blob: 047baa3a79f5d3c30d9c75c94775120eb63fbbbf [file] [log] [blame]
//===- ConstructDecompositionT.h -- Decomposing compound constructs -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Given a compound construct with a set of clauses, generate the list of
// constituent leaf constructs, each with a list of clauses that apply to it.
//
// Note: Clauses that are not originally present, but that are implied by the
// OpenMP spec are materialized, and are present in the output.
//
// Note: Composite constructs will also be broken up into leaf constructs.
// If composite constructs require processing as a whole, the lists of clauses
// for each leaf constituent should be merged.
//===----------------------------------------------------------------------===//
#ifndef LLVM_FRONTEND_OPENMP_CONSTRUCTDECOMPOSITIONT_H
#define LLVM_FRONTEND_OPENMP_CONSTRUCTDECOMPOSITIONT_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Frontend/OpenMP/ClauseT.h"
#include "llvm/Frontend/OpenMP/OMP.h"
#include <iterator>
#include <list>
#include <optional>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <variant>
static inline llvm::ArrayRef<llvm::omp::Directive> getWorksharing() {
static llvm::omp::Directive worksharing[] = {
llvm::omp::Directive::OMPD_do, llvm::omp::Directive::OMPD_for,
llvm::omp::Directive::OMPD_scope, llvm::omp::Directive::OMPD_sections,
llvm::omp::Directive::OMPD_single, llvm::omp::Directive::OMPD_workshare,
};
return worksharing;
}
static inline llvm::ArrayRef<llvm::omp::Directive> getWorksharingLoop() {
static llvm::omp::Directive worksharingLoop[] = {
llvm::omp::Directive::OMPD_do,
llvm::omp::Directive::OMPD_for,
};
return worksharingLoop;
}
namespace detail {
template <typename Container, typename Predicate>
typename std::remove_reference_t<Container>::iterator
find_unique(Container &&container, Predicate &&pred) {
auto first = llvm::find_if(container, pred);
if (first == container.end())
return first;
auto second = std::find_if(std::next(first), container.end(), pred);
if (second == container.end())
return first;
return container.end();
}
} // namespace detail
namespace tomp {
// ClauseType - Either instance of ClauseT, or a type derived from ClauseT.
//
// This is the clause representation in the code using this infrastructure.
//
// HelperType - A class that implements two member functions:
//
// // Return the base object of the given object, if any.
// std::optional<Object> getBaseObject(const Object &object) const
// // Return the iteration variable of the outermost loop associated
// // with the construct being worked on, if any.
// std::optional<Object> getLoopIterVar() const
template <typename ClauseType, typename HelperType>
struct ConstructDecompositionT {
using ClauseTy = ClauseType;
using TypeTy = typename ClauseTy::TypeTy;
using IdTy = typename ClauseTy::IdTy;
using ExprTy = typename ClauseTy::ExprTy;
using HelperTy = HelperType;
using ObjectTy = tomp::ObjectT<IdTy, ExprTy>;
using ClauseSet = std::unordered_set<const ClauseTy *>;
ConstructDecompositionT(uint32_t ver, HelperType &helper,
llvm::omp::Directive dir,
llvm::ArrayRef<ClauseTy> clauses)
: version(ver), construct(dir), helper(helper) {
for (const ClauseTy &clause : clauses)
nodes.push_back(&clause);
bool success = split();
if (!success)
return;
// Copy the individual leaf directives with their clauses to the
// output list. Copy by value, since we don't own the storage
// with the input clauses, and the internal representation uses
// clause addresses.
for (auto &leaf : leafs) {
output.push_back({leaf.id, {}});
auto &out = output.back();
for (const ClauseTy *c : leaf.clauses)
out.clauses.push_back(*c);
}
}
tomp::ListT<DirectiveWithClauses<ClauseType>> output;
private:
bool split();
struct LeafReprInternal {
llvm::omp::Directive id = llvm::omp::Directive::OMPD_unknown;
tomp::type::ListT<const ClauseTy *> clauses;
};
LeafReprInternal *findDirective(llvm::omp::Directive dirId) {
auto found = llvm::find_if(
leafs, [&](const LeafReprInternal &leaf) { return leaf.id == dirId; });
return found != leafs.end() ? &*found : nullptr;
}
ClauseSet *findClausesWith(const ObjectTy &object) {
if (auto found = syms.find(object.id()); found != syms.end())
return &found->second;
return nullptr;
}
template <typename S>
ClauseTy *makeClause(llvm::omp::Clause clauseId, S &&specific) {
implicit.push_back(typename ClauseTy::BaseT{clauseId, std::move(specific)});
return &implicit.back();
}
void addClauseSymsToMap(const ObjectTy &object, const ClauseTy *);
void addClauseSymsToMap(const tomp::ObjectListT<IdTy, ExprTy> &objects,
const ClauseTy *);
void addClauseSymsToMap(const TypeTy &item, const ClauseTy *);
void addClauseSymsToMap(const ExprTy &item, const ClauseTy *);
void addClauseSymsToMap(const tomp::clause::MapT<TypeTy, IdTy, ExprTy> &item,
const ClauseTy *);
template <typename U>
void addClauseSymsToMap(const std::optional<U> &item, const ClauseTy *);
template <typename U>
void addClauseSymsToMap(const tomp::ListT<U> &item, const ClauseTy *);
template <typename... U, size_t... Is>
void addClauseSymsToMap(const std::tuple<U...> &item, const ClauseTy *,
std::index_sequence<Is...> = {});
template <typename U>
std::enable_if_t<std::is_enum_v<llvm::remove_cvref_t<U>>, void>
addClauseSymsToMap(U &&item, const ClauseTy *);
template <typename U>
std::enable_if_t<llvm::remove_cvref_t<U>::EmptyTrait::value, void>
addClauseSymsToMap(U &&item, const ClauseTy *);
template <typename U>
std::enable_if_t<llvm::remove_cvref_t<U>::IncompleteTrait::value, void>
addClauseSymsToMap(U &&item, const ClauseTy *);
template <typename U>
std::enable_if_t<llvm::remove_cvref_t<U>::WrapperTrait::value, void>
addClauseSymsToMap(U &&item, const ClauseTy *);
template <typename U>
std::enable_if_t<llvm::remove_cvref_t<U>::TupleTrait::value, void>
addClauseSymsToMap(U &&item, const ClauseTy *);
template <typename U>
std::enable_if_t<llvm::remove_cvref_t<U>::UnionTrait::value, void>
addClauseSymsToMap(U &&item, const ClauseTy *);
// Apply a clause to the only directive that allows it. If there are no
// directives that allow it, or if there is more that one, do not apply
// anything and return false, otherwise return true.
bool applyToUnique(const ClauseTy *node);
// Apply a clause to the first directive in given range that allows it.
// If such a directive does not exist, return false, otherwise return true.
template <typename Iterator>
bool applyToFirst(const ClauseTy *node, llvm::iterator_range<Iterator> range);
// Apply a clause to the innermost directive that allows it. If such a
// directive does not exist, return false, otherwise return true.
bool applyToInnermost(const ClauseTy *node);
// Apply a clause to the outermost directive that allows it. If such a
// directive does not exist, return false, otherwise return true.
bool applyToOutermost(const ClauseTy *node);
template <typename Predicate>
bool applyIf(const ClauseTy *node, Predicate shouldApply);
bool applyToAll(const ClauseTy *node);
template <typename Clause>
bool applyClause(Clause &&clause, const ClauseTy *node);
bool applyClause(const tomp::clause::CollapseT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *);
bool applyClause(const tomp::clause::PrivateT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *);
bool
applyClause(const tomp::clause::FirstprivateT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *);
bool
applyClause(const tomp::clause::LastprivateT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *);
bool applyClause(const tomp::clause::SharedT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *);
bool applyClause(const tomp::clause::DefaultT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *);
bool
applyClause(const tomp::clause::ThreadLimitT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *);
bool applyClause(const tomp::clause::OrderT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *);
bool applyClause(const tomp::clause::AllocateT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *);
bool applyClause(const tomp::clause::ReductionT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *);
bool applyClause(const tomp::clause::IfT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *);
bool applyClause(const tomp::clause::LinearT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *);
bool applyClause(const tomp::clause::NowaitT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *);
bool
applyClause(const tomp::clause::OmpxAttributeT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *);
bool applyClause(const tomp::clause::OmpxBareT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *);
uint32_t version;
llvm::omp::Directive construct;
HelperType &helper;
ListT<LeafReprInternal> leafs;
tomp::ListT<const ClauseTy *> nodes;
std::list<ClauseTy> implicit; // Container for materialized implicit clauses.
// Inserting must preserve element addresses.
std::unordered_map<IdTy, ClauseSet> syms;
std::unordered_set<IdTy> mapBases;
};
// Deduction guide
template <typename ClauseType, typename HelperType>
ConstructDecompositionT(uint32_t, HelperType &, llvm::omp::Directive,
llvm::ArrayRef<ClauseType>)
-> ConstructDecompositionT<ClauseType, HelperType>;
template <typename C, typename H>
void ConstructDecompositionT<C, H>::addClauseSymsToMap(const ObjectTy &object,
const ClauseTy *node) {
syms[object.id()].insert(node);
}
template <typename C, typename H>
void ConstructDecompositionT<C, H>::addClauseSymsToMap(
const tomp::ObjectListT<IdTy, ExprTy> &objects, const ClauseTy *node) {
for (auto &object : objects)
syms[object.id()].insert(node);
}
template <typename C, typename H>
void ConstructDecompositionT<C, H>::addClauseSymsToMap(const TypeTy &item,
const ClauseTy *node) {
// Nothing to do for types.
}
template <typename C, typename H>
void ConstructDecompositionT<C, H>::addClauseSymsToMap(const ExprTy &item,
const ClauseTy *node) {
// Nothing to do for expressions.
}
template <typename C, typename H>
void ConstructDecompositionT<C, H>::addClauseSymsToMap(
const tomp::clause::MapT<TypeTy, IdTy, ExprTy> &item,
const ClauseTy *node) {
auto &objects = std::get<tomp::ObjectListT<IdTy, ExprTy>>(item.t);
addClauseSymsToMap(objects, node);
for (auto &object : objects) {
if (auto base = helper.getBaseObject(object))
mapBases.insert(base->id());
}
}
template <typename C, typename H>
template <typename U>
void ConstructDecompositionT<C, H>::addClauseSymsToMap(
const std::optional<U> &item, const ClauseTy *node) {
if (item)
addClauseSymsToMap(*item, node);
}
template <typename C, typename H>
template <typename U>
void ConstructDecompositionT<C, H>::addClauseSymsToMap(
const tomp::ListT<U> &item, const ClauseTy *node) {
for (auto &s : item)
addClauseSymsToMap(s, node);
}
template <typename C, typename H>
template <typename... U, size_t... Is>
void ConstructDecompositionT<C, H>::addClauseSymsToMap(
const std::tuple<U...> &item, const ClauseTy *node,
std::index_sequence<Is...>) {
(void)node; // Silence strange warning from GCC.
(addClauseSymsToMap(std::get<Is>(item), node), ...);
}
template <typename C, typename H>
template <typename U>
std::enable_if_t<std::is_enum_v<llvm::remove_cvref_t<U>>, void>
ConstructDecompositionT<C, H>::addClauseSymsToMap(U &&item,
const ClauseTy *node) {
// Nothing to do for enums.
}
template <typename C, typename H>
template <typename U>
std::enable_if_t<llvm::remove_cvref_t<U>::EmptyTrait::value, void>
ConstructDecompositionT<C, H>::addClauseSymsToMap(U &&item,
const ClauseTy *node) {
// Nothing to do for an empty class.
}
template <typename C, typename H>
template <typename U>
std::enable_if_t<llvm::remove_cvref_t<U>::IncompleteTrait::value, void>
ConstructDecompositionT<C, H>::addClauseSymsToMap(U &&item,
const ClauseTy *node) {
// Nothing to do for an incomplete class (they're empty).
}
template <typename C, typename H>
template <typename U>
std::enable_if_t<llvm::remove_cvref_t<U>::WrapperTrait::value, void>
ConstructDecompositionT<C, H>::addClauseSymsToMap(U &&item,
const ClauseTy *node) {
addClauseSymsToMap(item.v, node);
}
template <typename C, typename H>
template <typename U>
std::enable_if_t<llvm::remove_cvref_t<U>::TupleTrait::value, void>
ConstructDecompositionT<C, H>::addClauseSymsToMap(U &&item,
const ClauseTy *node) {
constexpr size_t tuple_size =
std::tuple_size_v<llvm::remove_cvref_t<decltype(item.t)>>;
addClauseSymsToMap(item.t, node, std::make_index_sequence<tuple_size>{});
}
template <typename C, typename H>
template <typename U>
std::enable_if_t<llvm::remove_cvref_t<U>::UnionTrait::value, void>
ConstructDecompositionT<C, H>::addClauseSymsToMap(U &&item,
const ClauseTy *node) {
std::visit([&](auto &&s) { addClauseSymsToMap(s, node); }, item.u);
}
// Apply a clause to the only directive that allows it. If there are no
// directives that allow it, or if there is more that one, do not apply
// anything and return false, otherwise return true.
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyToUnique(const ClauseTy *node) {
auto unique = detail::find_unique(leafs, [=](const auto &leaf) {
return llvm::omp::isAllowedClauseForDirective(leaf.id, node->id, version);
});
if (unique != leafs.end()) {
unique->clauses.push_back(node);
return true;
}
return false;
}
// Apply a clause to the first directive in given range that allows it.
// If such a directive does not exist, return false, otherwise return true.
template <typename C, typename H>
template <typename Iterator>
bool ConstructDecompositionT<C, H>::applyToFirst(
const ClauseTy *node, llvm::iterator_range<Iterator> range) {
if (range.empty())
return false;
for (auto &leaf : range) {
if (!llvm::omp::isAllowedClauseForDirective(leaf.id, node->id, version))
continue;
leaf.clauses.push_back(node);
return true;
}
return false;
}
// Apply a clause to the innermost directive that allows it. If such a
// directive does not exist, return false, otherwise return true.
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyToInnermost(const ClauseTy *node) {
return applyToFirst(node, llvm::reverse(leafs));
}
// Apply a clause to the outermost directive that allows it. If such a
// directive does not exist, return false, otherwise return true.
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyToOutermost(const ClauseTy *node) {
return applyToFirst(node, llvm::iterator_range(leafs));
}
template <typename C, typename H>
template <typename Predicate>
bool ConstructDecompositionT<C, H>::applyIf(const ClauseTy *node,
Predicate shouldApply) {
bool applied = false;
for (auto &leaf : leafs) {
if (!llvm::omp::isAllowedClauseForDirective(leaf.id, node->id, version))
continue;
if (!shouldApply(leaf))
continue;
leaf.clauses.push_back(node);
applied = true;
}
return applied;
}
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyToAll(const ClauseTy *node) {
return applyIf(node, [](auto) { return true; });
}
template <typename C, typename H>
template <typename Specific>
bool ConstructDecompositionT<C, H>::applyClause(Specific &&specific,
const ClauseTy *node) {
// The default behavior is to find the unique directive to which the
// given clause may be applied. If there are no such directives, or
// if there are multiple ones, flag an error.
// From "OpenMP Application Programming Interface", Version 5.2:
// S Some clauses are permitted only on a single leaf construct of the
// S combined or composite construct, in which case the effect is as if
// S the clause is applied to that specific construct. (p339, 31-33)
if (applyToUnique(node))
return true;
return false;
}
// COLLAPSE
// [5.2:93:20-21]
// Directives: distribute, do, for, loop, simd, taskloop
//
// [5.2:339:35]
// (35) The collapse clause is applied once to the combined or composite
// construct.
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyClause(
const tomp::clause::CollapseT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *node) {
// Apply "collapse" to the innermost directive. If it's not one that
// allows it flag an error.
if (!leafs.empty()) {
auto &last = leafs.back();
if (llvm::omp::isAllowedClauseForDirective(last.id, node->id, version)) {
last.clauses.push_back(node);
return true;
}
}
return false;
}
// PRIVATE
// [5.2:111:5-7]
// Directives: distribute, do, for, loop, parallel, scope, sections, simd,
// single, target, task, taskloop, teams
//
// [5.2:340:1-2]
// (1) The effect of the 1 private clause is as if it is applied only to the
// innermost leaf construct that permits it.
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyClause(
const tomp::clause::PrivateT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *node) {
return applyToInnermost(node);
}
// FIRSTPRIVATE
// [5.2:112:5-7]
// Directives: distribute, do, for, parallel, scope, sections, single, target,
// task, taskloop, teams
//
// [5.2:340:3-20]
// (3) The effect of the firstprivate clause is as if it is applied to one or
// more leaf constructs as follows:
// (5) To the distribute construct if it is among the constituent constructs;
// (6) To the teams construct if it is among the constituent constructs and the
// distribute construct is not;
// (8) To a worksharing construct that accepts the clause if one is among the
// constituent constructs;
// (9) To the taskloop construct if it is among the constituent constructs;
// (10) To the parallel construct if it is among the constituent constructs and
// neither a taskloop construct nor a worksharing construct that accepts
// the clause is among them;
// (12) To the target construct if it is among the constituent constructs and
// the same list item neither appears in a lastprivate clause nor is the
// base variable or base pointer of a list item that appears in a map
// clause.
//
// (15) If the parallel construct is among the constituent constructs and the
// effect is not as if the firstprivate clause is applied to it by the above
// rules, then the effect is as if the shared clause with the same list item is
// applied to the parallel construct.
// (17) If the teams construct is among the constituent constructs and the
// effect is not as if the firstprivate clause is applied to it by the above
// rules, then the effect is as if the shared clause with the same list item is
// applied to the teams construct.
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyClause(
const tomp::clause::FirstprivateT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *node) {
bool applied = false;
// [5.2:340:3-6]
auto dirDistribute = findDirective(llvm::omp::OMPD_distribute);
auto dirTeams = findDirective(llvm::omp::OMPD_teams);
if (dirDistribute != nullptr) {
dirDistribute->clauses.push_back(node);
applied = true;
// [5.2:340:17]
if (dirTeams != nullptr) {
auto *shared = makeClause(
llvm::omp::Clause::OMPC_shared,
tomp::clause::SharedT<TypeTy, IdTy, ExprTy>{/*List=*/clause.v});
dirTeams->clauses.push_back(shared);
}
} else if (dirTeams != nullptr) {
dirTeams->clauses.push_back(node);
applied = true;
}
// [5.2:340:8]
auto findWorksharing = [&]() {
auto worksharing = getWorksharing();
for (auto &leaf : leafs) {
auto found = llvm::find(worksharing, leaf.id);
if (found != std::end(worksharing))
return &leaf;
}
return static_cast<typename decltype(leafs)::value_type *>(nullptr);
};
auto dirWorksharing = findWorksharing();
if (dirWorksharing != nullptr) {
dirWorksharing->clauses.push_back(node);
applied = true;
}
// [5.2:340:9]
auto dirTaskloop = findDirective(llvm::omp::OMPD_taskloop);
if (dirTaskloop != nullptr) {
dirTaskloop->clauses.push_back(node);
applied = true;
}
// [5.2:340:10]
auto dirParallel = findDirective(llvm::omp::OMPD_parallel);
if (dirParallel != nullptr) {
if (dirTaskloop == nullptr && dirWorksharing == nullptr) {
dirParallel->clauses.push_back(node);
applied = true;
} else {
// [5.2:340:15]
auto *shared = makeClause(
llvm::omp::Clause::OMPC_shared,
tomp::clause::SharedT<TypeTy, IdTy, ExprTy>{/*List=*/clause.v});
dirParallel->clauses.push_back(shared);
}
}
// [5.2:340:12]
auto inLastprivate = [&](const ObjectTy &object) {
if (ClauseSet *set = findClausesWith(object)) {
return llvm::find_if(*set, [](const ClauseTy *c) {
return c->id == llvm::omp::Clause::OMPC_lastprivate;
}) != set->end();
}
return false;
};
auto dirTarget = findDirective(llvm::omp::OMPD_target);
if (dirTarget != nullptr) {
tomp::ObjectListT<IdTy, ExprTy> objects;
llvm::copy_if(
clause.v, std::back_inserter(objects), [&](const ObjectTy &object) {
return !inLastprivate(object) && !mapBases.count(object.id());
});
if (!objects.empty()) {
auto *firstp = makeClause(
llvm::omp::Clause::OMPC_firstprivate,
tomp::clause::FirstprivateT<TypeTy, IdTy, ExprTy>{/*List=*/objects});
dirTarget->clauses.push_back(firstp);
applied = true;
}
}
// "task" is not handled by any of the cases above.
if (auto dirTask = findDirective(llvm::omp::OMPD_task)) {
dirTask->clauses.push_back(node);
applied = true;
}
return applied;
}
// LASTPRIVATE
// [5.2:115:7-8]
// Directives: distribute, do, for, loop, sections, simd, taskloop
//
// [5.2:340:21-30]
// (21) The effect of the lastprivate clause is as if it is applied to all leaf
// constructs that permit the clause.
// (22) If the parallel construct is among the constituent constructs and the
// list item is not also specified in the firstprivate clause, then the effect
// of the lastprivate clause is as if the shared clause with the same list item
// is applied to the parallel construct.
// (24) If the teams construct is among the constituent constructs and the list
// item is not also specified in the firstprivate clause, then the effect of the
// lastprivate clause is as if the shared clause with the same list item is
// applied to the teams construct.
// (27) If the target construct is among the constituent constructs and the list
// item is not the base variable or base pointer of a list item that appears in
// a map clause, the effect of the lastprivate clause is as if the same list
// item appears in a map clause with a map-type of tofrom.
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyClause(
const tomp::clause::LastprivateT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *node) {
bool applied = false;
// [5.2:340:21]
applied = applyToAll(node);
if (!applied)
return false;
auto inFirstprivate = [&](const ObjectTy &object) {
if (ClauseSet *set = findClausesWith(object)) {
return llvm::find_if(*set, [](const ClauseTy *c) {
return c->id == llvm::omp::Clause::OMPC_firstprivate;
}) != set->end();
}
return false;
};
auto &objects = std::get<tomp::ObjectListT<IdTy, ExprTy>>(clause.t);
// Prepare list of objects that could end up in a "shared" clause.
tomp::ObjectListT<IdTy, ExprTy> sharedObjects;
llvm::copy_if(
objects, std::back_inserter(sharedObjects),
[&](const ObjectTy &object) { return !inFirstprivate(object); });
if (!sharedObjects.empty()) {
// [5.2:340:22]
if (auto dirParallel = findDirective(llvm::omp::OMPD_parallel)) {
auto *shared = makeClause(
llvm::omp::Clause::OMPC_shared,
tomp::clause::SharedT<TypeTy, IdTy, ExprTy>{/*List=*/sharedObjects});
dirParallel->clauses.push_back(shared);
applied = true;
}
// [5.2:340:24]
if (auto dirTeams = findDirective(llvm::omp::OMPD_teams)) {
auto *shared = makeClause(
llvm::omp::Clause::OMPC_shared,
tomp::clause::SharedT<TypeTy, IdTy, ExprTy>{/*List=*/sharedObjects});
dirTeams->clauses.push_back(shared);
applied = true;
}
}
// [5.2:340:27]
if (auto dirTarget = findDirective(llvm::omp::OMPD_target)) {
tomp::ObjectListT<IdTy, ExprTy> tofrom;
llvm::copy_if(
objects, std::back_inserter(tofrom),
[&](const ObjectTy &object) { return !mapBases.count(object.id()); });
if (!tofrom.empty()) {
using MapType =
typename tomp::clause::MapT<TypeTy, IdTy, ExprTy>::MapType;
auto *map =
makeClause(llvm::omp::Clause::OMPC_map,
tomp::clause::MapT<TypeTy, IdTy, ExprTy>{
{/*MapType=*/MapType::Tofrom,
/*MapTypeModifier=*/std::nullopt,
/*RefModifier=*/std::nullopt,
/*Mapper=*/std::nullopt, /*Iterator=*/std::nullopt,
/*LocatorList=*/std::move(tofrom)}});
dirTarget->clauses.push_back(map);
applied = true;
}
}
return applied;
}
// SHARED
// [5.2:110:5-6]
// Directives: parallel, task, taskloop, teams
//
// [5.2:340:31-32]
// (31) The effect of the shared, default, thread_limit, or order clause is as
// if it is applied to all leaf constructs that permit the clause.
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyClause(
const tomp::clause::SharedT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *node) {
// [5.2:340:31]
return applyToAll(node);
}
// DEFAULT
// [5.2:109:5-6]
// Directives: parallel, task, taskloop, teams
//
// [5.2:340:31-32]
// (31) The effect of the shared, default, thread_limit, or order clause is as
// if it is applied to all leaf constructs that permit the clause.
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyClause(
const tomp::clause::DefaultT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *node) {
// [5.2:340:31]
return applyToAll(node);
}
// THREAD_LIMIT
// [5.2:277:14-15]
// Directives: target, teams
//
// [5.2:340:31-32]
// (31) The effect of the shared, default, thread_limit, or order clause is as
// if it is applied to all leaf constructs that permit the clause.
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyClause(
const tomp::clause::ThreadLimitT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *node) {
// [5.2:340:31]
return applyToAll(node);
}
// ORDER
// [5.2:234:3-4]
// Directives: distribute, do, for, loop, simd
//
// [5.2:340:31-32]
// (31) The effect of the shared, default, thread_limit, or order clause is as
// if it is applied to all leaf constructs that permit the clause.
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyClause(
const tomp::clause::OrderT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *node) {
// [5.2:340:31]
return applyToAll(node);
}
// ALLOCATE
// [5.2:178:7-9]
// Directives: allocators, distribute, do, for, parallel, scope, sections,
// single, target, task, taskgroup, taskloop, teams
//
// [5.2:340:33-35]
// (33) The effect of the allocate clause is as if it is applied to all leaf
// constructs that permit the clause and to which a data-sharing attribute
// clause that may create a private copy of the same list item is applied.
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyClause(
const tomp::clause::AllocateT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *node) {
// This one needs to be applied at the end, once we know which clauses are
// assigned to which leaf constructs.
// [5.2:340:33]
bool applied = applyIf(node, [&](const auto &leaf) {
return llvm::any_of(leaf.clauses, [&](const ClauseTy *n) {
return llvm::omp::isPrivatizingClause(n->id);
});
});
return applied;
}
// REDUCTION
// [5.2:134:17-18]
// Directives: do, for, loop, parallel, scope, sections, simd, taskloop, teams
//
// [5.2:340:36-37], [5.2:341:1-13]
// (36) The effect of the reduction clause is as if it is applied to all leaf
// constructs that permit the clause, except for the following constructs:
// (1) The parallel construct, when combined with the sections,
// worksharing-loop, loop, or taskloop construct; and
// (3) The teams construct, when combined with the loop construct.
// (4) For the parallel and teams constructs above, the effect of the reduction
// clause instead is as if each list item or, for any list item that is an array
// item, its corresponding base array or base pointer appears in a shared clause
// for the construct.
// (6) If the task reduction-modifier is specified, the effect is as if it only
// modifies the behavior of the reduction clause on the innermost leaf construct
// that accepts the modifier (see Section 5.5.8).
// (8) If the inscan reduction-modifier is specified, the effect is as if it
// modifies the behavior of the reduction clause on all constructs of the
// combined construct to which the clause is applied and that accept the
// modifier.
// (10) If a list item in a reduction clause on a combined target construct does
// not have the same base variable or base pointer as a list item in a map
// clause on the construct, then the effect is as if the list item in the
// reduction clause appears as a list item in a map clause with a map-type of
// tofrom.
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyClause(
const tomp::clause::ReductionT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *node) {
using ReductionTy = tomp::clause::ReductionT<TypeTy, IdTy, ExprTy>;
// [5.2:340:36], [5.2:341:1], [5.2:341:3]
bool applyToParallel = true, applyToTeams = true;
auto dirParallel = findDirective(llvm::omp::Directive::OMPD_parallel);
if (dirParallel) {
auto exclusions = llvm::concat<const llvm::omp::Directive>(
getWorksharingLoop(), tomp::ListT<llvm::omp::Directive>{
llvm::omp::Directive::OMPD_loop,
llvm::omp::Directive::OMPD_sections,
llvm::omp::Directive::OMPD_taskloop,
});
auto present = [&](llvm::omp::Directive id) {
return findDirective(id) != nullptr;
};
if (llvm::any_of(exclusions, present))
applyToParallel = false;
}
auto dirTeams = findDirective(llvm::omp::Directive::OMPD_teams);
if (dirTeams) {
// The only exclusion is OMPD_loop.
if (findDirective(llvm::omp::Directive::OMPD_loop))
applyToTeams = false;
}
using ReductionModifier = typename ReductionTy::ReductionModifier;
using ReductionIdentifiers = typename ReductionTy::ReductionIdentifiers;
auto &objects = std::get<tomp::ObjectListT<IdTy, ExprTy>>(clause.t);
auto &modifier = std::get<std::optional<ReductionModifier>>(clause.t);
// Apply the reduction clause first to all directives according to the spec.
// If the reduction was applied at least once, proceed with the data sharing
// side-effects.
bool applied = false;
// [5.2:341:6], [5.2:341:8]
auto isValidModifier = [](llvm::omp::Directive dir, ReductionModifier mod,
bool alreadyApplied) {
switch (mod) {
case ReductionModifier::Inscan:
// According to [5.2:135:11-13], "inscan" only applies to
// worksharing-loop, worksharing-loop-simd, or "simd" constructs.
return dir == llvm::omp::Directive::OMPD_simd ||
llvm::is_contained(getWorksharingLoop(), dir);
case ReductionModifier::Task:
if (alreadyApplied)
return false;
// According to [5.2:135:16-18], "task" only applies to "parallel" and
// worksharing constructs.
return dir == llvm::omp::Directive::OMPD_parallel ||
llvm::is_contained(getWorksharing(), dir);
case ReductionModifier::Default:
return true;
}
llvm_unreachable("Unexpected modifier");
};
auto *unmodified = makeClause(
llvm::omp::Clause::OMPC_reduction,
ReductionTy{
{/*ReductionModifier=*/std::nullopt,
/*ReductionIdentifiers=*/std::get<ReductionIdentifiers>(clause.t),
/*List=*/objects}});
ReductionModifier effective = modifier.value_or(ReductionModifier::Default);
bool effectiveApplied = false;
// Walk over the leaf constructs starting from the innermost, and apply
// the clause as required by the spec.
for (auto &leaf : llvm::reverse(leafs)) {
if (!llvm::omp::isAllowedClauseForDirective(leaf.id, node->id, version))
continue;
if (!applyToParallel && &leaf == dirParallel)
continue;
if (!applyToTeams && &leaf == dirTeams)
continue;
// Some form of the clause will be applied past this point.
if (isValidModifier(leaf.id, effective, effectiveApplied)) {
// Apply clause with modifier.
leaf.clauses.push_back(node);
effectiveApplied = true;
} else {
// Apply clause without modifier.
leaf.clauses.push_back(unmodified);
}
// The modifier must be applied to some construct.
applied = effectiveApplied;
}
if (!applied)
return false;
tomp::ObjectListT<IdTy, ExprTy> sharedObjects;
llvm::transform(objects, std::back_inserter(sharedObjects),
[&](const ObjectTy &object) {
auto maybeBase = helper.getBaseObject(object);
return maybeBase ? *maybeBase : object;
});
// [5.2:341:4]
if (!sharedObjects.empty()) {
if (dirParallel && !applyToParallel) {
auto *shared = makeClause(
llvm::omp::Clause::OMPC_shared,
tomp::clause::SharedT<TypeTy, IdTy, ExprTy>{/*List=*/sharedObjects});
dirParallel->clauses.push_back(shared);
}
if (dirTeams && !applyToTeams) {
auto *shared = makeClause(
llvm::omp::Clause::OMPC_shared,
tomp::clause::SharedT<TypeTy, IdTy, ExprTy>{/*List=*/sharedObjects});
dirTeams->clauses.push_back(shared);
}
}
// [5.2:341:10]
auto dirTarget = findDirective(llvm::omp::Directive::OMPD_target);
if (dirTarget && leafs.size() > 1) {
tomp::ObjectListT<IdTy, ExprTy> tofrom;
llvm::copy_if(objects, std::back_inserter(tofrom),
[&](const ObjectTy &object) {
if (auto maybeBase = helper.getBaseObject(object))
return !mapBases.count(maybeBase->id());
return !mapBases.count(object.id()); // XXX is this ok?
});
if (!tofrom.empty()) {
using MapType =
typename tomp::clause::MapT<TypeTy, IdTy, ExprTy>::MapType;
auto *map = makeClause(
llvm::omp::Clause::OMPC_map,
tomp::clause::MapT<TypeTy, IdTy, ExprTy>{
{/*MapType=*/MapType::Tofrom, /*MapTypeModifier=*/std::nullopt,
/*RefModifier=*/std::nullopt, /*Mapper=*/std::nullopt,
/*Iterator=*/std::nullopt, /*LocatorList=*/std::move(tofrom)}});
dirTarget->clauses.push_back(map);
applied = true;
}
}
return applied;
}
// IF
// [5.2:72:7-9]
// Directives: cancel, parallel, simd, target, target data, target enter data,
// target exit data, target update, task, taskloop
//
// [5.2:72:15-18]
// (15) For combined or composite constructs, the if clause only applies to the
// semantics of the construct named in the directive-name-modifier.
// (16) For a combined or composite construct, if no directive-name-modifier is
// specified then the if clause applies to all constituent constructs to which
// an if clause can apply.
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyClause(
const tomp::clause::IfT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *node) {
using DirectiveNameModifier =
typename clause::IfT<TypeTy, IdTy, ExprTy>::DirectiveNameModifier;
using IfExpression = typename clause::IfT<TypeTy, IdTy, ExprTy>::IfExpression;
auto &modifier = std::get<std::optional<DirectiveNameModifier>>(clause.t);
if (modifier) {
llvm::omp::Directive dirId = *modifier;
auto *unmodified =
makeClause(llvm::omp::Clause::OMPC_if,
tomp::clause::IfT<TypeTy, IdTy, ExprTy>{
{/*DirectiveNameModifier=*/std::nullopt,
/*IfExpression=*/std::get<IfExpression>(clause.t)}});
if (auto *hasDir = findDirective(dirId)) {
hasDir->clauses.push_back(unmodified);
return true;
}
return false;
}
return applyToAll(node);
}
// LINEAR
// [5.2:118:1-2]
// Directives: declare simd, do, for, simd
//
// [5.2:341:15-22]
// (15.1) The effect of the linear clause is as if it is applied to the
// innermost leaf construct.
// (15.2) Additionally, if the list item is not the iteration variable of a simd
// or worksharing-loop SIMD construct, the effect on the outer leaf constructs
// is as if the list item was specified in firstprivate and lastprivate clauses
// on the combined or composite construct, with the rules specified above
// applied.
// (19) If a list item of the linear clause is the iteration variable of a simd
// or worksharing-loop SIMD construct and it is not declared in the construct,
// the effect on the outer leaf constructs is as if the list item was specified
// in a lastprivate clause on the combined or composite construct with the rules
// specified above applied.
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyClause(
const tomp::clause::LinearT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *node) {
// [5.2:341:15.1]
if (!applyToInnermost(node))
return false;
// [5.2:341:15.2], [5.2:341:19]
auto dirSimd = findDirective(llvm::omp::Directive::OMPD_simd);
std::optional<ObjectTy> iterVar = helper.getLoopIterVar();
const auto &objects = std::get<tomp::ObjectListT<IdTy, ExprTy>>(clause.t);
// Lists of objects that will be used to construct "firstprivate" and
// "lastprivate" clauses.
tomp::ObjectListT<IdTy, ExprTy> first, last;
for (const ObjectTy &object : objects) {
last.push_back(object);
if (!dirSimd || !iterVar || object.id() != iterVar->id())
first.push_back(object);
}
if (!first.empty()) {
auto *firstp = makeClause(
llvm::omp::Clause::OMPC_firstprivate,
tomp::clause::FirstprivateT<TypeTy, IdTy, ExprTy>{/*List=*/first});
nodes.push_back(firstp); // Appending to the main clause list.
}
if (!last.empty()) {
auto *lastp =
makeClause(llvm::omp::Clause::OMPC_lastprivate,
tomp::clause::LastprivateT<TypeTy, IdTy, ExprTy>{
{/*LastprivateModifier=*/std::nullopt, /*List=*/last}});
nodes.push_back(lastp); // Appending to the main clause list.
}
return true;
}
// NOWAIT
// [5.2:308:11-13]
// Directives: dispatch, do, for, interop, scope, sections, single, target,
// target enter data, target exit data, target update, taskwait, workshare
//
// [5.2:341:23]
// (23) The effect of the nowait clause is as if it is applied to the outermost
// leaf construct that permits it.
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyClause(
const tomp::clause::NowaitT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *node) {
return applyToOutermost(node);
}
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyClause(
const tomp::clause::OmpxBareT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *node) {
return applyToOutermost(node);
}
template <typename C, typename H>
bool ConstructDecompositionT<C, H>::applyClause(
const tomp::clause::OmpxAttributeT<TypeTy, IdTy, ExprTy> &clause,
const ClauseTy *node) {
return applyToAll(node);
}
template <typename C, typename H> bool ConstructDecompositionT<C, H>::split() {
bool success = true;
auto isImplicit = [this](const ClauseTy *node) {
return llvm::is_contained(llvm::make_pointer_range(implicit), node);
};
for (llvm::omp::Directive leaf :
llvm::omp::getLeafConstructsOrSelf(construct))
leafs.push_back(LeafReprInternal{leaf, /*clauses=*/{}});
for (const ClauseTy *node : nodes)
addClauseSymsToMap(*node, node);
// First we need to apply LINEAR, because it can generate additional
// "firstprivate" and "lastprivate" clauses that apply to the combined/
// composite construct.
// Collect them separately, because they may modify the clause list.
llvm::SmallVector<const ClauseTy *> linears;
for (const ClauseTy *node : nodes) {
if (node->id == llvm::omp::Clause::OMPC_linear)
linears.push_back(node);
}
for (const auto *node : linears) {
success = success &&
applyClause(std::get<tomp::clause::LinearT<TypeTy, IdTy, ExprTy>>(
node->u),
node);
}
// "allocate" clauses need to be applied last since they need to see
// which directives have data-privatizing clauses.
auto skip = [](const ClauseTy *node) {
switch (node->id) {
case llvm::omp::Clause::OMPC_allocate:
case llvm::omp::Clause::OMPC_linear:
return true;
default:
return false;
}
};
// Apply (almost) all clauses.
for (const ClauseTy *node : nodes) {
if (skip(node))
continue;
bool result =
std::visit([&](auto &&s) { return applyClause(s, node); }, node->u);
if (!isImplicit(node))
success = success && result;
}
// Apply "allocate".
for (const ClauseTy *node : nodes) {
if (node->id != llvm::omp::Clause::OMPC_allocate)
continue;
success =
success &&
std::visit([&](auto &&s) { return applyClause(s, node); }, node->u);
}
return success;
}
} // namespace tomp
#endif // LLVM_FRONTEND_OPENMP_CONSTRUCTDECOMPOSITIONT_H