blob: 675364a1c1bcfdb50d7591102af40d31879b5dfc [file] [log] [blame]
//===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This program is a utility that works like binutils "objdump", that is, it
// dumps out a plethora of information about an object file depending on the
// flags.
//
// The flags and output of this program should be near identical to those of
// binutils objdump.
//
//===----------------------------------------------------------------------===//
#include "llvm-objdump.h"
#include "COFFDump.h"
#include "ELFDump.h"
#include "MachODump.h"
#include "ObjdumpOptID.h"
#include "OffloadDump.h"
#include "SourcePrinter.h"
#include "WasmDump.h"
#include "XCOFFDump.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/Wasm.h"
#include "llvm/DebugInfo/BTF/BTFParser.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
#include "llvm/DebugInfo/Symbolize/Symbolize.h"
#include "llvm/Debuginfod/BuildIDFetcher.h"
#include "llvm/Debuginfod/Debuginfod.h"
#include "llvm/Debuginfod/HTTPClient.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/BuildID.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/COFFImportFile.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ELFTypes.h"
#include "llvm/Object/FaultMapParser.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/MachOUniversal.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/OffloadBinary.h"
#include "llvm/Object/Wasm.h"
#include "llvm/Option/Arg.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Option/Option.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/LLVMDriver.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/WithColor.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/Host.h"
#include "llvm/TargetParser/Triple.h"
#include <algorithm>
#include <cctype>
#include <cstring>
#include <optional>
#include <set>
#include <system_error>
#include <unordered_map>
#include <utility>
using namespace llvm;
using namespace llvm::object;
using namespace llvm::objdump;
using namespace llvm::opt;
namespace {
class CommonOptTable : public opt::GenericOptTable {
public:
CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
const char *Description)
: opt::GenericOptTable(OptionInfos), Usage(Usage),
Description(Description) {
setGroupedShortOptions(true);
}
void printHelp(StringRef Argv0, bool ShowHidden = false) const {
Argv0 = sys::path::filename(Argv0);
opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(),
Description, ShowHidden, ShowHidden);
// TODO Replace this with OptTable API once it adds extrahelp support.
outs() << "\nPass @FILE as argument to read options from FILE.\n";
}
private:
const char *Usage;
const char *Description;
};
// ObjdumpOptID is in ObjdumpOptID.h
namespace objdump_opt {
#define PREFIX(NAME, VALUE) \
static constexpr StringLiteral NAME##_init[] = VALUE; \
static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \
std::size(NAME##_init) - 1);
#include "ObjdumpOpts.inc"
#undef PREFIX
static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
#define OPTION(...) \
LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OBJDUMP_, __VA_ARGS__),
#include "ObjdumpOpts.inc"
#undef OPTION
};
} // namespace objdump_opt
class ObjdumpOptTable : public CommonOptTable {
public:
ObjdumpOptTable()
: CommonOptTable(objdump_opt::ObjdumpInfoTable,
" [options] <input object files>",
"llvm object file dumper") {}
};
enum OtoolOptID {
OTOOL_INVALID = 0, // This is not an option ID.
#define OPTION(...) LLVM_MAKE_OPT_ID_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__),
#include "OtoolOpts.inc"
#undef OPTION
};
namespace otool {
#define PREFIX(NAME, VALUE) \
static constexpr StringLiteral NAME##_init[] = VALUE; \
static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \
std::size(NAME##_init) - 1);
#include "OtoolOpts.inc"
#undef PREFIX
static constexpr opt::OptTable::Info OtoolInfoTable[] = {
#define OPTION(...) LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__),
#include "OtoolOpts.inc"
#undef OPTION
};
} // namespace otool
class OtoolOptTable : public CommonOptTable {
public:
OtoolOptTable()
: CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]",
"Mach-O object file displaying tool") {}
};
struct BBAddrMapLabel {
std::string BlockLabel;
std::string PGOAnalysis;
};
// This class represents the BBAddrMap and PGOMap associated with a single
// function.
class BBAddrMapFunctionEntry {
public:
BBAddrMapFunctionEntry(BBAddrMap AddrMap, PGOAnalysisMap PGOMap)
: AddrMap(std::move(AddrMap)), PGOMap(std::move(PGOMap)) {}
const BBAddrMap &getAddrMap() const { return AddrMap; }
// Returns the PGO string associated with the entry of index `PGOBBEntryIndex`
// in `PGOMap`. If PrettyPGOAnalysis is true, prints BFI as relative frequency
// and BPI as percentage. Otherwise raw values are displayed.
std::string constructPGOLabelString(size_t PGOBBEntryIndex,
bool PrettyPGOAnalysis) const {
if (!PGOMap.FeatEnable.hasPGOAnalysis())
return "";
std::string PGOString;
raw_string_ostream PGOSS(PGOString);
PGOSS << " (";
if (PGOMap.FeatEnable.FuncEntryCount && PGOBBEntryIndex == 0) {
PGOSS << "Entry count: " << Twine(PGOMap.FuncEntryCount);
if (PGOMap.FeatEnable.hasPGOAnalysisBBData()) {
PGOSS << ", ";
}
}
if (PGOMap.FeatEnable.hasPGOAnalysisBBData()) {
assert(PGOBBEntryIndex < PGOMap.BBEntries.size() &&
"Expected PGOAnalysisMap and BBAddrMap to have the same entries");
const PGOAnalysisMap::PGOBBEntry &PGOBBEntry =
PGOMap.BBEntries[PGOBBEntryIndex];
if (PGOMap.FeatEnable.BBFreq) {
PGOSS << "Frequency: ";
if (PrettyPGOAnalysis)
printRelativeBlockFreq(PGOSS, PGOMap.BBEntries.front().BlockFreq,
PGOBBEntry.BlockFreq);
else
PGOSS << Twine(PGOBBEntry.BlockFreq.getFrequency());
if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) {
PGOSS << ", ";
}
}
if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) {
PGOSS << "Successors: ";
interleaveComma(
PGOBBEntry.Successors, PGOSS,
[&](const PGOAnalysisMap::PGOBBEntry::SuccessorEntry &SE) {
PGOSS << "BB" << SE.ID << ":";
if (PrettyPGOAnalysis)
PGOSS << "[" << SE.Prob << "]";
else
PGOSS.write_hex(SE.Prob.getNumerator());
});
}
}
PGOSS << ")";
return PGOString;
}
private:
const BBAddrMap AddrMap;
const PGOAnalysisMap PGOMap;
};
// This class represents the BBAddrMap and PGOMap of potentially multiple
// functions in a section.
class BBAddrMapInfo {
public:
void clear() {
FunctionAddrToMap.clear();
RangeBaseAddrToFunctionAddr.clear();
}
bool empty() const { return FunctionAddrToMap.empty(); }
void AddFunctionEntry(BBAddrMap AddrMap, PGOAnalysisMap PGOMap) {
uint64_t FunctionAddr = AddrMap.getFunctionAddress();
for (size_t I = 1; I < AddrMap.BBRanges.size(); ++I)
RangeBaseAddrToFunctionAddr.emplace(AddrMap.BBRanges[I].BaseAddress,
FunctionAddr);
[[maybe_unused]] auto R = FunctionAddrToMap.try_emplace(
FunctionAddr, std::move(AddrMap), std::move(PGOMap));
assert(R.second && "duplicate function address");
}
// Returns the BBAddrMap entry for the function associated with `BaseAddress`.
// `BaseAddress` could be the function address or the address of a range
// associated with that function. Returns `nullptr` if `BaseAddress` is not
// mapped to any entry.
const BBAddrMapFunctionEntry *getEntryForAddress(uint64_t BaseAddress) const {
uint64_t FunctionAddr = BaseAddress;
auto S = RangeBaseAddrToFunctionAddr.find(BaseAddress);
if (S != RangeBaseAddrToFunctionAddr.end())
FunctionAddr = S->second;
auto R = FunctionAddrToMap.find(FunctionAddr);
if (R == FunctionAddrToMap.end())
return nullptr;
return &R->second;
}
private:
std::unordered_map<uint64_t, BBAddrMapFunctionEntry> FunctionAddrToMap;
std::unordered_map<uint64_t, uint64_t> RangeBaseAddrToFunctionAddr;
};
} // namespace
#define DEBUG_TYPE "objdump"
enum class ColorOutput {
Auto,
Enable,
Disable,
Invalid,
};
static uint64_t AdjustVMA;
static bool AllHeaders;
static std::string ArchName;
bool objdump::ArchiveHeaders;
bool objdump::Demangle;
bool objdump::Disassemble;
bool objdump::DisassembleAll;
bool objdump::SymbolDescription;
bool objdump::TracebackTable;
static std::vector<std::string> DisassembleSymbols;
static bool DisassembleZeroes;
static std::vector<std::string> DisassemblerOptions;
static ColorOutput DisassemblyColor;
DIDumpType objdump::DwarfDumpType;
static bool DynamicRelocations;
static bool FaultMapSection;
static bool FileHeaders;
bool objdump::SectionContents;
static std::vector<std::string> InputFilenames;
bool objdump::PrintLines;
static bool MachOOpt;
std::string objdump::MCPU;
std::vector<std::string> objdump::MAttrs;
bool objdump::ShowRawInsn;
bool objdump::LeadingAddr;
static bool Offloading;
static bool RawClangAST;
bool objdump::Relocations;
bool objdump::PrintImmHex;
bool objdump::PrivateHeaders;
std::vector<std::string> objdump::FilterSections;
bool objdump::SectionHeaders;
static bool ShowAllSymbols;
static bool ShowLMA;
bool objdump::PrintSource;
static uint64_t StartAddress;
static bool HasStartAddressFlag;
static uint64_t StopAddress = UINT64_MAX;
static bool HasStopAddressFlag;
bool objdump::SymbolTable;
static bool SymbolizeOperands;
static bool PrettyPGOAnalysisMap;
static bool DynamicSymbolTable;
std::string objdump::TripleName;
bool objdump::UnwindInfo;
static bool Wide;
std::string objdump::Prefix;
uint32_t objdump::PrefixStrip;
DebugVarsFormat objdump::DbgVariables = DVDisabled;
int objdump::DbgIndent = 52;
static StringSet<> DisasmSymbolSet;
StringSet<> objdump::FoundSectionSet;
static StringRef ToolName;
std::unique_ptr<BuildIDFetcher> BIDFetcher;
Dumper::Dumper(const object::ObjectFile &O) : O(O) {
WarningHandler = [this](const Twine &Msg) {
if (Warnings.insert(Msg.str()).second)
reportWarning(Msg, this->O.getFileName());
return Error::success();
};
}
void Dumper::reportUniqueWarning(Error Err) {
reportUniqueWarning(toString(std::move(Err)));
}
void Dumper::reportUniqueWarning(const Twine &Msg) {
cantFail(WarningHandler(Msg));
}
static Expected<std::unique_ptr<Dumper>> createDumper(const ObjectFile &Obj) {
if (const auto *O = dyn_cast<COFFObjectFile>(&Obj))
return createCOFFDumper(*O);
if (const auto *O = dyn_cast<ELFObjectFileBase>(&Obj))
return createELFDumper(*O);
if (const auto *O = dyn_cast<MachOObjectFile>(&Obj))
return createMachODumper(*O);
if (const auto *O = dyn_cast<WasmObjectFile>(&Obj))
return createWasmDumper(*O);
if (const auto *O = dyn_cast<XCOFFObjectFile>(&Obj))
return createXCOFFDumper(*O);
return createStringError(errc::invalid_argument,
"unsupported object file format");
}
namespace {
struct FilterResult {
// True if the section should not be skipped.
bool Keep;
// True if the index counter should be incremented, even if the section should
// be skipped. For example, sections may be skipped if they are not included
// in the --section flag, but we still want those to count toward the section
// count.
bool IncrementIndex;
};
} // namespace
static FilterResult checkSectionFilter(object::SectionRef S) {
if (FilterSections.empty())
return {/*Keep=*/true, /*IncrementIndex=*/true};
Expected<StringRef> SecNameOrErr = S.getName();
if (!SecNameOrErr) {
consumeError(SecNameOrErr.takeError());
return {/*Keep=*/false, /*IncrementIndex=*/false};
}
StringRef SecName = *SecNameOrErr;
// StringSet does not allow empty key so avoid adding sections with
// no name (such as the section with index 0) here.
if (!SecName.empty())
FoundSectionSet.insert(SecName);
// Only show the section if it's in the FilterSections list, but always
// increment so the indexing is stable.
return {/*Keep=*/is_contained(FilterSections, SecName),
/*IncrementIndex=*/true};
}
SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
uint64_t *Idx) {
// Start at UINT64_MAX so that the first index returned after an increment is
// zero (after the unsigned wrap).
if (Idx)
*Idx = UINT64_MAX;
return SectionFilter(
[Idx](object::SectionRef S) {
FilterResult Result = checkSectionFilter(S);
if (Idx != nullptr && Result.IncrementIndex)
*Idx += 1;
return Result.Keep;
},
O);
}
std::string objdump::getFileNameForError(const object::Archive::Child &C,
unsigned Index) {
Expected<StringRef> NameOrErr = C.getName();
if (NameOrErr)
return std::string(NameOrErr.get());
// If we have an error getting the name then we print the index of the archive
// member. Since we are already in an error state, we just ignore this error.
consumeError(NameOrErr.takeError());
return "<file index: " + std::to_string(Index) + ">";
}
void objdump::reportWarning(const Twine &Message, StringRef File) {
// Output order between errs() and outs() matters especially for archive
// files where the output is per member object.
outs().flush();
WithColor::warning(errs(), ToolName)
<< "'" << File << "': " << Message << "\n";
}
[[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
outs().flush();
WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
exit(1);
}
[[noreturn]] void objdump::reportError(Error E, StringRef FileName,
StringRef ArchiveName,
StringRef ArchitectureName) {
assert(E);
outs().flush();
WithColor::error(errs(), ToolName);
if (ArchiveName != "")
errs() << ArchiveName << "(" << FileName << ")";
else
errs() << "'" << FileName << "'";
if (!ArchitectureName.empty())
errs() << " (for architecture " << ArchitectureName << ")";
errs() << ": ";
logAllUnhandledErrors(std::move(E), errs());
exit(1);
}
static void reportCmdLineWarning(const Twine &Message) {
WithColor::warning(errs(), ToolName) << Message << "\n";
}
[[noreturn]] static void reportCmdLineError(const Twine &Message) {
WithColor::error(errs(), ToolName) << Message << "\n";
exit(1);
}
static void warnOnNoMatchForSections() {
SetVector<StringRef> MissingSections;
for (StringRef S : FilterSections) {
if (FoundSectionSet.count(S))
return;
// User may specify a unnamed section. Don't warn for it.
if (!S.empty())
MissingSections.insert(S);
}
// Warn only if no section in FilterSections is matched.
for (StringRef S : MissingSections)
reportCmdLineWarning("section '" + S +
"' mentioned in a -j/--section option, but not "
"found in any input file");
}
static const Target *getTarget(const ObjectFile *Obj) {
// Figure out the target triple.
Triple TheTriple("unknown-unknown-unknown");
if (TripleName.empty()) {
TheTriple = Obj->makeTriple();
} else {
TheTriple.setTriple(Triple::normalize(TripleName));
auto Arch = Obj->getArch();
if (Arch == Triple::arm || Arch == Triple::armeb)
Obj->setARMSubArch(TheTriple);
}
// Get the target specific parser.
std::string Error;
const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
Error);
if (!TheTarget)
reportError(Obj->getFileName(), "can't find target: " + Error);
// Update the triple name and return the found target.
TripleName = TheTriple.getTriple();
return TheTarget;
}
bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
return A.getOffset() < B.getOffset();
}
static Error getRelocationValueString(const RelocationRef &Rel,
bool SymbolDescription,
SmallVectorImpl<char> &Result) {
const ObjectFile *Obj = Rel.getObject();
if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
return getELFRelocationValueString(ELF, Rel, Result);
if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
return getCOFFRelocationValueString(COFF, Rel, Result);
if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
return getWasmRelocationValueString(Wasm, Rel, Result);
if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
return getMachORelocationValueString(MachO, Rel, Result);
if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
return getXCOFFRelocationValueString(*XCOFF, Rel, SymbolDescription,
Result);
llvm_unreachable("unknown object file format");
}
/// Indicates whether this relocation should hidden when listing
/// relocations, usually because it is the trailing part of a multipart
/// relocation that will be printed as part of the leading relocation.
static bool getHidden(RelocationRef RelRef) {
auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
if (!MachO)
return false;
unsigned Arch = MachO->getArch();
DataRefImpl Rel = RelRef.getRawDataRefImpl();
uint64_t Type = MachO->getRelocationType(Rel);
// On arches that use the generic relocations, GENERIC_RELOC_PAIR
// is always hidden.
if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
return Type == MachO::GENERIC_RELOC_PAIR;
if (Arch == Triple::x86_64) {
// On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
// an X86_64_RELOC_SUBTRACTOR.
if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
DataRefImpl RelPrev = Rel;
RelPrev.d.a--;
uint64_t PrevType = MachO->getRelocationType(RelPrev);
if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
return true;
}
}
return false;
}
/// Get the column at which we want to start printing the instruction
/// disassembly, taking into account anything which appears to the left of it.
unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) {
return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
}
static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
raw_ostream &OS) {
// The output of printInst starts with a tab. Print some spaces so that
// the tab has 1 column and advances to the target tab stop.
unsigned TabStop = getInstStartColumn(STI);
unsigned Column = OS.tell() - Start;
OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
}
void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address,
formatted_raw_ostream &OS,
MCSubtargetInfo const &STI) {
size_t Start = OS.tell();
if (LeadingAddr)
OS << format("%8" PRIx64 ":", Address);
if (ShowRawInsn) {
OS << ' ';
dumpBytes(Bytes, OS);
}
AlignToInstStartColumn(Start, STI, OS);
}
namespace {
static bool isAArch64Elf(const ObjectFile &Obj) {
const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
}
static bool isArmElf(const ObjectFile &Obj) {
const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
return Elf && Elf->getEMachine() == ELF::EM_ARM;
}
static bool isCSKYElf(const ObjectFile &Obj) {
const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
return Elf && Elf->getEMachine() == ELF::EM_CSKY;
}
static bool hasMappingSymbols(const ObjectFile &Obj) {
return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
}
static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
const RelocationRef &Rel, uint64_t Address,
bool Is64Bits) {
StringRef Fmt = Is64Bits ? "%016" PRIx64 ": " : "%08" PRIx64 ": ";
SmallString<16> Name;
SmallString<32> Val;
Rel.getTypeName(Name);
if (Error E = getRelocationValueString(Rel, SymbolDescription, Val))
reportError(std::move(E), FileName);
OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t");
if (LeadingAddr)
OS << format(Fmt.data(), Address);
OS << Name << "\t" << Val;
}
static void printBTFRelocation(formatted_raw_ostream &FOS, llvm::BTFParser &BTF,
object::SectionedAddress Address,
LiveVariablePrinter &LVP) {
const llvm::BTF::BPFFieldReloc *Reloc = BTF.findFieldReloc(Address);
if (!Reloc)
return;
SmallString<64> Val;
BTF.symbolize(Reloc, Val);
FOS << "\t\t";
if (LeadingAddr)
FOS << format("%016" PRIx64 ": ", Address.Address + AdjustVMA);
FOS << "CO-RE " << Val;
LVP.printAfterOtherLine(FOS, true);
}
class PrettyPrinter {
public:
virtual ~PrettyPrinter() = default;
virtual void
printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
object::SectionedAddress Address, formatted_raw_ostream &OS,
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
LiveVariablePrinter &LVP) {
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
LVP.printBetweenInsts(OS, false);
printRawData(Bytes, Address.Address, OS, STI);
if (MI) {
// See MCInstPrinter::printInst. On targets where a PC relative immediate
// is relative to the next instruction and the length of a MCInst is
// difficult to measure (x86), this is the address of the next
// instruction.
uint64_t Addr =
Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
IP.printInst(MI, Addr, "", STI, OS);
} else
OS << "\t<unknown>";
}
};
PrettyPrinter PrettyPrinterInst;
class HexagonPrettyPrinter : public PrettyPrinter {
public:
void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
formatted_raw_ostream &OS) {
uint32_t opcode =
(Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
if (LeadingAddr)
OS << format("%8" PRIx64 ":", Address);
if (ShowRawInsn) {
OS << "\t";
dumpBytes(Bytes.slice(0, 4), OS);
OS << format("\t%08" PRIx32, opcode);
}
}
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
object::SectionedAddress Address, formatted_raw_ostream &OS,
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
LiveVariablePrinter &LVP) override {
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
if (!MI) {
printLead(Bytes, Address.Address, OS);
OS << " <unknown>";
return;
}
std::string Buffer;
{
raw_string_ostream TempStream(Buffer);
IP.printInst(MI, Address.Address, "", STI, TempStream);
}
StringRef Contents(Buffer);
// Split off bundle attributes
auto PacketBundle = Contents.rsplit('\n');
// Split off first instruction from the rest
auto HeadTail = PacketBundle.first.split('\n');
auto Preamble = " { ";
auto Separator = "";
// Hexagon's packets require relocations to be inline rather than
// clustered at the end of the packet.
std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
auto PrintReloc = [&]() -> void {
while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
if (RelCur->getOffset() == Address.Address) {
printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
return;
}
++RelCur;
}
};
while (!HeadTail.first.empty()) {
OS << Separator;
Separator = "\n";
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
printLead(Bytes, Address.Address, OS);
OS << Preamble;
Preamble = " ";
StringRef Inst;
auto Duplex = HeadTail.first.split('\v');
if (!Duplex.second.empty()) {
OS << Duplex.first;
OS << "; ";
Inst = Duplex.second;
}
else
Inst = HeadTail.first;
OS << Inst;
HeadTail = HeadTail.second.split('\n');
if (HeadTail.first.empty())
OS << " } " << PacketBundle.second;
PrintReloc();
Bytes = Bytes.slice(4);
Address.Address += 4;
}
}
};
HexagonPrettyPrinter HexagonPrettyPrinterInst;
class AMDGCNPrettyPrinter : public PrettyPrinter {
public:
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
object::SectionedAddress Address, formatted_raw_ostream &OS,
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
LiveVariablePrinter &LVP) override {
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
if (MI) {
SmallString<40> InstStr;
raw_svector_ostream IS(InstStr);
IP.printInst(MI, Address.Address, "", STI, IS);
OS << left_justify(IS.str(), 60);
} else {
// an unrecognized encoding - this is probably data so represent it
// using the .long directive, or .byte directive if fewer than 4 bytes
// remaining
if (Bytes.size() >= 4) {
OS << format(
"\t.long 0x%08" PRIx32 " ",
support::endian::read32<llvm::endianness::little>(Bytes.data()));
OS.indent(42);
} else {
OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
for (unsigned int i = 1; i < Bytes.size(); i++)
OS << format(", 0x%02" PRIx8, Bytes[i]);
OS.indent(55 - (6 * Bytes.size()));
}
}
OS << format("// %012" PRIX64 ":", Address.Address);
if (Bytes.size() >= 4) {
// D should be casted to uint32_t here as it is passed by format to
// snprintf as vararg.
for (uint32_t D :
ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()),
Bytes.size() / 4))
OS << format(" %08" PRIX32, D);
} else {
for (unsigned char B : Bytes)
OS << format(" %02" PRIX8, B);
}
if (!Annot.empty())
OS << " // " << Annot;
}
};
AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
class BPFPrettyPrinter : public PrettyPrinter {
public:
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
object::SectionedAddress Address, formatted_raw_ostream &OS,
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
LiveVariablePrinter &LVP) override {
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
if (LeadingAddr)
OS << format("%8" PRId64 ":", Address.Address / 8);
if (ShowRawInsn) {
OS << "\t";
dumpBytes(Bytes, OS);
}
if (MI)
IP.printInst(MI, Address.Address, "", STI, OS);
else
OS << "\t<unknown>";
}
};
BPFPrettyPrinter BPFPrettyPrinterInst;
class ARMPrettyPrinter : public PrettyPrinter {
public:
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
object::SectionedAddress Address, formatted_raw_ostream &OS,
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
LiveVariablePrinter &LVP) override {
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
LVP.printBetweenInsts(OS, false);
size_t Start = OS.tell();
if (LeadingAddr)
OS << format("%8" PRIx64 ":", Address.Address);
if (ShowRawInsn) {
size_t Pos = 0, End = Bytes.size();
if (STI.checkFeatures("+thumb-mode")) {
for (; Pos + 2 <= End; Pos += 2)
OS << ' '
<< format_hex_no_prefix(
llvm::support::endian::read<uint16_t>(
Bytes.data() + Pos, InstructionEndianness),
4);
} else {
for (; Pos + 4 <= End; Pos += 4)
OS << ' '
<< format_hex_no_prefix(
llvm::support::endian::read<uint32_t>(
Bytes.data() + Pos, InstructionEndianness),
8);
}
if (Pos < End) {
OS << ' ';
dumpBytes(Bytes.slice(Pos), OS);
}
}
AlignToInstStartColumn(Start, STI, OS);
if (MI) {
IP.printInst(MI, Address.Address, "", STI, OS);
} else
OS << "\t<unknown>";
}
void setInstructionEndianness(llvm::endianness Endianness) {
InstructionEndianness = Endianness;
}
private:
llvm::endianness InstructionEndianness = llvm::endianness::little;
};
ARMPrettyPrinter ARMPrettyPrinterInst;
class AArch64PrettyPrinter : public PrettyPrinter {
public:
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
object::SectionedAddress Address, formatted_raw_ostream &OS,
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
LiveVariablePrinter &LVP) override {
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
LVP.printBetweenInsts(OS, false);
size_t Start = OS.tell();
if (LeadingAddr)
OS << format("%8" PRIx64 ":", Address.Address);
if (ShowRawInsn) {
size_t Pos = 0, End = Bytes.size();
for (; Pos + 4 <= End; Pos += 4)
OS << ' '
<< format_hex_no_prefix(
llvm::support::endian::read<uint32_t>(
Bytes.data() + Pos, llvm::endianness::little),
8);
if (Pos < End) {
OS << ' ';
dumpBytes(Bytes.slice(Pos), OS);
}
}
AlignToInstStartColumn(Start, STI, OS);
if (MI) {
IP.printInst(MI, Address.Address, "", STI, OS);
} else
OS << "\t<unknown>";
}
};
AArch64PrettyPrinter AArch64PrettyPrinterInst;
class RISCVPrettyPrinter : public PrettyPrinter {
public:
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
object::SectionedAddress Address, formatted_raw_ostream &OS,
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
LiveVariablePrinter &LVP) override {
if (SP && (PrintSource || PrintLines))
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
LVP.printBetweenInsts(OS, false);
size_t Start = OS.tell();
if (LeadingAddr)
OS << format("%8" PRIx64 ":", Address.Address);
if (ShowRawInsn) {
size_t Pos = 0, End = Bytes.size();
if (End % 4 == 0) {
// 32-bit and 64-bit instructions.
for (; Pos + 4 <= End; Pos += 4)
OS << ' '
<< format_hex_no_prefix(
llvm::support::endian::read<uint32_t>(
Bytes.data() + Pos, llvm::endianness::little),
8);
} else if (End % 2 == 0) {
// 16-bit and 48-bits instructions.
for (; Pos + 2 <= End; Pos += 2)
OS << ' '
<< format_hex_no_prefix(
llvm::support::endian::read<uint16_t>(
Bytes.data() + Pos, llvm::endianness::little),
4);
}
if (Pos < End) {
OS << ' ';
dumpBytes(Bytes.slice(Pos), OS);
}
}
AlignToInstStartColumn(Start, STI, OS);
if (MI) {
IP.printInst(MI, Address.Address, "", STI, OS);
} else
OS << "\t<unknown>";
}
};
RISCVPrettyPrinter RISCVPrettyPrinterInst;
PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
switch(Triple.getArch()) {
default:
return PrettyPrinterInst;
case Triple::hexagon:
return HexagonPrettyPrinterInst;
case Triple::amdgcn:
return AMDGCNPrettyPrinterInst;
case Triple::bpfel:
case Triple::bpfeb:
return BPFPrettyPrinterInst;
case Triple::arm:
case Triple::armeb:
case Triple::thumb:
case Triple::thumbeb:
return ARMPrettyPrinterInst;
case Triple::aarch64:
case Triple::aarch64_be:
case Triple::aarch64_32:
return AArch64PrettyPrinterInst;
case Triple::riscv32:
case Triple::riscv64:
return RISCVPrettyPrinterInst;
}
}
class DisassemblerTarget {
public:
const Target *TheTarget;
std::unique_ptr<const MCSubtargetInfo> SubtargetInfo;
std::shared_ptr<MCContext> Context;
std::unique_ptr<MCDisassembler> DisAsm;
std::shared_ptr<MCInstrAnalysis> InstrAnalysis;
std::shared_ptr<MCInstPrinter> InstPrinter;
PrettyPrinter *Printer;
DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
StringRef TripleName, StringRef MCPU,
SubtargetFeatures &Features);
DisassemblerTarget(DisassemblerTarget &Other, SubtargetFeatures &Features);
private:
MCTargetOptions Options;
std::shared_ptr<const MCRegisterInfo> RegisterInfo;
std::shared_ptr<const MCAsmInfo> AsmInfo;
std::shared_ptr<const MCInstrInfo> InstrInfo;
std::shared_ptr<MCObjectFileInfo> ObjectFileInfo;
};
DisassemblerTarget::DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
StringRef TripleName, StringRef MCPU,
SubtargetFeatures &Features)
: TheTarget(TheTarget),
Printer(&selectPrettyPrinter(Triple(TripleName))),
RegisterInfo(TheTarget->createMCRegInfo(TripleName)) {
if (!RegisterInfo)
reportError(Obj.getFileName(), "no register info for target " + TripleName);
// Set up disassembler.
AsmInfo.reset(TheTarget->createMCAsmInfo(*RegisterInfo, TripleName, Options));
if (!AsmInfo)
reportError(Obj.getFileName(), "no assembly info for target " + TripleName);
SubtargetInfo.reset(
TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
if (!SubtargetInfo)
reportError(Obj.getFileName(),
"no subtarget info for target " + TripleName);
InstrInfo.reset(TheTarget->createMCInstrInfo());
if (!InstrInfo)
reportError(Obj.getFileName(),
"no instruction info for target " + TripleName);
Context =
std::make_shared<MCContext>(Triple(TripleName), AsmInfo.get(),
RegisterInfo.get(), SubtargetInfo.get());
// FIXME: for now initialize MCObjectFileInfo with default values
ObjectFileInfo.reset(
TheTarget->createMCObjectFileInfo(*Context, /*PIC=*/false));
Context->setObjectFileInfo(ObjectFileInfo.get());
DisAsm.reset(TheTarget->createMCDisassembler(*SubtargetInfo, *Context));
if (!DisAsm)
reportError(Obj.getFileName(), "no disassembler for target " + TripleName);
if (auto *ELFObj = dyn_cast<ELFObjectFileBase>(&Obj))
DisAsm->setABIVersion(ELFObj->getEIdentABIVersion());
InstrAnalysis.reset(TheTarget->createMCInstrAnalysis(InstrInfo.get()));
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
InstPrinter.reset(TheTarget->createMCInstPrinter(Triple(TripleName),
AsmPrinterVariant, *AsmInfo,
*InstrInfo, *RegisterInfo));
if (!InstPrinter)
reportError(Obj.getFileName(),
"no instruction printer for target " + TripleName);
InstPrinter->setPrintImmHex(PrintImmHex);
InstPrinter->setPrintBranchImmAsAddress(true);
InstPrinter->setSymbolizeOperands(SymbolizeOperands);
InstPrinter->setMCInstrAnalysis(InstrAnalysis.get());
switch (DisassemblyColor) {
case ColorOutput::Enable:
InstPrinter->setUseColor(true);
break;
case ColorOutput::Auto:
InstPrinter->setUseColor(outs().has_colors());
break;
case ColorOutput::Disable:
case ColorOutput::Invalid:
InstPrinter->setUseColor(false);
break;
};
}
DisassemblerTarget::DisassemblerTarget(DisassemblerTarget &Other,
SubtargetFeatures &Features)
: TheTarget(Other.TheTarget),
SubtargetInfo(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
Features.getString())),
Context(Other.Context),
DisAsm(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)),
InstrAnalysis(Other.InstrAnalysis), InstPrinter(Other.InstPrinter),
Printer(Other.Printer), RegisterInfo(Other.RegisterInfo),
AsmInfo(Other.AsmInfo), InstrInfo(Other.InstrInfo),
ObjectFileInfo(Other.ObjectFileInfo) {}
} // namespace
static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
assert(Obj.isELF());
if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
Obj.getFileName())
->getType();
if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
Obj.getFileName())
->getType();
if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
Obj.getFileName())
->getType();
if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
Obj.getFileName())
->getType();
llvm_unreachable("Unsupported binary format");
}
template <class ELFT>
static void
addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
for (auto Symbol : Obj.getDynamicSymbolIterators()) {
uint8_t SymbolType = Symbol.getELFType();
if (SymbolType == ELF::STT_SECTION)
continue;
uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
// ELFSymbolRef::getAddress() returns size instead of value for common
// symbols which is not desirable for disassembly output. Overriding.
if (SymbolType == ELF::STT_COMMON)
Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
Obj.getFileName())
->st_value;
StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
if (Name.empty())
continue;
section_iterator SecI =
unwrapOrError(Symbol.getSection(), Obj.getFileName());
if (SecI == Obj.section_end())
continue;
AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
}
}
static void
addDynamicElfSymbols(const ELFObjectFileBase &Obj,
std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
else
llvm_unreachable("Unsupported binary format");
}
static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
for (auto SecI : Obj.sections()) {
const WasmSection &Section = Obj.getWasmSection(SecI);
if (Section.Type == wasm::WASM_SEC_CODE)
return SecI;
}
return std::nullopt;
}
static void
addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
std::optional<SectionRef> Section = getWasmCodeSection(Obj);
if (!Section)
return;
SectionSymbolsTy &Symbols = AllSymbols[*Section];
std::set<uint64_t> SymbolAddresses;
for (const auto &Sym : Symbols)
SymbolAddresses.insert(Sym.Addr);
for (const wasm::WasmFunction &Function : Obj.functions()) {
// This adjustment mirrors the one in WasmObjectFile::getSymbolAddress.
uint32_t Adjustment = Obj.isRelocatableObject() || Obj.isSharedObject()
? 0
: Section->getAddress();
uint64_t Address = Function.CodeSectionOffset + Adjustment;
// Only add fallback symbols for functions not already present in the symbol
// table.
if (SymbolAddresses.count(Address))
continue;
// This function has no symbol, so it should have no SymbolName.
assert(Function.SymbolName.empty());
// We use DebugName for the name, though it may be empty if there is no
// "name" custom section, or that section is missing a name for this
// function.
StringRef Name = Function.DebugName;
Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
}
}
static void addPltEntries(const ObjectFile &Obj,
std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
StringSaver &Saver) {
auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj);
if (!ElfObj)
return;
DenseMap<StringRef, SectionRef> Sections;
for (SectionRef Section : Obj.sections()) {
Expected<StringRef> SecNameOrErr = Section.getName();
if (!SecNameOrErr) {
consumeError(SecNameOrErr.takeError());
continue;
}
Sections[*SecNameOrErr] = Section;
}
for (auto Plt : ElfObj->getPltEntries()) {
if (Plt.Symbol) {
SymbolRef Symbol(*Plt.Symbol, ElfObj);
uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
if (Expected<StringRef> NameOrErr = Symbol.getName()) {
if (!NameOrErr->empty())
AllSymbols[Sections[Plt.Section]].emplace_back(
Plt.Address, Saver.save((*NameOrErr + "@plt").str()), SymbolType);
continue;
} else {
// The warning has been reported in disassembleObject().
consumeError(NameOrErr.takeError());
}
}
reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt.Address) +
" references an invalid symbol",
Obj.getFileName());
}
}
// Normally the disassembly output will skip blocks of zeroes. This function
// returns the number of zero bytes that can be skipped when dumping the
// disassembly of the instructions in Buf.
static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
// Find the number of leading zeroes.
size_t N = 0;
while (N < Buf.size() && !Buf[N])
++N;
// We may want to skip blocks of zero bytes, but unless we see
// at least 8 of them in a row.
if (N < 8)
return 0;
// We skip zeroes in multiples of 4 because do not want to truncate an
// instruction if it starts with a zero byte.
return N & ~0x3;
}
// Returns a map from sections to their relocations.
static std::map<SectionRef, std::vector<RelocationRef>>
getRelocsMap(object::ObjectFile const &Obj) {
std::map<SectionRef, std::vector<RelocationRef>> Ret;
uint64_t I = (uint64_t)-1;
for (SectionRef Sec : Obj.sections()) {
++I;
Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
if (!RelocatedOrErr)
reportError(Obj.getFileName(),
"section (" + Twine(I) +
"): failed to get a relocated section: " +
toString(RelocatedOrErr.takeError()));
section_iterator Relocated = *RelocatedOrErr;
if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
continue;
std::vector<RelocationRef> &V = Ret[*Relocated];
append_range(V, Sec.relocations());
// Sort relocations by address.
llvm::stable_sort(V, isRelocAddressLess);
}
return Ret;
}
// Used for --adjust-vma to check if address should be adjusted by the
// specified value for a given section.
// For ELF we do not adjust non-allocatable sections like debug ones,
// because they are not loadable.
// TODO: implement for other file formats.
static bool shouldAdjustVA(const SectionRef &Section) {
const ObjectFile *Obj = Section.getObject();
if (Obj->isELF())
return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
return false;
}
typedef std::pair<uint64_t, char> MappingSymbolPair;
static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
uint64_t Address) {
auto It =
partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
return Val.first <= Address;
});
// Return zero for any address before the first mapping symbol; this means
// we should use the default disassembly mode, depending on the target.
if (It == MappingSymbols.begin())
return '\x00';
return (It - 1)->second;
}
static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
uint64_t End, const ObjectFile &Obj,
ArrayRef<uint8_t> Bytes,
ArrayRef<MappingSymbolPair> MappingSymbols,
const MCSubtargetInfo &STI, raw_ostream &OS) {
llvm::endianness Endian =
Obj.isLittleEndian() ? llvm::endianness::little : llvm::endianness::big;
size_t Start = OS.tell();
OS << format("%8" PRIx64 ": ", SectionAddr + Index);
if (Index + 4 <= End) {
dumpBytes(Bytes.slice(Index, 4), OS);
AlignToInstStartColumn(Start, STI, OS);
OS << "\t.word\t"
<< format_hex(support::endian::read32(Bytes.data() + Index, Endian),
10);
return 4;
}
if (Index + 2 <= End) {
dumpBytes(Bytes.slice(Index, 2), OS);
AlignToInstStartColumn(Start, STI, OS);
OS << "\t.short\t"
<< format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
return 2;
}
dumpBytes(Bytes.slice(Index, 1), OS);
AlignToInstStartColumn(Start, STI, OS);
OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
return 1;
}
static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
ArrayRef<uint8_t> Bytes) {
// print out data up to 8 bytes at a time in hex and ascii
uint8_t AsciiData[9] = {'\0'};
uint8_t Byte;
int NumBytes = 0;
for (; Index < End; ++Index) {
if (NumBytes == 0)
outs() << format("%8" PRIx64 ":", SectionAddr + Index);
Byte = Bytes.slice(Index)[0];
outs() << format(" %02x", Byte);
AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
uint8_t IndentOffset = 0;
NumBytes++;
if (Index == End - 1 || NumBytes > 8) {
// Indent the space for less than 8 bytes data.
// 2 spaces for byte and one for space between bytes
IndentOffset = 3 * (8 - NumBytes);
for (int Excess = NumBytes; Excess < 8; Excess++)
AsciiData[Excess] = '\0';
NumBytes = 8;
}
if (NumBytes == 8) {
AsciiData[8] = '\0';
outs() << std::string(IndentOffset, ' ') << " ";
outs() << reinterpret_cast<char *>(AsciiData);
outs() << '\n';
NumBytes = 0;
}
}
}
SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
const SymbolRef &Symbol,
bool IsMappingSymbol) {
const StringRef FileName = Obj.getFileName();
const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) {
const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
std::optional<XCOFF::StorageMappingClass> Smc =
getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
return SymbolInfoTy(Smc, Addr, Name, SymbolIndex,
isLabel(XCOFFObj, Symbol));
} else if (Obj.isXCOFF()) {
const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
return SymbolInfoTy(Addr, Name, SymType, /*IsMappingSymbol=*/false,
/*IsXCOFF=*/true);
} else if (Obj.isWasm()) {
uint8_t SymType =
cast<WasmObjectFile>(&Obj)->getWasmSymbol(Symbol).Info.Kind;
return SymbolInfoTy(Addr, Name, SymType, false);
} else {
uint8_t Type =
Obj.isELF() ? getElfSymbolType(Obj, Symbol) : (uint8_t)ELF::STT_NOTYPE;
return SymbolInfoTy(Addr, Name, Type, IsMappingSymbol);
}
}
static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
const uint64_t Addr, StringRef &Name,
uint8_t Type) {
if (Obj.isXCOFF() && (SymbolDescription || TracebackTable))
return SymbolInfoTy(std::nullopt, Addr, Name, std::nullopt, false);
if (Obj.isWasm())
return SymbolInfoTy(Addr, Name, wasm::WASM_SYMBOL_TYPE_SECTION);
return SymbolInfoTy(Addr, Name, Type);
}
static void collectBBAddrMapLabels(
const BBAddrMapInfo &FullAddrMap, uint64_t SectionAddr, uint64_t Start,
uint64_t End,
std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> &Labels) {
if (FullAddrMap.empty())
return;
Labels.clear();
uint64_t StartAddress = SectionAddr + Start;
uint64_t EndAddress = SectionAddr + End;
const BBAddrMapFunctionEntry *FunctionMap =
FullAddrMap.getEntryForAddress(StartAddress);
if (!FunctionMap)
return;
std::optional<size_t> BBRangeIndex =
FunctionMap->getAddrMap().getBBRangeIndexForBaseAddress(StartAddress);
if (!BBRangeIndex)
return;
size_t NumBBEntriesBeforeRange = 0;
for (size_t I = 0; I < *BBRangeIndex; ++I)
NumBBEntriesBeforeRange +=
FunctionMap->getAddrMap().BBRanges[I].BBEntries.size();
const auto &BBRange = FunctionMap->getAddrMap().BBRanges[*BBRangeIndex];
for (size_t I = 0; I < BBRange.BBEntries.size(); ++I) {
const BBAddrMap::BBEntry &BBEntry = BBRange.BBEntries[I];
uint64_t BBAddress = BBEntry.Offset + BBRange.BaseAddress;
if (BBAddress >= EndAddress)
continue;
std::string LabelString = ("BB" + Twine(BBEntry.ID)).str();
Labels[BBAddress].push_back(
{LabelString, FunctionMap->constructPGOLabelString(
NumBBEntriesBeforeRange + I, PrettyPGOAnalysisMap)});
}
}
static void
collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, MCInstrAnalysis *MIA,
MCDisassembler *DisAsm, MCInstPrinter *IP,
const MCSubtargetInfo *STI, uint64_t SectionAddr,
uint64_t Start, uint64_t End,
std::unordered_map<uint64_t, std::string> &Labels) {
// So far only supports PowerPC and X86.
const bool isPPC = STI->getTargetTriple().isPPC();
if (!isPPC && !STI->getTargetTriple().isX86())
return;
if (MIA)
MIA->resetState();
Labels.clear();
unsigned LabelCount = 0;
Start += SectionAddr;
End += SectionAddr;
const bool isXCOFF = STI->getTargetTriple().isOSBinFormatXCOFF();
for (uint64_t Index = Start; Index < End;) {
// Disassemble a real instruction and record function-local branch labels.
MCInst Inst;
uint64_t Size;
ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
bool Disassembled =
DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
if (Size == 0)
Size = std::min<uint64_t>(ThisBytes.size(),
DisAsm->suggestBytesToSkip(ThisBytes, Index));
if (MIA) {
if (Disassembled) {
uint64_t Target;
bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
if (TargetKnown && (Target >= Start && Target < End) &&
!Labels.count(Target)) {
// On PowerPC and AIX, a function call is encoded as a branch to 0.
// On other PowerPC platforms (ELF), a function call is encoded as
// a branch to self. Do not add a label for these cases.
if (!(isPPC &&
((Target == 0 && isXCOFF) || (Target == Index && !isXCOFF))))
Labels[Target] = ("L" + Twine(LabelCount++)).str();
}
MIA->updateState(Inst, Index);
} else
MIA->resetState();
}
Index += Size;
}
}
// Create an MCSymbolizer for the target and add it to the MCDisassembler.
// This is currently only used on AMDGPU, and assumes the format of the
// void * argument passed to AMDGPU's createMCSymbolizer.
static void addSymbolizer(
MCContext &Ctx, const Target *Target, StringRef TripleName,
MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
SectionSymbolsTy &Symbols,
std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
std::unique_ptr<MCRelocationInfo> RelInfo(
Target->createMCRelocationInfo(TripleName, Ctx));
if (!RelInfo)
return;
std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
MCSymbolizer *SymbolizerPtr = &*Symbolizer;
DisAsm->setSymbolizer(std::move(Symbolizer));
if (!SymbolizeOperands)
return;
// Synthesize labels referenced by branch instructions by
// disassembling, discarding the output, and collecting the referenced
// addresses from the symbolizer.
for (size_t Index = 0; Index != Bytes.size();) {
MCInst Inst;
uint64_t Size;
ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
const uint64_t ThisAddr = SectionAddr + Index;
DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls());
if (Size == 0)
Size = std::min<uint64_t>(ThisBytes.size(),
DisAsm->suggestBytesToSkip(ThisBytes, Index));
Index += Size;
}
ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
// Copy and sort to remove duplicates.
std::vector<uint64_t> LabelAddrs;
LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
LabelAddrsRef.end());
llvm::sort(LabelAddrs);
LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
LabelAddrs.begin());
// Add the labels.
for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
auto Name = std::make_unique<std::string>();
*Name = (Twine("L") + Twine(LabelNum)).str();
SynthesizedLabelNames.push_back(std::move(Name));
Symbols.push_back(SymbolInfoTy(
LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
}
llvm::stable_sort(Symbols);
// Recreate the symbolizer with the new symbols list.
RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
Symbolizer.reset(Target->createMCSymbolizer(
TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
DisAsm->setSymbolizer(std::move(Symbolizer));
}
static StringRef getSegmentName(const MachOObjectFile *MachO,
const SectionRef &Section) {
if (MachO) {
DataRefImpl DR = Section.getRawDataRefImpl();
StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
return SegmentName;
}
return "";
}
static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
const MCAsmInfo &MAI,
const MCSubtargetInfo &STI,
StringRef Comments,
LiveVariablePrinter &LVP) {
do {
if (!Comments.empty()) {
// Emit a line of comments.
StringRef Comment;
std::tie(Comment, Comments) = Comments.split('\n');
// MAI.getCommentColumn() assumes that instructions are printed at the
// position of 8, while getInstStartColumn() returns the actual position.
unsigned CommentColumn =
MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
FOS.PadToColumn(CommentColumn);
FOS << MAI.getCommentString() << ' ' << Comment;
}
LVP.printAfterInst(FOS);
FOS << '\n';
} while (!Comments.empty());
FOS.flush();
}
static void createFakeELFSections(ObjectFile &Obj) {
assert(Obj.isELF());
if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
Elf32LEObj->createFakeSections();
else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
Elf64LEObj->createFakeSections();
else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
Elf32BEObj->createFakeSections();
else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
Elf64BEObj->createFakeSections();
else
llvm_unreachable("Unsupported binary format");
}
// Tries to fetch a more complete version of the given object file using its
// Build ID. Returns std::nullopt if nothing was found.
static std::optional<OwningBinary<Binary>>
fetchBinaryByBuildID(const ObjectFile &Obj) {
object::BuildIDRef BuildID = getBuildID(&Obj);
if (BuildID.empty())
return std::nullopt;
std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
if (!Path)
return std::nullopt;
Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path);
if (!DebugBinary) {
reportWarning(toString(DebugBinary.takeError()), *Path);
return std::nullopt;
}
return std::move(*DebugBinary);
}
static void
disassembleObject(ObjectFile &Obj, const ObjectFile &DbgObj,
DisassemblerTarget &PrimaryTarget,
std::optional<DisassemblerTarget> &SecondaryTarget,
SourcePrinter &SP, bool InlineRelocs) {
DisassemblerTarget *DT = &PrimaryTarget;
bool PrimaryIsThumb = false;
SmallVector<std::pair<uint64_t, uint64_t>, 0> CHPECodeMap;
if (SecondaryTarget) {
if (isArmElf(Obj)) {
PrimaryIsThumb =
PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode");
} else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata();
if (CHPEMetadata && CHPEMetadata->CodeMapCount) {
uintptr_t CodeMapInt;
cantFail(COFFObj->getRvaPtr(CHPEMetadata->CodeMap, CodeMapInt));
auto CodeMap = reinterpret_cast<const chpe_range_entry *>(CodeMapInt);
for (uint32_t i = 0; i < CHPEMetadata->CodeMapCount; ++i) {
if (CodeMap[i].getType() == chpe_range_type::Amd64 &&
CodeMap[i].Length) {
// Store x86_64 CHPE code ranges.
uint64_t Start = CodeMap[i].getStart() + COFFObj->getImageBase();
CHPECodeMap.emplace_back(Start, Start + CodeMap[i].Length);
}
}
llvm::sort(CHPECodeMap);
}
}
}
std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
if (InlineRelocs || Obj.isXCOFF())
RelocMap = getRelocsMap(Obj);
bool Is64Bits = Obj.getBytesInAddress() > 4;
// Create a mapping from virtual address to symbol name. This is used to
// pretty print the symbols while disassembling.
std::map<SectionRef, SectionSymbolsTy> AllSymbols;
std::map<SectionRef, SmallVector<MappingSymbolPair, 0>> AllMappingSymbols;
SectionSymbolsTy AbsoluteSymbols;
const StringRef FileName = Obj.getFileName();
const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
for (const SymbolRef &Symbol : Obj.symbols()) {
Expected<StringRef> NameOrErr = Symbol.getName();
if (!NameOrErr) {
reportWarning(toString(NameOrErr.takeError()), FileName);
continue;
}
if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
continue;
if (Obj.isELF() &&
(cantFail(Symbol.getFlags()) & SymbolRef::SF_FormatSpecific)) {
// Symbol is intended not to be displayed by default (STT_FILE,
// STT_SECTION, or a mapping symbol). Ignore STT_SECTION symbols. We will
// synthesize a section symbol if no symbol is defined at offset 0.
//
// For a mapping symbol, store it within both AllSymbols and
// AllMappingSymbols. If --show-all-symbols is unspecified, its label will
// not be printed in disassembly listing.
if (getElfSymbolType(Obj, Symbol) != ELF::STT_SECTION &&
hasMappingSymbols(Obj)) {
section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
if (SecI != Obj.section_end()) {
uint64_t SectionAddr = SecI->getAddress();
uint64_t Address = cantFail(Symbol.getAddress());
StringRef Name = *NameOrErr;
if (Name.consume_front("$") && Name.size() &&
strchr("adtx", Name[0])) {
AllMappingSymbols[*SecI].emplace_back(Address - SectionAddr,
Name[0]);
AllSymbols[*SecI].push_back(
createSymbolInfo(Obj, Symbol, /*MappingSymbol=*/true));
}
}
}
continue;
}
if (MachO) {
// __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
// symbols that support MachO header introspection. They do not bind to
// code locations and are irrelevant for disassembly.
if (NameOrErr->starts_with("__mh_") && NameOrErr->ends_with("_header"))
continue;
// Don't ask a Mach-O STAB symbol for its section unless you know that
// STAB symbol's section field refers to a valid section index. Otherwise
// the symbol may error trying to load a section that does not exist.
DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
uint8_t NType = (MachO->is64Bit() ?
MachO->getSymbol64TableEntry(SymDRI).n_type:
MachO->getSymbolTableEntry(SymDRI).n_type);
if (NType & MachO::N_STAB)
continue;
}
section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
if (SecI != Obj.section_end())
AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
else
AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
}
if (AllSymbols.empty() && Obj.isELF())
addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
if (Obj.isWasm())
addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
if (Obj.isELF() && Obj.sections().empty())
createFakeELFSections(Obj);
BumpPtrAllocator A;
StringSaver Saver(A);
addPltEntries(Obj, AllSymbols, Saver);
// Create a mapping from virtual address to section. An empty section can
// cause more than one section at the same address. Sort such sections to be
// before same-addressed non-empty sections so that symbol lookups prefer the
// non-empty section.
std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
for (SectionRef Sec : Obj.sections())
SectionAddresses.emplace_back(Sec.getAddress(), Sec);
llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
if (LHS.first != RHS.first)
return LHS.first < RHS.first;
return LHS.second.getSize() < RHS.second.getSize();
});
// Linked executables (.exe and .dll files) typically don't include a real
// symbol table but they might contain an export table.
if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
for (const auto &ExportEntry : COFFObj->export_directories()) {
StringRef Name;
if (Error E = ExportEntry.getSymbolName(Name))
reportError(std::move(E), Obj.getFileName());
if (Name.empty())
continue;
uint32_t RVA;
if (Error E = ExportEntry.getExportRVA(RVA))
reportError(std::move(E), Obj.getFileName());
uint64_t VA = COFFObj->getImageBase() + RVA;
auto Sec = partition_point(
SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
return O.first <= VA;
});
if (Sec != SectionAddresses.begin()) {
--Sec;
AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
} else
AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
}
}
// Sort all the symbols, this allows us to use a simple binary search to find
// Multiple symbols can have the same address. Use a stable sort to stabilize
// the output.
StringSet<> FoundDisasmSymbolSet;
for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
llvm::stable_sort(SecSyms.second);
llvm::stable_sort(AbsoluteSymbols);
std::unique_ptr<DWARFContext> DICtx;
LiveVariablePrinter LVP(*DT->Context->getRegisterInfo(), *DT->SubtargetInfo);
if (DbgVariables != DVDisabled) {
DICtx = DWARFContext::create(DbgObj);
for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
LVP.addCompileUnit(CU->getUnitDIE(false));
}
LLVM_DEBUG(LVP.dump());
BBAddrMapInfo FullAddrMap;
auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex =
std::nullopt) {
FullAddrMap.clear();
if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
std::vector<PGOAnalysisMap> PGOAnalyses;
auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex, &PGOAnalyses);
if (!BBAddrMapsOrErr) {
reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName());
return;
}
for (auto &&[FunctionBBAddrMap, FunctionPGOAnalysis] :
zip_equal(*std::move(BBAddrMapsOrErr), std::move(PGOAnalyses))) {
FullAddrMap.AddFunctionEntry(std::move(FunctionBBAddrMap),
std::move(FunctionPGOAnalysis));
}
}
};
// For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
// single mapping, since they don't have any conflicts.
if (SymbolizeOperands && !Obj.isRelocatableObject())
ReadBBAddrMap();
std::optional<llvm::BTFParser> BTF;
if (InlineRelocs && BTFParser::hasBTFSections(Obj)) {
BTF.emplace();
BTFParser::ParseOptions Opts = {};
Opts.LoadTypes = true;
Opts.LoadRelocs = true;
if (Error E = BTF->parse(Obj, Opts))
WithColor::defaultErrorHandler(std::move(E));
}
for (const SectionRef &Section : ToolSectionFilter(Obj)) {
if (FilterSections.empty() && !DisassembleAll &&
(!Section.isText() || Section.isVirtual()))
continue;
uint64_t SectionAddr = Section.getAddress();
uint64_t SectSize = Section.getSize();
if (!SectSize)
continue;
// For relocatable object files, read the LLVM_BB_ADDR_MAP section
// corresponding to this section, if present.
if (SymbolizeOperands && Obj.isRelocatableObject())
ReadBBAddrMap(Section.getIndex());
// Get the list of all the symbols in this section.
SectionSymbolsTy &Symbols = AllSymbols[Section];
auto &MappingSymbols = AllMappingSymbols[Section];
llvm::sort(MappingSymbols);
ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
unwrapOrError(Section.getContents(), Obj.getFileName()));
std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
// AMDGPU disassembler uses symbolizer for printing labels
addSymbolizer(*DT->Context, DT->TheTarget, TripleName, DT->DisAsm.get(),
SectionAddr, Bytes, Symbols, SynthesizedLabelNames);
}
StringRef SegmentName = getSegmentName(MachO, Section);
StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
// If the section has no symbol at the start, just insert a dummy one.
// Without --show-all-symbols, also insert one if all symbols at the start
// are mapping symbols.
bool CreateDummy = Symbols.empty();
if (!CreateDummy) {
CreateDummy = true;
for (auto &Sym : Symbols) {
if (Sym.Addr != SectionAddr)
break;
if (!Sym.IsMappingSymbol || ShowAllSymbols)
CreateDummy = false;
}
}
if (CreateDummy) {
SymbolInfoTy Sym = createDummySymbolInfo(
Obj, SectionAddr, SectionName,
Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT);
if (Obj.isXCOFF())
Symbols.insert(Symbols.begin(), Sym);
else
Symbols.insert(llvm::lower_bound(Symbols, Sym), Sym);
}
SmallString<40> Comments;
raw_svector_ostream CommentStream(Comments);
uint64_t VMAAdjustment = 0;
if (shouldAdjustVA(Section))
VMAAdjustment = AdjustVMA;
// In executable and shared objects, r_offset holds a virtual address.
// Subtract SectionAddr from the r_offset field of a relocation to get
// the section offset.
uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
uint64_t Size;
uint64_t Index;
bool PrintedSection = false;
std::vector<RelocationRef> Rels = RelocMap[Section];
std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
// Loop over each chunk of code between two points where at least
// one symbol is defined.
for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
// Advance SI past all the symbols starting at the same address,
// and make an ArrayRef of them.
unsigned FirstSI = SI;
uint64_t Start = Symbols[SI].Addr;
ArrayRef<SymbolInfoTy> SymbolsHere;
while (SI != SE && Symbols[SI].Addr == Start)
++SI;
SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
// Get the demangled names of all those symbols. We end up with a vector
// of StringRef that holds the names we're going to use, and a vector of
// std::string that stores the new strings returned by demangle(), if
// any. If we don't call demangle() then that vector can stay empty.
std::vector<StringRef> SymNamesHere;
std::vector<std::string> DemangledSymNamesHere;
if (Demangle) {
// Fetch the demangled names and store them locally.
for (const SymbolInfoTy &Symbol : SymbolsHere)
DemangledSymNamesHere.push_back(demangle(Symbol.Name));
// Now we've finished modifying that vector, it's safe to make
// a vector of StringRefs pointing into it.
SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(),
DemangledSymNamesHere.end());
} else {
for (const SymbolInfoTy &Symbol : SymbolsHere)
SymNamesHere.push_back(Symbol.Name);
}
// Distinguish ELF data from code symbols, which will be used later on to
// decide whether to 'disassemble' this chunk as a data declaration via
// dumpELFData(), or whether to treat it as code.
//
// If data _and_ code symbols are defined at the same address, the code
// takes priority, on the grounds that disassembling code is our main
// purpose here, and it would be a worse failure to _not_ interpret
// something that _was_ meaningful as code than vice versa.
//
// Any ELF symbol type that is not clearly data will be regarded as code.
// In particular, one of the uses of STT_NOTYPE is for branch targets
// inside functions, for which STT_FUNC would be inaccurate.
//
// So here, we spot whether there's any non-data symbol present at all,
// and only set the DisassembleAsELFData flag if there isn't. Also, we use
// this distinction to inform the decision of which symbol to print at
// the head of the section, so that if we're printing code, we print a
// code-related symbol name to go with it.
bool DisassembleAsELFData = false;
size_t DisplaySymIndex = SymbolsHere.size() - 1;
if (Obj.isELF() && !DisassembleAll && Section.isText()) {
DisassembleAsELFData = true; // unless we find a code symbol below
for (size_t i = 0; i < SymbolsHere.size(); ++i) {
uint8_t SymTy = SymbolsHere[i].Type;
if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
DisassembleAsELFData = false;
DisplaySymIndex = i;
}
}
}
// Decide which symbol(s) from this collection we're going to print.
std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
// If the user has given the --disassemble-symbols option, then we must
// display every symbol in that set, and no others.
if (!DisasmSymbolSet.empty()) {
bool FoundAny = false;
for (size_t i = 0; i < SymbolsHere.size(); ++i) {
if (DisasmSymbolSet.count(SymNamesHere[i])) {
SymsToPrint[i] = true;
FoundAny = true;
}
}
// And if none of the symbols here is one that the user asked for, skip
// disassembling this entire chunk of code.
if (!FoundAny)
continue;
} else if (!SymbolsHere[DisplaySymIndex].IsMappingSymbol) {
// Otherwise, print whichever symbol at this location is last in the
// Symbols array, because that array is pre-sorted in a way intended to
// correlate with priority of which symbol to display.
SymsToPrint[DisplaySymIndex] = true;
}
// Now that we know we're disassembling this section, override the choice
// of which symbols to display by printing _all_ of them at this address
// if the user asked for all symbols.
//
// That way, '--show-all-symbols --disassemble-symbol=foo' will print
// only the chunk of code headed by 'foo', but also show any other
// symbols defined at that address, such as aliases for 'foo', or the ARM
// mapping symbol preceding its code.
if (ShowAllSymbols) {
for (size_t i = 0; i < SymbolsHere.size(); ++i)
SymsToPrint[i] = true;
}
if (Start < SectionAddr || StopAddress <= Start)
continue;
for (size_t i = 0; i < SymbolsHere.size(); ++i)
FoundDisasmSymbolSet.insert(SymNamesHere[i]);
// The end is the section end, the beginning of the next symbol, or
// --stop-address.
uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
if (SI < SE)
End = std::min(End, Symbols[SI].Addr);
if (Start >= End || End <= StartAddress)
continue;
Start -= SectionAddr;
End -= SectionAddr;
if (!PrintedSection) {
PrintedSection = true;
outs() << "\nDisassembly of section ";
if (!SegmentName.empty())
outs() << SegmentName << ",";
outs() << SectionName << ":\n";
}
bool PrintedLabel = false;
for (size_t i = 0; i < SymbolsHere.size(); ++i) {
if (!SymsToPrint[i])
continue;
const SymbolInfoTy &Symbol = SymbolsHere[i];
const StringRef SymbolName = SymNamesHere[i];
if (!PrintedLabel) {
outs() << '\n';
PrintedLabel = true;
}
if (LeadingAddr)
outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
SectionAddr + Start + VMAAdjustment);
if (Obj.isXCOFF() && SymbolDescription) {
outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n";
} else
outs() << '<' << SymbolName << ">:\n";
}
// Don't print raw contents of a virtual section. A virtual section
// doesn't have any contents in the file.
if (Section.isVirtual()) {
outs() << "...\n";
continue;
}
// See if any of the symbols defined at this location triggers target-
// specific disassembly behavior, e.g. of special descriptors or function
// prelude information.
//
// We stop this loop at the first symbol that triggers some kind of
// interesting behavior (if any), on the assumption that if two symbols
// defined at the same address trigger two conflicting symbol handlers,
// the object file is probably confused anyway, and it would make even
// less sense to present the output of _both_ handlers, because that
// would describe the same data twice.
for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
SymbolInfoTy Symbol = SymbolsHere[SHI];
Expected<bool> RespondedOrErr = DT->DisAsm->onSymbolStart(
Symbol, Size, Bytes.slice(Start, End - Start), SectionAddr + Start);
if (RespondedOrErr && !*RespondedOrErr) {
// This symbol didn't trigger any interesting handling. Try the other
// symbols defined at this address.
continue;
}
// If onSymbolStart returned an Error, that means it identified some
// kind of special data at this address, but wasn't able to disassemble
// it meaningfully. So we fall back to printing the error out and
// disassembling the failed region as bytes, assuming that the target
// detected the failure before printing anything.
if (!RespondedOrErr) {
std::string ErrMsgStr = toString(RespondedOrErr.takeError());
StringRef ErrMsg = ErrMsgStr;
do {
StringRef Line;
std::tie(Line, ErrMsg) = ErrMsg.split('\n');
outs() << DT->Context->getAsmInfo()->getCommentString()
<< " error decoding " << SymNamesHere[SHI] << ": " << Line
<< '\n';
} while (!ErrMsg.empty());
if (Size) {
outs() << DT->Context->getAsmInfo()->getCommentString()
<< " decoding failed region as bytes\n";
for (uint64_t I = 0; I < Size; ++I)
outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
<< '\n';
}
}
// Regardless of whether onSymbolStart returned an Error or true, 'Size'
// will have been set to the amount of data covered by whatever prologue
// the target identified. So we advance our own position to beyond that.
// Sometimes that will be the entire distance to the next symbol, and
// sometimes it will be just a prologue and we should start
// disassembling instructions from where it left off.
Start += Size;
break;
}
Index = Start;
if (SectionAddr < StartAddress)
Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
if (DisassembleAsELFData) {
dumpELFData(SectionAddr, Index, End, Bytes);
Index = End;
continue;
}
// Skip relocations from symbols that are not dumped.
for (; RelCur != RelEnd; ++RelCur) {
uint64_t Offset = RelCur->getOffset() - RelAdjustment;
if (Index <= Offset)
break;
}
bool DumpARMELFData = false;
bool DumpTracebackTableForXCOFFFunction =
Obj.isXCOFF() && Section.isText() && TracebackTable &&
Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass &&
(*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR);
formatted_raw_ostream FOS(outs());
std::unordered_map<uint64_t, std::string> AllLabels;
std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> BBAddrMapLabels;
if (SymbolizeOperands) {
collectLocalBranchTargets(Bytes, DT->InstrAnalysis.get(),
DT->DisAsm.get(), DT->InstPrinter.get(),
PrimaryTarget.SubtargetInfo.get(),
SectionAddr, Index, End, AllLabels);
collectBBAddrMapLabels(FullAddrMap, SectionAddr, Index, End,
BBAddrMapLabels);
}
if (DT->InstrAnalysis)
DT->InstrAnalysis->resetState();
while (Index < End) {
uint64_t RelOffset;
// ARM and AArch64 ELF binaries can interleave data and text in the
// same section. We rely on the markers introduced to understand what
// we need to dump. If the data marker is within a function, it is
// denoted as a word/short etc.
if (!MappingSymbols.empty()) {
char Kind = getMappingSymbolKind(MappingSymbols, Index);
DumpARMELFData = Kind == 'd';
if (SecondaryTarget) {
if (Kind == 'a') {
DT = PrimaryIsThumb ? &*SecondaryTarget : &PrimaryTarget;
} else if (Kind == 't') {
DT = PrimaryIsThumb ? &PrimaryTarget : &*SecondaryTarget;
}
}
} else if (!CHPECodeMap.empty()) {
uint64_t Address = SectionAddr + Index;
auto It = partition_point(
CHPECodeMap,
[Address](const std::pair<uint64_t, uint64_t> &Entry) {
return Entry.first <= Address;
});
if (It != CHPECodeMap.begin() && Address < (It - 1)->second) {
DT = &*SecondaryTarget;
} else {
DT = &PrimaryTarget;
// X64 disassembler range may have left Index unaligned, so
// make sure that it's aligned when we switch back to ARM64
// code.
Index = llvm::alignTo(Index, 4);
if (Index >= End)
break;
}
}
auto findRel = [&]() {
while (RelCur != RelEnd) {
RelOffset = RelCur->getOffset() - RelAdjustment;
// If this relocation is hidden, skip it.
if (getHidden(*RelCur) || SectionAddr + RelOffset < StartAddress) {
++RelCur;
continue;
}
// Stop when RelCur's offset is past the disassembled
// instruction/data.
if (RelOffset >= Index + Size)
return false;
if (RelOffset >= Index)
return true;
++RelCur;
}
return false;
};
if (DumpARMELFData) {
Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
MappingSymbols, *DT->SubtargetInfo, FOS);
} else {
// When -z or --disassemble-zeroes are given we always dissasemble
// them. Otherwise we might want to skip zero bytes we see.
if (!DisassembleZeroes) {
uint64_t MaxOffset = End - Index;
// For --reloc: print zero blocks patched by relocations, so that
// relocations can be shown in the dump.
if (InlineRelocs && RelCur != RelEnd)
MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
MaxOffset);
if (size_t N =
countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
FOS << "\t\t..." << '\n';
Index += N;
continue;
}
}
if (DumpTracebackTableForXCOFFFunction &&
doesXCOFFTracebackTableBegin(Bytes.slice(Index, 4))) {
dumpTracebackTable(Bytes.slice(Index),
SectionAddr + Index + VMAAdjustment, FOS,
SectionAddr + End + VMAAdjustment,
*DT->SubtargetInfo, cast<XCOFFObjectFile>(&Obj));
Index = End;
continue;
}
// Print local label if there's any.
auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
if (Iter1 != BBAddrMapLabels.end()) {
for (const auto &BBLabel : Iter1->second)
FOS << "<" << BBLabel.BlockLabel << ">" << BBLabel.PGOAnalysis
<< ":\n";
} else {
auto Iter2 = AllLabels.find(SectionAddr + Index);
if (Iter2 != AllLabels.end())
FOS << "<" << Iter2->second << ">:\n";
}
// Disassemble a real instruction or a data when disassemble all is
// provided
MCInst Inst;
ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
uint64_t ThisAddr = SectionAddr + Index;
bool Disassembled = DT->DisAsm->getInstruction(
Inst, Size, ThisBytes, ThisAddr, CommentStream);
if (Size == 0)
Size = std::min<uint64_t>(
ThisBytes.size(),
DT->DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
LVP.update({Index, Section.getIndex()},
{Index + Size, Section.getIndex()}, Index + Size != End);
DT->InstPrinter->setCommentStream(CommentStream);
DT->Printer->printInst(
*DT->InstPrinter, Disassembled ? &Inst : nullptr,
Bytes.slice(Index, Size),
{SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
"", *DT->SubtargetInfo, &SP, Obj.getFileName(), &Rels, LVP);
DT->InstPrinter->setCommentStream(llvm::nulls());
// If disassembly succeeds, we try to resolve the target address
// (jump target or memory operand address) and print it to the
// right of the instruction.
//
// Otherwise, we don't print anything else so that we avoid
// analyzing invalid or incomplete instruction information.
if (Disassembled && DT->InstrAnalysis) {
llvm::raw_ostream *TargetOS = &FOS;
uint64_t Target;
bool PrintTarget = DT->InstrAnalysis->evaluateBranch(
Inst, SectionAddr + Index, Size, Target);
if (!PrintTarget) {
if (std::optional<uint64_t> MaybeTarget =
DT->InstrAnalysis->evaluateMemoryOperandAddress(
Inst, DT->SubtargetInfo.get(), SectionAddr + Index,
Size)) {
Target = *MaybeTarget;
PrintTarget = true;
// Do not print real address when symbolizing.
if (!SymbolizeOperands) {
// Memory operand addresses are printed as comments.
TargetOS = &CommentStream;
*TargetOS << "0x" << Twine::utohexstr(Target);
}
}
}
if (PrintTarget) {
// In a relocatable object, the target's section must reside in
// the same section as the call instruction or it is accessed
// through a relocation.
//
// In a non-relocatable object, the target may be in any section.
// In that case, locate the section(s) containing the target
// address and find the symbol in one of those, if possible.
//
// N.B. Except for XCOFF, we don't walk the relocations in the
// relocatable case yet.
std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
if (!Obj.isRelocatableObject()) {
auto It = llvm::partition_point(
SectionAddresses,
[=](const std::pair<uint64_t, SectionRef> &O) {
return O.first <= Target;
});
uint64_t TargetSecAddr = 0;
while (It != SectionAddresses.begin()) {
--It;
if (TargetSecAddr == 0)
TargetSecAddr = It->first;
if (It->first != TargetSecAddr)
break;
TargetSectionSymbols.push_back(&AllSymbols[It->second]);
}
} else {
TargetSectionSymbols.push_back(&Symbols);
}
TargetSectionSymbols.push_back(&AbsoluteSymbols);
// Find the last symbol in the first candidate section whose
// offset is less than or equal to the target. If there are no
// such symbols, try in the next section and so on, before finally
// using the nearest preceding absolute symbol (if any), if there
// are no other valid symbols.
const SymbolInfoTy *TargetSym = nullptr;
for (const SectionSymbolsTy *TargetSymbols :
TargetSectionSymbols) {
auto It = llvm::partition_point(
*TargetSymbols,
[=](const SymbolInfoTy &O) { return O.Addr <= Target; });
while (It != TargetSymbols->begin()) {
--It;
// Skip mapping symbols to avoid possible ambiguity as they
// do not allow uniquely identifying the target address.
if (!It->IsMappingSymbol) {
TargetSym = &*It;
break;
}
}
if (TargetSym)
break;
}
// Branch targets are printed just after the instructions.
// Print the labels corresponding to the target if there's any.
bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
bool LabelAvailable = AllLabels.count(Target);
if (TargetSym != nullptr) {
uint64_t TargetAddress = TargetSym->Addr;
uint64_t Disp = Target - TargetAddress;
std::string TargetName = Demangle ? demangle(TargetSym->Name)
: TargetSym->Name.str();
bool RelFixedUp = false;
SmallString<32> Val;
*TargetOS << " <";
// On XCOFF, we use relocations, even without -r, so we
// can print the correct name for an extern function call.
if (Obj.isXCOFF() && findRel()) {
// Check for possible branch relocations and
// branches to fixup code.
bool BranchRelocationType = true;
XCOFF::RelocationType RelocType;
if (Obj.is64Bit()) {
const XCOFFRelocation64 *Reloc =
reinterpret_cast<XCOFFRelocation64 *>(
RelCur->getRawDataRefImpl().p);
RelFixedUp = Reloc->isFixupIndicated();
RelocType = Reloc->Type;
} else {
const XCOFFRelocation32 *Reloc =
reinterpret_cast<XCOFFRelocation32 *>(
RelCur->getRawDataRefImpl().p);
RelFixedUp = Reloc->isFixupIndicated();
RelocType = Reloc->Type;
}
BranchRelocationType =
RelocType == XCOFF::R_BA || RelocType == XCOFF::R_BR ||
RelocType == XCOFF::R_RBA || RelocType == XCOFF::R_RBR;
// If we have a valid relocation, try to print its
// corresponding symbol name. Multiple relocations on the
// same instruction are not handled.
// Branches to fixup code will have the RelFixedUp flag set in
// the RLD. For these instructions, we print the correct
// branch target, but print the referenced symbol as a
// comment.
if (Error E = getRelocationValueString(*RelCur, false, Val)) {
// If -r was used, this error will be printed later.
// Otherwise, we ignore the error and print what
// would have been printed without using relocations.
consumeError(std::move(E));
*TargetOS << TargetName;
RelFixedUp = false; // Suppress comment for RLD sym name
} else if (BranchRelocationType && !RelFixedUp)
*TargetOS << Val;
else
*TargetOS << TargetName;
if (Disp)
*TargetOS << "+0x" << Twine::utohexstr(Disp);
} else if (!Disp) {
*TargetOS << TargetName;
} else if (BBAddrMapLabelAvailable) {
*TargetOS << BBAddrMapLabels[Target].front().BlockLabel;
} else if (LabelAvailable) {
*TargetOS << AllLabels[Target];
} else {
// Always Print the binary symbol plus an offset if there's no
// local label corresponding to the target address.
*TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
}
*TargetOS << ">";
if (RelFixedUp && !InlineRelocs) {
// We have fixup code for a relocation. We print the
// referenced symbol as a comment.
*TargetOS << "\t# " << Val;
}
} else if (BBAddrMapLabelAvailable) {
*TargetOS << " <" << BBAddrMapLabels[Target].front().BlockLabel
<< ">";
} else if (LabelAvailable) {
*TargetOS << " <" << AllLabels[Target] << ">";
}
// By convention, each record in the comment stream should be
// terminated.
if (TargetOS == &CommentStream)
*TargetOS << "\n";
}
DT->InstrAnalysis->updateState(Inst, SectionAddr + Index);
} else if (!Disassembled && DT->InstrAnalysis) {
DT->InstrAnalysis->resetState();
}
}
assert(DT->Context->getAsmInfo());
emitPostInstructionInfo(FOS, *DT->Context->getAsmInfo(),
*DT->SubtargetInfo, CommentStream.str(), LVP);
Comments.clear();
if (BTF)
printBTFRelocation(FOS, *BTF, {Index, Section.getIndex()}, LVP);
// Hexagon handles relocs in pretty printer
if (InlineRelocs && Obj.getArch() != Triple::hexagon) {
while (findRel()) {
// When --adjust-vma is used, update the address printed.
if (RelCur->getSymbol() != Obj.symbol_end()) {
Expected<section_iterator> SymSI =
RelCur->getSymbol()->getSection();
if (SymSI && *SymSI != Obj.section_end() &&
shouldAdjustVA(**SymSI))
RelOffset += AdjustVMA;
}
printRelocation(FOS, Obj.getFileName(), *RelCur,
SectionAddr + RelOffset, Is64Bits);
LVP.printAfterOtherLine(FOS, true);
++RelCur;
}
}
Index += Size;
}
}
}
StringSet<> MissingDisasmSymbolSet =
set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
for (StringRef Sym : MissingDisasmSymbolSet.keys())
reportWarning("failed to disassemble missing symbol " + Sym, FileName);
}
static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
// If information useful for showing the disassembly is missing, try to find a
// more complete binary and disassemble that instead.
OwningBinary<Binary> FetchedBinary;
if (Obj->symbols().empty()) {
if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt =
fetchBinaryByBuildID(*Obj)) {
if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) {
if (!O->symbols().empty() ||
(!O->sections().empty() && Obj->sections().empty())) {
FetchedBinary = std::move(*FetchedBinaryOpt);
Obj = O;
}
}
}
}
const Target *TheTarget = getTarget(Obj);
// Package up features to be passed to target/subtarget
Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures();
if (!FeaturesValue)
reportError(FeaturesValue.takeError(), Obj->getFileName());
SubtargetFeatures Features = *FeaturesValue;
if (!MAttrs.empty()) {
for (unsigned I = 0; I != MAttrs.size(); ++I)
Features.AddFeature(MAttrs[I]);
} else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
Features.AddFeature("+all");
}
if (MCPU.empty())
MCPU = Obj->tryGetCPUName().value_or("").str();
if (isArmElf(*Obj)) {
// When disassembling big-endian Arm ELF, the instruction endianness is
// determined in a complex way. In relocatable objects, AAELF32 mandates
// that instruction endianness matches the ELF file endianness; in
// executable images, that's true unless the file header has the EF_ARM_BE8
// flag, in which case instructions are little-endian regardless of data
// endianness.
//
// We must set the big-endian-instructions SubtargetFeature to make the
// disassembler read the instructions the right way round, and also tell
// our own prettyprinter to retrieve the encodings the same way to print in
// hex.
const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
if (Elf32BE && (Elf32BE->isRelocatableObject() ||
!(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
Features.AddFeature("+big-endian-instructions");
ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::big);
} else {
ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::little);
}
}
DisassemblerTarget PrimaryTarget(TheTarget, *Obj, TripleName, MCPU, Features);
// If we have an ARM object file, we need a second disassembler, because
// ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
// We use mapping symbols to switch between the two assemblers, where
// appropriate.
std::optional<DisassemblerTarget> SecondaryTarget;
if (isArmElf(*Obj)) {
if (!PrimaryTarget.SubtargetInfo->checkFeatures("+mclass")) {
if (PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode"))
Features.AddFeature("-thumb-mode");
else
Features.AddFeature("+thumb-mode");
SecondaryTarget.emplace(PrimaryTarget, Features);
}
} else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata();
if (CHPEMetadata && CHPEMetadata->CodeMapCount) {
// Set up x86_64 disassembler for ARM64EC binaries.
Triple X64Triple(TripleName);
X64Triple.setArch(Triple::ArchType::x86_64);
std::string Error;
const Target *X64Target =
TargetRegistry::lookupTarget("", X64Triple, Error);
if (X64Target) {
SubtargetFeatures X64Features;
SecondaryTarget.emplace(X64Target, *Obj, X64Triple.getTriple(), "",
X64Features);
} else {
reportWarning(Error, Obj->getFileName());
}
}
}
const ObjectFile *DbgObj = Obj;
if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) {
if (std::optional<OwningBinary<Binary>> DebugBinaryOpt =
fetchBinaryByBuildID(*Obj)) {
if (auto *FetchedObj =
dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) {
if (FetchedObj->hasDebugInfo()) {
FetchedBinary = std::move(*DebugBinaryOpt);
DbgObj = FetchedObj;
}
}
}
}
std::unique_ptr<object::Binary> DSYMBinary;
std::unique_ptr<MemoryBuffer> DSYMBuf;
if (!DbgObj->hasDebugInfo()) {
if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) {
DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(),
DSYMBinary, DSYMBuf);
if (!DbgObj)
return;
}
}
SourcePrinter SP(DbgObj, TheTarget->getName());
for (StringRef Opt : DisassemblerOptions)
if (!PrimaryTarget.InstPrinter->applyTargetSpecificCLOption(Opt))
reportError(Obj->getFileName(),
"Unrecognized disassembler option: " + Opt);
disassembleObject(*Obj, *DbgObj, PrimaryTarget, SecondaryTarget, SP,
InlineRelocs);
}
void Dumper::printRelocations() {
StringRef Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
// Build a mapping from relocation target to a vector of relocation
// sections. Usually, there is an only one relocation section for
// each relocated section.
MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
uint64_t Ndx;
for (const SectionRef &Section : ToolSectionFilter(O, &Ndx)) {
if (O.isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
continue;
if (Section.relocation_begin() == Section.relocation_end())
continue;
Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
if (!SecOrErr)
reportError(O.getFileName(),
"section (" + Twine(Ndx) +
"): unable to get a relocation target: " +
toString(SecOrErr.takeError()));
SecToRelSec[**SecOrErr].push_back(Section);
}
for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
StringRef SecName = unwrapOrError(P.first.getName(), O.getFileName());
outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
uint32_t OffsetPadding = (O.getBytesInAddress() > 4 ? 16 : 8);
uint32_t TypePadding = 24;
outs() << left_justify("OFFSET", OffsetPadding) << " "
<< left_justify("TYPE", TypePadding) << " "
<< "VALUE\n";
for (SectionRef Section : P.second) {
for (const RelocationRef &Reloc : Section.relocations()) {
uint64_t Address = Reloc.getOffset();
SmallString<32> RelocName;
SmallString<32> ValueStr;
if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
continue;
Reloc.getTypeName(RelocName);
if (Error E =
getRelocationValueString(Reloc, SymbolDescription, ValueStr))
reportUniqueWarning(std::move(E));
outs() << format(Fmt.data(), Address) << " "
<< left_justify(RelocName, TypePadding) << " " << ValueStr
<< "\n";
}
}
}
}
// Returns true if we need to show LMA column when dumping section headers. We
// show it only when the platform is ELF and either we have at least one section
// whose VMA and LMA are different and/or when --show-lma flag is used.
static bool shouldDisplayLMA(const ObjectFile &Obj) {
if (!Obj.isELF())
return false;
for (const SectionRef &S : ToolSectionFilter(Obj))
if (S.getAddress() != getELFSectionLMA(S))
return true;
return ShowLMA;
}
static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
// Default column width for names is 13 even if no names are that long.
size_t MaxWidth = 13;
for (const SectionRef &Section : ToolSectionFilter(Obj)) {
StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
MaxWidth = std::max(MaxWidth, Name.size());
}
return MaxWidth;
}
void objdump::printSectionHeaders(ObjectFile &Obj) {
if (Obj.isELF() && Obj.sections().empty())
createFakeELFSections(Obj);
size_t NameWidth = getMaxSectionNameWidth(Obj);
size_t AddressWidth = 2 * Obj.getBytesInAddress();
bool HasLMAColumn = shouldDisplayLMA(Obj);
outs() << "\nSections:\n";
if (HasLMAColumn)
outs() << "Idx " << left_justify("Name", NameWidth) << " Size "
<< left_justify("VMA", AddressWidth) << " "
<< left_justify("LMA", AddressWidth) << " Type\n";
else
outs() << "Idx " << left_justify("Name", NameWidth) << " Size "
<< left_justify("VMA", AddressWidth) << " Type\n";
uint64_t Idx;
for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
uint64_t VMA = Section.getAddress();
if (shouldAdjustVA(Section))
VMA += AdjustVMA;
uint64_t Size = Section.getSize();
std::string Type = Section.isText() ? "TEXT" : "";
if (Section.isData())
Type += Type.empty() ? "DATA" : ", DATA";
if (Section.isBSS())
Type += Type.empty() ? "BSS" : ", BSS";
if (Section.isDebugSection())
Type += Type.empty() ? "DEBUG" : ", DEBUG";
if (HasLMAColumn)
outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
Name.str().c_str(), Size)
<< format_hex_no_prefix(VMA, AddressWidth) << " "
<< format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
<< " " << Type << "\n";
else
outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
Name.str().c_str(), Size)
<< format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
}
}
void objdump::printSectionContents(const ObjectFile *Obj) {
const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
uint64_t BaseAddr = Section.getAddress();
uint64_t Size = Section.getSize();
if (!Size)
continue;
outs() << "Contents of section ";
StringRef SegmentName = getSegmentName(MachO, Section);
if (!SegmentName.empty())
outs() << SegmentName << ",";
outs() << Name << ":\n";
if (Section.isBSS()) {
outs() << format("<skipping contents of bss section at [%04" PRIx64
", %04" PRIx64 ")>\n",
BaseAddr, BaseAddr + Size);
continue;
}
StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
// Dump out the content as hex and printable ascii characters.
for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
// Dump line of hex.
for (std::size_t I = 0; I < 16; ++I) {
if (I != 0 && I % 4 == 0)
outs() << ' ';
if (Addr + I < End)
outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
<< hexdigit(Contents[Addr + I] & 0xF, true);
else
outs() << " ";
}
// Print ascii.
outs() << " ";
for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
outs() << Contents[Addr + I];
else
outs() << ".";
}
outs() << "\n";
}
}
}
void Dumper::printSymbolTable(StringRef ArchiveName, StringRef ArchitectureName,
bool DumpDynamic) {
if (O.isCOFF() && !DumpDynamic) {
outs() << "\nSYMBOL TABLE:\n";
printCOFFSymbolTable(cast<const COFFObjectFile>(O));
return;
}
const StringRef FileName = O.getFileName();
if (!DumpDynamic) {
outs() << "\nSYMBOL TABLE:\n";
for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
printSymbol(*I, {}, FileName, ArchiveName, ArchitectureName, DumpDynamic);
return;
}
outs() << "\nDYNAMIC SYMBOL TABLE:\n";
if (!O.isELF()) {
reportWarning(
"this operation is not currently supported for this file format",
FileName);
return;
}
const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
auto Symbols = ELF->getDynamicSymbolIterators();
Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
ELF->readDynsymVersions();
if (!SymbolVersionsOrErr) {
reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
SymbolVersionsOrErr = std::vector<VersionEntry>();
(void)!SymbolVersionsOrErr;
}
for (auto &Sym : Symbols)
printSymbol(Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
ArchitectureName, DumpDynamic);
}
void Dumper::printSymbol(const SymbolRef &Symbol,
ArrayRef<VersionEntry> SymbolVersions,
StringRef FileName, StringRef ArchiveName,
StringRef ArchitectureName, bool DumpDynamic) {
const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
Expected<uint64_t> AddrOrErr = Symbol.getAddress();
if (!AddrOrErr) {
reportUniqueWarning(AddrOrErr.takeError());
return;
}
uint64_t Address = *AddrOrErr;
section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
if (SecI != O.section_end() && shouldAdjustVA(*SecI))
Address += AdjustVMA;
if ((Address < StartAddress) || (Address > StopAddress))
return;
SymbolRef::Type Type =
unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
uint32_t Flags =
unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
// Don't ask a Mach-O STAB symbol for its section unless you know that
// STAB symbol's section field refers to a valid section index. Otherwise
// the symbol may error trying to load a section that does not exist.
bool IsSTAB = false;
if (MachO) {
DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
uint8_t NType =
(MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
: MachO->getSymbolTableEntry(SymDRI).n_type);
if (NType & MachO::N_STAB)
IsSTAB = true;
}
section_iterator Section = IsSTAB
? O.section_end()
: unwrapOrError(Symbol.getSection(), FileName,
ArchiveName, ArchitectureName);
StringRef Name;
if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
if (Expected<StringRef> NameOrErr = Section->getName())
Name = *NameOrErr;
else
consumeError(NameOrErr.takeError());
} else {
Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
ArchitectureName);
}
bool Global = Flags & SymbolRef::SF_Global;
bool Weak = Flags & SymbolRef::SF_Weak;
bool Absolute = Flags & SymbolRef::SF_Absolute;
bool Common = Flags & SymbolRef::SF_Common;
bool Hidden = Flags & SymbolRef::SF_Hidden;
char GlobLoc = ' ';
if ((Section != O.section_end() || Absolute) && !Weak)
GlobLoc = Global ? 'g' : 'l';
char IFunc = ' ';
if (O.isELF()) {
if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
IFunc = 'i';
if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
GlobLoc = 'u';
}
char Debug = ' ';
if (DumpDynamic)
Debug = 'D';
else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
Debug = 'd';
char FileFunc = ' ';
if (Type == SymbolRef::ST_File)
FileFunc = 'f';
else if (Type == SymbolRef::ST_Function)
FileFunc = 'F';
else if (Type == SymbolRef::ST_Data)
FileFunc = 'O';
const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
outs() << format(Fmt, Address) << " "
<< GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
<< (Weak ? 'w' : ' ') // Weak?
<< ' ' // Constructor. Not supported yet.
<< ' ' // Warning. Not supported yet.
<< IFunc // Indirect reference to another symbol.
<< Debug // Debugging (d) or dynamic (D) symbol.
<< FileFunc // Name of function (F), file (f) or object (O).
<< ' ';
if (Absolute) {
outs() << "*ABS*";
} else if (Common) {
outs() << "*COM*";
} else if (Section == O.section_end()) {
if (O.isXCOFF()) {
XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
Symbol.getRawDataRefImpl());
if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
outs() << "*DEBUG*";
else
outs() << "*UND*";
} else
outs() << "*UND*";
} else {
StringRef SegmentName = getSegmentName(MachO, *Section);
if (!SegmentName.empty())
outs() << SegmentName << ",";
StringRef SectionName = unwrapOrError(Section->getName(), FileName);
outs() << SectionName;
if (O.isXCOFF()) {
std::optional<SymbolRef> SymRef =
getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
if (SymRef) {
Expected<StringRef> NameOrErr = SymRef->getName();
if (NameOrErr) {
outs() << " (csect:";
std::string SymName =
Demangle ? demangle(*NameOrErr) : NameOrErr->str();
if (SymbolDescription)
SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef),
SymName);
outs() << ' ' << SymName;
outs() << ") ";
} else
reportWarning(toString(NameOrErr.takeError()), FileName);
}
}
}
if (Common)
outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
else if (O.isXCOFF())
outs() << '\t'
<< format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
Symbol.getRawDataRefImpl()));
else if (O.isELF())
outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
else if (O.isWasm())
outs() << '\t'
<< format(Fmt, static_cast<uint64_t>(
cast<WasmObjectFile>(O).getSymbolSize(Symbol)));
if (O.isELF()) {
if (!SymbolVersions.empty()) {
const VersionEntry &Ver =
SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
std::string Str;
if (!Ver.Name.empty())
Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
outs() << ' ' << left_justify(Str, 12);
}
uint8_t Other = ELFSymbolRef(Symbol).getOther();
switch (Other) {
case ELF::STV_DEFAULT:
break;
case ELF::STV_INTERNAL:
outs() << " .internal";
break;
case ELF::STV_HIDDEN:
outs() << " .hidden";
break;
case ELF::STV_PROTECTED:
outs() << " .protected";
break;
default:
outs() << format(" 0x%02x", Other);
break;
}
} else if (Hidden) {
outs() << " .hidden";
}
std::string SymName = Demangle ? demangle(Name) : Name.str();
if (O.isXCOFF() && SymbolDescription)
SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
outs() << ' ' << SymName << '\n';
}
static void printUnwindInfo(const ObjectFile *O) {
outs() << "Unwind info:\n\n";
if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
printCOFFUnwindInfo(Coff);
else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
printMachOUnwindInfo(MachO);
else
// TODO: Extract DWARF dump tool to objdump.
WithColor::error(errs(), ToolName)
<< "This operation is only currently supported "
"for COFF and MachO object files.\n";
}
/// Dump the raw contents of the __clangast section so the output can be piped
/// into llvm-bcanalyzer.
static void printRawClangAST(const ObjectFile *Obj) {
if (outs().is_displayed()) {
WithColor::error(errs(), ToolName)
<< "The -raw-clang-ast option will dump the raw binary contents of "
"the clang ast section.\n"
"Please redirect the output to a file or another program such as "
"llvm-bcanalyzer.\n";
return;
}
StringRef ClangASTSectionName("__clangast");
if (Obj->isCOFF()) {
ClangASTSectionName = "clangast";
}
std::optional<object::SectionRef> ClangASTSection;
for (auto Sec : ToolSectionFilter(*Obj)) {
StringRef Name;
if (Expected<StringRef> NameOrErr = Sec.getName())
Name = *NameOrErr;
else
consumeError(NameOrErr.takeError());
if (Name == ClangASTSectionName) {
ClangASTSection = Sec;
break;
}
}
if (!ClangASTSection)
return;
StringRef ClangASTContents =
unwrapOrError(ClangASTSection->getContents(), Obj->getFileName());
outs().write(ClangASTContents.data(), ClangASTContents.size());
}
static void printFaultMaps(const ObjectFile *Obj) {
StringRef FaultMapSectionName;
if (Obj->isELF()) {
FaultMapSectionName = ".llvm_faultmaps";
} else if (Obj->isMachO()) {
FaultMapSectionName = "__llvm_faultmaps";
} else {
WithColor::error(errs(), ToolName)
<< "This operation is only currently supported "
"for ELF and Mach-O executable files.\n";
return;
}
std::optional<object::SectionRef> FaultMapSection;
for (auto Sec : ToolSectionFilter(*Obj)) {
StringRef Name;
if (Expected<StringRef> NameOrErr = Sec.getName())
Name = *NameOrErr;
else
consumeError(NameOrErr.takeError());
if (Name == FaultMapSectionName) {
FaultMapSection = Sec;
break;
}
}
outs() << "FaultMap table:\n";
if (!FaultMapSection) {
outs() << "<not found>\n";
return;
}
StringRef FaultMapContents =
unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
FaultMapParser FMP(FaultMapContents.bytes_begin(),
FaultMapContents.bytes_end());
outs() << FMP;
}
void Dumper::printPrivateHeaders() {
reportError(O.getFileName(), "Invalid/Unsupported object file format");
}
static void printFileHeaders(const ObjectFile *O) {
if (!O->isELF() && !O->isCOFF())
reportError(O->getFileName(), "Invalid/Unsupported object file format");
Triple::ArchType AT = O->getArch();
outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
outs() << "start address: "
<< "0x" << format(Fmt.data(), Address) << "\n";
}
static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
if (!ModeOrErr) {
WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
consumeError(ModeOrErr.takeError());
return;
}
sys::fs::perms Mode = ModeOrErr.get();
outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
outs() << " ";
outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
unwrapOrError(C.getGID(), Filename),
unwrapOrError(C.getRawSize(), Filename));
StringRef RawLastModified = C.getRawLastModified();
unsigned Seconds;
if (RawLastModified.getAsInteger(10, Seconds))
outs() << "(date: \"" << RawLastModified
<< "\" contains non-decimal chars) ";
else {
// Since ctime(3) returns a 26 character string of the form:
// "Sun Sep 16 01:03:52 1973\n\0"
// just print 24 characters.
time_t t = Seconds;
outs() << format("%.24s ", ctime(&t));
}
StringRef Name = "";
Expected<StringRef> NameOrErr = C.getName();
if (!NameOrErr) {
consumeError(NameOrErr.takeError());
Name = unwrapOrError(C.getRawName(), Filename);
} else {
Name = NameOrErr.get();
}
outs() << Name << "\n";
}
// For ELF only now.
static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
if (Elf->getEType() != ELF::ET_REL)
return true;
}
return false;
}
static void checkForInvalidStartStopAddress(ObjectFile *Obj,
uint64_t Start, uint64_t Stop) {
if (!shouldWarnForInvalidStartStopAddress(Obj))
return;
for (const SectionRef &Section : Obj->sections())
if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
uint64_t BaseAddr = Section.getAddress();
uint64_t Size = Section.getSize();
if ((Start < BaseAddr + Size) && Stop > BaseAddr)
return;
}
if (!HasStartAddressFlag)
reportWarning("no section has address less than 0x" +
Twine::utohexstr(Stop) + " specified by --stop-address",
Obj->getFileName());
else if (!HasStopAddressFlag)
reportWarning("no section has address greater than or equal to 0x" +
Twine::utohexstr(Start) + " specified by --start-address",
Obj->getFileName());
else
reportWarning("no section overlaps the range [0x" +
Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
") specified by --start-address/--stop-address",
Obj->getFileName());
}
static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
const Archive::Child *C = nullptr) {
Expected<std::unique_ptr<Dumper>> DumperOrErr = createDumper(*O);
if (!DumperOrErr) {
reportError(DumperOrErr.takeError(), O->getFileName(),
A ? A->getFileName() : "");
return;
}
Dumper &D = **DumperOrErr;
// Avoid other output when using a raw option.
if (!RawClangAST) {
outs() << '\n';
if (A)
outs() << A->getFileName() << "(" << O->getFileName() << ")";
else
outs() << O->getFileName();
outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
}
if (HasStartAddressFlag || HasStopAddressFlag)
checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
// TODO: Change print* free functions to Dumper member functions to utilitize
// stateful functions like reportUniqueWarning.
// Note: the order here matches GNU objdump for compatability.
StringRef ArchiveName = A ? A->getFileName() : "";
if (ArchiveHeaders && !MachOOpt && C)
printArchiveChild(ArchiveName, *C);
if (FileHeaders)
printFileHeaders(O);
if (PrivateHeaders || FirstPrivateHeader)
D.printPrivateHeaders();
if (SectionHeaders)
printSectionHeaders(*O);
if (SymbolTable)
D.printSymbolTable(ArchiveName);
if (DynamicSymbolTable)
D.printSymbolTable(ArchiveName, /*ArchitectureName=*/"",
/*DumpDynamic=*/true);
if (DwarfDumpType != DIDT_Null) {
std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
// Dump the complete DWARF structure.
DIDumpOptions DumpOpts;
DumpOpts.DumpType = DwarfDumpType;
DICtx->dump(outs(), DumpOpts);
}
if (Relocations && !Disassemble)
D.printRelocations();
if (DynamicRelocations)
D.printDynamicRelocations();
if (SectionContents)
printSectionContents(O);
if (Disassemble)
disassembleObject(O, Relocations);
if (UnwindInfo)
printUnwindInfo(O);
// Mach-O specific options:
if (ExportsTrie)
printExportsTrie(O);
if (Rebase)
printRebaseTable(O);
if (Bind)
printBindTable(O);
if (LazyBind)
printLazyBindTable(O);
if (WeakBind)
printWeakBindTable(O);
// Other special sections:
if (RawClangAST)
printRawClangAST(O);
if (FaultMapSection)
printFaultMaps(O);
if (Offloading)
dumpOffloadBinary(*O);
}
static void dumpObject(const COFFImportFile *I, const Archive *A,
const Archive::Child *C = nullptr) {
StringRef ArchiveName = A ? A->getFileName() : "";
// Avoid other output when using a raw option.
if (!RawClangAST)
outs() << '\n'
<< ArchiveName << "(" << I->getFileName() << ")"
<< ":\tfile format COFF-import-file"
<< "\n\n";
if (ArchiveHeaders && !MachOOpt && C)
printArchiveChild(ArchiveName, *C);
if (SymbolTable)
printCOFFSymbolTable(*I);
}
/// Dump each object file in \a a;
static void dumpArchive(const Archive *A) {
Error Err = Error::success();
unsigned I = -1;
for (auto &C : A->children(Err)) {
++I;
Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
if (!ChildOrErr) {
if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
continue;
}
if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
dumpObject(O, A, &C);
else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
dumpObject(I, A, &C);
else
reportError(errorCodeToError(object_error::invalid_file_type),
A->getFileName());
}
if (Err)
reportError(std::move(Err), A->getFileName());
}
/// Open file and figure out how to dump it.
static void dumpInput(StringRef file) {
// If we are using the Mach-O specific object file parser, then let it parse
// the file and process the command line options. So the -arch flags can
// be used to select specific slices, etc.
if (MachOOpt) {
parseInputMachO(file);
return;
}
// Attempt to open the binary.
OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
Binary &Binary = *OBinary.getBinary();
if (Archive *A = dyn_cast<Archive>(&Binary))
dumpArchive(A);
else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
dumpObject(O);
else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
parseInputMachO(UB);
else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
dumpOffloadSections(*OB);
else
reportError(errorCodeToError(object_error::invalid_file_type), file);
}
template <typename T>
static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
T &Value) {
if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
StringRef V(A->getValue());
if (!llvm::to_integer(V, Value, 0)) {
reportCmdLineError(A->getSpelling() +
": expected a non-negative integer, but got '" + V +
"'");
}
}
}
static object::BuildID parseBuildIDArg(const opt::Arg *A) {
StringRef V(A->getValue());
object::BuildID BID = parseBuildID(V);
if (BID.empty())
reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" +
V + "'");
return BID;
}
void objdump::invalidArgValue(const opt::Arg *A) {
reportCmdLineError("'" + StringRef(A->getValue()) +
"' is not a valid value for '" + A->getSpelling() + "'");
}
static std::vector<std::string>
commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
std::vector<std::string> Values;
for (StringRef Value : InputArgs.getAllArgValues(ID)) {
llvm::SmallVector<StringRef, 2> SplitValues;
llvm::SplitString(Value, SplitValues, ",");
for (StringRef SplitValue : SplitValues)
Values.push_back(SplitValue.str());
}
return Values;
}
static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
MachOOpt = true;
FullLeadingAddr = true;
PrintImmHex = true;
ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
LinkOptHints = InputArgs.hasArg(OTOOL_C);
if (InputArgs.hasArg(OTOOL_d))
FilterSections.push_back("__DATA,__data");
DylibId = InputArgs.hasArg(OTOOL_D);
UniversalHeaders = InputArgs.hasArg(OTOOL_f);
DataInCode = InputArgs.hasArg(OTOOL_G);
FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
IndirectSymbols = InputArgs.hasArg(OTOOL_I);
ShowRawInsn = InputArgs.hasArg(OTOOL_j);
PrivateHeaders = InputArgs.hasArg(OTOOL_l);
DylibsUsed = InputArgs.hasArg(OTOOL_L);
MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
ObjcMetaData = InputArgs.hasArg(OTOOL_o);
DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
InfoPlist = InputArgs.hasArg(OTOOL_P);
Relocations = InputArgs.hasArg(OTOOL_r);
if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
FilterSections.push_back(Filter);
}
if (InputArgs.hasArg(OTOOL_t))
FilterSections.push_back("__TEXT,__text");
Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
InputArgs.hasArg(OTOOL_o);
SymbolicOperands = InputArgs.hasArg(OTOOL_V);
if (InputArgs.hasArg(OTOOL_x))
FilterSections.push_back(",__text");
LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
if (InputFilenames.empty())
reportCmdLineError("no input file");
for (const Arg *A : InputArgs) {
const Option &O = A->getOption();
if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
reportCmdLineWarning(O.getPrefixedName() +
" is obsolete and not implemented");
}
}
}
static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
Demangle = InputArgs.hasArg(OBJDUMP_demangle);
Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
TracebackTable = InputArgs.hasArg(OBJDUMP_traceback_table);
DisassembleSymbols =
commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
.Case("frames", DIDT_DebugFrame)
.Default(DIDT_Null);
if (DwarfDumpType == DIDT_Null)
invalidArgValue(A);
}
DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
Offloading = InputArgs.hasArg(OBJDUMP_offloading);
FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
Relocations = InputArgs.hasArg(OBJDUMP_reloc);
PrintImmHex =
InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true);
PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
PrintSource = InputArgs.hasArg(OBJDUMP_source);
parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
PrettyPGOAnalysisMap = InputArgs.hasArg(OBJDUMP_pretty_pgo_analysis_map);
if (PrettyPGOAnalysisMap && !SymbolizeOperands)
reportCmdLineWarning("--symbolize-operands must be enabled for "
"--pretty-pgo-analysis-map to have an effect");
DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
Wide = InputArgs.hasArg(OBJDUMP_wide);
Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
.Case("ascii", DVASCII)
.Case("unicode", DVUnicode)
.Default(DVInvalid);
if (DbgVariables == DVInvalid)
invalidArgValue(A);
}
if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_disassembler_color_EQ)) {
DisassemblyColor = StringSwitch<ColorOutput>(A->getValue())
.Case("on", ColorOutput::Enable)
.Case("off", ColorOutput::Disable)
.Case("terminal", ColorOutput::Auto)
.Default(ColorOutput::Invalid);
if (DisassemblyColor == ColorOutput::Invalid)
invalidArgValue(A);
}
parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
parseMachOOptions(InputArgs);
// Parse -M (--disassembler-options) and deprecated
// --x86-asm-syntax={att,intel}.
//
// Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
// MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
// called too late. For now we have to use the internal cl::opt option.
const char *AsmSyntax = nullptr;
for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
OBJDUMP_x86_asm_syntax_att,
OBJDUMP_x86_asm_syntax_intel)) {
switch (A->getOption().getID()) {
case OBJDUMP_x86_asm_syntax_att:
AsmSyntax = "--x86-asm-syntax=att";
continue;
case OBJDUMP_x86_asm_syntax_intel:
AsmSyntax = "--x86-asm-syntax=intel";
continue;
}
SmallVector<StringRef, 2> Values;
llvm::SplitString(A->getValue(), Values, ",");
for (StringRef V : Values) {
if (V == "att")
AsmSyntax = "--x86-asm-syntax=att";
else if (V == "intel")
AsmSyntax = "--x86-asm-syntax=intel";
else
DisassemblerOptions.push_back(V.str());
}
}
SmallVector<const char *> Args = {"llvm-objdump"};
for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_mllvm))
Args.push_back(A->getValue());
if (AsmSyntax)
Args.push_back(AsmSyntax);
if (Args.size() > 1)
llvm::cl::ParseCommandLineOptions(Args.size(), Args.data());
// Look up any provided build IDs, then append them to the input filenames.
for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) {
object::BuildID BuildID = parseBuildIDArg(A);
std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
if (!Path) {
reportCmdLineError(A->getSpelling() + ": could not find build ID '" +
A->getValue() + "'");
}
InputFilenames.push_back(std::move(*Path));
}
// objdump defaults to a.out if no filenames specified.
if (InputFilenames.empty())
InputFilenames.push_back("a.out");
}
int llvm_objdump_main(int argc, char **argv, const llvm::ToolContext &) {
using namespace llvm;
ToolName = argv[0];
std::unique_ptr<CommonOptTable> T;
OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
StringRef Stem = sys::path::stem(ToolName);
auto Is = [=](StringRef Tool) {
// We need to recognize the following filenames:
//
// llvm-objdump -> objdump
// llvm-otool-10.exe -> otool
// powerpc64-unknown-freebsd13-objdump -> objdump
auto I = Stem.rfind_insensitive(Tool);
return I != StringRef::npos &&
(I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
};
if (Is("otool")) {
T = std::make_unique<OtoolOptTable>();
Unknown = OTOOL_UNKNOWN;
HelpFlag = OTOOL_help;
HelpHiddenFlag = OTOOL_help_hidden;
VersionFlag = OTOOL_version;
} else {
T = std::make_unique<ObjdumpOptTable>();
Unknown = OBJDUMP_UNKNOWN;
HelpFlag = OBJDUMP_help;
HelpHiddenFlag = OBJDUMP_help_hidden;
VersionFlag = OBJDUMP_version;
}
BumpPtrAllocator A;
StringSaver Saver(A);
opt::InputArgList InputArgs =
T->parseArgs(argc, argv, Unknown, Saver,
[&](StringRef Msg) { reportCmdLineError(Msg); });
if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
T->printHelp(ToolName);
return 0;
}
if (InputArgs.hasArg(HelpHiddenFlag)) {
T->printHelp(ToolName, /*ShowHidden=*/true);
return 0;
}
// Initialize targets and assembly printers/parsers.
InitializeAllTargetInfos();
InitializeAllTargetMCs();
InitializeAllDisassemblers();
if (InputArgs.hasArg(VersionFlag)) {
cl::PrintVersionMessage();
if (!Is("otool")) {
outs() << '\n';
TargetRegistry::printRegisteredTargetsForVersion(outs());
}
return 0;
}
// Initialize debuginfod.
const bool ShouldUseDebuginfodByDefault =
InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod();
std::vector<std::string> DebugFileDirectories =
InputArgs.getAllArgValues(OBJDUMP_debug_file_directory);
if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod,
ShouldUseDebuginfodByDefault)) {
HTTPClient::initialize();
BIDFetcher =
std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories));
} else {
BIDFetcher =
std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories));
}
if (Is("otool"))
parseOtoolOptions(InputArgs);
else
parseObjdumpOptions(InputArgs);
if (StartAddress >= StopAddress)
reportCmdLineError("start address should be less than stop address");
// Removes trailing separators from prefix.
while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
Prefix.pop_back();
if (AllHeaders)
ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
SectionHeaders = SymbolTable = true;
if (DisassembleAll || PrintSource || PrintLines || TracebackTable ||
!DisassembleSymbols.empty())
Disassemble = true;
if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
!DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
!Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
!DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
!(MachOOpt &&
(Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
DylibsUsed || ExportsTrie || FirstPrivateHeader ||
FunctionStartsType != FunctionStartsMode::None || IndirectSymbols ||
InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) {
T->printHelp(ToolName);
return 2;
}
DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
llvm::for_each(InputFilenames, dumpInput);
warnOnNoMatchForSections();
return EXIT_SUCCESS;
}