blob: 6610eef54801b73d280aae01aa720d5c5075439a [file] [log] [blame]
//===- DWARFDebugFrame.h - Parsing of .debug_frame ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFCFIPrinter.h"
#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
#include "llvm/DebugInfo/DWARF/DWARFExpressionPrinter.h"
#include "llvm/DebugInfo/DWARF/DWARFUnwindTablePrinter.h"
#include "llvm/DebugInfo/DWARF/LowLevel/DWARFCFIProgram.h"
#include "llvm/DebugInfo/DWARF/LowLevel/DWARFExpression.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cinttypes>
#include <cstdint>
#include <optional>
using namespace llvm;
using namespace dwarf;
Expected<UnwindTable> llvm::dwarf::createUnwindTable(const FDE *Fde) {
const CIE *Cie = Fde->getLinkedCIE();
if (Cie == nullptr)
return createStringError(errc::invalid_argument,
"unable to get CIE for FDE at offset 0x%" PRIx64,
Fde->getOffset());
// Rows will be empty if there are no CFI instructions.
if (Cie->cfis().empty() && Fde->cfis().empty())
return UnwindTable({});
UnwindTable::RowContainer CieRows;
UnwindRow Row;
Row.setAddress(Fde->getInitialLocation());
if (Error CieError = parseRows(Cie->cfis(), Row, nullptr).moveInto(CieRows))
return std::move(CieError);
// We need to save the initial locations of registers from the CIE parsing
// in case we run into DW_CFA_restore or DW_CFA_restore_extended opcodes.
UnwindTable::RowContainer FdeRows;
const RegisterLocations InitialLocs = Row.getRegisterLocations();
if (Error FdeError =
parseRows(Fde->cfis(), Row, &InitialLocs).moveInto(FdeRows))
return std::move(FdeError);
UnwindTable::RowContainer AllRows;
AllRows.insert(AllRows.end(), CieRows.begin(), CieRows.end());
AllRows.insert(AllRows.end(), FdeRows.begin(), FdeRows.end());
// May be all the CFI instructions were DW_CFA_nop amd Row becomes empty.
// Do not add that to the unwind table.
if (Row.getRegisterLocations().hasLocations() ||
Row.getCFAValue().getLocation() != UnwindLocation::Unspecified)
AllRows.push_back(Row);
return UnwindTable(std::move(AllRows));
}
Expected<UnwindTable> llvm::dwarf::createUnwindTable(const CIE *Cie) {
// Rows will be empty if there are no CFI instructions.
if (Cie->cfis().empty())
return UnwindTable({});
UnwindTable::RowContainer Rows;
UnwindRow Row;
if (Error CieError = parseRows(Cie->cfis(), Row, nullptr).moveInto(Rows))
return std::move(CieError);
// May be all the CFI instructions were DW_CFA_nop amd Row becomes empty.
// Do not add that to the unwind table.
if (Row.getRegisterLocations().hasLocations() ||
Row.getCFAValue().getLocation() != UnwindLocation::Unspecified)
Rows.push_back(Row);
return UnwindTable(std::move(Rows));
}
// Returns the CIE identifier to be used by the requested format.
// CIE ids for .debug_frame sections are defined in Section 7.24 of DWARFv5.
// For CIE ID in .eh_frame sections see
// https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
constexpr uint64_t getCIEId(bool IsDWARF64, bool IsEH) {
if (IsEH)
return 0;
if (IsDWARF64)
return DW64_CIE_ID;
return DW_CIE_ID;
}
void CIE::dump(raw_ostream &OS, DIDumpOptions DumpOpts) const {
// A CIE with a zero length is a terminator entry in the .eh_frame section.
if (DumpOpts.IsEH && Length == 0) {
OS << format("%08" PRIx64, Offset) << " ZERO terminator\n";
return;
}
OS << format("%08" PRIx64, Offset)
<< format(" %0*" PRIx64, IsDWARF64 ? 16 : 8, Length)
<< format(" %0*" PRIx64, IsDWARF64 && !DumpOpts.IsEH ? 16 : 8,
getCIEId(IsDWARF64, DumpOpts.IsEH))
<< " CIE\n"
<< " Format: " << FormatString(IsDWARF64) << "\n";
if (DumpOpts.IsEH && Version != 1)
OS << "WARNING: unsupported CIE version\n";
OS << format(" Version: %d\n", Version)
<< " Augmentation: \"" << Augmentation << "\"\n";
if (Version >= 4) {
OS << format(" Address size: %u\n", (uint32_t)AddressSize);
OS << format(" Segment desc size: %u\n",
(uint32_t)SegmentDescriptorSize);
}
OS << format(" Code alignment factor: %u\n", (uint32_t)CodeAlignmentFactor);
OS << format(" Data alignment factor: %d\n", (int32_t)DataAlignmentFactor);
OS << format(" Return address column: %d\n", (int32_t)ReturnAddressRegister);
if (Personality)
OS << format(" Personality Address: %016" PRIx64 "\n", *Personality);
if (!AugmentationData.empty()) {
OS << " Augmentation data: ";
for (uint8_t Byte : AugmentationData)
OS << ' ' << hexdigit(Byte >> 4) << hexdigit(Byte & 0xf);
OS << "\n";
}
OS << "\n";
printCFIProgram(CFIs, OS, DumpOpts, /*IndentLevel=*/1,
/*InitialLocation=*/{});
OS << "\n";
if (Expected<UnwindTable> RowsOrErr = createUnwindTable(this))
printUnwindTable(*RowsOrErr, OS, DumpOpts, 1);
else {
DumpOpts.RecoverableErrorHandler(joinErrors(
createStringError(errc::invalid_argument,
"decoding the CIE opcodes into rows failed"),
RowsOrErr.takeError()));
}
OS << "\n";
}
void FDE::dump(raw_ostream &OS, DIDumpOptions DumpOpts) const {
OS << format("%08" PRIx64, Offset)
<< format(" %0*" PRIx64, IsDWARF64 ? 16 : 8, Length)
<< format(" %0*" PRIx64, IsDWARF64 && !DumpOpts.IsEH ? 16 : 8, CIEPointer)
<< " FDE cie=";
if (LinkedCIE)
OS << format("%08" PRIx64, LinkedCIE->getOffset());
else
OS << "<invalid offset>";
OS << format(" pc=%08" PRIx64 "...%08" PRIx64 "\n", InitialLocation,
InitialLocation + AddressRange);
OS << " Format: " << FormatString(IsDWARF64) << "\n";
if (LSDAAddress)
OS << format(" LSDA Address: %016" PRIx64 "\n", *LSDAAddress);
printCFIProgram(CFIs, OS, DumpOpts, /*IndentLevel=*/1, InitialLocation);
OS << "\n";
if (Expected<UnwindTable> RowsOrErr = createUnwindTable(this))
printUnwindTable(*RowsOrErr, OS, DumpOpts, 1);
else {
DumpOpts.RecoverableErrorHandler(joinErrors(
createStringError(errc::invalid_argument,
"decoding the FDE opcodes into rows failed"),
RowsOrErr.takeError()));
}
OS << "\n";
}
DWARFDebugFrame::DWARFDebugFrame(Triple::ArchType Arch,
bool IsEH, uint64_t EHFrameAddress)
: Arch(Arch), IsEH(IsEH), EHFrameAddress(EHFrameAddress) {}
DWARFDebugFrame::~DWARFDebugFrame() = default;
static void LLVM_ATTRIBUTE_UNUSED dumpDataAux(DataExtractor Data,
uint64_t Offset, int Length) {
errs() << "DUMP: ";
for (int i = 0; i < Length; ++i) {
uint8_t c = Data.getU8(&Offset);
errs().write_hex(c); errs() << " ";
}
errs() << "\n";
}
Error DWARFDebugFrame::parse(DWARFDataExtractor Data) {
uint64_t Offset = 0;
DenseMap<uint64_t, CIE *> CIEs;
while (Data.isValidOffset(Offset)) {
uint64_t StartOffset = Offset;
uint64_t Length;
DwarfFormat Format;
std::tie(Length, Format) = Data.getInitialLength(&Offset);
bool IsDWARF64 = Format == DWARF64;
// If the Length is 0, then this CIE is a terminator. We add it because some
// dumper tools might need it to print something special for such entries
// (e.g. llvm-objdump --dwarf=frames prints "ZERO terminator").
if (Length == 0) {
auto Cie = std::make_unique<CIE>(
IsDWARF64, StartOffset, 0, 0, SmallString<8>(), 0, 0, 0, 0, 0,
SmallString<8>(), 0, 0, std::nullopt, std::nullopt, Arch);
CIEs[StartOffset] = Cie.get();
Entries.push_back(std::move(Cie));
break;
}
// At this point, Offset points to the next field after Length.
// Length is the structure size excluding itself. Compute an offset one
// past the end of the structure (needed to know how many instructions to
// read).
uint64_t StartStructureOffset = Offset;
uint64_t EndStructureOffset = Offset + Length;
// The Id field's size depends on the DWARF format
Error Err = Error::success();
uint64_t Id = Data.getRelocatedValue((IsDWARF64 && !IsEH) ? 8 : 4, &Offset,
/*SectionIndex=*/nullptr, &Err);
if (Err)
return Err;
if (Id == getCIEId(IsDWARF64, IsEH)) {
uint8_t Version = Data.getU8(&Offset);
const char *Augmentation = Data.getCStr(&Offset);
StringRef AugmentationString(Augmentation ? Augmentation : "");
uint8_t AddressSize = Version < 4 ? Data.getAddressSize() :
Data.getU8(&Offset);
Data.setAddressSize(AddressSize);
uint8_t SegmentDescriptorSize = Version < 4 ? 0 : Data.getU8(&Offset);
uint64_t CodeAlignmentFactor = Data.getULEB128(&Offset);
int64_t DataAlignmentFactor = Data.getSLEB128(&Offset);
uint64_t ReturnAddressRegister =
Version == 1 ? Data.getU8(&Offset) : Data.getULEB128(&Offset);
// Parse the augmentation data for EH CIEs
StringRef AugmentationData("");
uint32_t FDEPointerEncoding = DW_EH_PE_absptr;
uint32_t LSDAPointerEncoding = DW_EH_PE_omit;
std::optional<uint64_t> Personality;
std::optional<uint32_t> PersonalityEncoding;
if (IsEH) {
std::optional<uint64_t> AugmentationLength;
uint64_t StartAugmentationOffset;
uint64_t EndAugmentationOffset;
// Walk the augmentation string to get all the augmentation data.
for (unsigned i = 0, e = AugmentationString.size(); i != e; ++i) {
switch (AugmentationString[i]) {
default:
return createStringError(
errc::invalid_argument,
"unknown augmentation character %c in entry at 0x%" PRIx64,
AugmentationString[i], StartOffset);
case 'L':
LSDAPointerEncoding = Data.getU8(&Offset);
break;
case 'P': {
if (Personality)
return createStringError(
errc::invalid_argument,
"duplicate personality in entry at 0x%" PRIx64, StartOffset);
PersonalityEncoding = Data.getU8(&Offset);
Personality = Data.getEncodedPointer(
&Offset, *PersonalityEncoding,
EHFrameAddress ? EHFrameAddress + Offset : 0);
break;
}
case 'R':
FDEPointerEncoding = Data.getU8(&Offset);
break;
case 'S':
// Current frame is a signal trampoline.
break;
case 'z':
if (i)
return createStringError(
errc::invalid_argument,
"'z' must be the first character at 0x%" PRIx64, StartOffset);
// Parse the augmentation length first. We only parse it if
// the string contains a 'z'.
AugmentationLength = Data.getULEB128(&Offset);
StartAugmentationOffset = Offset;
EndAugmentationOffset = Offset + *AugmentationLength;
break;
case 'B':
// B-Key is used for signing functions associated with this
// augmentation string
break;
// This stack frame contains MTE tagged data, so needs to be
// untagged on unwind.
case 'G':
break;
}
}
if (AugmentationLength) {
if (Offset != EndAugmentationOffset)
return createStringError(errc::invalid_argument,
"parsing augmentation data at 0x%" PRIx64
" failed",
StartOffset);
AugmentationData = Data.getData().slice(StartAugmentationOffset,
EndAugmentationOffset);
}
}
auto Cie = std::make_unique<CIE>(
IsDWARF64, StartOffset, Length, Version, AugmentationString,
AddressSize, SegmentDescriptorSize, CodeAlignmentFactor,
DataAlignmentFactor, ReturnAddressRegister, AugmentationData,
FDEPointerEncoding, LSDAPointerEncoding, Personality,
PersonalityEncoding, Arch);
CIEs[StartOffset] = Cie.get();
Entries.emplace_back(std::move(Cie));
} else {
// FDE
uint64_t CIEPointer = Id;
uint64_t InitialLocation = 0;
uint64_t AddressRange = 0;
std::optional<uint64_t> LSDAAddress;
CIE *Cie = CIEs[IsEH ? (StartStructureOffset - CIEPointer) : CIEPointer];
if (IsEH) {
// The address size is encoded in the CIE we reference.
if (!Cie)
return createStringError(errc::invalid_argument,
"parsing FDE data at 0x%" PRIx64
" failed due to missing CIE",
StartOffset);
if (auto Val =
Data.getEncodedPointer(&Offset, Cie->getFDEPointerEncoding(),
EHFrameAddress + Offset)) {
InitialLocation = *Val;
}
if (auto Val = Data.getEncodedPointer(
&Offset, Cie->getFDEPointerEncoding(), 0)) {
AddressRange = *Val;
}
StringRef AugmentationString = Cie->getAugmentationString();
if (!AugmentationString.empty()) {
// Parse the augmentation length and data for this FDE.
uint64_t AugmentationLength = Data.getULEB128(&Offset);
uint64_t EndAugmentationOffset = Offset + AugmentationLength;
// Decode the LSDA if the CIE augmentation string said we should.
if (Cie->getLSDAPointerEncoding() != DW_EH_PE_omit) {
LSDAAddress = Data.getEncodedPointer(
&Offset, Cie->getLSDAPointerEncoding(),
EHFrameAddress ? Offset + EHFrameAddress : 0);
}
if (Offset != EndAugmentationOffset)
return createStringError(errc::invalid_argument,
"parsing augmentation data at 0x%" PRIx64
" failed",
StartOffset);
}
} else {
InitialLocation = Data.getRelocatedAddress(&Offset);
AddressRange = Data.getRelocatedAddress(&Offset);
}
Entries.emplace_back(new FDE(IsDWARF64, StartOffset, Length, CIEPointer,
InitialLocation, AddressRange, Cie,
LSDAAddress, Arch));
}
if (Error E =
Entries.back()->cfis().parse(Data, &Offset, EndStructureOffset))
return E;
if (Offset != EndStructureOffset)
return createStringError(
errc::invalid_argument,
"parsing entry instructions at 0x%" PRIx64 " failed", StartOffset);
}
return Error::success();
}
FrameEntry *DWARFDebugFrame::getEntryAtOffset(uint64_t Offset) const {
auto It = partition_point(Entries, [=](const std::unique_ptr<FrameEntry> &E) {
return E->getOffset() < Offset;
});
if (It != Entries.end() && (*It)->getOffset() == Offset)
return It->get();
return nullptr;
}
void DWARFDebugFrame::dump(raw_ostream &OS, DIDumpOptions DumpOpts,
std::optional<uint64_t> Offset) const {
DumpOpts.IsEH = IsEH;
if (Offset) {
if (auto *Entry = getEntryAtOffset(*Offset))
Entry->dump(OS, DumpOpts);
return;
}
OS << "\n";
for (const auto &Entry : Entries)
Entry->dump(OS, DumpOpts);
}