blob: 4b84921618e1cdecfafc2679e1066380e94056a1 [file] [log] [blame]
//===- Delta.cpp - Delta Debugging Algorithm Implementation ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation for the Delta Debugging Algorithm:
// it splits a given set of Targets (i.e. Functions, Instructions, BBs, etc.)
// into chunks and tries to reduce the number chunks that are interesting.
//
//===----------------------------------------------------------------------===//
#include "Delta.h"
#include "ReducerWorkItem.h"
#include "TestRunner.h"
#include "Utils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MemoryBufferRef.h"
#include "llvm/Support/ThreadPool.h"
#include <fstream>
using namespace llvm;
extern cl::OptionCategory LLVMReduceOptions;
static cl::opt<bool> AbortOnInvalidReduction(
"abort-on-invalid-reduction",
cl::desc("Abort if any reduction results in invalid IR"),
cl::cat(LLVMReduceOptions));
static cl::opt<unsigned int> StartingGranularityLevel(
"starting-granularity-level",
cl::desc("Number of times to divide chunks prior to first test"),
cl::cat(LLVMReduceOptions));
#ifdef LLVM_ENABLE_THREADS
static cl::opt<unsigned> NumJobs(
"j",
cl::desc("Maximum number of threads to use to process chunks. Set to 1 to "
"disable parallelism."),
cl::init(1), cl::cat(LLVMReduceOptions));
#else
unsigned NumJobs = 1;
#endif
/// Splits Chunks in half and prints them.
/// If unable to split (when chunk size is 1) returns false.
static bool increaseGranularity(std::vector<Chunk> &Chunks) {
if (Verbose)
errs() << "Increasing granularity...";
std::vector<Chunk> NewChunks;
bool SplitAny = false;
for (Chunk C : Chunks) {
if (C.End - C.Begin == 0)
NewChunks.push_back(C);
else {
int Half = (C.Begin + C.End) / 2;
NewChunks.push_back({C.Begin, Half});
NewChunks.push_back({Half + 1, C.End});
SplitAny = true;
}
}
if (SplitAny) {
Chunks = NewChunks;
if (Verbose) {
errs() << "Success! " << NewChunks.size() << " New Chunks:\n";
for (auto C : Chunks) {
errs() << '\t';
C.print();
errs() << '\n';
}
}
}
return SplitAny;
}
// Check if \p ChunkToCheckForUninterestingness is interesting. Returns the
// modified module if the chunk resulted in a reduction.
static std::unique_ptr<ReducerWorkItem>
CheckChunk(const Chunk ChunkToCheckForUninterestingness,
std::unique_ptr<ReducerWorkItem> Clone, const TestRunner &Test,
ReductionFunc ExtractChunksFromModule,
const DenseSet<Chunk> &UninterestingChunks,
const std::vector<Chunk> &ChunksStillConsideredInteresting) {
// Take all of ChunksStillConsideredInteresting chunks, except those we've
// already deemed uninteresting (UninterestingChunks) but didn't remove
// from ChunksStillConsideredInteresting yet, and additionally ignore
// ChunkToCheckForUninterestingness chunk.
std::vector<Chunk> CurrentChunks;
CurrentChunks.reserve(ChunksStillConsideredInteresting.size() -
UninterestingChunks.size() - 1);
copy_if(ChunksStillConsideredInteresting, std::back_inserter(CurrentChunks),
[&](const Chunk &C) {
return C != ChunkToCheckForUninterestingness &&
!UninterestingChunks.count(C);
});
// Generate Module with only Targets inside Current Chunks
Oracle O(CurrentChunks);
ExtractChunksFromModule(O, *Clone);
// Some reductions may result in invalid IR. Skip such reductions.
if (Clone->verify(&errs())) {
if (AbortOnInvalidReduction) {
errs() << "Invalid reduction, aborting.\n";
Clone->print(errs());
exit(1);
}
if (Verbose) {
errs() << " **** WARNING | reduction resulted in invalid module, "
"skipping\n";
}
return nullptr;
}
if (Verbose) {
errs() << "Ignoring: ";
ChunkToCheckForUninterestingness.print();
for (const Chunk &C : UninterestingChunks)
C.print();
errs() << "\n";
}
if (!Clone->isReduced(Test)) {
// Program became non-reduced, so this chunk appears to be interesting.
if (Verbose)
errs() << "\n";
return nullptr;
}
return Clone;
}
static SmallString<0> ProcessChunkFromSerializedBitcode(
const Chunk ChunkToCheckForUninterestingness, const TestRunner &Test,
ReductionFunc ExtractChunksFromModule,
const DenseSet<Chunk> &UninterestingChunks,
ArrayRef<Chunk> ChunksStillConsideredInteresting, StringRef OriginalBC,
std::atomic<bool> &AnyReduced) {
LLVMContext Ctx;
auto CloneMMM = std::make_unique<ReducerWorkItem>();
MemoryBufferRef Data(OriginalBC, "<bc file>");
CloneMMM->readBitcode(Data, Ctx, Test.getToolName());
SmallString<0> Result;
if (std::unique_ptr<ReducerWorkItem> ChunkResult =
CheckChunk(ChunkToCheckForUninterestingness, std::move(CloneMMM),
Test, ExtractChunksFromModule, UninterestingChunks,
ChunksStillConsideredInteresting)) {
raw_svector_ostream BCOS(Result);
ChunkResult->writeBitcode(BCOS);
// Communicate that the task reduced a chunk.
AnyReduced = true;
}
return Result;
}
using SharedTaskQueue = std::deque<std::shared_future<SmallString<0>>>;
/// Runs the Delta Debugging algorithm, splits the code into chunks and
/// reduces the amount of chunks that are considered interesting by the
/// given test. The number of chunks is determined by a preliminary run of the
/// reduction pass where no change must be made to the module.
void llvm::runDeltaPass(TestRunner &Test, ReductionFunc ExtractChunksFromModule,
StringRef Message) {
assert(!Test.getProgram().verify(&errs()) &&
"input module is broken before making changes");
errs() << "*** " << Message << "...\n";
int Targets;
{
// Count the number of chunks by counting the number of calls to
// Oracle::shouldKeep() but always returning true so no changes are
// made.
std::vector<Chunk> AllChunks = {{0, INT_MAX}};
Oracle Counter(AllChunks);
ExtractChunksFromModule(Counter, Test.getProgram());
Targets = Counter.count();
assert(!Test.getProgram().verify(&errs()) &&
"input module is broken after counting chunks");
assert(Test.getProgram().isReduced(Test) &&
"input module no longer interesting after counting chunks");
#ifndef NDEBUG
// Make sure that the number of chunks does not change as we reduce.
std::vector<Chunk> NoChunks = {{0, INT_MAX}};
Oracle NoChunksCounter(NoChunks);
std::unique_ptr<ReducerWorkItem> Clone =
Test.getProgram().clone(Test.getTargetMachine());
ExtractChunksFromModule(NoChunksCounter, *Clone);
assert(Targets == NoChunksCounter.count() &&
"number of chunks changes when reducing");
#endif
}
if (!Targets) {
if (Verbose)
errs() << "\nNothing to reduce\n";
errs() << "----------------------------\n";
return;
}
std::vector<Chunk> ChunksStillConsideredInteresting = {{0, Targets - 1}};
std::unique_ptr<ReducerWorkItem> ReducedProgram;
for (unsigned int Level = 0; Level < StartingGranularityLevel; Level++) {
increaseGranularity(ChunksStillConsideredInteresting);
}
std::atomic<bool> AnyReduced;
std::unique_ptr<ThreadPoolInterface> ChunkThreadPoolPtr;
if (NumJobs > 1)
ChunkThreadPoolPtr =
std::make_unique<DefaultThreadPool>(hardware_concurrency(NumJobs));
bool FoundAtLeastOneNewUninterestingChunkWithCurrentGranularity;
do {
FoundAtLeastOneNewUninterestingChunkWithCurrentGranularity = false;
DenseSet<Chunk> UninterestingChunks;
// When running with more than one thread, serialize the original bitcode
// to OriginalBC.
SmallString<0> OriginalBC;
if (NumJobs > 1) {
raw_svector_ostream BCOS(OriginalBC);
Test.getProgram().writeBitcode(BCOS);
}
SharedTaskQueue TaskQueue;
for (auto I = ChunksStillConsideredInteresting.rbegin(),
E = ChunksStillConsideredInteresting.rend();
I != E; ++I) {
std::unique_ptr<ReducerWorkItem> Result = nullptr;
unsigned WorkLeft = std::distance(I, E);
// Run in parallel mode, if the user requested more than one thread and
// there are at least a few chunks to process.
if (NumJobs > 1 && WorkLeft > 1) {
unsigned NumInitialTasks = std::min(WorkLeft, unsigned(NumJobs));
unsigned NumChunksProcessed = 0;
ThreadPoolInterface &ChunkThreadPool = *ChunkThreadPoolPtr;
assert(TaskQueue.empty());
AnyReduced = false;
// Queue jobs to process NumInitialTasks chunks in parallel using
// ChunkThreadPool. When the tasks are added to the pool, parse the
// original module from OriginalBC with a fresh LLVMContext object. This
// ensures that the cloned module of each task uses an independent
// LLVMContext object. If a task reduces the input, serialize the result
// back in the corresponding Result element.
for (unsigned J = 0; J < NumInitialTasks; ++J) {
Chunk ChunkToCheck = *(I + J);
TaskQueue.emplace_back(ChunkThreadPool.async(
ProcessChunkFromSerializedBitcode, ChunkToCheck, std::ref(Test),
ExtractChunksFromModule, UninterestingChunks,
ChunksStillConsideredInteresting, OriginalBC,
std::ref(AnyReduced)));
}
// Start processing results of the queued tasks. We wait for the first
// task in the queue to finish. If it reduced a chunk, we parse the
// result and exit the loop.
// Otherwise we will try to schedule a new task, if
// * no other pending job reduced a chunk and
// * we have not reached the end of the chunk.
while (!TaskQueue.empty()) {
auto &Future = TaskQueue.front();
Future.wait();
NumChunksProcessed++;
SmallString<0> Res = Future.get();
TaskQueue.pop_front();
if (Res.empty()) {
unsigned NumScheduledTasks = NumChunksProcessed + TaskQueue.size();
if (!AnyReduced && I + NumScheduledTasks != E) {
Chunk ChunkToCheck = *(I + NumScheduledTasks);
TaskQueue.emplace_back(ChunkThreadPool.async(
ProcessChunkFromSerializedBitcode, ChunkToCheck,
std::ref(Test), ExtractChunksFromModule, UninterestingChunks,
ChunksStillConsideredInteresting, OriginalBC,
std::ref(AnyReduced)));
}
continue;
}
Result = std::make_unique<ReducerWorkItem>();
MemoryBufferRef Data(StringRef(Res), "<bc file>");
Result->readBitcode(Data, Test.getProgram().M->getContext(),
Test.getToolName());
break;
}
// If we broke out of the loop, we still need to wait for everything to
// avoid race access to the chunk set.
//
// TODO: Create a way to kill remaining items we're ignoring; they could
// take a long time.
ChunkThreadPoolPtr->wait();
TaskQueue.clear();
// Forward I to the last chunk processed in parallel.
I += NumChunksProcessed - 1;
} else {
Result =
CheckChunk(*I, Test.getProgram().clone(Test.getTargetMachine()),
Test, ExtractChunksFromModule, UninterestingChunks,
ChunksStillConsideredInteresting);
}
if (!Result)
continue;
const Chunk ChunkToCheckForUninterestingness = *I;
FoundAtLeastOneNewUninterestingChunkWithCurrentGranularity = true;
UninterestingChunks.insert(ChunkToCheckForUninterestingness);
ReducedProgram = std::move(Result);
}
// Delete uninteresting chunks
erase_if(ChunksStillConsideredInteresting,
[&UninterestingChunks](const Chunk &C) {
return UninterestingChunks.count(C);
});
} while (!ChunksStillConsideredInteresting.empty() &&
(FoundAtLeastOneNewUninterestingChunkWithCurrentGranularity ||
increaseGranularity(ChunksStillConsideredInteresting)));
// If we reduced the testcase replace it
if (ReducedProgram) {
Test.setProgram(std::move(ReducedProgram));
// FIXME: Report meaningful progress info
Test.writeOutput(" **** SUCCESS | Saved new best reduction to ");
}
if (Verbose)
errs() << "Couldn't increase anymore.\n";
errs() << "----------------------------\n";
}