blob: f2fd889746bac8ae9aa48d4b9be390fcb227aa93 [file] [log] [blame]
//===- CodeEmitterGen.cpp - Code Emitter Generator ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// CodeEmitterGen uses the descriptions of instructions and their fields to
// construct an automated code emitter: a function called
// getBinaryCodeForInstr() that, given a MCInst, returns the value of the
// instruction - either as an uint64_t or as an APInt, depending on the
// maximum bit width of all Inst definitions.
//
// In addition, it generates another function called getOperandBitOffset()
// that, given a MCInst and an operand index, returns the minimum of indices of
// all bits that carry some portion of the respective operand. When the target's
// encodeInstruction() stores the instruction in a little-endian byte order, the
// returned value is the offset of the start of the operand in the encoded
// instruction. Other targets might need to adjust the returned value according
// to their encodeInstruction() implementation.
//
//===----------------------------------------------------------------------===//
#include "Common/CodeGenHwModes.h"
#include "Common/CodeGenInstruction.h"
#include "Common/CodeGenTarget.h"
#include "Common/InfoByHwMode.h"
#include "Common/VarLenCodeEmitterGen.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <cstdint>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
namespace {
class CodeEmitterGen {
const RecordKeeper &RK;
CodeGenTarget Target;
const CodeGenHwModes &CGH;
public:
explicit CodeEmitterGen(const RecordKeeper &RK);
void run(raw_ostream &O);
private:
int getVariableBit(const std::string &VarName, const BitsInit *BI, int Bit);
std::pair<std::string, std::string> getInstructionCases(const Record *R);
void addInstructionCasesForEncoding(const Record *R,
const Record *EncodingDef,
std::string &Case,
std::string &BitOffsetCase);
bool addCodeToMergeInOperand(const Record *R, const BitsInit *BI,
const std::string &VarName, std::string &Case,
std::string &BitOffsetCase);
void emitInstructionBaseValues(
raw_ostream &O, ArrayRef<const CodeGenInstruction *> NumberedInstructions,
unsigned HwMode = DefaultMode);
void
emitCaseMap(raw_ostream &O,
const std::map<std::string, std::vector<std::string>> &CaseMap);
unsigned BitWidth = 0u;
bool UseAPInt = false;
};
} // end anonymous namespace
// If the VarBitInit at position 'bit' matches the specified variable then
// return the variable bit position. Otherwise return -1.
int CodeEmitterGen::getVariableBit(const std::string &VarName,
const BitsInit *BI, int Bit) {
if (const VarBitInit *VBI = dyn_cast<VarBitInit>(BI->getBit(Bit))) {
if (const VarInit *VI = dyn_cast<VarInit>(VBI->getBitVar()))
if (VI->getName() == VarName)
return VBI->getBitNum();
} else if (const VarInit *VI = dyn_cast<VarInit>(BI->getBit(Bit))) {
if (VI->getName() == VarName)
return 0;
}
return -1;
}
// Returns true if it succeeds, false if an error.
bool CodeEmitterGen::addCodeToMergeInOperand(const Record *R,
const BitsInit *BI,
const std::string &VarName,
std::string &Case,
std::string &BitOffsetCase) {
CodeGenInstruction &CGI = Target.getInstruction(R);
// Determine if VarName actually contributes to the Inst encoding.
int Bit = BI->getNumBits() - 1;
// Scan for a bit that this contributed to.
for (; Bit >= 0;) {
if (getVariableBit(VarName, BI, Bit) != -1)
break;
--Bit;
}
// If we found no bits, ignore this value, otherwise emit the call to get the
// operand encoding.
if (Bit < 0)
return true;
// If the operand matches by name, reference according to that
// operand number. Non-matching operands are assumed to be in
// order.
unsigned OpIdx;
if (auto SubOp = CGI.Operands.findSubOperandAlias(VarName)) {
OpIdx = CGI.Operands[SubOp->first].MIOperandNo + SubOp->second;
} else if (auto MayBeOpIdx = CGI.Operands.findOperandNamed(VarName)) {
// Get the machine operand number for the indicated operand.
OpIdx = CGI.Operands[*MayBeOpIdx].MIOperandNo;
} else {
PrintError(R, Twine("No operand named ") + VarName + " in record " +
R->getName());
return false;
}
std::pair<unsigned, unsigned> SO = CGI.Operands.getSubOperandNumber(OpIdx);
StringRef EncoderMethodName =
CGI.Operands[SO.first].EncoderMethodNames[SO.second];
raw_string_ostream OS(Case);
indent Indent(6);
OS << Indent << "// op: " << VarName << '\n';
if (UseAPInt)
OS << Indent << "op.clearAllBits();\n";
if (!EncoderMethodName.empty()) {
if (UseAPInt)
OS << Indent << EncoderMethodName << "(MI, " << OpIdx
<< ", op, Fixups, STI);\n";
else
OS << Indent << "op = " << EncoderMethodName << "(MI, " << OpIdx
<< ", Fixups, STI);\n";
} else {
if (UseAPInt)
OS << Indent << "getMachineOpValue(MI, MI.getOperand(" << OpIdx
<< "), op, Fixups, STI);\n";
else
OS << Indent << "op = getMachineOpValue(MI, MI.getOperand(" << OpIdx
<< "), Fixups, STI);\n";
}
unsigned BitOffset = -1;
for (; Bit >= 0;) {
int VarBit = getVariableBit(VarName, BI, Bit);
// If this bit isn't from a variable, skip it.
if (VarBit == -1) {
--Bit;
continue;
}
// Figure out the consecutive range of bits covered by this operand, in
// order to generate better encoding code.
int BeginInstBit = Bit;
int BeginVarBit = VarBit;
int N = 1;
for (--Bit; Bit >= 0;) {
VarBit = getVariableBit(VarName, BI, Bit);
if (VarBit == -1 || VarBit != (BeginVarBit - N))
break;
++N;
--Bit;
}
unsigned LoBit = BeginVarBit - N + 1;
unsigned LoInstBit = BeginInstBit - N + 1;
BitOffset = LoInstBit;
if (UseAPInt) {
if (N > 64)
OS << Indent << "Value.insertBits(op.extractBits(" << N << ", " << LoBit
<< "), " << LoInstBit << ");\n";
else
OS << Indent << "Value.insertBits(op.extractBitsAsZExtValue(" << N
<< ", " << LoBit << "), " << LoInstBit << ", " << N << ");\n";
} else {
uint64_t OpMask = maskTrailingOnes<uint64_t>(N) << LoBit;
OS << Indent << "Value |= (op & " << format_hex(OpMask, 0) << ')';
int OpShift = BeginInstBit - BeginVarBit;
if (OpShift > 0)
OS << " << " << OpShift;
else if (OpShift < 0)
OS << " >> " << -OpShift;
OS << ";\n";
}
}
if (BitOffset != (unsigned)-1) {
BitOffsetCase += " case " + utostr(OpIdx) + ":\n";
BitOffsetCase += " // op: " + VarName + "\n";
BitOffsetCase += " return " + utostr(BitOffset) + ";\n";
}
return true;
}
std::pair<std::string, std::string>
CodeEmitterGen::getInstructionCases(const Record *R) {
std::string Case, BitOffsetCase;
auto Append = [&](const std::string &S) {
Case += S;
BitOffsetCase += S;
};
if (const Record *RV = R->getValueAsOptionalDef("EncodingInfos")) {
EncodingInfoByHwMode EBM(RV, CGH);
// Invoke the interface to obtain the HwMode ID controlling the
// EncodingInfo for the current subtarget. This interface will
// mask off irrelevant HwMode IDs.
Append(" unsigned HwMode = "
"STI.getHwMode(MCSubtargetInfo::HwMode_EncodingInfo);\n");
Case += " switch (HwMode) {\n";
Case += " default: llvm_unreachable(\"Unknown hardware mode!\"); "
"break;\n";
for (auto &[ModeId, Encoding] : EBM) {
if (ModeId == DefaultMode) {
Case +=
" case " + itostr(DefaultMode) + ": InstBitsByHw = InstBits";
} else {
Case += " case " + itostr(ModeId) + ": InstBitsByHw = InstBits_" +
CGH.getMode(ModeId).Name.str();
}
Case += "; break;\n";
}
Case += " };\n";
// We need to remodify the 'Inst' value from the table we found above.
if (UseAPInt) {
int NumWords = APInt::getNumWords(BitWidth);
Case += " Inst = APInt(" + itostr(BitWidth);
Case += ", ArrayRef(InstBitsByHw + TableIndex * " + itostr(NumWords) +
", " + itostr(NumWords);
Case += "));\n";
Case += " Value = Inst;\n";
} else {
Case += " Value = InstBitsByHw[TableIndex];\n";
}
Append(" switch (HwMode) {\n");
Append(" default: llvm_unreachable(\"Unhandled HwMode\");\n");
for (auto &[ModeId, Encoding] : EBM) {
Append(" case " + itostr(ModeId) + ": {\n");
addInstructionCasesForEncoding(R, Encoding, Case, BitOffsetCase);
Append(" break;\n");
Append(" }\n");
}
Append(" }\n");
return {std::move(Case), std::move(BitOffsetCase)};
}
addInstructionCasesForEncoding(R, R, Case, BitOffsetCase);
return {std::move(Case), std::move(BitOffsetCase)};
}
void CodeEmitterGen::addInstructionCasesForEncoding(
const Record *R, const Record *EncodingDef, std::string &Case,
std::string &BitOffsetCase) {
const BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst");
// Loop over all of the fields in the instruction, determining which are the
// operands to the instruction.
bool Success = true;
size_t OrigBitOffsetCaseSize = BitOffsetCase.size();
BitOffsetCase += " switch (OpNum) {\n";
size_t BitOffsetCaseSizeBeforeLoop = BitOffsetCase.size();
for (const RecordVal &RV : EncodingDef->getValues()) {
// Ignore fixed fields in the record, we're looking for values like:
// bits<5> RST = { ?, ?, ?, ?, ? };
if (RV.isNonconcreteOK() || RV.getValue()->isComplete())
continue;
Success &=
addCodeToMergeInOperand(R, BI, RV.getName().str(), Case, BitOffsetCase);
}
// Avoid empty switches.
if (BitOffsetCase.size() == BitOffsetCaseSizeBeforeLoop)
BitOffsetCase.resize(OrigBitOffsetCaseSize);
else
BitOffsetCase += " }\n";
if (!Success) {
// Dump the record, so we can see what's going on...
std::string E;
raw_string_ostream S(E);
S << "Dumping record for previous error:\n";
S << *R;
PrintNote(E);
}
StringRef PostEmitter = R->getValueAsString("PostEncoderMethod");
if (!PostEmitter.empty()) {
Case += " Value = ";
Case += PostEmitter;
Case += "(MI, Value";
Case += ", STI";
Case += ");\n";
}
}
static void emitInstBits(raw_ostream &OS, const APInt &Bits) {
for (unsigned I = 0; I < Bits.getNumWords(); ++I)
OS << ((I > 0) ? ", " : "") << "UINT64_C(" << Bits.getRawData()[I] << ")";
}
void CodeEmitterGen::emitInstructionBaseValues(
raw_ostream &O, ArrayRef<const CodeGenInstruction *> NumberedInstructions,
unsigned HwMode) {
if (HwMode == DefaultMode)
O << " static const uint64_t InstBits[] = {\n";
else
O << " static const uint64_t InstBits_" << CGH.getModeName(HwMode)
<< "[] = {\n";
for (const CodeGenInstruction *CGI : NumberedInstructions) {
const Record *R = CGI->TheDef;
const Record *EncodingDef = R;
if (const Record *RV = R->getValueAsOptionalDef("EncodingInfos")) {
EncodingInfoByHwMode EBM(RV, CGH);
if (EBM.hasMode(HwMode)) {
EncodingDef = EBM.get(HwMode);
} else {
// If the HwMode does not match, then Encoding '0'
// should be generated.
APInt Value(BitWidth, 0);
O << " ";
emitInstBits(O, Value);
O << "," << '\t' << "// " << R->getName() << "\n";
continue;
}
}
const BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst");
// Start by filling in fixed values.
APInt Value(BitWidth, 0);
for (unsigned I = 0, E = BI->getNumBits(); I != E; ++I) {
if (const auto *B = dyn_cast<BitInit>(BI->getBit(I)); B && B->getValue())
Value.setBit(I);
}
O << " ";
emitInstBits(O, Value);
O << "," << '\t' << "// " << R->getName() << "\n";
}
O << " };\n";
}
void CodeEmitterGen::emitCaseMap(
raw_ostream &O,
const std::map<std::string, std::vector<std::string>> &CaseMap) {
for (const auto &[Case, InstList] : CaseMap) {
bool First = true;
for (const auto &Inst : InstList) {
if (!First)
O << "\n";
O << " case " << Inst << ":";
First = false;
}
O << " {\n";
O << Case;
O << " break;\n"
<< " }\n";
}
}
CodeEmitterGen::CodeEmitterGen(const RecordKeeper &RK)
: RK(RK), Target(RK), CGH(Target.getHwModes()) {
// For little-endian instruction bit encodings, reverse the bit order.
Target.reverseBitsForLittleEndianEncoding();
}
void CodeEmitterGen::run(raw_ostream &O) {
emitSourceFileHeader("Machine Code Emitter", O);
ArrayRef<const CodeGenInstruction *> EncodedInstructions =
Target.getTargetNonPseudoInstructions();
if (Target.hasVariableLengthEncodings()) {
emitVarLenCodeEmitter(RK, O);
return;
}
// The set of HwModes used by instruction encodings.
std::set<unsigned> HwModes;
BitWidth = 0;
for (const CodeGenInstruction *CGI : EncodedInstructions) {
const Record *R = CGI->TheDef;
if (const Record *RV = R->getValueAsOptionalDef("EncodingInfos")) {
EncodingInfoByHwMode EBM(RV, CGH);
for (const auto &[Key, Value] : EBM) {
const BitsInit *BI = Value->getValueAsBitsInit("Inst");
BitWidth = std::max(BitWidth, BI->getNumBits());
HwModes.insert(Key);
}
continue;
}
const BitsInit *BI = R->getValueAsBitsInit("Inst");
BitWidth = std::max(BitWidth, BI->getNumBits());
}
UseAPInt = BitWidth > 64;
// Emit function declaration
if (UseAPInt) {
O << "void " << Target.getName()
<< "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n"
<< " SmallVectorImpl<MCFixup> &Fixups,\n"
<< " APInt &Inst,\n"
<< " APInt &Scratch,\n"
<< " const MCSubtargetInfo &STI) const {\n";
} else {
O << "uint64_t " << Target.getName();
O << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n"
<< " SmallVectorImpl<MCFixup> &Fixups,\n"
<< " const MCSubtargetInfo &STI) const {\n";
}
// Emit instruction base values
emitInstructionBaseValues(O, EncodedInstructions, DefaultMode);
if (!HwModes.empty()) {
// Emit table for instrs whose encodings are controlled by HwModes.
for (unsigned HwMode : HwModes) {
if (HwMode == DefaultMode)
continue;
emitInstructionBaseValues(O, EncodedInstructions, HwMode);
}
// This pointer will be assigned to the HwMode table later.
O << " const uint64_t *InstBitsByHw;\n";
}
// Map to accumulate all the cases.
std::map<std::string, std::vector<std::string>> CaseMap;
std::map<std::string, std::vector<std::string>> BitOffsetCaseMap;
// Construct all cases statement for each opcode
for (const CodeGenInstruction *CGI : EncodedInstructions) {
const Record *R = CGI->TheDef;
std::string InstName =
(R->getValueAsString("Namespace") + "::" + R->getName()).str();
std::string Case, BitOffsetCase;
std::tie(Case, BitOffsetCase) = getInstructionCases(R);
CaseMap[Case].push_back(InstName);
BitOffsetCaseMap[BitOffsetCase].push_back(std::move(InstName));
}
unsigned FirstSupportedOpcode = EncodedInstructions.front()->EnumVal;
O << " constexpr unsigned FirstSupportedOpcode = " << FirstSupportedOpcode
<< ";\n";
O << R"(
const unsigned opcode = MI.getOpcode();
if (opcode < FirstSupportedOpcode)
reportUnsupportedInst(MI);
unsigned TableIndex = opcode - FirstSupportedOpcode;
)";
// Emit initial function code
if (UseAPInt) {
int NumWords = APInt::getNumWords(BitWidth);
O << " if (Scratch.getBitWidth() != " << BitWidth << ")\n"
<< " Scratch = Scratch.zext(" << BitWidth << ");\n"
<< " Inst = APInt(" << BitWidth << ", ArrayRef(InstBits + TableIndex * "
<< NumWords << ", " << NumWords << "));\n"
<< " APInt &Value = Inst;\n"
<< " APInt &op = Scratch;\n"
<< " switch (opcode) {\n";
} else {
O << " uint64_t Value = InstBits[TableIndex];\n"
<< " uint64_t op = 0;\n"
<< " (void)op; // suppress warning\n"
<< " switch (opcode) {\n";
}
// Emit each case statement
emitCaseMap(O, CaseMap);
// Default case: unhandled opcode.
O << " default:\n"
<< " reportUnsupportedInst(MI);\n"
<< " }\n";
if (UseAPInt)
O << " Inst = Value;\n";
else
O << " return Value;\n";
O << "}\n\n";
O << "#ifdef GET_OPERAND_BIT_OFFSET\n"
<< "#undef GET_OPERAND_BIT_OFFSET\n\n"
<< "uint32_t " << Target.getName()
<< "MCCodeEmitter::getOperandBitOffset(const MCInst &MI,\n"
<< " unsigned OpNum,\n"
<< " const MCSubtargetInfo &STI) const {\n"
<< " switch (MI.getOpcode()) {\n";
emitCaseMap(O, BitOffsetCaseMap);
O << " default:\n"
<< " reportUnsupportedInst(MI);\n"
<< " }\n"
<< " reportUnsupportedOperand(MI, OpNum);\n"
<< "}\n\n"
<< "#endif // GET_OPERAND_BIT_OFFSET\n\n";
}
static TableGen::Emitter::OptClass<CodeEmitterGen>
X("gen-emitter", "Generate machine code emitter");