blob: 1f3e5dc68f1d6a13d62c4cb4976a332ce2565123 [file] [log] [blame]
//===- Record.cpp - Record implementation ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implement the tablegen record classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/TableGen/Record.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/TGTimer.h"
#include <cassert>
#include <cstdint>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "tblgen-records"
//===----------------------------------------------------------------------===//
// Context
//===----------------------------------------------------------------------===//
namespace llvm {
namespace detail {
/// This class represents the internal implementation of the RecordKeeper.
/// It contains all of the contextual static state of the Record classes. It is
/// kept out-of-line to simplify dependencies, and also make it easier for
/// internal classes to access the uniquer state of the keeper.
struct RecordKeeperImpl {
RecordKeeperImpl(RecordKeeper &RK)
: SharedBitRecTy(RK), SharedIntRecTy(RK), SharedStringRecTy(RK),
SharedDagRecTy(RK), AnyRecord(RK, {}), TheUnsetInit(RK),
TrueBitInit(true, &SharedBitRecTy),
FalseBitInit(false, &SharedBitRecTy), StringInitStringPool(Allocator),
StringInitCodePool(Allocator), AnonCounter(0), LastRecordID(0) {}
BumpPtrAllocator Allocator;
std::vector<BitsRecTy *> SharedBitsRecTys;
BitRecTy SharedBitRecTy;
IntRecTy SharedIntRecTy;
StringRecTy SharedStringRecTy;
DagRecTy SharedDagRecTy;
RecordRecTy AnyRecord;
UnsetInit TheUnsetInit;
BitInit TrueBitInit;
BitInit FalseBitInit;
FoldingSet<ArgumentInit> TheArgumentInitPool;
FoldingSet<BitsInit> TheBitsInitPool;
std::map<int64_t, IntInit *> TheIntInitPool;
StringMap<const StringInit *, BumpPtrAllocator &> StringInitStringPool;
StringMap<const StringInit *, BumpPtrAllocator &> StringInitCodePool;
FoldingSet<ListInit> TheListInitPool;
FoldingSet<UnOpInit> TheUnOpInitPool;
FoldingSet<BinOpInit> TheBinOpInitPool;
FoldingSet<TernOpInit> TheTernOpInitPool;
FoldingSet<FoldOpInit> TheFoldOpInitPool;
FoldingSet<IsAOpInit> TheIsAOpInitPool;
FoldingSet<ExistsOpInit> TheExistsOpInitPool;
FoldingSet<InstancesOpInit> TheInstancesOpInitPool;
DenseMap<std::pair<const RecTy *, const Init *>, VarInit *> TheVarInitPool;
DenseMap<std::pair<const TypedInit *, unsigned>, VarBitInit *>
TheVarBitInitPool;
FoldingSet<VarDefInit> TheVarDefInitPool;
DenseMap<std::pair<const Init *, const StringInit *>, FieldInit *>
TheFieldInitPool;
FoldingSet<CondOpInit> TheCondOpInitPool;
FoldingSet<DagInit> TheDagInitPool;
FoldingSet<RecordRecTy> RecordTypePool;
unsigned AnonCounter;
unsigned LastRecordID;
void dumpAllocationStats(raw_ostream &OS) const;
};
} // namespace detail
} // namespace llvm
void detail::RecordKeeperImpl::dumpAllocationStats(raw_ostream &OS) const {
// Dump memory allocation related stats.
OS << "TheArgumentInitPool size = " << TheArgumentInitPool.size() << '\n';
OS << "TheBitsInitPool size = " << TheBitsInitPool.size() << '\n';
OS << "TheIntInitPool size = " << TheIntInitPool.size() << '\n';
OS << "StringInitStringPool size = " << StringInitStringPool.size() << '\n';
OS << "StringInitCodePool size = " << StringInitCodePool.size() << '\n';
OS << "TheListInitPool size = " << TheListInitPool.size() << '\n';
OS << "TheUnOpInitPool size = " << TheUnOpInitPool.size() << '\n';
OS << "TheBinOpInitPool size = " << TheBinOpInitPool.size() << '\n';
OS << "TheTernOpInitPool size = " << TheTernOpInitPool.size() << '\n';
OS << "TheFoldOpInitPool size = " << TheFoldOpInitPool.size() << '\n';
OS << "TheIsAOpInitPool size = " << TheIsAOpInitPool.size() << '\n';
OS << "TheExistsOpInitPool size = " << TheExistsOpInitPool.size() << '\n';
OS << "TheCondOpInitPool size = " << TheCondOpInitPool.size() << '\n';
OS << "TheDagInitPool size = " << TheDagInitPool.size() << '\n';
OS << "RecordTypePool size = " << RecordTypePool.size() << '\n';
OS << "TheVarInitPool size = " << TheVarInitPool.size() << '\n';
OS << "TheVarBitInitPool size = " << TheVarBitInitPool.size() << '\n';
OS << "TheVarDefInitPool size = " << TheVarDefInitPool.size() << '\n';
OS << "TheFieldInitPool size = " << TheFieldInitPool.size() << '\n';
OS << "Bytes allocated = " << Allocator.getBytesAllocated() << '\n';
OS << "Total allocator memory = " << Allocator.getTotalMemory() << "\n\n";
OS << "Number of records instantiated = " << LastRecordID << '\n';
OS << "Number of anonymous records = " << AnonCounter << '\n';
}
//===----------------------------------------------------------------------===//
// Type implementations
//===----------------------------------------------------------------------===//
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RecTy::dump() const { print(errs()); }
#endif
const ListRecTy *RecTy::getListTy() const {
if (!ListTy)
ListTy = new (RK.getImpl().Allocator) ListRecTy(this);
return ListTy;
}
bool RecTy::typeIsConvertibleTo(const RecTy *RHS) const {
assert(RHS && "NULL pointer");
return Kind == RHS->getRecTyKind();
}
bool RecTy::typeIsA(const RecTy *RHS) const { return this == RHS; }
const BitRecTy *BitRecTy::get(RecordKeeper &RK) {
return &RK.getImpl().SharedBitRecTy;
}
bool BitRecTy::typeIsConvertibleTo(const RecTy *RHS) const{
if (RecTy::typeIsConvertibleTo(RHS) || RHS->getRecTyKind() == IntRecTyKind)
return true;
if (const auto *BitsTy = dyn_cast<BitsRecTy>(RHS))
return BitsTy->getNumBits() == 1;
return false;
}
const BitsRecTy *BitsRecTy::get(RecordKeeper &RK, unsigned Sz) {
detail::RecordKeeperImpl &RKImpl = RK.getImpl();
if (Sz >= RKImpl.SharedBitsRecTys.size())
RKImpl.SharedBitsRecTys.resize(Sz + 1);
BitsRecTy *&Ty = RKImpl.SharedBitsRecTys[Sz];
if (!Ty)
Ty = new (RKImpl.Allocator) BitsRecTy(RK, Sz);
return Ty;
}
std::string BitsRecTy::getAsString() const {
return "bits<" + utostr(Size) + ">";
}
bool BitsRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
if (RecTy::typeIsConvertibleTo(RHS)) //argument and the sender are same type
return cast<BitsRecTy>(RHS)->Size == Size;
RecTyKind kind = RHS->getRecTyKind();
return (kind == BitRecTyKind && Size == 1) || (kind == IntRecTyKind);
}
const IntRecTy *IntRecTy::get(RecordKeeper &RK) {
return &RK.getImpl().SharedIntRecTy;
}
bool IntRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
RecTyKind kind = RHS->getRecTyKind();
return kind==BitRecTyKind || kind==BitsRecTyKind || kind==IntRecTyKind;
}
const StringRecTy *StringRecTy::get(RecordKeeper &RK) {
return &RK.getImpl().SharedStringRecTy;
}
std::string StringRecTy::getAsString() const {
return "string";
}
bool StringRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
RecTyKind Kind = RHS->getRecTyKind();
return Kind == StringRecTyKind;
}
std::string ListRecTy::getAsString() const {
return "list<" + ElementTy->getAsString() + ">";
}
bool ListRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
if (const auto *ListTy = dyn_cast<ListRecTy>(RHS))
return ElementTy->typeIsConvertibleTo(ListTy->getElementType());
return false;
}
bool ListRecTy::typeIsA(const RecTy *RHS) const {
if (const auto *RHSl = dyn_cast<ListRecTy>(RHS))
return getElementType()->typeIsA(RHSl->getElementType());
return false;
}
const DagRecTy *DagRecTy::get(RecordKeeper &RK) {
return &RK.getImpl().SharedDagRecTy;
}
std::string DagRecTy::getAsString() const {
return "dag";
}
static void ProfileRecordRecTy(FoldingSetNodeID &ID,
ArrayRef<const Record *> Classes) {
ID.AddInteger(Classes.size());
for (const Record *R : Classes)
ID.AddPointer(R);
}
RecordRecTy::RecordRecTy(RecordKeeper &RK, ArrayRef<const Record *> Classes)
: RecTy(RecordRecTyKind, RK), NumClasses(Classes.size()) {
llvm::uninitialized_copy(Classes, getTrailingObjects());
}
const RecordRecTy *RecordRecTy::get(RecordKeeper &RK,
ArrayRef<const Record *> UnsortedClasses) {
detail::RecordKeeperImpl &RKImpl = RK.getImpl();
if (UnsortedClasses.empty())
return &RKImpl.AnyRecord;
FoldingSet<RecordRecTy> &ThePool = RKImpl.RecordTypePool;
SmallVector<const Record *, 4> Classes(UnsortedClasses);
llvm::sort(Classes, [](const Record *LHS, const Record *RHS) {
return LHS->getNameInitAsString() < RHS->getNameInitAsString();
});
FoldingSetNodeID ID;
ProfileRecordRecTy(ID, Classes);
void *IP = nullptr;
if (RecordRecTy *Ty = ThePool.FindNodeOrInsertPos(ID, IP))
return Ty;
#ifndef NDEBUG
// Check for redundancy.
for (unsigned i = 0; i < Classes.size(); ++i) {
for (unsigned j = 0; j < Classes.size(); ++j) {
assert(i == j || !Classes[i]->isSubClassOf(Classes[j]));
}
assert(&Classes[0]->getRecords() == &Classes[i]->getRecords());
}
#endif
void *Mem = RKImpl.Allocator.Allocate(
totalSizeToAlloc<const Record *>(Classes.size()), alignof(RecordRecTy));
RecordRecTy *Ty = new (Mem) RecordRecTy(RK, Classes);
ThePool.InsertNode(Ty, IP);
return Ty;
}
const RecordRecTy *RecordRecTy::get(const Record *Class) {
assert(Class && "unexpected null class");
return get(Class->getRecords(), {Class});
}
void RecordRecTy::Profile(FoldingSetNodeID &ID) const {
ProfileRecordRecTy(ID, getClasses());
}
std::string RecordRecTy::getAsString() const {
if (NumClasses == 1)
return getClasses()[0]->getNameInitAsString();
std::string Str = "{";
ListSeparator LS;
for (const Record *R : getClasses()) {
Str += LS;
Str += R->getNameInitAsString();
}
Str += "}";
return Str;
}
bool RecordRecTy::isSubClassOf(const Record *Class) const {
return llvm::any_of(getClasses(), [Class](const Record *MySuperClass) {
return MySuperClass == Class || MySuperClass->isSubClassOf(Class);
});
}
bool RecordRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
if (this == RHS)
return true;
const auto *RTy = dyn_cast<RecordRecTy>(RHS);
if (!RTy)
return false;
return llvm::all_of(RTy->getClasses(), [this](const Record *TargetClass) {
return isSubClassOf(TargetClass);
});
}
bool RecordRecTy::typeIsA(const RecTy *RHS) const {
return typeIsConvertibleTo(RHS);
}
static const RecordRecTy *resolveRecordTypes(const RecordRecTy *T1,
const RecordRecTy *T2) {
SmallVector<const Record *, 4> CommonSuperClasses;
SmallVector<const Record *, 4> Stack(T1->getClasses());
while (!Stack.empty()) {
const Record *R = Stack.pop_back_val();
if (T2->isSubClassOf(R))
CommonSuperClasses.push_back(R);
else
llvm::append_range(Stack, make_first_range(R->getDirectSuperClasses()));
}
return RecordRecTy::get(T1->getRecordKeeper(), CommonSuperClasses);
}
const RecTy *llvm::resolveTypes(const RecTy *T1, const RecTy *T2) {
if (T1 == T2)
return T1;
if (const auto *RecTy1 = dyn_cast<RecordRecTy>(T1)) {
if (const auto *RecTy2 = dyn_cast<RecordRecTy>(T2))
return resolveRecordTypes(RecTy1, RecTy2);
}
assert(T1 != nullptr && "Invalid record type");
if (T1->typeIsConvertibleTo(T2))
return T2;
assert(T2 != nullptr && "Invalid record type");
if (T2->typeIsConvertibleTo(T1))
return T1;
if (const auto *ListTy1 = dyn_cast<ListRecTy>(T1)) {
if (const auto *ListTy2 = dyn_cast<ListRecTy>(T2)) {
const RecTy *NewType =
resolveTypes(ListTy1->getElementType(), ListTy2->getElementType());
if (NewType)
return NewType->getListTy();
}
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Initializer implementations
//===----------------------------------------------------------------------===//
void Init::anchor() {}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void Init::dump() const { return print(errs()); }
#endif
RecordKeeper &Init::getRecordKeeper() const {
if (auto *TyInit = dyn_cast<TypedInit>(this))
return TyInit->getType()->getRecordKeeper();
if (auto *ArgInit = dyn_cast<ArgumentInit>(this))
return ArgInit->getRecordKeeper();
return cast<UnsetInit>(this)->getRecordKeeper();
}
UnsetInit *UnsetInit::get(RecordKeeper &RK) {
return &RK.getImpl().TheUnsetInit;
}
const Init *UnsetInit::getCastTo(const RecTy *Ty) const { return this; }
const Init *UnsetInit::convertInitializerTo(const RecTy *Ty) const {
return this;
}
static void ProfileArgumentInit(FoldingSetNodeID &ID, const Init *Value,
ArgAuxType Aux) {
auto I = Aux.index();
ID.AddInteger(I);
if (I == ArgumentInit::Positional)
ID.AddInteger(std::get<ArgumentInit::Positional>(Aux));
if (I == ArgumentInit::Named)
ID.AddPointer(std::get<ArgumentInit::Named>(Aux));
ID.AddPointer(Value);
}
void ArgumentInit::Profile(FoldingSetNodeID &ID) const {
ProfileArgumentInit(ID, Value, Aux);
}
const ArgumentInit *ArgumentInit::get(const Init *Value, ArgAuxType Aux) {
FoldingSetNodeID ID;
ProfileArgumentInit(ID, Value, Aux);
RecordKeeper &RK = Value->getRecordKeeper();
detail::RecordKeeperImpl &RKImpl = RK.getImpl();
void *IP = nullptr;
if (const ArgumentInit *I =
RKImpl.TheArgumentInitPool.FindNodeOrInsertPos(ID, IP))
return I;
ArgumentInit *I = new (RKImpl.Allocator) ArgumentInit(Value, Aux);
RKImpl.TheArgumentInitPool.InsertNode(I, IP);
return I;
}
const Init *ArgumentInit::resolveReferences(Resolver &R) const {
const Init *NewValue = Value->resolveReferences(R);
if (NewValue != Value)
return cloneWithValue(NewValue);
return this;
}
BitInit *BitInit::get(RecordKeeper &RK, bool V) {
return V ? &RK.getImpl().TrueBitInit : &RK.getImpl().FalseBitInit;
}
const Init *BitInit::convertInitializerTo(const RecTy *Ty) const {
if (isa<BitRecTy>(Ty))
return this;
if (isa<IntRecTy>(Ty))
return IntInit::get(getRecordKeeper(), getValue());
if (auto *BRT = dyn_cast<BitsRecTy>(Ty)) {
// Can only convert single bit.
if (BRT->getNumBits() == 1)
return BitsInit::get(getRecordKeeper(), this);
}
return nullptr;
}
static void ProfileBitsInit(FoldingSetNodeID &ID,
ArrayRef<const Init *> Range) {
ID.AddInteger(Range.size());
for (const Init *I : Range)
ID.AddPointer(I);
}
BitsInit::BitsInit(RecordKeeper &RK, ArrayRef<const Init *> Bits)
: TypedInit(IK_BitsInit, BitsRecTy::get(RK, Bits.size())),
NumBits(Bits.size()) {
llvm::uninitialized_copy(Bits, getTrailingObjects());
}
BitsInit *BitsInit::get(RecordKeeper &RK, ArrayRef<const Init *> Bits) {
FoldingSetNodeID ID;
ProfileBitsInit(ID, Bits);
detail::RecordKeeperImpl &RKImpl = RK.getImpl();
void *IP = nullptr;
if (BitsInit *I = RKImpl.TheBitsInitPool.FindNodeOrInsertPos(ID, IP))
return I;
void *Mem = RKImpl.Allocator.Allocate(
totalSizeToAlloc<const Init *>(Bits.size()), alignof(BitsInit));
BitsInit *I = new (Mem) BitsInit(RK, Bits);
RKImpl.TheBitsInitPool.InsertNode(I, IP);
return I;
}
void BitsInit::Profile(FoldingSetNodeID &ID) const {
ProfileBitsInit(ID, getBits());
}
const Init *BitsInit::convertInitializerTo(const RecTy *Ty) const {
if (isa<BitRecTy>(Ty)) {
if (getNumBits() != 1) return nullptr; // Only accept if just one bit!
return getBit(0);
}
if (auto *BRT = dyn_cast<BitsRecTy>(Ty)) {
// If the number of bits is right, return it. Otherwise we need to expand
// or truncate.
if (getNumBits() != BRT->getNumBits()) return nullptr;
return this;
}
if (isa<IntRecTy>(Ty)) {
std::optional<int64_t> Result = convertInitializerToInt();
if (Result)
return IntInit::get(getRecordKeeper(), *Result);
}
return nullptr;
}
std::optional<int64_t> BitsInit::convertInitializerToInt() const {
int64_t Result = 0;
for (auto [Idx, InitV] : enumerate(getBits()))
if (auto *Bit = dyn_cast<BitInit>(InitV))
Result |= static_cast<int64_t>(Bit->getValue()) << Idx;
else
return std::nullopt;
return Result;
}
const Init *
BitsInit::convertInitializerBitRange(ArrayRef<unsigned> Bits) const {
SmallVector<const Init *, 16> NewBits(Bits.size());
for (auto [Bit, NewBit] : zip_equal(Bits, NewBits)) {
if (Bit >= getNumBits())
return nullptr;
NewBit = getBit(Bit);
}
return BitsInit::get(getRecordKeeper(), NewBits);
}
bool BitsInit::isComplete() const {
return all_of(getBits(), [](const Init *Bit) { return Bit->isComplete(); });
}
bool BitsInit::allInComplete() const {
return all_of(getBits(), [](const Init *Bit) { return !Bit->isComplete(); });
}
bool BitsInit::isConcrete() const {
return all_of(getBits(), [](const Init *Bit) { return Bit->isConcrete(); });
}
std::string BitsInit::getAsString() const {
std::string Result = "{ ";
ListSeparator LS;
for (const Init *Bit : reverse(getBits())) {
Result += LS;
if (Bit)
Result += Bit->getAsString();
else
Result += "*";
}
return Result + " }";
}
// resolveReferences - If there are any field references that refer to fields
// that have been filled in, we can propagate the values now.
const Init *BitsInit::resolveReferences(Resolver &R) const {
bool Changed = false;
SmallVector<const Init *, 16> NewBits(getNumBits());
const Init *CachedBitVarRef = nullptr;
const Init *CachedBitVarResolved = nullptr;
for (auto [CurBit, NewBit] : zip_equal(getBits(), NewBits)) {
NewBit = CurBit;
if (const auto *CurBitVar = dyn_cast<VarBitInit>(CurBit)) {
if (CurBitVar->getBitVar() != CachedBitVarRef) {
CachedBitVarRef = CurBitVar->getBitVar();
CachedBitVarResolved = CachedBitVarRef->resolveReferences(R);
}
assert(CachedBitVarResolved && "Unresolved bitvar reference");
NewBit = CachedBitVarResolved->getBit(CurBitVar->getBitNum());
} else {
// getBit(0) implicitly converts int and bits<1> values to bit.
NewBit = CurBit->resolveReferences(R)->getBit(0);
}
if (isa<UnsetInit>(NewBit) && R.keepUnsetBits())
NewBit = CurBit;
Changed |= CurBit != NewBit;
}
if (Changed)
return BitsInit::get(getRecordKeeper(), NewBits);
return this;
}
IntInit *IntInit::get(RecordKeeper &RK, int64_t V) {
IntInit *&I = RK.getImpl().TheIntInitPool[V];
if (!I)
I = new (RK.getImpl().Allocator) IntInit(RK, V);
return I;
}
std::string IntInit::getAsString() const {
return itostr(Value);
}
static bool canFitInBitfield(int64_t Value, unsigned NumBits) {
// For example, with NumBits == 4, we permit Values from [-7 .. 15].
return (NumBits >= sizeof(Value) * 8) ||
(Value >> NumBits == 0) || (Value >> (NumBits-1) == -1);
}
const Init *IntInit::convertInitializerTo(const RecTy *Ty) const {
if (isa<IntRecTy>(Ty))
return this;
if (isa<BitRecTy>(Ty)) {
int64_t Val = getValue();
if (Val != 0 && Val != 1) return nullptr; // Only accept 0 or 1 for a bit!
return BitInit::get(getRecordKeeper(), Val != 0);
}
if (const auto *BRT = dyn_cast<BitsRecTy>(Ty)) {
int64_t Value = getValue();
// Make sure this bitfield is large enough to hold the integer value.
if (!canFitInBitfield(Value, BRT->getNumBits()))
return nullptr;
SmallVector<const Init *, 16> NewBits(BRT->getNumBits());
for (unsigned i = 0; i != BRT->getNumBits(); ++i)
NewBits[i] =
BitInit::get(getRecordKeeper(), Value & ((i < 64) ? (1LL << i) : 0));
return BitsInit::get(getRecordKeeper(), NewBits);
}
return nullptr;
}
const Init *IntInit::convertInitializerBitRange(ArrayRef<unsigned> Bits) const {
SmallVector<const Init *, 16> NewBits(Bits.size());
for (auto [Bit, NewBit] : zip_equal(Bits, NewBits)) {
if (Bit >= 64)
return nullptr;
NewBit = BitInit::get(getRecordKeeper(), Value & (INT64_C(1) << Bit));
}
return BitsInit::get(getRecordKeeper(), NewBits);
}
AnonymousNameInit *AnonymousNameInit::get(RecordKeeper &RK, unsigned V) {
return new (RK.getImpl().Allocator) AnonymousNameInit(RK, V);
}
const StringInit *AnonymousNameInit::getNameInit() const {
return StringInit::get(getRecordKeeper(), getAsString());
}
std::string AnonymousNameInit::getAsString() const {
return "anonymous_" + utostr(Value);
}
const Init *AnonymousNameInit::resolveReferences(Resolver &R) const {
auto *Old = this;
auto *New = R.resolve(Old);
New = New ? New : Old;
if (R.isFinal())
if (const auto *Anonymous = dyn_cast<AnonymousNameInit>(New))
return Anonymous->getNameInit();
return New;
}
const StringInit *StringInit::get(RecordKeeper &RK, StringRef V,
StringFormat Fmt) {
detail::RecordKeeperImpl &RKImpl = RK.getImpl();
auto &InitMap = Fmt == SF_String ? RKImpl.StringInitStringPool
: RKImpl.StringInitCodePool;
auto &Entry = *InitMap.try_emplace(V, nullptr).first;
if (!Entry.second)
Entry.second = new (RKImpl.Allocator) StringInit(RK, Entry.getKey(), Fmt);
return Entry.second;
}
const Init *StringInit::convertInitializerTo(const RecTy *Ty) const {
if (isa<StringRecTy>(Ty))
return this;
return nullptr;
}
static void ProfileListInit(FoldingSetNodeID &ID,
ArrayRef<const Init *> Elements,
const RecTy *EltTy) {
ID.AddInteger(Elements.size());
ID.AddPointer(EltTy);
for (const Init *E : Elements)
ID.AddPointer(E);
}
ListInit::ListInit(ArrayRef<const Init *> Elements, const RecTy *EltTy)
: TypedInit(IK_ListInit, ListRecTy::get(EltTy)),
NumElements(Elements.size()) {
llvm::uninitialized_copy(Elements, getTrailingObjects());
}
const ListInit *ListInit::get(ArrayRef<const Init *> Elements,
const RecTy *EltTy) {
FoldingSetNodeID ID;
ProfileListInit(ID, Elements, EltTy);
detail::RecordKeeperImpl &RK = EltTy->getRecordKeeper().getImpl();
void *IP = nullptr;
if (const ListInit *I = RK.TheListInitPool.FindNodeOrInsertPos(ID, IP))
return I;
assert(Elements.empty() || !isa<TypedInit>(Elements[0]) ||
cast<TypedInit>(Elements[0])->getType()->typeIsConvertibleTo(EltTy));
void *Mem = RK.Allocator.Allocate(
totalSizeToAlloc<const Init *>(Elements.size()), alignof(ListInit));
ListInit *I = new (Mem) ListInit(Elements, EltTy);
RK.TheListInitPool.InsertNode(I, IP);
return I;
}
void ListInit::Profile(FoldingSetNodeID &ID) const {
const RecTy *EltTy = cast<ListRecTy>(getType())->getElementType();
ProfileListInit(ID, getElements(), EltTy);
}
const Init *ListInit::convertInitializerTo(const RecTy *Ty) const {
if (getType() == Ty)
return this;
if (const auto *LRT = dyn_cast<ListRecTy>(Ty)) {
SmallVector<const Init *, 8> Elements;
Elements.reserve(size());
// Verify that all of the elements of the list are subclasses of the
// appropriate class!
bool Changed = false;
const RecTy *ElementType = LRT->getElementType();
for (const Init *I : getElements())
if (const Init *CI = I->convertInitializerTo(ElementType)) {
Elements.push_back(CI);
if (CI != I)
Changed = true;
} else {
return nullptr;
}
if (!Changed)
return this;
return ListInit::get(Elements, ElementType);
}
return nullptr;
}
const Record *ListInit::getElementAsRecord(unsigned Idx) const {
const auto *DI = dyn_cast<DefInit>(getElement(Idx));
if (!DI)
PrintFatalError("Expected record in list!");
return DI->getDef();
}
const Init *ListInit::resolveReferences(Resolver &R) const {
SmallVector<const Init *, 8> Resolved;
Resolved.reserve(size());
bool Changed = false;
for (const Init *CurElt : getElements()) {
const Init *E = CurElt->resolveReferences(R);
Changed |= E != CurElt;
Resolved.push_back(E);
}
if (Changed)
return ListInit::get(Resolved, getElementType());
return this;
}
bool ListInit::isComplete() const {
return all_of(*this,
[](const Init *Element) { return Element->isComplete(); });
}
bool ListInit::isConcrete() const {
return all_of(*this,
[](const Init *Element) { return Element->isConcrete(); });
}
std::string ListInit::getAsString() const {
std::string Result = "[";
ListSeparator LS;
for (const Init *Element : *this) {
Result += LS;
Result += Element->getAsString();
}
return Result + "]";
}
const Init *OpInit::getBit(unsigned Bit) const {
if (getType() == BitRecTy::get(getRecordKeeper()))
return this;
return VarBitInit::get(this, Bit);
}
static void ProfileUnOpInit(FoldingSetNodeID &ID, unsigned Opcode,
const Init *Op, const RecTy *Type) {
ID.AddInteger(Opcode);
ID.AddPointer(Op);
ID.AddPointer(Type);
}
const UnOpInit *UnOpInit::get(UnaryOp Opc, const Init *LHS, const RecTy *Type) {
FoldingSetNodeID ID;
ProfileUnOpInit(ID, Opc, LHS, Type);
detail::RecordKeeperImpl &RK = Type->getRecordKeeper().getImpl();
void *IP = nullptr;
if (const UnOpInit *I = RK.TheUnOpInitPool.FindNodeOrInsertPos(ID, IP))
return I;
UnOpInit *I = new (RK.Allocator) UnOpInit(Opc, LHS, Type);
RK.TheUnOpInitPool.InsertNode(I, IP);
return I;
}
void UnOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileUnOpInit(ID, getOpcode(), getOperand(), getType());
}
const Init *UnOpInit::Fold(const Record *CurRec, bool IsFinal) const {
RecordKeeper &RK = getRecordKeeper();
switch (getOpcode()) {
case REPR:
if (LHS->isConcrete()) {
// If it is a Record, print the full content.
if (const auto *Def = dyn_cast<DefInit>(LHS)) {
std::string S;
raw_string_ostream OS(S);
OS << *Def->getDef();
return StringInit::get(RK, S);
} else {
// Otherwise, print the value of the variable.
//
// NOTE: we could recursively !repr the elements of a list,
// but that could produce a lot of output when printing a
// defset.
return StringInit::get(RK, LHS->getAsString());
}
}
break;
case TOLOWER:
if (const auto *LHSs = dyn_cast<StringInit>(LHS))
return StringInit::get(RK, LHSs->getValue().lower());
break;
case TOUPPER:
if (const auto *LHSs = dyn_cast<StringInit>(LHS))
return StringInit::get(RK, LHSs->getValue().upper());
break;
case CAST:
if (isa<StringRecTy>(getType())) {
if (const auto *LHSs = dyn_cast<StringInit>(LHS))
return LHSs;
if (const auto *LHSd = dyn_cast<DefInit>(LHS))
return StringInit::get(RK, LHSd->getAsString());
if (const auto *LHSi = dyn_cast_or_null<IntInit>(
LHS->convertInitializerTo(IntRecTy::get(RK))))
return StringInit::get(RK, LHSi->getAsString());
} else if (isa<RecordRecTy>(getType())) {
if (const auto *Name = dyn_cast<StringInit>(LHS)) {
const Record *D = RK.getDef(Name->getValue());
if (!D && CurRec) {
// Self-references are allowed, but their resolution is delayed until
// the final resolve to ensure that we get the correct type for them.
auto *Anonymous = dyn_cast<AnonymousNameInit>(CurRec->getNameInit());
if (Name == CurRec->getNameInit() ||
(Anonymous && Name == Anonymous->getNameInit())) {
if (!IsFinal)
break;
D = CurRec;
}
}
auto PrintFatalErrorHelper = [CurRec](const Twine &T) {
if (CurRec)
PrintFatalError(CurRec->getLoc(), T);
else
PrintFatalError(T);
};
if (!D) {
if (IsFinal) {
PrintFatalErrorHelper(Twine("Undefined reference to record: '") +
Name->getValue() + "'\n");
}
break;
}
DefInit *DI = D->getDefInit();
if (!DI->getType()->typeIsA(getType())) {
PrintFatalErrorHelper(Twine("Expected type '") +
getType()->getAsString() + "', got '" +
DI->getType()->getAsString() + "' in: " +
getAsString() + "\n");
}
return DI;
}
}
if (const Init *NewInit = LHS->convertInitializerTo(getType()))
return NewInit;
break;
case INITIALIZED:
if (isa<UnsetInit>(LHS))
return IntInit::get(RK, 0);
if (LHS->isConcrete())
return IntInit::get(RK, 1);
break;
case NOT:
if (const auto *LHSi = dyn_cast_or_null<IntInit>(
LHS->convertInitializerTo(IntRecTy::get(RK))))
return IntInit::get(RK, LHSi->getValue() ? 0 : 1);
break;
case HEAD:
if (const auto *LHSl = dyn_cast<ListInit>(LHS)) {
assert(!LHSl->empty() && "Empty list in head");
return LHSl->getElement(0);
}
break;
case TAIL:
if (const auto *LHSl = dyn_cast<ListInit>(LHS)) {
assert(!LHSl->empty() && "Empty list in tail");
// Note the slice(1). We can't just pass the result of getElements()
// directly.
return ListInit::get(LHSl->getElements().slice(1),
LHSl->getElementType());
}
break;
case SIZE:
if (const auto *LHSl = dyn_cast<ListInit>(LHS))
return IntInit::get(RK, LHSl->size());
if (const auto *LHSd = dyn_cast<DagInit>(LHS))
return IntInit::get(RK, LHSd->arg_size());
if (const auto *LHSs = dyn_cast<StringInit>(LHS))
return IntInit::get(RK, LHSs->getValue().size());
break;
case EMPTY:
if (const auto *LHSl = dyn_cast<ListInit>(LHS))
return IntInit::get(RK, LHSl->empty());
if (const auto *LHSd = dyn_cast<DagInit>(LHS))
return IntInit::get(RK, LHSd->arg_empty());
if (const auto *LHSs = dyn_cast<StringInit>(LHS))
return IntInit::get(RK, LHSs->getValue().empty());
break;
case GETDAGOP:
if (const auto *Dag = dyn_cast<DagInit>(LHS)) {
// TI is not necessarily a def due to the late resolution in multiclasses,
// but has to be a TypedInit.
auto *TI = cast<TypedInit>(Dag->getOperator());
if (!TI->getType()->typeIsA(getType())) {
PrintFatalError(CurRec->getLoc(),
Twine("Expected type '") + getType()->getAsString() +
"', got '" + TI->getType()->getAsString() +
"' in: " + getAsString() + "\n");
} else {
return Dag->getOperator();
}
}
break;
case LOG2:
if (const auto *LHSi = dyn_cast_or_null<IntInit>(
LHS->convertInitializerTo(IntRecTy::get(RK)))) {
int64_t LHSv = LHSi->getValue();
if (LHSv <= 0) {
PrintFatalError(CurRec->getLoc(),
"Illegal operation: logtwo is undefined "
"on arguments less than or equal to 0");
} else {
uint64_t Log = Log2_64(LHSv);
assert(Log <= INT64_MAX &&
"Log of an int64_t must be smaller than INT64_MAX");
return IntInit::get(RK, static_cast<int64_t>(Log));
}
}
break;
case LISTFLATTEN:
if (const auto *LHSList = dyn_cast<ListInit>(LHS)) {
const auto *InnerListTy = dyn_cast<ListRecTy>(LHSList->getElementType());
// list of non-lists, !listflatten() is a NOP.
if (!InnerListTy)
return LHS;
auto Flatten =
[](const ListInit *List) -> std::optional<std::vector<const Init *>> {
std::vector<const Init *> Flattened;
// Concatenate elements of all the inner lists.
for (const Init *InnerInit : List->getElements()) {
const auto *InnerList = dyn_cast<ListInit>(InnerInit);
if (!InnerList)
return std::nullopt;
llvm::append_range(Flattened, InnerList->getElements());
};
return Flattened;
};
auto Flattened = Flatten(LHSList);
if (Flattened)
return ListInit::get(*Flattened, InnerListTy->getElementType());
}
break;
}
return this;
}
const Init *UnOpInit::resolveReferences(Resolver &R) const {
const Init *lhs = LHS->resolveReferences(R);
if (LHS != lhs || (R.isFinal() && getOpcode() == CAST))
return (UnOpInit::get(getOpcode(), lhs, getType()))
->Fold(R.getCurrentRecord(), R.isFinal());
return this;
}
std::string UnOpInit::getAsString() const {
std::string Result;
switch (getOpcode()) {
case CAST: Result = "!cast<" + getType()->getAsString() + ">"; break;
case NOT: Result = "!not"; break;
case HEAD: Result = "!head"; break;
case TAIL: Result = "!tail"; break;
case SIZE: Result = "!size"; break;
case EMPTY: Result = "!empty"; break;
case GETDAGOP: Result = "!getdagop"; break;
case LOG2 : Result = "!logtwo"; break;
case LISTFLATTEN:
Result = "!listflatten";
break;
case REPR:
Result = "!repr";
break;
case TOLOWER:
Result = "!tolower";
break;
case TOUPPER:
Result = "!toupper";
break;
case INITIALIZED:
Result = "!initialized";
break;
}
return Result + "(" + LHS->getAsString() + ")";
}
static void ProfileBinOpInit(FoldingSetNodeID &ID, unsigned Opcode,
const Init *LHS, const Init *RHS,
const RecTy *Type) {
ID.AddInteger(Opcode);
ID.AddPointer(LHS);
ID.AddPointer(RHS);
ID.AddPointer(Type);
}
const BinOpInit *BinOpInit::get(BinaryOp Opc, const Init *LHS, const Init *RHS,
const RecTy *Type) {
FoldingSetNodeID ID;
ProfileBinOpInit(ID, Opc, LHS, RHS, Type);
detail::RecordKeeperImpl &RK = LHS->getRecordKeeper().getImpl();
void *IP = nullptr;
if (const BinOpInit *I = RK.TheBinOpInitPool.FindNodeOrInsertPos(ID, IP))
return I;
BinOpInit *I = new (RK.Allocator) BinOpInit(Opc, LHS, RHS, Type);
RK.TheBinOpInitPool.InsertNode(I, IP);
return I;
}
void BinOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileBinOpInit(ID, getOpcode(), getLHS(), getRHS(), getType());
}
static const StringInit *ConcatStringInits(const StringInit *I0,
const StringInit *I1) {
SmallString<80> Concat(I0->getValue());
Concat.append(I1->getValue());
return StringInit::get(
I0->getRecordKeeper(), Concat,
StringInit::determineFormat(I0->getFormat(), I1->getFormat()));
}
static const StringInit *interleaveStringList(const ListInit *List,
const StringInit *Delim) {
if (List->size() == 0)
return StringInit::get(List->getRecordKeeper(), "");
const auto *Element = dyn_cast<StringInit>(List->getElement(0));
if (!Element)
return nullptr;
SmallString<80> Result(Element->getValue());
StringInit::StringFormat Fmt = StringInit::SF_String;
for (const Init *Elem : List->getElements().drop_front()) {
Result.append(Delim->getValue());
const auto *Element = dyn_cast<StringInit>(Elem);
if (!Element)
return nullptr;
Result.append(Element->getValue());
Fmt = StringInit::determineFormat(Fmt, Element->getFormat());
}
return StringInit::get(List->getRecordKeeper(), Result, Fmt);
}
static const StringInit *interleaveIntList(const ListInit *List,
const StringInit *Delim) {
RecordKeeper &RK = List->getRecordKeeper();
if (List->size() == 0)
return StringInit::get(RK, "");
const auto *Element = dyn_cast_or_null<IntInit>(
List->getElement(0)->convertInitializerTo(IntRecTy::get(RK)));
if (!Element)
return nullptr;
SmallString<80> Result(Element->getAsString());
for (const Init *Elem : List->getElements().drop_front()) {
Result.append(Delim->getValue());
const auto *Element = dyn_cast_or_null<IntInit>(
Elem->convertInitializerTo(IntRecTy::get(RK)));
if (!Element)
return nullptr;
Result.append(Element->getAsString());
}
return StringInit::get(RK, Result);
}
const Init *BinOpInit::getStrConcat(const Init *I0, const Init *I1) {
// Shortcut for the common case of concatenating two strings.
if (const auto *I0s = dyn_cast<StringInit>(I0))
if (const auto *I1s = dyn_cast<StringInit>(I1))
return ConcatStringInits(I0s, I1s);
return BinOpInit::get(BinOpInit::STRCONCAT, I0, I1,
StringRecTy::get(I0->getRecordKeeper()));
}
static const ListInit *ConcatListInits(const ListInit *LHS,
const ListInit *RHS) {
SmallVector<const Init *, 8> Args;
llvm::append_range(Args, *LHS);
llvm::append_range(Args, *RHS);
return ListInit::get(Args, LHS->getElementType());
}
const Init *BinOpInit::getListConcat(const TypedInit *LHS, const Init *RHS) {
assert(isa<ListRecTy>(LHS->getType()) && "First arg must be a list");
// Shortcut for the common case of concatenating two lists.
if (const auto *LHSList = dyn_cast<ListInit>(LHS))
if (const auto *RHSList = dyn_cast<ListInit>(RHS))
return ConcatListInits(LHSList, RHSList);
return BinOpInit::get(BinOpInit::LISTCONCAT, LHS, RHS, LHS->getType());
}
std::optional<bool> BinOpInit::CompareInit(unsigned Opc, const Init *LHS,
const Init *RHS) const {
// First see if we have two bit, bits, or int.
const auto *LHSi = dyn_cast_or_null<IntInit>(
LHS->convertInitializerTo(IntRecTy::get(getRecordKeeper())));
const auto *RHSi = dyn_cast_or_null<IntInit>(
RHS->convertInitializerTo(IntRecTy::get(getRecordKeeper())));
if (LHSi && RHSi) {
bool Result;
switch (Opc) {
case EQ:
Result = LHSi->getValue() == RHSi->getValue();
break;
case NE:
Result = LHSi->getValue() != RHSi->getValue();
break;
case LE:
Result = LHSi->getValue() <= RHSi->getValue();
break;
case LT:
Result = LHSi->getValue() < RHSi->getValue();
break;
case GE:
Result = LHSi->getValue() >= RHSi->getValue();
break;
case GT:
Result = LHSi->getValue() > RHSi->getValue();
break;
default:
llvm_unreachable("unhandled comparison");
}
return Result;
}
// Next try strings.
const auto *LHSs = dyn_cast<StringInit>(LHS);
const auto *RHSs = dyn_cast<StringInit>(RHS);
if (LHSs && RHSs) {
bool Result;
switch (Opc) {
case EQ:
Result = LHSs->getValue() == RHSs->getValue();
break;
case NE:
Result = LHSs->getValue() != RHSs->getValue();
break;
case LE:
Result = LHSs->getValue() <= RHSs->getValue();
break;
case LT:
Result = LHSs->getValue() < RHSs->getValue();
break;
case GE:
Result = LHSs->getValue() >= RHSs->getValue();
break;
case GT:
Result = LHSs->getValue() > RHSs->getValue();
break;
default:
llvm_unreachable("unhandled comparison");
}
return Result;
}
// Finally, !eq and !ne can be used with records.
if (Opc == EQ || Opc == NE) {
const auto *LHSd = dyn_cast<DefInit>(LHS);
const auto *RHSd = dyn_cast<DefInit>(RHS);
if (LHSd && RHSd)
return (Opc == EQ) ? LHSd == RHSd : LHSd != RHSd;
}
return std::nullopt;
}
static std::optional<unsigned>
getDagArgNoByKey(const DagInit *Dag, const Init *Key, std::string &Error) {
// Accessor by index
if (const auto *Idx = dyn_cast<IntInit>(Key)) {
int64_t Pos = Idx->getValue();
if (Pos < 0) {
// The index is negative.
Error =
(Twine("index ") + std::to_string(Pos) + Twine(" is negative")).str();
return std::nullopt;
}
if (Pos >= Dag->getNumArgs()) {
// The index is out-of-range.
Error = (Twine("index ") + std::to_string(Pos) +
" is out of range (dag has " +
std::to_string(Dag->getNumArgs()) + " arguments)")
.str();
return std::nullopt;
}
return Pos;
}
assert(isa<StringInit>(Key));
// Accessor by name
const auto *Name = dyn_cast<StringInit>(Key);
auto ArgNo = Dag->getArgNo(Name->getValue());
if (!ArgNo) {
// The key is not found.
Error = (Twine("key '") + Name->getValue() + Twine("' is not found")).str();
return std::nullopt;
}
return *ArgNo;
}
const Init *BinOpInit::Fold(const Record *CurRec) const {
switch (getOpcode()) {
case CONCAT: {
const auto *LHSs = dyn_cast<DagInit>(LHS);
const auto *RHSs = dyn_cast<DagInit>(RHS);
if (LHSs && RHSs) {
const auto *LOp = dyn_cast<DefInit>(LHSs->getOperator());
const auto *ROp = dyn_cast<DefInit>(RHSs->getOperator());
if ((!LOp && !isa<UnsetInit>(LHSs->getOperator())) ||
(!ROp && !isa<UnsetInit>(RHSs->getOperator())))
break;
if (LOp && ROp && LOp->getDef() != ROp->getDef()) {
PrintFatalError(Twine("Concatenated Dag operators do not match: '") +
LHSs->getAsString() + "' vs. '" + RHSs->getAsString() +
"'");
}
const Init *Op = LOp ? LOp : ROp;
if (!Op)
Op = UnsetInit::get(getRecordKeeper());
SmallVector<std::pair<const Init *, const StringInit *>, 8> Args;
llvm::append_range(Args, LHSs->getArgAndNames());
llvm::append_range(Args, RHSs->getArgAndNames());
return DagInit::get(Op, Args);
}
break;
}
case MATCH: {
const auto *StrInit = dyn_cast<StringInit>(LHS);
if (!StrInit)
return this;
const auto *RegexInit = dyn_cast<StringInit>(RHS);
if (!RegexInit)
return this;
StringRef RegexStr = RegexInit->getValue();
llvm::Regex Matcher(RegexStr);
if (!Matcher.isValid())
PrintFatalError(Twine("invalid regex '") + RegexStr + Twine("'"));
return BitInit::get(LHS->getRecordKeeper(),
Matcher.match(StrInit->getValue()));
}
case LISTCONCAT: {
const auto *LHSs = dyn_cast<ListInit>(LHS);
const auto *RHSs = dyn_cast<ListInit>(RHS);
if (LHSs && RHSs) {
SmallVector<const Init *, 8> Args;
llvm::append_range(Args, *LHSs);
llvm::append_range(Args, *RHSs);
return ListInit::get(Args, LHSs->getElementType());
}
break;
}
case LISTSPLAT: {
const auto *Value = dyn_cast<TypedInit>(LHS);
const auto *Size = dyn_cast<IntInit>(RHS);
if (Value && Size) {
SmallVector<const Init *, 8> Args(Size->getValue(), Value);
return ListInit::get(Args, Value->getType());
}
break;
}
case LISTREMOVE: {
const auto *LHSs = dyn_cast<ListInit>(LHS);
const auto *RHSs = dyn_cast<ListInit>(RHS);
if (LHSs && RHSs) {
SmallVector<const Init *, 8> Args;
for (const Init *EltLHS : *LHSs) {
bool Found = false;
for (const Init *EltRHS : *RHSs) {
if (std::optional<bool> Result = CompareInit(EQ, EltLHS, EltRHS)) {
if (*Result) {
Found = true;
break;
}
}
}
if (!Found)
Args.push_back(EltLHS);
}
return ListInit::get(Args, LHSs->getElementType());
}
break;
}
case LISTELEM: {
const auto *TheList = dyn_cast<ListInit>(LHS);
const auto *Idx = dyn_cast<IntInit>(RHS);
if (!TheList || !Idx)
break;
auto i = Idx->getValue();
if (i < 0 || i >= (ssize_t)TheList->size())
break;
return TheList->getElement(i);
}
case LISTSLICE: {
const auto *TheList = dyn_cast<ListInit>(LHS);
const auto *SliceIdxs = dyn_cast<ListInit>(RHS);
if (!TheList || !SliceIdxs)
break;
SmallVector<const Init *, 8> Args;
Args.reserve(SliceIdxs->size());
for (auto *I : *SliceIdxs) {
auto *II = dyn_cast<IntInit>(I);
if (!II)
goto unresolved;
auto i = II->getValue();
if (i < 0 || i >= (ssize_t)TheList->size())
goto unresolved;
Args.push_back(TheList->getElement(i));
}
return ListInit::get(Args, TheList->getElementType());
}
case RANGEC: {
const auto *LHSi = dyn_cast<IntInit>(LHS);
const auto *RHSi = dyn_cast<IntInit>(RHS);
if (!LHSi || !RHSi)
break;
int64_t Start = LHSi->getValue();
int64_t End = RHSi->getValue();
SmallVector<const Init *, 8> Args;
if (getOpcode() == RANGEC) {
// Closed interval
if (Start <= End) {
// Ascending order
Args.reserve(End - Start + 1);
for (auto i = Start; i <= End; ++i)
Args.push_back(IntInit::get(getRecordKeeper(), i));
} else {
// Descending order
Args.reserve(Start - End + 1);
for (auto i = Start; i >= End; --i)
Args.push_back(IntInit::get(getRecordKeeper(), i));
}
} else if (Start < End) {
// Half-open interval (excludes `End`)
Args.reserve(End - Start);
for (auto i = Start; i < End; ++i)
Args.push_back(IntInit::get(getRecordKeeper(), i));
} else {
// Empty set
}
return ListInit::get(Args, LHSi->getType());
}
case STRCONCAT: {
const auto *LHSs = dyn_cast<StringInit>(LHS);
const auto *RHSs = dyn_cast<StringInit>(RHS);
if (LHSs && RHSs)
return ConcatStringInits(LHSs, RHSs);
break;
}
case INTERLEAVE: {
const auto *List = dyn_cast<ListInit>(LHS);
const auto *Delim = dyn_cast<StringInit>(RHS);
if (List && Delim) {
const StringInit *Result;
if (isa<StringRecTy>(List->getElementType()))
Result = interleaveStringList(List, Delim);
else
Result = interleaveIntList(List, Delim);
if (Result)
return Result;
}
break;
}
case EQ:
case NE:
case LE:
case LT:
case GE:
case GT: {
if (std::optional<bool> Result = CompareInit(getOpcode(), LHS, RHS))
return BitInit::get(getRecordKeeper(), *Result);
break;
}
case GETDAGARG: {
const auto *Dag = dyn_cast<DagInit>(LHS);
if (Dag && isa<IntInit, StringInit>(RHS)) {
std::string Error;
auto ArgNo = getDagArgNoByKey(Dag, RHS, Error);
if (!ArgNo)
PrintFatalError(CurRec->getLoc(), "!getdagarg " + Error);
assert(*ArgNo < Dag->getNumArgs());
const Init *Arg = Dag->getArg(*ArgNo);
if (const auto *TI = dyn_cast<TypedInit>(Arg))
if (!TI->getType()->typeIsConvertibleTo(getType()))
return UnsetInit::get(Dag->getRecordKeeper());
return Arg;
}
break;
}
case GETDAGNAME: {
const auto *Dag = dyn_cast<DagInit>(LHS);
const auto *Idx = dyn_cast<IntInit>(RHS);
if (Dag && Idx) {
int64_t Pos = Idx->getValue();
if (Pos < 0 || Pos >= Dag->getNumArgs()) {
// The index is out-of-range.
PrintError(CurRec->getLoc(),
Twine("!getdagname index is out of range 0...") +
std::to_string(Dag->getNumArgs() - 1) + ": " +
std::to_string(Pos));
}
const Init *ArgName = Dag->getArgName(Pos);
if (!ArgName)
return UnsetInit::get(getRecordKeeper());
return ArgName;
}
break;
}
case SETDAGOP: {
const auto *Dag = dyn_cast<DagInit>(LHS);
const auto *Op = dyn_cast<DefInit>(RHS);
if (Dag && Op)
return DagInit::get(Op, Dag->getArgs(), Dag->getArgNames());
break;
}
case ADD:
case SUB:
case MUL:
case DIV:
case AND:
case OR:
case XOR:
case SHL:
case SRA:
case SRL: {
const auto *LHSi = dyn_cast_or_null<IntInit>(
LHS->convertInitializerTo(IntRecTy::get(getRecordKeeper())));
const auto *RHSi = dyn_cast_or_null<IntInit>(
RHS->convertInitializerTo(IntRecTy::get(getRecordKeeper())));
if (LHSi && RHSi) {
int64_t LHSv = LHSi->getValue(), RHSv = RHSi->getValue();
int64_t Result;
switch (getOpcode()) {
default: llvm_unreachable("Bad opcode!");
case ADD: Result = LHSv + RHSv; break;
case SUB: Result = LHSv - RHSv; break;
case MUL: Result = LHSv * RHSv; break;
case DIV:
if (RHSv == 0)
PrintFatalError(CurRec->getLoc(),
"Illegal operation: division by zero");
else if (LHSv == INT64_MIN && RHSv == -1)
PrintFatalError(CurRec->getLoc(),
"Illegal operation: INT64_MIN / -1");
else
Result = LHSv / RHSv;
break;
case AND: Result = LHSv & RHSv; break;
case OR: Result = LHSv | RHSv; break;
case XOR: Result = LHSv ^ RHSv; break;
case SHL: Result = (uint64_t)LHSv << (uint64_t)RHSv; break;
case SRA: Result = LHSv >> RHSv; break;
case SRL: Result = (uint64_t)LHSv >> (uint64_t)RHSv; break;
}
return IntInit::get(getRecordKeeper(), Result);
}
break;
}
}
unresolved:
return this;
}
const Init *BinOpInit::resolveReferences(Resolver &R) const {
const Init *NewLHS = LHS->resolveReferences(R);
unsigned Opc = getOpcode();
if (Opc == AND || Opc == OR) {
// Short-circuit. Regardless whether this is a logical or bitwise
// AND/OR.
// Ideally we could also short-circuit `!or(true, ...)`, but it's
// difficult to do it right without knowing if rest of the operands
// are all `bit` or not. Therefore, we're only implementing a relatively
// limited version of short-circuit against all ones (`true` is casted
// to 1 rather than all ones before we evaluate `!or`).
if (const auto *LHSi = dyn_cast_or_null<IntInit>(
NewLHS->convertInitializerTo(IntRecTy::get(getRecordKeeper())))) {
if ((Opc == AND && !LHSi->getValue()) ||
(Opc == OR && LHSi->getValue() == -1))
return LHSi;
}
}
const Init *NewRHS = RHS->resolveReferences(R);
if (LHS != NewLHS || RHS != NewRHS)
return (BinOpInit::get(getOpcode(), NewLHS, NewRHS, getType()))
->Fold(R.getCurrentRecord());
return this;
}
std::string BinOpInit::getAsString() const {
std::string Result;
switch (getOpcode()) {
case LISTELEM:
case LISTSLICE:
return LHS->getAsString() + "[" + RHS->getAsString() + "]";
case RANGEC:
return LHS->getAsString() + "..." + RHS->getAsString();
case CONCAT: Result = "!con"; break;
case MATCH:
Result = "!match";
break;
case ADD: Result = "!add"; break;
case SUB: Result = "!sub"; break;
case MUL: Result = "!mul"; break;
case DIV: Result = "!div"; break;
case AND: Result = "!and"; break;
case OR: Result = "!or"; break;
case XOR: Result = "!xor"; break;
case SHL: Result = "!shl"; break;
case SRA: Result = "!sra"; break;
case SRL: Result = "!srl"; break;
case EQ: Result = "!eq"; break;
case NE: Result = "!ne"; break;
case LE: Result = "!le"; break;
case LT: Result = "!lt"; break;
case GE: Result = "!ge"; break;
case GT: Result = "!gt"; break;
case LISTCONCAT: Result = "!listconcat"; break;
case LISTSPLAT: Result = "!listsplat"; break;
case LISTREMOVE:
Result = "!listremove";
break;
case STRCONCAT: Result = "!strconcat"; break;
case INTERLEAVE: Result = "!interleave"; break;
case SETDAGOP: Result = "!setdagop"; break;
case GETDAGARG:
Result = "!getdagarg<" + getType()->getAsString() + ">";
break;
case GETDAGNAME:
Result = "!getdagname";
break;
}
return Result + "(" + LHS->getAsString() + ", " + RHS->getAsString() + ")";
}
static void ProfileTernOpInit(FoldingSetNodeID &ID, unsigned Opcode,
const Init *LHS, const Init *MHS, const Init *RHS,
const RecTy *Type) {
ID.AddInteger(Opcode);
ID.AddPointer(LHS);
ID.AddPointer(MHS);
ID.AddPointer(RHS);
ID.AddPointer(Type);
}
const TernOpInit *TernOpInit::get(TernaryOp Opc, const Init *LHS,
const Init *MHS, const Init *RHS,
const RecTy *Type) {
FoldingSetNodeID ID;
ProfileTernOpInit(ID, Opc, LHS, MHS, RHS, Type);
detail::RecordKeeperImpl &RK = LHS->getRecordKeeper().getImpl();
void *IP = nullptr;
if (TernOpInit *I = RK.TheTernOpInitPool.FindNodeOrInsertPos(ID, IP))
return I;
TernOpInit *I = new (RK.Allocator) TernOpInit(Opc, LHS, MHS, RHS, Type);
RK.TheTernOpInitPool.InsertNode(I, IP);
return I;
}
void TernOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileTernOpInit(ID, getOpcode(), getLHS(), getMHS(), getRHS(), getType());
}
static const Init *ItemApply(const Init *LHS, const Init *MHSe, const Init *RHS,
const Record *CurRec) {
MapResolver R(CurRec);
R.set(LHS, MHSe);
return RHS->resolveReferences(R);
}
static const Init *ForeachDagApply(const Init *LHS, const DagInit *MHSd,
const Init *RHS, const Record *CurRec) {
bool Change = false;
const Init *Val = ItemApply(LHS, MHSd->getOperator(), RHS, CurRec);
if (Val != MHSd->getOperator())
Change = true;
SmallVector<std::pair<const Init *, const StringInit *>, 8> NewArgs;
for (auto [Arg, ArgName] : MHSd->getArgAndNames()) {
const Init *NewArg;
if (const auto *Argd = dyn_cast<DagInit>(Arg))
NewArg = ForeachDagApply(LHS, Argd, RHS, CurRec);
else
NewArg = ItemApply(LHS, Arg, RHS, CurRec);
NewArgs.emplace_back(NewArg, ArgName);
if (Arg != NewArg)
Change = true;
}
if (Change)
return DagInit::get(Val, MHSd->getName(), NewArgs);
return MHSd;
}
// Applies RHS to all elements of MHS, using LHS as a temp variable.
static const Init *ForeachHelper(const Init *LHS, const Init *MHS,
const Init *RHS, const RecTy *Type,
const Record *CurRec) {
if (const auto *MHSd = dyn_cast<DagInit>(MHS))
return ForeachDagApply(LHS, MHSd, RHS, CurRec);
if (const auto *MHSl = dyn_cast<ListInit>(MHS)) {
SmallVector<const Init *, 8> NewList(MHSl->begin(), MHSl->end());
for (const Init *&Item : NewList) {
const Init *NewItem = ItemApply(LHS, Item, RHS, CurRec);
if (NewItem != Item)
Item = NewItem;
}
return ListInit::get(NewList, cast<ListRecTy>(Type)->getElementType());
}
return nullptr;
}
// Evaluates RHS for all elements of MHS, using LHS as a temp variable.
// Creates a new list with the elements that evaluated to true.
static const Init *FilterHelper(const Init *LHS, const Init *MHS,
const Init *RHS, const RecTy *Type,
const Record *CurRec) {
if (const auto *MHSl = dyn_cast<ListInit>(MHS)) {
SmallVector<const Init *, 8> NewList;
for (const Init *Item : MHSl->getElements()) {
const Init *Include = ItemApply(LHS, Item, RHS, CurRec);
if (!Include)
return nullptr;
if (const auto *IncludeInt =
dyn_cast_or_null<IntInit>(Include->convertInitializerTo(
IntRecTy::get(LHS->getRecordKeeper())))) {
if (IncludeInt->getValue())
NewList.push_back(Item);
} else {
return nullptr;
}
}
return ListInit::get(NewList, cast<ListRecTy>(Type)->getElementType());
}
return nullptr;
}
const Init *TernOpInit::Fold(const Record *CurRec) const {
RecordKeeper &RK = getRecordKeeper();
switch (getOpcode()) {
case SUBST: {
const auto *LHSd = dyn_cast<DefInit>(LHS);
const auto *LHSv = dyn_cast<VarInit>(LHS);
const auto *LHSs = dyn_cast<StringInit>(LHS);
const auto *MHSd = dyn_cast<DefInit>(MHS);
const auto *MHSv = dyn_cast<VarInit>(MHS);
const auto *MHSs = dyn_cast<StringInit>(MHS);
const auto *RHSd = dyn_cast<DefInit>(RHS);
const auto *RHSv = dyn_cast<VarInit>(RHS);
const auto *RHSs = dyn_cast<StringInit>(RHS);
if (LHSd && MHSd && RHSd) {
const Record *Val = RHSd->getDef();
if (LHSd->getAsString() == RHSd->getAsString())
Val = MHSd->getDef();
return Val->getDefInit();
}
if (LHSv && MHSv && RHSv) {
std::string Val = RHSv->getName().str();
if (LHSv->getAsString() == RHSv->getAsString())
Val = MHSv->getName().str();
return VarInit::get(Val, getType());
}
if (LHSs && MHSs && RHSs) {
std::string Val = RHSs->getValue().str();
std::string::size_type Idx = 0;
while (true) {
std::string::size_type Found = Val.find(LHSs->getValue(), Idx);
if (Found == std::string::npos)
break;
Val.replace(Found, LHSs->getValue().size(), MHSs->getValue().str());
Idx = Found + MHSs->getValue().size();
}
return StringInit::get(RK, Val);
}
break;
}
case FOREACH: {
if (const Init *Result = ForeachHelper(LHS, MHS, RHS, getType(), CurRec))
return Result;
break;
}
case FILTER: {
if (const Init *Result = FilterHelper(LHS, MHS, RHS, getType(), CurRec))
return Result;
break;
}
case IF: {
if (const auto *LHSi = dyn_cast_or_null<IntInit>(
LHS->convertInitializerTo(IntRecTy::get(RK)))) {
if (LHSi->getValue())
return MHS;
return RHS;
}
break;
}
case DAG: {
const auto *MHSl = dyn_cast<ListInit>(MHS);
const auto *RHSl = dyn_cast<ListInit>(RHS);
bool MHSok = MHSl || isa<UnsetInit>(MHS);
bool RHSok = RHSl || isa<UnsetInit>(RHS);
if (isa<UnsetInit>(MHS) && isa<UnsetInit>(RHS))
break; // Typically prevented by the parser, but might happen with template args
if (MHSok && RHSok && (!MHSl || !RHSl || MHSl->size() == RHSl->size())) {
SmallVector<std::pair<const Init *, const StringInit *>, 8> Children;
unsigned Size = MHSl ? MHSl->size() : RHSl->size();
for (unsigned i = 0; i != Size; ++i) {
const Init *Node = MHSl ? MHSl->getElement(i) : UnsetInit::get(RK);
const Init *Name = RHSl ? RHSl->getElement(i) : UnsetInit::get(RK);
if (!isa<StringInit>(Name) && !isa<UnsetInit>(Name))
return this;
Children.emplace_back(Node, dyn_cast<StringInit>(Name));
}
return DagInit::get(LHS, Children);
}
break;
}
case RANGE: {
const auto *LHSi = dyn_cast<IntInit>(LHS);
const auto *MHSi = dyn_cast<IntInit>(MHS);
const auto *RHSi = dyn_cast<IntInit>(RHS);
if (!LHSi || !MHSi || !RHSi)
break;
auto Start = LHSi->getValue();
auto End = MHSi->getValue();
auto Step = RHSi->getValue();
if (Step == 0)
PrintError(CurRec->getLoc(), "Step of !range can't be 0");
SmallVector<const Init *, 8> Args;
if (Start < End && Step > 0) {
Args.reserve((End - Start) / Step);
for (auto I = Start; I < End; I += Step)
Args.push_back(IntInit::get(getRecordKeeper(), I));
} else if (Start > End && Step < 0) {
Args.reserve((Start - End) / -Step);
for (auto I = Start; I > End; I += Step)
Args.push_back(IntInit::get(getRecordKeeper(), I));
} else {
// Empty set
}
return ListInit::get(Args, LHSi->getType());
}
case SUBSTR: {
const auto *LHSs = dyn_cast<StringInit>(LHS);
const auto *MHSi = dyn_cast<IntInit>(MHS);
const auto *RHSi = dyn_cast<IntInit>(RHS);
if (LHSs && MHSi && RHSi) {
int64_t StringSize = LHSs->getValue().size();
int64_t Start = MHSi->getValue();
int64_t Length = RHSi->getValue();
if (Start < 0 || Start > StringSize)
PrintError(CurRec->getLoc(),
Twine("!substr start position is out of range 0...") +
std::to_string(StringSize) + ": " +
std::to_string(Start));
if (Length < 0)
PrintError(CurRec->getLoc(), "!substr length must be nonnegative");
return StringInit::get(RK, LHSs->getValue().substr(Start, Length),
LHSs->getFormat());
}
break;
}
case FIND: {
const auto *LHSs = dyn_cast<StringInit>(LHS);
const auto *MHSs = dyn_cast<StringInit>(MHS);
const auto *RHSi = dyn_cast<IntInit>(RHS);
if (LHSs && MHSs && RHSi) {
int64_t SourceSize = LHSs->getValue().size();
int64_t Start = RHSi->getValue();
if (Start < 0 || Start > SourceSize)
PrintError(CurRec->getLoc(),
Twine("!find start position is out of range 0...") +
std::to_string(SourceSize) + ": " +
std::to_string(Start));
auto I = LHSs->getValue().find(MHSs->getValue(), Start);
if (I == std::string::npos)
return IntInit::get(RK, -1);
return IntInit::get(RK, I);
}
break;
}
case SETDAGARG: {
const auto *Dag = dyn_cast<DagInit>(LHS);
if (Dag && isa<IntInit, StringInit>(MHS)) {
std::string Error;
auto ArgNo = getDagArgNoByKey(Dag, MHS, Error);
if (!ArgNo)
PrintFatalError(CurRec->getLoc(), "!setdagarg " + Error);
assert(*ArgNo < Dag->getNumArgs());
SmallVector<const Init *, 8> Args(Dag->getArgs());
Args[*ArgNo] = RHS;
return DagInit::get(Dag->getOperator(), Dag->getName(), Args,
Dag->getArgNames());
}
break;
}
case SETDAGNAME: {
const auto *Dag = dyn_cast<DagInit>(LHS);
if (Dag && isa<IntInit, StringInit>(MHS)) {
std::string Error;
auto ArgNo = getDagArgNoByKey(Dag, MHS, Error);
if (!ArgNo)
PrintFatalError(CurRec->getLoc(), "!setdagname " + Error);
assert(*ArgNo < Dag->getNumArgs());
SmallVector<const StringInit *, 8> Names(Dag->getArgNames());
Names[*ArgNo] = dyn_cast<StringInit>(RHS);
return DagInit::get(Dag->getOperator(), Dag->getName(), Dag->getArgs(),
Names);
}
break;
}
}
return this;
}
const Init *TernOpInit::resolveReferences(Resolver &R) const {
const Init *lhs = LHS->resolveReferences(R);
if (getOpcode() == IF && lhs != LHS) {
if (const auto *Value = dyn_cast_or_null<IntInit>(
lhs->convertInitializerTo(IntRecTy::get(getRecordKeeper())))) {
// Short-circuit
if (Value->getValue())
return MHS->resolveReferences(R);
return RHS->resolveReferences(R);
}
}
const Init *mhs = MHS->resolveReferences(R);
const Init *rhs;
if (getOpcode() == FOREACH || getOpcode() == FILTER) {
ShadowResolver SR(R);
SR.addShadow(lhs);
rhs = RHS->resolveReferences(SR);
} else {
rhs = RHS->resolveReferences(R);
}
if (LHS != lhs || MHS != mhs || RHS != rhs)
return (TernOpInit::get(getOpcode(), lhs, mhs, rhs, getType()))
->Fold(R.getCurrentRecord());
return this;
}
std::string TernOpInit::getAsString() const {
std::string Result;
bool UnquotedLHS = false;
switch (getOpcode()) {
case DAG: Result = "!dag"; break;
case FILTER: Result = "!filter"; UnquotedLHS = true; break;
case FOREACH: Result = "!foreach"; UnquotedLHS = true; break;
case IF: Result = "!if"; break;
case RANGE:
Result = "!range";
break;
case SUBST: Result = "!subst"; break;
case SUBSTR: Result = "!substr"; break;
case FIND: Result = "!find"; break;
case SETDAGARG:
Result = "!setdagarg";
break;
case SETDAGNAME:
Result = "!setdagname";
break;
}
return (Result + "(" +
(UnquotedLHS ? LHS->getAsUnquotedString() : LHS->getAsString()) +
", " + MHS->getAsString() + ", " + RHS->getAsString() + ")");
}
static void ProfileFoldOpInit(FoldingSetNodeID &ID, const Init *Start,
const Init *List, const Init *A, const Init *B,
const Init *Expr, const RecTy *Type) {
ID.AddPointer(Start);
ID.AddPointer(List);
ID.AddPointer(A);
ID.AddPointer(B);
ID.AddPointer(Expr);
ID.AddPointer(Type);
}
const FoldOpInit *FoldOpInit::get(const Init *Start, const Init *List,
const Init *A, const Init *B,
const Init *Expr, const RecTy *Type) {
FoldingSetNodeID ID;
ProfileFoldOpInit(ID, Start, List, A, B, Expr, Type);
detail::RecordKeeperImpl &RK = Start->getRecordKeeper().getImpl();
void *IP = nullptr;
if (const FoldOpInit *I = RK.TheFoldOpInitPool.FindNodeOrInsertPos(ID, IP))
return I;
FoldOpInit *I = new (RK.Allocator) FoldOpInit(Start, List, A, B, Expr, Type);
RK.TheFoldOpInitPool.InsertNode(I, IP);
return I;
}
void FoldOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileFoldOpInit(ID, Start, List, A, B, Expr, getType());
}
const Init *FoldOpInit::Fold(const Record *CurRec) const {
if (const auto *LI = dyn_cast<ListInit>(List)) {
const Init *Accum = Start;
for (const Init *Elt : *LI) {
MapResolver R(CurRec);
R.set(A, Accum);
R.set(B, Elt);
Accum = Expr->resolveReferences(R);
}
return Accum;
}
return this;
}
const Init *FoldOpInit::resolveReferences(Resolver &R) const {
const Init *NewStart = Start->resolveReferences(R);
const Init *NewList = List->resolveReferences(R);
ShadowResolver SR(R);
SR.addShadow(A);
SR.addShadow(B);
const Init *NewExpr = Expr->resolveReferences(SR);
if (Start == NewStart && List == NewList && Expr == NewExpr)
return this;
return get(NewStart, NewList, A, B, NewExpr, getType())
->Fold(R.getCurrentRecord());
}
const Init *FoldOpInit::getBit(unsigned Bit) const {
return VarBitInit::get(this, Bit);
}
std::string FoldOpInit::getAsString() const {
return (Twine("!foldl(") + Start->getAsString() + ", " + List->getAsString() +
", " + A->getAsUnquotedString() + ", " + B->getAsUnquotedString() +
", " + Expr->getAsString() + ")")
.str();
}
static void ProfileIsAOpInit(FoldingSetNodeID &ID, const RecTy *CheckType,
const Init *Expr) {
ID.AddPointer(CheckType);
ID.AddPointer(Expr);
}
const IsAOpInit *IsAOpInit::get(const RecTy *CheckType, const Init *Expr) {
FoldingSetNodeID ID;
ProfileIsAOpInit(ID, CheckType, Expr);
detail::RecordKeeperImpl &RK = Expr->getRecordKeeper().getImpl();
void *IP = nullptr;
if (const IsAOpInit *I = RK.TheIsAOpInitPool.FindNodeOrInsertPos(ID, IP))
return I;
IsAOpInit *I = new (RK.Allocator) IsAOpInit(CheckType, Expr);
RK.TheIsAOpInitPool.InsertNode(I, IP);
return I;
}
void IsAOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileIsAOpInit(ID, CheckType, Expr);
}
const Init *IsAOpInit::Fold() const {
if (const auto *TI = dyn_cast<TypedInit>(Expr)) {
// Is the expression type known to be (a subclass of) the desired type?
if (TI->getType()->typeIsConvertibleTo(CheckType))
return IntInit::get(getRecordKeeper(), 1);
if (isa<RecordRecTy>(CheckType)) {
// If the target type is not a subclass of the expression type once the
// expression has been made concrete, or if the expression has fully
// resolved to a record, we know that it can't be of the required type.
if ((!CheckType->typeIsConvertibleTo(TI->getType()) &&
Expr->isConcrete()) ||
isa<DefInit>(Expr))
return IntInit::get(getRecordKeeper(), 0);
} else {
// We treat non-record types as not castable.
return IntInit::get(getRecordKeeper(), 0);
}
}
return this;
}
const Init *IsAOpInit::resolveReferences(Resolver &R) const {
const Init *NewExpr = Expr->resolveReferences(R);
if (Expr != NewExpr)
return get(CheckType, NewExpr)->Fold();
return this;
}
const Init *IsAOpInit::getBit(unsigned Bit) const {
return VarBitInit::get(this, Bit);
}
std::string IsAOpInit::getAsString() const {
return (Twine("!isa<") + CheckType->getAsString() + ">(" +
Expr->getAsString() + ")")
.str();
}
static void ProfileExistsOpInit(FoldingSetNodeID &ID, const RecTy *CheckType,
const Init *Expr) {
ID.AddPointer(CheckType);
ID.AddPointer(Expr);
}
const ExistsOpInit *ExistsOpInit::get(const RecTy *CheckType,
const Init *Expr) {
FoldingSetNodeID ID;
ProfileExistsOpInit(ID, CheckType, Expr);
detail::RecordKeeperImpl &RK = Expr->getRecordKeeper().getImpl();
void *IP = nullptr;
if (const ExistsOpInit *I =
RK.TheExistsOpInitPool.FindNodeOrInsertPos(ID, IP))
return I;
ExistsOpInit *I = new (RK.Allocator) ExistsOpInit(CheckType, Expr);
RK.TheExistsOpInitPool.InsertNode(I, IP);
return I;
}
void ExistsOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileExistsOpInit(ID, CheckType, Expr);
}
const Init *ExistsOpInit::Fold(const Record *CurRec, bool IsFinal) const {
if (const auto *Name = dyn_cast<StringInit>(Expr)) {
// Look up all defined records to see if we can find one.
const Record *D = CheckType->getRecordKeeper().getDef(Name->getValue());
if (D) {
// Check if types are compatible.
return IntInit::get(getRecordKeeper(),
D->getDefInit()->getType()->typeIsA(CheckType));
}
if (CurRec) {
// Self-references are allowed, but their resolution is delayed until
// the final resolve to ensure that we get the correct type for them.
auto *Anonymous = dyn_cast<AnonymousNameInit>(CurRec->getNameInit());
if (Name == CurRec->getNameInit() ||
(Anonymous && Name == Anonymous->getNameInit())) {
if (!IsFinal)
return this;
// No doubt that there exists a record, so we should check if types are
// compatible.
return IntInit::get(getRecordKeeper(),
CurRec->getType()->typeIsA(CheckType));
}
}
if (IsFinal)
return IntInit::get(getRecordKeeper(), 0);
}
return this;
}
const Init *ExistsOpInit::resolveReferences(Resolver &R) const {
const Init *NewExpr = Expr->resolveReferences(R);
if (Expr != NewExpr || R.isFinal())
return get(CheckType, NewExpr)->Fold(R.getCurrentRecord(), R.isFinal());
return this;
}
const Init *ExistsOpInit::getBit(unsigned Bit) const {
return VarBitInit::get(this, Bit);
}
std::string ExistsOpInit::getAsString() const {
return (Twine("!exists<") + CheckType->getAsString() + ">(" +
Expr->getAsString() + ")")
.str();
}
static void ProfileInstancesOpInit(FoldingSetNodeID &ID, const RecTy *Type,
const Init *Regex) {
ID.AddPointer(Type);
ID.AddPointer(Regex);
}
const InstancesOpInit *InstancesOpInit::get(const RecTy *Type,
const Init *Regex) {
FoldingSetNodeID ID;
ProfileInstancesOpInit(ID, Type, Regex);
detail::RecordKeeperImpl &RK = Regex->getRecordKeeper().getImpl();
void *IP = nullptr;
if (const InstancesOpInit *I =
RK.TheInstancesOpInitPool.FindNodeOrInsertPos(ID, IP))
return I;
InstancesOpInit *I = new (RK.Allocator) InstancesOpInit(Type, Regex);
RK.TheInstancesOpInitPool.InsertNode(I, IP);
return I;
}
void InstancesOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileInstancesOpInit(ID, Type, Regex);
}
const Init *InstancesOpInit::Fold(const Record *CurRec, bool IsFinal) const {
if (CurRec && !IsFinal)
return this;
const auto *RegexInit = dyn_cast<StringInit>(Regex);
if (!RegexInit)
return this;
StringRef RegexStr = RegexInit->getValue();
llvm::Regex Matcher(RegexStr);
if (!Matcher.isValid())
PrintFatalError(Twine("invalid regex '") + RegexStr + Twine("'"));
const RecordKeeper &RK = Type->getRecordKeeper();
SmallVector<Init *, 8> Selected;
for (auto &Def : RK.getAllDerivedDefinitionsIfDefined(Type->getAsString()))
if (Matcher.match(Def->getName()))
Selected.push_back(Def->getDefInit());
return ListInit::get(Selected, Type);
}
const Init *InstancesOpInit::resolveReferences(Resolver &R) const {
const Init *NewRegex = Regex->resolveReferences(R);
if (Regex != NewRegex || R.isFinal())
return get(Type, NewRegex)->Fold(R.getCurrentRecord(), R.isFinal());
return this;
}
const Init *InstancesOpInit::getBit(unsigned Bit) const {
return VarBitInit::get(this, Bit);
}
std::string InstancesOpInit::getAsString() const {
return "!instances<" + Type->getAsString() + ">(" + Regex->getAsString() +
")";
}
const RecTy *TypedInit::getFieldType(const StringInit *FieldName) const {
if (const auto *RecordType = dyn_cast<RecordRecTy>(getType())) {
for (const Record *Rec : RecordType->getClasses()) {
if (const RecordVal *Field = Rec->getValue(FieldName))
return Field->getType();
}
}
return nullptr;
}
const Init *TypedInit::convertInitializerTo(const RecTy *Ty) const {
if (getType() == Ty || getType()->typeIsA(Ty))
return this;
if (isa<BitRecTy>(getType()) && isa<BitsRecTy>(Ty) &&
cast<BitsRecTy>(Ty)->getNumBits() == 1)
return BitsInit::get(getRecordKeeper(), {this});
return nullptr;
}
const Init *
TypedInit::convertInitializerBitRange(ArrayRef<unsigned> Bits) const {
const auto *T = dyn_cast<BitsRecTy>(getType());
if (!T) return nullptr; // Cannot subscript a non-bits variable.
unsigned NumBits = T->getNumBits();
SmallVector<const Init *, 16> NewBits;
NewBits.reserve(Bits.size());
for (unsigned Bit : Bits) {
if (Bit >= NumBits)
return nullptr;
NewBits.push_back(VarBitInit::get(this, Bit));
}
return BitsInit::get(getRecordKeeper(), NewBits);
}
const Init *TypedInit::getCastTo(const RecTy *Ty) const {
// Handle the common case quickly
if (getType() == Ty || getType()->typeIsA(Ty))
return this;
if (const Init *Converted = convertInitializerTo(Ty)) {
assert(!isa<TypedInit>(Converted) ||
cast<TypedInit>(Converted)->getType()->typeIsA(Ty));
return Converted;
}
if (!getType()->typeIsConvertibleTo(Ty))
return nullptr;
return UnOpInit::get(UnOpInit::CAST, this, Ty)->Fold(nullptr);
}
const VarInit *VarInit::get(StringRef VN, const RecTy *T) {
const Init *Value = StringInit::get(T->getRecordKeeper(), VN);
return VarInit::get(Value, T);
}
const VarInit *VarInit::get(const Init *VN, const RecTy *T) {
detail::RecordKeeperImpl &RK = T->getRecordKeeper().getImpl();
VarInit *&I = RK.TheVarInitPool[{T, VN}];
if (!I)
I = new (RK.Allocator) VarInit(VN, T);
return I;
}
StringRef VarInit::getName() const {
const auto *NameString = cast<StringInit>(getNameInit());
return NameString->getValue();
}
const Init *VarInit::getBit(unsigned Bit) const {
if (getType() == BitRecTy::get(getRecordKeeper()))
return this;
return VarBitInit::get(this, Bit);
}
const Init *VarInit::resolveReferences(Resolver &R) const {
if (const Init *Val = R.resolve(VarName))
return Val;
return this;
}
const VarBitInit *VarBitInit::get(const TypedInit *T, unsigned B) {
detail::RecordKeeperImpl &RK = T->getRecordKeeper().getImpl();
VarBitInit *&I = RK.TheVarBitInitPool[{T, B}];
if (!I)
I = new (RK.Allocator) VarBitInit(T, B);
return I;
}
std::string VarBitInit::getAsString() const {
return TI->getAsString() + "{" + utostr(Bit) + "}";
}
const Init *VarBitInit::resolveReferences(Resolver &R) const {
const Init *I = TI->resolveReferences(R);
if (TI != I)
return I->getBit(getBitNum());
return this;
}
DefInit::DefInit(const Record *D)
: TypedInit(IK_DefInit, D->getType()), Def(D) {}
const Init *DefInit::convertInitializerTo(const RecTy *Ty) const {
if (auto *RRT = dyn_cast<RecordRecTy>(Ty))
if (getType()->typeIsConvertibleTo(RRT))
return this;
return nullptr;
}
const RecTy *DefInit::getFieldType(const StringInit *FieldName) const {
if (const RecordVal *RV = Def->getValue(FieldName))
return RV->getType();
return nullptr;
}
std::string DefInit::getAsString() const { return Def->getName().str(); }
static void ProfileVarDefInit(FoldingSetNodeID &ID, const Record *Class,
ArrayRef<const ArgumentInit *> Args) {
ID.AddInteger(Args.size());
ID.AddPointer(Class);
for (const Init *I : Args)
ID.AddPointer(I);
}
VarDefInit::VarDefInit(SMLoc Loc, const Record *Class,
ArrayRef<const ArgumentInit *> Args)
: TypedInit(IK_VarDefInit, RecordRecTy::get(Class)), Loc(Loc), Class(Class),
NumArgs(Args.size()) {
llvm::uninitialized_copy(Args, getTrailingObjects());
}
const VarDefInit *VarDefInit::get(SMLoc Loc, const Record *Class,
ArrayRef<const ArgumentInit *> Args) {
FoldingSetNodeID ID;
ProfileVarDefInit(ID, Class, Args);
detail::RecordKeeperImpl &RK = Class->getRecords().getImpl();
void *IP = nullptr;
if (const VarDefInit *I = RK.TheVarDefInitPool.FindNodeOrInsertPos(ID, IP))
return I;
void *Mem = RK.Allocator.Allocate(
totalSizeToAlloc<const ArgumentInit *>(Args.size()), alignof(VarDefInit));
VarDefInit *I = new (Mem) VarDefInit(Loc, Class, Args);
RK.TheVarDefInitPool.InsertNode(I, IP);
return I;
}
void VarDefInit::Profile(FoldingSetNodeID &ID) const {
ProfileVarDefInit(ID, Class, args());
}
const DefInit *VarDefInit::instantiate() {
if (Def)
return Def;
RecordKeeper &Records = Class->getRecords();
auto NewRecOwner = std::make_unique<Record>(
Records.getNewAnonymousName(), Loc, Records, Record::RK_AnonymousDef);
Record *NewRec = NewRecOwner.get();
// Copy values from class to instance
for (const RecordVal &Val : Class->getValues())
NewRec->addValue(Val);
// Copy assertions from class to instance.
NewRec->appendAssertions(Class);
// Copy dumps from class to instance.
NewRec->appendDumps(Class);
// Substitute and resolve template arguments
ArrayRef<const Init *> TArgs = Class->getTemplateArgs();
MapResolver R(NewRec);
for (const Init *Arg : TArgs) {
R.set(Arg, NewRec->getValue(Arg)->getValue());
NewRec->removeValue(Arg);
}
for (auto *Arg : args()) {
if (Arg->isPositional())
R.set(TArgs[Arg->getIndex()], Arg->getValue());
if (Arg->isNamed())
R.set(Arg->getName(), Arg->getValue());
}
NewRec->resolveReferences(R);
// Add superclass.
NewRec->addDirectSuperClass(
Class, SMRange(Class->getLoc().back(), Class->getLoc().back()));
// Resolve internal references and store in record keeper
NewRec->resolveReferences();
Records.addDef(std::move(NewRecOwner));
// Check the assertions.
NewRec->checkRecordAssertions();
// Check the assertions.
NewRec->emitRecordDumps();
return Def = NewRec->getDefInit();
}
const Init *VarDefInit::resolveReferences(Resolver &R) const {
TrackUnresolvedResolver UR(&R);
bool Changed = false;
SmallVector<const ArgumentInit *, 8> NewArgs;
NewArgs.reserve(args_size());
for (const ArgumentInit *Arg : args()) {
const auto *NewArg = cast<ArgumentInit>(Arg->resolveReferences(UR));
NewArgs.push_back(NewArg);
Changed |= NewArg != Arg;
}
if (Changed) {
auto *New = VarDefInit::get(Loc, Class, NewArgs);
if (!UR.foundUnresolved())
return const_cast<VarDefInit *>(New)->instantiate();
return New;
}
return this;
}
const Init *VarDefInit::Fold() const {
if (Def)
return Def;
TrackUnresolvedResolver R;
for (const Init *Arg : args())
Arg->resolveReferences(R);
if (!R.foundUnresolved())
return const_cast<VarDefInit *>(this)->instantiate();
return this;
}
std::string VarDefInit::getAsString() const {
std::string Result = Class->getNameInitAsString() + "<";
ListSeparator LS;
for (const Init *Arg : args()) {
Result += LS;
Result += Arg->getAsString();
}
return Result + ">";
}
const FieldInit *FieldInit::get(const Init *R, const StringInit *FN) {
detail::RecordKeeperImpl &RK = R->getRecordKeeper().getImpl();
FieldInit *&I = RK.TheFieldInitPool[{R, FN}];
if (!I)
I = new (RK.Allocator) FieldInit(R, FN);
return I;
}
const Init *FieldInit::getBit(unsigned Bit) const {
if (getType() == BitRecTy::get(getRecordKeeper()))
return this;
return VarBitInit::get(this, Bit);
}
const Init *FieldInit::resolveReferences(Resolver &R) const {
const Init *NewRec = Rec->resolveReferences(R);
if (NewRec != Rec)
return FieldInit::get(NewRec, FieldName)->Fold(R.getCurrentRecord());
return this;
}
const Init *FieldInit::Fold(const Record *CurRec) const {
if (const auto *DI = dyn_cast<DefInit>(Rec)) {
const Record *Def = DI->getDef();
if (Def == CurRec)
PrintFatalError(CurRec->getLoc(),
Twine("Attempting to access field '") +
FieldName->getAsUnquotedString() + "' of '" +
Rec->getAsString() + "' is a forbidden self-reference");
const Init *FieldVal = Def->getValue(FieldName)->getValue();
if (FieldVal->isConcrete())
return FieldVal;
}
return this;
}
bool FieldInit::isConcrete() const {
if (const auto *DI = dyn_cast<DefInit>(Rec)) {
const Init *FieldVal = DI->getDef()->getValue(FieldName)->getValue();
return FieldVal->isConcrete();
}
return false;
}
static void ProfileCondOpInit(FoldingSetNodeID &ID,
ArrayRef<const Init *> Conds,
ArrayRef<const Init *> Vals,
const RecTy *ValType) {
assert(Conds.size() == Vals.size() &&
"Number of conditions and values must match!");
ID.AddPointer(ValType);
for (const auto &[Cond, Val] : zip(Conds, Vals)) {
ID.AddPointer(Cond);
ID.AddPointer(Val);
}
}
CondOpInit::CondOpInit(ArrayRef<const Init *> Conds,
ArrayRef<const Init *> Values, const RecTy *Type)
: TypedInit(IK_CondOpInit, Type), NumConds(Conds.size()), ValType(Type) {
const Init **TrailingObjects = getTrailingObjects();
llvm::uninitialized_copy(Conds, TrailingObjects);
llvm::uninitialized_copy(Values, TrailingObjects + NumConds);
}
void CondOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileCondOpInit(ID, getConds(), getVals(), ValType);
}
const CondOpInit *CondOpInit::get(ArrayRef<const Init *> Conds,
ArrayRef<const Init *> Values,
const RecTy *Ty) {
assert(Conds.size() == Values.size() &&
"Number of conditions and values must match!");
FoldingSetNodeID ID;
ProfileCondOpInit(ID, Conds, Values, Ty);
detail::RecordKeeperImpl &RK = Ty->getRecordKeeper().getImpl();
void *IP = nullptr;
if (const CondOpInit *I = RK.TheCondOpInitPool.FindNodeOrInsertPos(ID, IP))
return I;
void *Mem = RK.Allocator.Allocate(
totalSizeToAlloc<const Init *>(2 * Conds.size()), alignof(CondOpInit));
CondOpInit *I = new (Mem) CondOpInit(Conds, Values, Ty);
RK.TheCondOpInitPool.InsertNode(I, IP);
return I;
}
const Init *CondOpInit::resolveReferences(Resolver &R) const {
SmallVector<const Init *, 4> NewConds;
SmallVector<const Init *, 4> NewVals;
bool Changed = false;
for (auto [Cond, Val] : getCondAndVals()) {
const Init *NewCond = Cond->resolveReferences(R);
NewConds.push_back(NewCond);
Changed |= NewCond != Cond;
const Init *NewVal = Val->resolveReferences(R);
NewVals.push_back(NewVal);
Changed |= NewVal != Val;
}
if (Changed)
return (CondOpInit::get(NewConds, NewVals,
getValType()))->Fold(R.getCurrentRecord());
return this;
}
const Init *CondOpInit::Fold(const Record *CurRec) const {
RecordKeeper &RK = getRecordKeeper();
for (auto [Cond, Val] : getCondAndVals()) {
if (const auto *CondI = dyn_cast_or_null<IntInit>(
Cond->convertInitializerTo(IntRecTy::get(RK)))) {
if (CondI->getValue())
return Val->convertInitializerTo(getValType());
} else {
return this;
}
}
PrintFatalError(CurRec->getLoc(),
CurRec->getNameInitAsString() +
" does not have any true condition in:" +
this->getAsString());
return nullptr;
}
bool CondOpInit::isConcrete() const {
return all_of(getCondAndVals(), [](const auto &Pair) {
return std::get<0>(Pair)->isConcrete() && std::get<1>(Pair)->isConcrete();
});
}
bool CondOpInit::isComplete() const {
return all_of(getCondAndVals(), [](const auto &Pair) {
return std::get<0>(Pair)->isComplete() && std::get<1>(Pair)->isComplete();
});
}
std::string CondOpInit::getAsString() const {
std::string Result = "!cond(";
ListSeparator LS;
for (auto [Cond, Val] : getCondAndVals()) {
Result += LS;
Result += Cond->getAsString() + ": ";
Result += Val->getAsString();
}
return Result + ")";
}
const Init *CondOpInit::getBit(unsigned Bit) const {
return VarBitInit::get(this, Bit);
}
static void ProfileDagInit(FoldingSetNodeID &ID, const Init *V,
const StringInit *VN, ArrayRef<const Init *> Args,
ArrayRef<const StringInit *> ArgNames) {
ID.AddPointer(V);
ID.AddPointer(VN);
for (auto [Arg, Name] : zip_equal(Args, ArgNames)) {
ID.AddPointer(Arg);
ID.AddPointer(Name);
}
}
DagInit::DagInit(const Init *V, const StringInit *VN,
ArrayRef<const Init *> Args,
ArrayRef<const StringInit *> ArgNames)
: TypedInit(IK_DagInit, DagRecTy::get(V->getRecordKeeper())), Val(V),
ValName(VN), NumArgs(Args.size()) {
llvm::uninitialized_copy(Args, getTrailingObjects<const Init *>());
llvm::uninitialized_copy(ArgNames, getTrailingObjects<const StringInit *>());
}
const DagInit *DagInit::get(const Init *V, const StringInit *VN,
ArrayRef<const Init *> Args,
ArrayRef<const StringInit *> ArgNames) {
assert(Args.size() == ArgNames.size() &&
"Number of DAG args and arg names must match!");
FoldingSetNodeID ID;
ProfileDagInit(ID, V, VN, Args, ArgNames);
detail::RecordKeeperImpl &RK = V->getRecordKeeper().getImpl();
void *IP = nullptr;
if (const DagInit *I = RK.TheDagInitPool.FindNodeOrInsertPos(ID, IP))
return I;
void *Mem =
RK.Allocator.Allocate(totalSizeToAlloc<const Init *, const StringInit *>(
Args.size(), ArgNames.size()),
alignof(DagInit));
DagInit *I = new (Mem) DagInit(V, VN, Args, ArgNames);
RK.TheDagInitPool.InsertNode(I, IP);
return I;
}
const DagInit *DagInit::get(
const Init *V, const StringInit *VN,
ArrayRef<std::pair<const Init *, const StringInit *>> ArgAndNames) {
SmallVector<const Init *, 8> Args(make_first_range(ArgAndNames));
SmallVector<const StringInit *, 8> Names(make_second_range(ArgAndNames));
return DagInit::get(V, VN, Args, Names);
}
void DagInit::Profile(FoldingSetNodeID &ID) const {
ProfileDagInit(ID, Val, ValName, getArgs(), getArgNames());
}
const Record *DagInit::getOperatorAsDef(ArrayRef<SMLoc> Loc) const {
if (const auto *DefI = dyn_cast<DefInit>(Val))
return DefI->getDef();
PrintFatalError(Loc, "Expected record as operator");
return nullptr;
}
std::optional<unsigned> DagInit::getArgNo(StringRef Name) const {
ArrayRef<const StringInit *> ArgNames = getArgNames();
auto It = llvm::find_if(ArgNames, [Name](const StringInit *ArgName) {
return ArgName && ArgName->getValue() == Name;
});
if (It == ArgNames.end())
return std::nullopt;
return std::distance(ArgNames.begin(), It);
}
const Init *DagInit::resolveReferences(Resolver &R) const {
SmallVector<const Init *, 8> NewArgs;
NewArgs.reserve(arg_size());
bool ArgsChanged = false;
for (const Init *Arg : getArgs()) {
const Init *NewArg = Arg->resolveReferences(R);
NewArgs.push_back(NewArg);
ArgsChanged |= NewArg != Arg;
}
const Init *Op = Val->resolveReferences(R);
if (Op != Val || ArgsChanged)
return DagInit::get(Op, ValName, NewArgs, getArgNames());
return this;
}
bool DagInit::isConcrete() const {
if (!Val->isConcrete())
return false;
return all_of(getArgs(), [](const Init *Elt) { return Elt->isConcrete(); });
}
std::string DagInit::getAsString() const {
std::string Result = "(" + Val->getAsString();
if (ValName)
Result += ":$" + ValName->getAsUnquotedString();
if (!arg_empty()) {
Result += " ";
ListSeparator LS;
for (auto [Arg, Name] : getArgAndNames()) {
Result += LS;
Result += Arg->getAsString();
if (Name)
Result += ":$" + Name->getAsUnquotedString();
}
}
return Result + ")";
}
//===----------------------------------------------------------------------===//
// Other implementations
//===----------------------------------------------------------------------===//
RecordVal::RecordVal(const Init *N, const RecTy *T, FieldKind K)
: Name(N), TyAndKind(T, K) {
setValue(UnsetInit::get(N->getRecordKeeper()));
assert(Value && "Cannot create unset value for current type!");
}
// This constructor accepts the same arguments as the above, but also
// a source location.
RecordVal::RecordVal(const Init *N, SMLoc Loc, const RecTy *T, FieldKind K)
: Name(N), Loc(Loc), TyAndKind(T, K) {
setValue(UnsetInit::get(N->getRecordKeeper()));
assert(Value && "Cannot create unset value for current type!");
}
StringRef RecordVal::getName() const {
return cast<StringInit>(getNameInit())->getValue();
}
std::string RecordVal::getPrintType() const {
if (getType() == StringRecTy::get(getRecordKeeper())) {
if (const auto *StrInit = dyn_cast<StringInit>(Value)) {
if (StrInit->hasCodeFormat())
return "code";
else
return "string";
} else {
return "string";
}
} else {
return TyAndKind.getPointer()->getAsString();
}
}
bool RecordVal::setValue(const Init *V) {
if (!V) {
Value = nullptr;
return false;
}
Value = V->getCastTo(getType());
if (!Value)
return true;
assert(!isa<TypedInit>(Value) ||
cast<TypedInit>(Value)->getType()->typeIsA(getType()));
if (const auto *BTy = dyn_cast<BitsRecTy>(getType())) {
if (isa<BitsInit>(Value))
return false;
SmallVector<const Init *, 64> Bits(BTy->getNumBits());
for (unsigned I = 0, E = BTy->getNumBits(); I < E; ++I)
Bits[I] = Value->getBit(I);
Value = BitsInit::get(V->getRecordKeeper(), Bits);
}
return false;
}
// This version of setValue takes a source location and resets the
// location in the RecordVal.
bool RecordVal::setValue(const Init *V, SMLoc NewLoc) {
Loc = NewLoc;
return setValue(V);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RecordVal::dump() const { errs() << *this; }
#endif
void RecordVal::print(raw_ostream &OS, bool PrintSem) const {
if (isNonconcreteOK()) OS << "field ";
OS << getPrintType() << " " << getNameInitAsString();
if (getValue())
OS << " = " << *getValue();
if (PrintSem) OS << ";\n";
}
void Record::updateClassLoc(SMLoc Loc) {
assert(Locs.size() == 1);
ForwardDeclarationLocs.push_back(Locs.front());
Locs.clear();
Locs.push_back(Loc);
}
void Record::checkName() {
// Ensure the record name has string type.
const auto *TypedName = cast<const TypedInit>(Name);
if (!isa<StringRecTy>(TypedName->getType()))
PrintFatalError(getLoc(), Twine("Record name '") + Name->getAsString() +
"' is not a string!");
}
const RecordRecTy *Record::getType() const {
SmallVector<const Record *> DirectSCs(
make_first_range(getDirectSuperClasses()));
return RecordRecTy::get(TrackedRecords, DirectSCs);
}
DefInit *Record::getDefInit() const {
if (!CorrespondingDefInit) {
CorrespondingDefInit =
new (TrackedRecords.getImpl().Allocator) DefInit(this);
}
return CorrespondingDefInit;
}
unsigned Record::getNewUID(RecordKeeper &RK) {
return RK.getImpl().LastRecordID++;
}
void Record::setName(const Init *NewName) {
Name = NewName;
checkName();
// DO NOT resolve record values to the name at this point because
// there might be default values for arguments of this def. Those
// arguments might not have been resolved yet so we don't want to
// prematurely assume values for those arguments were not passed to
// this def.
//
// Nonetheless, it may be that some of this Record's values
// reference the record name. Indeed, the reason for having the
// record name be an Init is to provide this flexibility. The extra
// resolve steps after completely instantiating defs takes care of
// this. See TGParser::ParseDef and TGParser::ParseDefm.
}
void Record::resolveReferences(Resolver &R, const RecordVal *SkipVal) {
const Init *OldName = getNameInit();
const Init *NewName = Name->resolveReferences(R);
if (NewName != OldName) {
// Re-register with RecordKeeper.
setName(NewName);
}
// Resolve the field values.
for (RecordVal &Value : Values) {
if (SkipVal == &Value) // Skip resolve the same field as the given one
continue;
if (const Init *V = Value.getValue()) {
const Init *VR = V->resolveReferences(R);
if (Value.setValue(VR)) {
std::string Type;
if (const auto *VRT = dyn_cast<TypedInit>(VR))
Type =
(Twine("of type '") + VRT->getType()->getAsString() + "' ").str();
PrintFatalError(
getLoc(),
Twine("Invalid value ") + Type + "found when setting field '" +
Value.getNameInitAsString() + "' of type '" +
Value.getType()->getAsString() +
"' after resolving references: " + VR->getAsUnquotedString() +
"\n");
}
}
}
// Resolve the assertion expressions.
for (AssertionInfo &Assertion : Assertions) {
const Init *Value = Assertion.Condition->resolveReferences(R);
Assertion.Condition = Value;
Value = Assertion.Message->resolveReferences(R);
Assertion.Message = Value;
}
// Resolve the dump expressions.
for (DumpInfo &Dump : Dumps) {
const Init *Value = Dump.Message->resolveReferences(R);
Dump.Message = Value;
}
}
void Record::resolveReferences(const Init *NewName) {
RecordResolver R(*this);
R.setName(NewName);
R.setFinal(true);
resolveReferences(R);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void Record::dump() const { errs() << *this; }
#endif
raw_ostream &llvm::operator<<(raw_ostream &OS, const Record &R) {
OS << R.getNameInitAsString();
ArrayRef<const Init *> TArgs = R.getTemplateArgs();
if (!TArgs.empty()) {
OS << "<";
ListSeparator LS;
for (const Init *TA : TArgs) {
const RecordVal *RV = R.getValue(TA);
assert(RV && "Template argument record not found??");
OS << LS;
RV->print(OS, false);
}
OS << ">";
}
OS << " {";
std::vector<const Record *> SCs = R.getSuperClasses();
if (!SCs.empty()) {
OS << "\t//";
for (const Record *SC : SCs)
OS << " " << SC->getNameInitAsString();
}
OS << "\n";
for (const RecordVal &Val : R.getValues())
if (Val.isNonconcreteOK() && !R.isTemplateArg(Val.getNameInit()))
OS << Val;
for (const RecordVal &Val : R.getValues())
if (!Val.isNonconcreteOK() && !R.isTemplateArg(Val.getNameInit()))
OS << Val;
return OS << "}\n";
}
SMLoc Record::getFieldLoc(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R)
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
return R->getLoc();
}
const Init *Record::getValueInit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
return R->getValue();
}
StringRef Record::getValueAsString(StringRef FieldName) const {
std::optional<StringRef> S = getValueAsOptionalString(FieldName);
if (!S)
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
return *S;
}
std::optional<StringRef>
Record::getValueAsOptionalString(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
return std::nullopt;
if (isa<UnsetInit>(R->getValue()))
return std::nullopt;
if (const auto *SI = dyn_cast<StringInit>(R->getValue()))
return SI->getValue();
PrintFatalError(getLoc(),
"Record `" + getName() + "', ` field `" + FieldName +
"' exists but does not have a string initializer!");
}
const BitsInit *Record::getValueAsBitsInit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (const auto *BI = dyn_cast<BitsInit>(R->getValue()))
return BI;
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + FieldName +
"' exists but does not have a bits value");
}
const ListInit *Record::getValueAsListInit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (const auto *LI = dyn_cast<ListInit>(R->getValue()))
return LI;
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + FieldName +
"' exists but does not have a list value");
}
std::vector<const Record *>
Record::getValueAsListOfDefs(StringRef FieldName) const {
const ListInit *List = getValueAsListInit(FieldName);
std::vector<const Record *> Defs;
for (const Init *I : List->getElements()) {
if (const auto *DI = dyn_cast<DefInit>(I))
Defs.push_back(DI->getDef());
else
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName +
"' list is not entirely DefInit!");
}
return Defs;
}
int64_t Record::getValueAsInt(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (const auto *II = dyn_cast<IntInit>(R->getValue()))
return II->getValue();
PrintFatalError(getLoc(), Twine("Record `") + getName() + "', field `" +
FieldName +
"' exists but does not have an int value: " +
R->getValue()->getAsString());
}
std::vector<int64_t>
Record::getValueAsListOfInts(StringRef FieldName) const {
const ListInit *List = getValueAsListInit(FieldName);
std::vector<int64_t> Ints;
for (const Init *I : List->getElements()) {
if (const auto *II = dyn_cast<IntInit>(I))
Ints.push_back(II->getValue());
else
PrintFatalError(getLoc(),
Twine("Record `") + getName() + "', field `" + FieldName +
"' exists but does not have a list of ints value: " +
I->getAsString());
}
return Ints;
}
std::vector<StringRef>
Record::getValueAsListOfStrings(StringRef FieldName) const {
const ListInit *List = getValueAsListInit(FieldName);
std::vector<StringRef> Strings;
for (const Init *I : List->getElements()) {
if (const auto *SI = dyn_cast<StringInit>(I))
Strings.push_back(SI->getValue());
else
PrintFatalError(getLoc(),
Twine("Record `") + getName() + "', field `" + FieldName +
"' exists but does not have a list of strings value: " +
I->getAsString());
}
return Strings;
}
const Record *Record::getValueAsDef(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (const auto *DI = dyn_cast<DefInit>(R->getValue()))
return DI->getDef();
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a def initializer!");
}
const Record *Record::getValueAsOptionalDef(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (const auto *DI = dyn_cast<DefInit>(R->getValue()))
return DI->getDef();
if (isa<UnsetInit>(R->getValue()))
return nullptr;
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have either a def initializer or '?'!");
}
bool Record::getValueAsBit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (const auto *BI = dyn_cast<BitInit>(R->getValue()))
return BI->getValue();
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a bit initializer!");
}
bool Record::getValueAsBitOrUnset(StringRef FieldName, bool &Unset) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName.str() + "'!\n");
if (isa<UnsetInit>(R->getValue())) {
Unset = true;
return false;
}
Unset = false;
if (const auto *BI = dyn_cast<BitInit>(R->getValue()))
return BI->getValue();
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a bit initializer!");
}
const DagInit *Record::getValueAsDag(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (const auto *DI = dyn_cast<DagInit>(R->getValue()))
return DI;
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a dag initializer!");
}
// Check all record assertions: For each one, resolve the condition
// and message, then call CheckAssert().
// Note: The condition and message are probably already resolved,
// but resolving again allows calls before records are resolved.
void Record::checkRecordAssertions() {
RecordResolver R(*this);
R.setFinal(true);
bool AnyFailed = false;
for (const auto &Assertion : getAssertions()) {
const Init *Condition = Assertion.Condition->resolveReferences(R);
const Init *Message = Assertion.Message->resolveReferences(R);
AnyFailed |= CheckAssert(Assertion.Loc, Condition, Message);
}
if (!AnyFailed)
return;
// If any of the record assertions failed, print some context that will
// help see where the record that caused these assert failures is defined.
PrintError(this, "assertion failed in this record");
}
void Record::emitRecordDumps() {
RecordResolver R(*this);
R.setFinal(true);
for (const DumpInfo &Dump : getDumps()) {
const Init *Message = Dump.Message->resolveReferences(R);
dumpMessage(Dump.Loc, Message);
}
}
// Report a warning if the record has unused template arguments.
void Record::checkUnusedTemplateArgs() {
for (const Init *TA : getTemplateArgs()) {
const RecordVal *Arg = getValue(TA);
if (!Arg->isUsed())
PrintWarning(Arg->getLoc(),
"unused template argument: " + Twine(Arg->getName()));
}
}
RecordKeeper::RecordKeeper()
: Impl(std::make_unique<detail::RecordKeeperImpl>(*this)),
Timer(std::make_unique<TGTimer>()) {}
RecordKeeper::~RecordKeeper() = default;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RecordKeeper::dump() const { errs() << *this; }
#endif
raw_ostream &llvm::operator<<(raw_ostream &OS, const RecordKeeper &RK) {
OS << "------------- Classes -----------------\n";
for (const auto &[_, C] : RK.getClasses())
OS << "class " << *C;
OS << "------------- Defs -----------------\n";
for (const auto &[_, D] : RK.getDefs())
OS << "def " << *D;
return OS;
}
/// GetNewAnonymousName - Generate a unique anonymous name that can be used as
/// an identifier.
const Init *RecordKeeper::getNewAnonymousName() {
return AnonymousNameInit::get(*this, getImpl().AnonCounter++);
}
ArrayRef<const Record *>
RecordKeeper::getAllDerivedDefinitions(StringRef ClassName) const {
// We cache the record vectors for single classes. Many backends request
// the same vectors multiple times.
auto [Iter, Inserted] = Cache.try_emplace(ClassName.str());
if (Inserted)
Iter->second = getAllDerivedDefinitions(ArrayRef(ClassName));
return Iter->second;
}
std::vector<const Record *>
RecordKeeper::getAllDerivedDefinitions(ArrayRef<StringRef> ClassNames) const {
SmallVector<const Record *, 2> ClassRecs;
std::vector<const Record *> Defs;
assert(ClassNames.size() > 0 && "At least one class must be passed.");
for (StringRef ClassName : ClassNames) {
const Record *Class = getClass(ClassName);
if (!Class)
PrintFatalError("The class '" + ClassName + "' is not defined\n");
ClassRecs.push_back(Class);
}
for (const auto &OneDef : getDefs()) {
if (all_of(ClassRecs, [&OneDef](const Record *Class) {
return OneDef.second->isSubClassOf(Class);
}))
Defs.push_back(OneDef.second.get());
}
llvm::sort(Defs, LessRecord());
return Defs;
}
ArrayRef<const Record *>
RecordKeeper::getAllDerivedDefinitionsIfDefined(StringRef ClassName) const {
if (getClass(ClassName))
return getAllDerivedDefinitions(ClassName);
return Cache[""];
}
void RecordKeeper::dumpAllocationStats(raw_ostream &OS) const {
Impl->dumpAllocationStats(OS);
}
const Init *MapResolver::resolve(const Init *VarName) {
auto It = Map.find(VarName);
if (It == Map.end())
return nullptr;
const Init *I = It->second.V;
if (!It->second.Resolved && Map.size() > 1) {
// Resolve mutual references among the mapped variables, but prevent
// infinite recursion.
Map.erase(It);
I = I->resolveReferences(*this);
Map[VarName] = {I, true};
}
return I;
}
const Init *RecordResolver::resolve(const Init *VarName) {
const Init *Val = Cache.lookup(VarName);
if (Val)
return Val;
if (llvm::is_contained(Stack, VarName))
return nullptr; // prevent infinite recursion
if (const RecordVal *RV = getCurrentRecord()->getValue(VarName)) {
if (!isa<UnsetInit>(RV->getValue())) {
Val = RV->getValue();
Stack.push_back(VarName);
Val = Val->resolveReferences(*this);
Stack.pop_back();
}
} else if (Name && VarName == getCurrentRecord()->getNameInit()) {
Stack.push_back(VarName);
Val = Name->resolveReferences(*this);
Stack.pop_back();
}
Cache[VarName] = Val;
return Val;
}
const Init *TrackUnresolvedResolver::resolve(const Init *VarName) {
const Init *I = nullptr;
if (R) {
I = R->resolve(VarName);
if (I && !FoundUnresolved) {
// Do not recurse into the resolved initializer, as that would change
// the behavior of the resolver we're delegating, but do check to see
// if there are unresolved variables remaining.
TrackUnresolvedResolver Sub;
I->resolveReferences(Sub);
FoundUnresolved |= Sub.FoundUnresolved;
}
}
if (!I)
FoundUnresolved = true;
return I;
}
const Init *HasReferenceResolver::resolve(const Init *VarName) {
if (VarName == VarNameToTrack)
Found = true;
return nullptr;
}