEmitFunction(OS);
BeginEmitFunction(OS, "StringRef", "getIncludePathForIndex(unsigned Index)",
true /*AddOverride*/);
OS << "{\n";
OS << "static const char *INCLUDE_PATH_TABLE[] = {\n";
for (const auto &It : VecIncludeStrings) {
OS << "\"" << It << "\",\n";
}
OS << "\n};";
OS << "\nreturn StringRef(INCLUDE_PATH_TABLE[Index]);";
OS << "\n}\n";
EndEmitFunction(OS);
}
/// EmitMatcher - Emit bytes for the specified matcher and return
/// the number of bytes emitted.
unsigned MatcherTableEmitter::EmitMatcher(const Matcher *N,
const unsigned Indent,
unsigned CurrentIdx,
raw_ostream &OS) {
OS.indent(Indent);
switch (N->getKind()) {
case Matcher::Scope: {
const ScopeMatcher *SM = cast<ScopeMatcher>(N);
unsigned StartIdx = CurrentIdx;
// Emit all of the children.
for (unsigned i = 0, e = SM->getNumChildren(); i != e; ++i) {
if (i == 0) {
OS << "OPC_Scope, ";
++CurrentIdx;
} else {
if (!OmitComments) {
OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/";
OS.indent(Indent) << "/*Scope*/ ";
} else
OS.indent(Indent);
}
unsigned ChildSize = SM->getChild(i)->getSize();
unsigned VBRSize = EmitVBRValue(ChildSize, OS);
if (!OmitComments) {
OS << "/*->" << CurrentIdx + VBRSize + ChildSize << "*/";
if (i == 0)
OS << " // " << SM->getNumChildren() << " children in Scope";
}
OS << '\n';
ChildSize = EmitMatcherList(SM->getChild(i), Indent + 1,
CurrentIdx + VBRSize, OS);
assert(ChildSize == SM->getChild(i)->getSize() &&
"Emitted child size does not match calculated size");
CurrentIdx += VBRSize + ChildSize;
}
// Emit a zero as a sentinel indicating end of 'Scope'.
if (!OmitComments)
OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/";
OS.indent(Indent) << "0, ";
if (!OmitComments)
OS << "/*End of Scope*/";
OS << '\n';
return CurrentIdx - StartIdx + 1;
}
case Matcher::RecordNode:
OS << "OPC_RecordNode,";
if (!OmitComments)
OS << " // #" << cast<RecordMatcher>(N)->getResultNo() << " = "
<< cast<RecordMatcher>(N)->getWhatFor();
OS << '\n';
return 1;
case Matcher::RecordChild:
OS << "OPC_RecordChild" << cast<RecordChildMatcher>(N)->getChildNo() << ',';
if (!OmitComments)
OS << " // #" << cast<RecordChildMatcher>(N)->getResultNo() << " = "
<< cast<RecordChildMatcher>(N)->getWhatFor();
OS << '\n';
return 1;
case Matcher::RecordMemRef:
OS << "OPC_RecordMemRef,\n";
return 1;
case Matcher::CaptureGlueInput:
OS << "OPC_CaptureGlueInput,\n";
return 1;
case Matcher::MoveChild: {
const auto *MCM = cast<MoveChildMatcher>(N);
OS << "OPC_MoveChild";
// Handle the specialized forms.
if (MCM->getChildNo() >= 8)
OS << ", ";
OS << MCM->getChildNo() << ",\n";
return (MCM->getChildNo() >= 8) ? 2 : 1;
}
case Matcher::MoveSibling: {
const auto *MSM = cast<MoveSiblingMatcher>(N);
OS << "OPC_MoveSibling";
// Handle the specialized forms.
if (MSM->getSiblingNo() >= 8)
OS << ", ";
OS << MSM->getSiblingNo() << ",\n";
return (MSM->getSiblingNo() >= 8) ? 2 : 1;
}
case Matcher::MoveParent:
OS << "OPC_MoveParent,\n";
return 1;
case Matcher::CheckSame:
OS << "OPC_CheckSame, " << cast<CheckSameMatcher>(N)->getMatchNumber()
<< ",\n";
return 2;
case Matcher::CheckChildSame:
OS << "OPC_CheckChild" << cast<CheckChildSameMatcher>(N)->getChildNo()
<< "Same, " << cast<CheckChildSameMatcher>(N)->getMatchNumber() << ",\n";
return 2;
case Matcher::CheckPatternPredicate: {
StringRef Pred = cast<CheckPatternPredicateMatcher>(N)->getPredicate();
unsigned PredNo = getPatternPredicate(Pred);
if (PredNo > 255)
OS << "OPC_CheckPatternPredicateTwoByte, TARGET_VAL(" << PredNo << "),";
else if (PredNo < 8)
OS << "OPC_CheckPatternPredicate" << PredNo << ',';
else
OS << "OPC_CheckPatternPredicate, " << PredNo << ',';
if (!OmitComments)
OS << " // " << Pred;
OS << '\n';
return 2 + (PredNo > 255) - (PredNo < 8);
}
case Matcher::CheckPredicate: {
TreePredicateFn Pred = cast<CheckPredicateMatcher>(N)->getPredicate();
unsigned OperandBytes = 0;
unsigned PredNo = getNodePredicate(Pred);
if (Pred.usesOperands()) {
unsigned NumOps = cast<CheckPredicateMatcher>(N)->getNumOperands();
OS << "OPC_CheckPredicateWithOperands, " << NumOps << "/*#Ops*/, ";
for (unsigned i = 0; i < NumOps; ++i)
OS << cast<CheckPredicateMatcher>(N)->getOperandNo(i) << ", ";
OperandBytes = 1 + NumOps;
} else {
if (PredNo < 8) {
OperandBytes = -1;
OS << "OPC_CheckPredicate" << PredNo << ", ";
} else
OS << "OPC_CheckPredicate, ";
}
if (PredNo >= 8 || Pred.usesOperands())
OS << PredNo << ',';
if (!OmitComments)
OS << " // " << Pred.getFnName();
OS << '\n';
return 2 + OperandBytes;
}
case Matcher::CheckOpcode:
OS << "OPC_CheckOpcode, TARGET_VAL("
<< cast<CheckOpcodeMatcher>(N)->getOpcode().getEnumName() << "),\n";
return 3;
case Matcher::SwitchOpcode:
case Matcher::SwitchType: {
unsigned StartIdx = CurrentIdx;
unsigned NumCases;
if (const SwitchOpcodeMatcher *SOM = dyn_cast<SwitchOpcodeMatcher>(N)) {
OS << "OPC_SwitchOpcode ";
NumCases = SOM->getNumCases();
} else {
OS << "OPC_SwitchType ";
NumCases = cast<SwitchTypeMatcher>(N)->getNumCases();
}
if (!OmitComments)
OS << "/*" << NumCases << " cases */";
OS << ", ";
++CurrentIdx;
// For each case we emit the size, then the opcode, then the matcher.
for (unsigned i = 0, e = NumCases; i != e; ++i) {
const Matcher *Child;
unsigned IdxSize;
if (const SwitchOpcodeMatcher *SOM = dyn_cast<SwitchOpcodeMatcher>(N)) {
Child = SOM->getCaseMatcher(i);
IdxSize = 2; // size of opcode in table is 2 bytes.
} else {
Child = cast<SwitchTypeMatcher>(N)->getCaseMatcher(i);
IdxSize = 1; // size of type in table is 1 byte.
}
if (i != 0) {
if (!OmitComments)
OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/";
OS.indent(Indent);
if (!OmitComments)
OS << (isa<SwitchOpcodeMatcher>(N) ? "/*SwitchOpcode*/ "
: "/*SwitchType*/ ");
}
unsigned ChildSize = Child->getSize();
CurrentIdx += EmitVBRValue(ChildSize, OS) + IdxSize;
if (const SwitchOpcodeMatcher *SOM = dyn_cast<SwitchOpcodeMatcher>(N))
OS << "TARGET_VAL(" << SOM->getCaseOpcode(i).getEnumName() << "),";
else
OS << getEnumName(cast<SwitchTypeMatcher>(N)->getCaseType(i)) << ',';
if (!OmitComments)
OS << "// ->" << CurrentIdx + ChildSize;
OS << '\n';
ChildSize = EmitMatcherList(Child, Indent + 1, CurrentIdx, OS);
assert(ChildSize == Child->getSize() &&
"Emitted child size does not match calculated size");
CurrentIdx += ChildSize;
}
// Emit the final zero to terminate the switch.
if (!OmitComments)
OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/";
OS.indent(Indent) << "0,";
if (!OmitComments)
OS << (isa<SwitchOpcodeMatcher>(N) ? " // EndSwitchOpcode"
: " // EndSwitchType");
OS << '\n';
return CurrentIdx - StartIdx + 1;
}
case Matcher::CheckType:
if (cast<CheckTypeMatcher>(N)->getResNo() == 0) {
MVT::SimpleValueType VT = cast<CheckTypeMatcher>(N)->getType();
switch (VT) {
case MVT::i32:
case MVT::i64:
OS << "OPC_CheckTypeI" << MVT(VT).getSizeInBits() << ",\n";
return 1;
default:
OS << "OPC_CheckType, " << getEnumName(VT) << ",\n";
return 2;
}
}
OS << "OPC_CheckTypeRes, " << cast<CheckTypeMatcher>(N)->getResNo() << ", "
<< getEnumName(cast<CheckTypeMatcher>(N)->getType()) << ",\n";
return 3;
case Matcher::CheckChildType: {
MVT::SimpleValueType VT = cast<CheckChildTypeMatcher>(N)->getType();
switch (VT) {
case MVT::i32:
case MVT::i64:
OS << "OPC_CheckChild" << cast<CheckChildTypeMatcher>(N)->getChildNo()
<< "TypeI" << MVT(VT).getSizeInBits() << ",\n";
return 1;
default:
OS << "OPC_CheckChild" << cast<CheckChildTypeMatcher>(N)->getChildNo()
<< "Type, " << getEnumName(VT) << ",\n";
return 2;
}
}
case Matcher::CheckInteger: {
OS << "OPC_CheckInteger, ";
unsigned Bytes =
1 + EmitSignedVBRValue(cast<CheckIntegerMatcher>(N)->getValue(), OS);
OS << '\n';
return Bytes;
}
case Matcher::CheckChildInteger: {
OS << "OPC_CheckChild" << cast<CheckChildIntegerMatcher>(N)->getChildNo()
<< "Integer, ";
unsigned Bytes = 1 + EmitSignedVBRValue(
cast<CheckChildIntegerMatcher>(N)->getValue(), OS);
OS << '\n';
return Bytes;
}
case Matcher::CheckCondCode:
OS << "OPC_CheckCondCode, ISD::"
<< cast<CheckCondCodeMatcher>(N)->getCondCodeName() << ",\n";
return 2;
case Matcher::CheckChild2CondCode:
OS << "OPC_CheckChild2CondCode, ISD::"
<< cast<CheckChild2CondCodeMatcher>(N)->getCondCodeName() << ",\n";
return 2;
case Matcher::CheckValueType:
OS << "OPC_CheckValueType, MVT::"
<< cast<CheckValueTypeMatcher>(N)->getTypeName() << ",\n";
return 2;
case Matcher::CheckComplexPat: {
const CheckComplexPatMatcher *CCPM = cast<CheckComplexPatMatcher>(N);
const ComplexPattern &Pattern = CCPM->getPattern();
unsigned PatternNo = getComplexPat(Pattern);
if (PatternNo < 8)
OS << "OPC_CheckComplexPat" << PatternNo << ", /*#*/"
<< CCPM->getMatchNumber() << ',';
else
OS << "OPC_CheckComplexPat, /*CP*/" << PatternNo << ", /*#*/"
<< CCPM->getMatchNumber() << ',';
if (!OmitComments) {
OS << " // " << Pattern.getSelectFunc();
OS << ":$" << CCPM->getName();
for (unsigned i = 0, e = Pattern.getNumOperands(); i != e; ++i)
OS << " #" << CCPM->getFirstResult() + i;
if (Pattern.hasProperty(SDNPHasChain))
OS << " + chain result";
}
OS << '\n';
return PatternNo < 8 ? 2 : 3;
}
case Matcher::CheckAndImm: {
OS << "OPC_CheckAndImm, ";
unsigned Bytes =
1 + EmitVBRValue(cast<CheckAndImmMatcher>(N)->getValue(), OS);
OS << '\n';
return Bytes;
}
case Matcher::CheckOrImm: {
OS << "OPC_CheckOrImm, ";
unsigned Bytes =
1 + EmitVBRValue(cast<CheckOrImmMatcher>(N)->getValue(), OS);
OS << '\n';
return Bytes;
}
case Matcher::CheckFoldableChainNode:
OS << "OPC_CheckFoldableChainNode,\n";
return 1;
case Matcher::CheckImmAllOnesV:
OS << "OPC_CheckImmAllOnesV,\n";
return 1;
case Matcher::CheckImmAllZerosV:
OS << "OPC_CheckImmAllZerosV,\n";
return 1;
case Matcher::EmitInteger: {
int64_t Val = cast<EmitIntegerMatcher>(N)->getValue();
MVT::SimpleValueType VT = cast<EmitIntegerMatcher>(N)->getVT();
unsigned OpBytes;
switch (VT) {
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
OpBytes = 1;
OS << "OPC_EmitInteger" << MVT(VT).getSizeInBits() << ", ";
break;
default:
OpBytes = 2;
OS << "OPC_EmitInteger, " << getEnumName(VT) << ", ";
break;
}
unsigned Bytes = OpBytes + EmitSignedVBRValue(Val, OS);
OS << '\n';
return Bytes;
}
case Matcher::EmitStringInteger: {
const std::string &Val = cast<EmitStringIntegerMatcher>(N)->getValue();
MVT::SimpleValueType VT = cast<EmitStringIntegerMatcher>(N)->getVT();
// These should always fit into 7 bits.
unsigned OpBytes;
switch (VT) {
case MVT::i32:
OpBytes = 1;
OS << "OPC_EmitStringInteger" << MVT(VT).getSizeInBits() << ", ";
break;
default:
OpBytes = 2;
OS << "OPC_EmitStringInteger, " << getEnumName(VT) << ", ";
break;
}
OS << Val << ",\n";
return OpBytes + 1;
}
case Matcher::EmitRegister: {
const EmitRegisterMatcher *Matcher = cast<EmitRegisterMatcher>(N);
const CodeGenRegister *Reg = Matcher->getReg();
MVT::SimpleValueType VT = Matcher->getVT();
// If the enum value of the register is larger than one byte can handle,
// use EmitRegister2.
if (Reg && Reg->EnumValue > 255) {
OS << "OPC_EmitRegister2, " << getEnumName(VT) << ", ";
OS << "TARGET_VAL(" << getQualifiedName(Reg->TheDef) << "),\n";
return 4;
}
unsigned OpBytes;
switch (VT) {
case MVT::i32:
case MVT::i64:
OpBytes = 1;
OS << "OPC_EmitRegisterI" << MVT(VT).getSizeInBits() << ", ";
break;
default:
OpBytes = 2;
OS << "OPC_EmitRegister, " << getEnumName(VT) << ", ";
break;
}
if (Reg) {
OS << getQualifiedName(Reg->TheDef) << ",\n";
} else {
OS << "0 ";
if (!OmitComments)
OS << "/*zero_reg*/";
OS << ",\n";
}
return OpBytes + 1;
}
case Matcher::EmitConvertToTarget: {
unsigned Slot = cast<EmitConvertToTargetMatcher>(N)->getSlot();
if (Slot < 8) {
OS << "OPC_EmitConvertToTarget" << Slot << ",\n";
return 1;
}
OS << "OPC_EmitConvertToTarget, " << Slot << ",\n";
return 2;
}
case Matcher::EmitMergeInputChains: {
const EmitMergeInputChainsMatcher *MN =
cast<EmitMergeInputChainsMatcher>(N);
// Handle the specialized forms OPC_EmitMergeInputChains1_0, 1_1, and 1_2.
if (MN->getNumNodes() == 1 && MN->getNode(0) < 3) {
OS << "OPC_EmitMergeInputChains1_" << MN->getNode(0) << ",\n";
return 1;
}
OS << "OPC_EmitMergeInputChains, " << MN->getNumNodes() << ", ";
for (unsigned i = 0, e = MN->getNumNodes(); i != e; ++i)
OS << MN->getNode(i) << ", ";
OS << '\n';
return 2 + MN->getNumNodes();
}
case Matcher::EmitCopyToReg: {
const auto *C2RMatcher = cast<EmitCopyToRegMatcher>(N);
int Bytes = 3;
const CodeGenRegister *Reg = C2RMatcher->getDestPhysReg();
unsigned Slot = C2RMatcher->getSrcSlot();
if (Reg->EnumValue > 255) {
assert(isUInt<16>(Reg->EnumValue) && "not handled");
OS << "OPC_EmitCopyToRegTwoByte, " << Slot << ", "
<< "TARGET_VAL(" << getQualifiedName(Reg->TheDef) << "),\n";
++Bytes;
} else {
if (Slot < 8) {
OS << "OPC_EmitCopyToReg" << Slot << ", "
<< getQualifiedName(Reg->TheDef) << ",\n";
--Bytes;
} else
OS << "OPC_EmitCopyToReg, " << Slot << ", "
<< getQualifiedName(Reg->TheDef) << ",\n";
}
return Bytes;
}
case Matcher::EmitNodeXForm: {
const EmitNodeXFormMatcher *XF = cast<EmitNodeXFormMatcher>(N);
OS << "OPC_EmitNodeXForm, " << getNodeXFormID(XF->getNodeXForm()) << ", "
<< XF->getSlot() << ',';
if (!OmitComments)
OS << " // " << XF->getNodeXForm()->getName();
OS << '\n';
return 3;
}
case Matcher::EmitNode:
case Matcher::MorphNodeTo: {
auto NumCoveredBytes = 0;
if (InstrumentCoverage) {
if (const MorphNodeToMatcher *SNT = dyn_cast<MorphNodeToMatcher>(N)) {
NumCoveredBytes = 3;
OS << "OPC_Coverage, ";
std::string src =
GetPatFromTreePatternNode(SNT->getPattern().getSrcPattern());
std::string dst =
GetPatFromTreePatternNode(SNT->getPattern().getDstPattern());
Record *PatRecord = SNT->getPattern().getSrcRecord();
std::string include_src = getIncludePath(PatRecord);
unsigned Offset =
getPatternIdxFromTable(src + " -> " + dst, std::move(include_src));
OS << "TARGET_VAL(" << Offset << "),\n";
OS.indent(FullIndexWidth + Indent);
}
}
const EmitNodeMatcherCommon *EN = cast<EmitNodeMatcherCommon>(N);
bool IsEmitNode = isa<EmitNodeMatcher>(EN);
OS << (IsEmitNode ? "OPC_EmitNode" : "OPC_MorphNodeTo");
bool CompressVTs = EN->getNumVTs() < 3;
bool CompressNodeInfo = false;
if (CompressVTs) {
OS << EN->getNumVTs();
if (!EN->hasChain() && !EN->hasInGlue() && !EN->hasOutGlue() &&
!EN->hasMemRefs() && EN->getNumFixedArityOperands() == -1) {
CompressNodeInfo = true;
OS << "None";
} else if (EN->hasChain() && !EN->hasInGlue() && !EN->hasOutGlue() &&
!EN->hasMemRefs() && EN->getNumFixedArityOperands() == -1) {
CompressNodeInfo = true;
OS << "Chain";
} else if (!IsEmitNode && !EN->hasChain() && EN->hasInGlue() &&
!EN->hasOutGlue() && !EN->hasMemRefs() &&
EN->getNumFixedArityOperands() == -1) {
CompressNodeInfo = true;
OS << "GlueInput";
} else if (!IsEmitNode && !EN->hasChain() && !EN->hasInGlue() &&
EN->hasOutGlue() && !EN->hasMemRefs() &&
EN->getNumFixedArityOperands() == -1) {
CompressNodeInfo = true;
OS << "GlueOutput";
}
}
const CodeGenInstruction &CGI = EN->getInstruction();
OS << ", TARGET_VAL(" << CGI.Namespace << "::" << CGI.TheDef->getName()
<< ")";
if (!CompressNodeInfo) {
OS << ", 0";
if (EN->hasChain())
OS << "|OPFL_Chain";
if (EN->hasInGlue())
OS << "|OPFL_GlueInput";
if (EN->hasOutGlue())
OS << "|OPFL_GlueOutput";
if (EN->hasMemRefs())
OS << "|OPFL_MemRefs";
if (EN->getNumFixedArityOperands() != -1)
OS << "|OPFL_Variadic" << EN->getNumFixedArityOperands();
}
OS << ",\n";
OS.indent(FullIndexWidth + Indent + 4);
if (!CompressVTs) {
OS << EN->getNumVTs();
if (!OmitComments)
OS << "/*#VTs*/";
OS << ", ";
}
for (unsigned i = 0, e = EN->getNumVTs(); i != e; ++i)
OS << getEnumName(EN->getVT(i)) << ", ";
OS << EN->getNumOperands();
if (!OmitComments)
OS << "/*#Ops*/";
OS << ", ";
unsigned NumOperandBytes = 0;
for (unsigned i = 0, e = EN->getNumOperands(); i != e; ++i)
NumOperandBytes += EmitVBRValue(EN->getOperand(i), OS);
if (!OmitComments) {
// Print the result #'s for EmitNode.
if (const EmitNodeMatcher *E = dyn_cast<EmitNodeMatcher>(EN)) {
if (unsigned NumResults = EN->getNumVTs()) {
OS << " // Results =";
unsigned First = E->getFirstResultSlot();
for (unsigned i = 0; i != NumResults; ++i)
OS << " #" << First + i;
}
}
OS << '\n';
if (const MorphNodeToMatcher *SNT = dyn_cast<MorphNodeToMatcher>(N)) {
OS.indent(FullIndexWidth + Indent)
<< "// Src: " << SNT->getPattern().getSrcPattern()
<< " - Complexity = " << SNT->getPattern().getPatternComplexity(CGP)
<< '\n';
OS.indent(FullIndexWidth + Indent)
<< "// Dst: " << SNT->getPattern().getDstPattern() << '\n';
}
} else
OS << '\n';
return 4 + !CompressVTs + !CompressNodeInfo + EN->getNumVTs() +
NumOperandBytes + NumCoveredBytes;
}
case Matcher::CompleteMatch: {
const CompleteMatchMatcher *CM = cast<CompleteMatchMatcher>(N);
auto NumCoveredBytes = 0;
if (InstrumentCoverage) {
NumCoveredBytes = 3;
OS << "OPC_Coverage, ";
std::string src =
GetPatFromTreePatternNode(CM->getPattern().getSrcPattern());
std::string dst =
GetPatFromTreePatternNode(CM->getPattern().getDstPattern());
Record *PatRecord = CM->getPattern().getSrcRecord();
std::string include_src = getIncludePath(PatRecord);
unsigned Offset =
getPatternIdxFromTable(src + " -> " + dst, std::move(include_src));
OS << "TARGET_VAL(" << Offset << "),\n";
OS.indent(FullIndexWidth + Indent);
}
OS << "OPC_CompleteMatch, " << CM->getNumResults() << ", ";
unsigned NumResultBytes = 0;
for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
NumResultBytes += EmitVBRValue(CM->getResult(i), OS);
OS << '\n';
if (!OmitComments) {
OS.indent(FullIndexWidth + Indent)
<< " // Src: " << CM->getPattern().getSrcPattern()
<< " - Complexity = " << CM->getPattern().getPatternComplexity(CGP)
<< '\n';
OS.indent(FullIndexWidth + Indent)
<< " // Dst: " << CM->getPattern().getDstPattern();
}
OS << '\n';
return 2 + NumResultBytes + NumCoveredBytes;
}
}
llvm_unreachable("Unreachable");
}
/// This function traverses the matcher tree and emits all the nodes.
/// The nodes have already been sized.
unsigned MatcherTableEmitter::EmitMatcherList(const Matcher *N,
const unsigned Indent,
unsigned CurrentIdx,
raw_ostream &OS) {
unsigned Size = 0;
while (N) {
if (!OmitComments)
OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/";
unsigned MatcherSize = EmitMatcher(N, Indent, CurrentIdx, OS);
Size += MatcherSize;
CurrentIdx += MatcherSize;
// If there are other nodes in this list, iterate to them, otherwise we're
// done.
N = N->getNext();
}
return Size;
}
void MatcherTableEmitter::EmitNodePredicatesFunction(
const std::vector<TreePattern *> &Preds, StringRef Decl, raw_ostream &OS) {
if (Preds.empty())
return;
BeginEmitFunction(OS, "bool", Decl, true /*AddOverride*/);
OS << "{\n";
OS << " switch (PredNo) {\n";
OS << " default: llvm_unreachable(\"Invalid predicate in table?\");\n";
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
// Emit the predicate code corresponding to this pattern.
TreePredicateFn PredFn(Preds[i]);
assert(!PredFn.isAlwaysTrue() && "No code in this predicate");
std::string PredFnCodeStr = PredFn.getCodeToRunOnSDNode();
OS << " case " << i << ": {\n";
for (auto *SimilarPred : NodePredicatesByCodeToRun[PredFnCodeStr])
OS << " // " << TreePredicateFn(SimilarPred).getFnName() << '\n';
OS << PredFnCodeStr << "\n }\n";
}
OS << " }\n";
OS << "}\n";
EndEmitFunction(OS);
}
void MatcherTableEmitter::EmitPredicateFunctions(raw_ostream &OS) {
// Emit pattern predicates.
if (!PatternPredicates.empty()) {
BeginEmitFunction(OS, "bool",
"CheckPatternPredicate(unsigned PredNo) const",
true /*AddOverride*/);
OS << "{\n";
OS << " switch (PredNo) {\n";
OS << " default: llvm_unreachable(\"Invalid predicate in table?\");\n";
for (unsigned i = 0, e = PatternPredicates.size(); i != e; ++i)
OS << " case " << i << ": return " << PatternPredicates[i] << ";\n";
OS << " }\n";
OS << "}\n";
EndEmitFunction(OS);
}
// Emit Node predicates.
EmitNodePredicatesFunction(
NodePredicates, "CheckNodePredicate(SDNode *Node, unsigned PredNo) const",
OS);
EmitNodePredicatesFunction(
NodePredicatesWithOperands,
"CheckNodePredicateWithOperands(SDNode *Node, unsigned PredNo, "
"const SmallVectorImpl<SDValue> &Operands) const",
OS);
// Emit CompletePattern matchers.
// FIXME: This should be const.
if (!ComplexPatterns.empty()) {
BeginEmitFunction(
OS, "bool",
"CheckComplexPattern(SDNode *Root, SDNode *Parent,\n"
" SDValue N, unsigned PatternNo,\n"
" SmallVectorImpl<std::pair<SDValue, SDNode *>> &Result)",
true /*AddOverride*/);
OS << "{\n";
OS << " unsigned NextRes = Result.size();\n";
OS << " switch (PatternNo) {\n";
OS << " default: llvm_unreachable(\"Invalid pattern # in table?\");\n";
for (unsigned i = 0, e = ComplexPatterns.size(); i != e; ++i) {
const ComplexPattern &P = *ComplexPatterns[i];
unsigned NumOps = P.getNumOperands();
if (P.hasProperty(SDNPHasChain))
++NumOps; // Get the chained node too.
OS << " case " << i << ":\n";
if (InstrumentCoverage)
OS << " {\n";
OS << " Result.resize(NextRes+" << NumOps << ");\n";
if (InstrumentCoverage)
OS << " bool Succeeded = " << P.getSelectFunc();
else
OS << " return " << P.getSelectFunc();
OS << "(";
// If the complex pattern wants the root of the match, pass it in as the
// first argument.
if (P.hasProperty(SDNPWantRoot))
OS << "Root, ";
// If the complex pattern wants the parent of the operand being matched,
// pass it in as the next argument.
if (P.hasProperty(SDNPWantParent))
OS << "Parent, ";
OS << "N";
for (unsigned i = 0; i != NumOps; ++i)
OS << ", Result[NextRes+" << i << "].first";
OS << ");\n";
if (InstrumentCoverage) {
OS << " if (Succeeded)\n";
OS << " dbgs() << \"\\nCOMPLEX_PATTERN: " << P.getSelectFunc()
<< "\\n\" ;\n";
OS << " return Succeeded;\n";
OS << " }\n";
}
}
OS << " }\n";
OS << "}\n";
EndEmitFunction(OS);
}
// Emit SDNodeXForm handlers.
// FIXME: This should be const.
if (!NodeXForms.empty()) {
BeginEmitFunction(OS, "SDValue",
"RunSDNodeXForm(SDValue V, unsigned XFormNo)",
true /*AddOverride*/);
OS << "{\n";
OS << " switch (XFormNo) {\n";
OS << " default: llvm_unreachable(\"Invalid xform # in table?\");\n";
// FIXME: The node xform could take SDValue's instead of SDNode*'s.
for (unsigned i = 0, e = NodeXForms.size(); i != e; ++i) {
const CodeGenDAGPatterns::NodeXForm &Entry =
CGP.getSDNodeTransform(NodeXForms[i]);
Record *SDNode = Entry.first;
const std::string &Code = Entry.second;
OS << " case " << i << ": { ";
if (!OmitComments)
OS << "// " << NodeXForms[i]->getName();
OS << '\n';
std::string ClassName =
std::string(CGP.getSDNodeInfo(SDNode).getSDClassName());
if (ClassName == "SDNode")
OS << " SDNode *N = V.getNode();\n";
else
OS << " " << ClassName << " *N = cast<" << ClassName
<< ">(V.getNode());\n";
OS << Code << "\n }\n";
}
OS << " }\n";
OS << "}\n";
EndEmitFunction(OS);
}
}
static StringRef getOpcodeString(Matcher::KindTy Kind) {
switch (Kind) {
case Matcher::Scope:
return "OPC_Scope";
case Matcher::RecordNode:
return "OPC_RecordNode";
case Matcher::RecordChild:
return "OPC_RecordChild";
case Matcher::RecordMemRef:
return "OPC_RecordMemRef";
case Matcher::CaptureGlueInput:
return "OPC_CaptureGlueInput";
case Matcher::MoveChild:
return "OPC_MoveChild";
case Matcher::MoveSibling:
return "OPC_MoveSibling";
case Matcher::MoveParent:
return "OPC_MoveParent";
case Matcher::CheckSame:
return "OPC_CheckSame";
case Matcher::CheckChildSame:
return "OPC_CheckChildSame";
case Matcher::CheckPatternPredicate:
return "OPC_CheckPatternPredicate";
case Matcher::CheckPredicate:
return "OPC_CheckPredicate";
case Matcher::CheckOpcode:
return "OPC_CheckOpcode";
case Matcher::SwitchOpcode:
return "OPC_SwitchOpcode";
case Matcher::CheckType:
return "OPC_CheckType";
case Matcher::SwitchType:
return "OPC_SwitchType";
case Matcher::CheckChildType:
return "OPC_CheckChildType";
case Matcher::CheckInteger:
return "OPC_CheckInteger";
case Matcher::CheckChildInteger:
return "OPC_CheckChildInteger";
case Matcher::CheckCondCode:
return "OPC_CheckCondCode";
case Matcher::CheckChild2CondCode:
return "OPC_CheckChild2CondCode";
case Matcher::CheckValueType:
return "OPC_CheckValueType";
case Matcher::CheckComplexPat:
return "OPC_CheckComplexPat";
case Matcher::CheckAndImm:
return "OPC_CheckAndImm";
case Matcher::CheckOrImm:
return "OPC_CheckOrImm";
case Matcher::CheckFoldableChainNode:
return "OPC_CheckFoldableChainNode";
case Matcher::CheckImmAllOnesV:
return "OPC_CheckImmAllOnesV";
case Matcher::CheckImmAllZerosV:
return "OPC_CheckImmAllZerosV";
case Matcher::EmitInteger:
return "OPC_EmitInteger";
case Matcher::EmitStringInteger:
return "OPC_EmitStringInteger";
case Matcher::EmitRegister:
return "OPC_EmitRegister";
case Matcher::EmitConvertToTarget:
return "OPC_EmitConvertToTarget";
case Matcher::EmitMergeInputChains:
return "OPC_EmitMergeInputChains";
case Matcher::EmitCopyToReg:
return "OPC_EmitCopyToReg";
case Matcher::EmitNode:
return "OPC_EmitNode";
case Matcher::MorphNodeTo:
return "OPC_MorphNodeTo";
case Matcher::EmitNodeXForm:
return "OPC_EmitNodeXForm";
case Matcher::CompleteMatch:
return "OPC_CompleteMatch";
}
llvm_unreachable("Unhandled opcode?");
}
void MatcherTableEmitter::EmitHistogram(const Matcher *M, raw_ostream &OS) {
if (OmitComments)
return;
OS << " // Opcode Histogram:\n";
for (unsigned i = 0, e = OpcodeCounts.size(); i != e; ++i) {
OS << " // #"
<< left_justify(getOpcodeString((Matcher::KindTy)i), HistOpcWidth)
<< " = " << OpcodeCounts[i] << '\n';
}
OS << '\n';
}
void llvm::EmitMatcherTable(Matcher *TheMatcher, const CodeGenDAGPatterns &CGP,
raw_ostream &OS) {
OS << "#if defined(GET_DAGISEL_DECL) && defined(GET_DAGISEL_BODY)\n";
OS << "#error GET_DAGISEL_DECL and GET_DAGISEL_BODY cannot be both defined, ";
OS << "undef both for inline definitions\n";
OS << "#endif\n\n";
// Emit a check for omitted class name.
OS << "#ifdef GET_DAGISEL_BODY\n";
OS << "#define LOCAL_DAGISEL_STRINGIZE(X) LOCAL_DAGISEL_STRINGIZE_(X)\n";
OS << "#define LOCAL_DAGISEL_STRINGIZE_(X) #X\n";
OS << "static_assert(sizeof(LOCAL_DAGISEL_STRINGIZE(GET_DAGISEL_BODY)) > 1,"
"\n";
OS << " \"GET_DAGISEL_BODY is empty: it should be defined with the class "
"name\");\n";
OS << "#undef LOCAL_DAGISEL_STRINGIZE_\n";
OS << "#undef LOCAL_DAGISEL_STRINGIZE\n";
OS << "#endif\n\n";
OS << "#if !defined(GET_DAGISEL_DECL) && !defined(GET_DAGISEL_BODY)\n";
OS << "#define DAGISEL_INLINE 1\n";
OS << "#else\n";
OS << "#define DAGISEL_INLINE 0\n";
OS << "#endif\n\n";
OS << "#if !DAGISEL_INLINE\n";
OS << "#define DAGISEL_CLASS_COLONCOLON GET_DAGISEL_BODY ::\n";
OS << "#else\n";
OS << "#define DAGISEL_CLASS_COLONCOLON\n";
OS << "#endif\n\n";
BeginEmitFunction(OS, "void", "SelectCode(SDNode *N)", false /*AddOverride*/);
MatcherTableEmitter MatcherEmitter(TheMatcher, CGP);
// First we size all the children of the three kinds of matchers that have
// them. This is done by sharing the code in EmitMatcher(). but we don't
// want to emit anything, so we turn off comments and use a null stream.
bool SaveOmitComments = OmitComments;
OmitComments = true;
raw_null_ostream NullOS;
unsigned TotalSize = MatcherEmitter.SizeMatcherList(TheMatcher, NullOS);
OmitComments = SaveOmitComments;
// Now that the matchers are sized, we can emit the code for them to the
// final stream.
OS << "{\n";
OS << " // Some target values are emitted as 2 bytes, TARGET_VAL handles\n";
OS << " // this.\n";
OS << " #define TARGET_VAL(X) X & 255, unsigned(X) >> 8\n";
OS << " static const unsigned char MatcherTable[] = {\n";
TotalSize = MatcherEmitter.EmitMatcherList(TheMatcher, 1, 0, OS);
OS << " 0\n }; // Total Array size is " << (TotalSize + 1)
<< " bytes\n\n";
MatcherEmitter.EmitHistogram(TheMatcher, OS);
OS << " #undef TARGET_VAL\n";
OS << " SelectCodeCommon(N, MatcherTable, sizeof(MatcherTable));\n";
OS << "}\n";
EndEmitFunction(OS);
// Next up, emit the function for node and pattern predicates:
MatcherEmitter.EmitPredicateFunctions(OS);
if (InstrumentCoverage)
MatcherEmitter.EmitPatternMatchTable(OS);
// Clean up the preprocessor macros.
OS << "\n";
OS << "#ifdef DAGISEL_INLINE\n";
OS << "#undef DAGISEL_INLINE\n";
OS << "#endif\n";
OS << "#ifdef DAGISEL_CLASS_COLONCOLON\n";
OS << "#undef DAGISEL_CLASS_COLONCOLON\n";
OS << "#endif\n";
OS << "#ifdef GET_DAGISEL_DECL\n";
OS << "#undef GET_DAGISEL_DECL\n";
OS << "#endif\n";
OS << "#ifdef GET_DAGISEL_BODY\n";
OS << "#undef GET_DAGISEL_BODY\n";
OS << "#endif\n";
}