| import sys |
| import multiprocessing |
| |
| |
| _current = None |
| _total = None |
| |
| |
| def _init(current, total): |
| global _current |
| global _total |
| _current = current |
| _total = total |
| |
| |
| def _wrapped_func(func_and_args): |
| func, argument, should_print_progress, filter_ = func_and_args |
| |
| if should_print_progress: |
| with _current.get_lock(): |
| _current.value += 1 |
| sys.stdout.write("\r\t{} of {}".format(_current.value, _total.value)) |
| sys.stdout.flush() |
| |
| return func(argument, filter_) |
| |
| |
| def pmap( |
| func, iterable, processes, should_print_progress, filter_=None, *args, **kwargs |
| ): |
| """ |
| A parallel map function that reports on its progress. |
| |
| Applies `func` to every item of `iterable` and return a list of the |
| results. If `processes` is greater than one, a process pool is used to run |
| the functions in parallel. `should_print_progress` is a boolean value that |
| indicates whether a string 'N of M' should be printed to indicate how many |
| of the functions have finished being run. |
| """ |
| global _current |
| global _total |
| _current = multiprocessing.Value("i", 0) |
| _total = multiprocessing.Value("i", len(iterable)) |
| |
| func_and_args = [(func, arg, should_print_progress, filter_) for arg in iterable] |
| if processes == 1: |
| result = list(map(_wrapped_func, func_and_args, *args, **kwargs)) |
| else: |
| pool = multiprocessing.Pool( |
| initializer=_init, |
| initargs=( |
| _current, |
| _total, |
| ), |
| processes=processes, |
| ) |
| result = pool.map(_wrapped_func, func_and_args, *args, **kwargs) |
| pool.close() |
| pool.join() |
| |
| if should_print_progress: |
| sys.stdout.write("\r") |
| return result |