blob: ce40e8b31b767a6820ae711291f6aaec1e7405b2 [file] [log] [blame]
//===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file
// This file implements the Sparse Conditional Constant Propagation (SCCP)
// utility.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/SCCPSolver.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ValueLattice.h"
#include "llvm/Analysis/ValueLatticeUtils.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "sccp"
// The maximum number of range extensions allowed for operations requiring
// widening.
static const unsigned MaxNumRangeExtensions = 10;
/// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() {
return ValueLatticeElement::MergeOptions().setMaxWidenSteps(
MaxNumRangeExtensions);
}
static ConstantRange getConstantRange(const ValueLatticeElement &LV, Type *Ty,
bool UndefAllowed = true) {
assert(Ty->isIntOrIntVectorTy() && "Should be int or int vector");
if (LV.isConstantRange(UndefAllowed))
return LV.getConstantRange();
return ConstantRange::getFull(Ty->getScalarSizeInBits());
}
namespace llvm {
bool SCCPSolver::isConstant(const ValueLatticeElement &LV) {
return LV.isConstant() ||
(LV.isConstantRange() && LV.getConstantRange().isSingleElement());
}
bool SCCPSolver::isOverdefined(const ValueLatticeElement &LV) {
return !LV.isUnknownOrUndef() && !SCCPSolver::isConstant(LV);
}
static bool canRemoveInstruction(Instruction *I) {
if (wouldInstructionBeTriviallyDead(I))
return true;
// Some instructions can be handled but are rejected above. Catch
// those cases by falling through to here.
// TODO: Mark globals as being constant earlier, so
// TODO: wouldInstructionBeTriviallyDead() knows that atomic loads
// TODO: are safe to remove.
return isa<LoadInst>(I);
}
bool SCCPSolver::tryToReplaceWithConstant(Value *V) {
Constant *Const = getConstantOrNull(V);
if (!Const)
return false;
// Replacing `musttail` instructions with constant breaks `musttail` invariant
// unless the call itself can be removed.
// Calls with "clang.arc.attachedcall" implicitly use the return value and
// those uses cannot be updated with a constant.
CallBase *CB = dyn_cast<CallBase>(V);
if (CB && ((CB->isMustTailCall() &&
!canRemoveInstruction(CB)) ||
CB->getOperandBundle(LLVMContext::OB_clang_arc_attachedcall))) {
Function *F = CB->getCalledFunction();
// Don't zap returns of the callee
if (F)
addToMustPreserveReturnsInFunctions(F);
LLVM_DEBUG(dbgs() << " Can\'t treat the result of call " << *CB
<< " as a constant\n");
return false;
}
LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
// Replaces all of the uses of a variable with uses of the constant.
V->replaceAllUsesWith(Const);
return true;
}
/// Try to use \p Inst's value range from \p Solver to infer the NUW flag.
static bool refineInstruction(SCCPSolver &Solver,
const SmallPtrSetImpl<Value *> &InsertedValues,
Instruction &Inst) {
bool Changed = false;
auto GetRange = [&Solver, &InsertedValues](Value *Op) {
if (auto *Const = dyn_cast<ConstantInt>(Op))
return ConstantRange(Const->getValue());
if (isa<Constant>(Op) || InsertedValues.contains(Op)) {
unsigned Bitwidth = Op->getType()->getScalarSizeInBits();
return ConstantRange::getFull(Bitwidth);
}
return getConstantRange(Solver.getLatticeValueFor(Op), Op->getType(),
/*UndefAllowed=*/false);
};
if (isa<OverflowingBinaryOperator>(Inst)) {
if (Inst.hasNoSignedWrap() && Inst.hasNoUnsignedWrap())
return false;
auto RangeA = GetRange(Inst.getOperand(0));
auto RangeB = GetRange(Inst.getOperand(1));
if (!Inst.hasNoUnsignedWrap()) {
auto NUWRange = ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::BinaryOps(Inst.getOpcode()), RangeB,
OverflowingBinaryOperator::NoUnsignedWrap);
if (NUWRange.contains(RangeA)) {
Inst.setHasNoUnsignedWrap();
Changed = true;
}
}
if (!Inst.hasNoSignedWrap()) {
auto NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::BinaryOps(Inst.getOpcode()), RangeB,
OverflowingBinaryOperator::NoSignedWrap);
if (NSWRange.contains(RangeA)) {
Inst.setHasNoSignedWrap();
Changed = true;
}
}
} else if (isa<PossiblyNonNegInst>(Inst) && !Inst.hasNonNeg()) {
auto Range = GetRange(Inst.getOperand(0));
if (Range.isAllNonNegative()) {
Inst.setNonNeg();
Changed = true;
}
} else if (TruncInst *TI = dyn_cast<TruncInst>(&Inst)) {
if (TI->hasNoSignedWrap() && TI->hasNoUnsignedWrap())
return false;
auto Range = GetRange(Inst.getOperand(0));
uint64_t DestWidth = TI->getDestTy()->getScalarSizeInBits();
if (!TI->hasNoUnsignedWrap()) {
if (Range.getActiveBits() <= DestWidth) {
TI->setHasNoUnsignedWrap(true);
Changed = true;
}
}
if (!TI->hasNoSignedWrap()) {
if (Range.getMinSignedBits() <= DestWidth) {
TI->setHasNoSignedWrap(true);
Changed = true;
}
}
}
return Changed;
}
/// Try to replace signed instructions with their unsigned equivalent.
static bool replaceSignedInst(SCCPSolver &Solver,
SmallPtrSetImpl<Value *> &InsertedValues,
Instruction &Inst) {
// Determine if a signed value is known to be >= 0.
auto isNonNegative = [&Solver](Value *V) {
// If this value was constant-folded, it may not have a solver entry.
// Handle integers. Otherwise, return false.
if (auto *C = dyn_cast<Constant>(V)) {
auto *CInt = dyn_cast<ConstantInt>(C);
return CInt && !CInt->isNegative();
}
const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
return IV.isConstantRange(/*UndefAllowed=*/false) &&
IV.getConstantRange().isAllNonNegative();
};
Instruction *NewInst = nullptr;
switch (Inst.getOpcode()) {
case Instruction::SIToFP:
case Instruction::SExt: {
// If the source value is not negative, this is a zext/uitofp.
Value *Op0 = Inst.getOperand(0);
if (InsertedValues.count(Op0) || !isNonNegative(Op0))
return false;
NewInst = CastInst::Create(Inst.getOpcode() == Instruction::SExt
? Instruction::ZExt
: Instruction::UIToFP,
Op0, Inst.getType(), "", Inst.getIterator());
NewInst->setNonNeg();
break;
}
case Instruction::AShr: {
// If the shifted value is not negative, this is a logical shift right.
Value *Op0 = Inst.getOperand(0);
if (InsertedValues.count(Op0) || !isNonNegative(Op0))
return false;
NewInst = BinaryOperator::CreateLShr(Op0, Inst.getOperand(1), "", Inst.getIterator());
NewInst->setIsExact(Inst.isExact());
break;
}
case Instruction::SDiv:
case Instruction::SRem: {
// If both operands are not negative, this is the same as udiv/urem.
Value *Op0 = Inst.getOperand(0), *Op1 = Inst.getOperand(1);
if (InsertedValues.count(Op0) || InsertedValues.count(Op1) ||
!isNonNegative(Op0) || !isNonNegative(Op1))
return false;
auto NewOpcode = Inst.getOpcode() == Instruction::SDiv ? Instruction::UDiv
: Instruction::URem;
NewInst = BinaryOperator::Create(NewOpcode, Op0, Op1, "", Inst.getIterator());
if (Inst.getOpcode() == Instruction::SDiv)
NewInst->setIsExact(Inst.isExact());
break;
}
default:
return false;
}
// Wire up the new instruction and update state.
assert(NewInst && "Expected replacement instruction");
NewInst->takeName(&Inst);
InsertedValues.insert(NewInst);
Inst.replaceAllUsesWith(NewInst);
Solver.removeLatticeValueFor(&Inst);
Inst.eraseFromParent();
return true;
}
bool SCCPSolver::simplifyInstsInBlock(BasicBlock &BB,
SmallPtrSetImpl<Value *> &InsertedValues,
Statistic &InstRemovedStat,
Statistic &InstReplacedStat) {
bool MadeChanges = false;
for (Instruction &Inst : make_early_inc_range(BB)) {
if (Inst.getType()->isVoidTy())
continue;
if (tryToReplaceWithConstant(&Inst)) {
if (canRemoveInstruction(&Inst))
Inst.eraseFromParent();
MadeChanges = true;
++InstRemovedStat;
} else if (replaceSignedInst(*this, InsertedValues, Inst)) {
MadeChanges = true;
++InstReplacedStat;
} else if (refineInstruction(*this, InsertedValues, Inst)) {
MadeChanges = true;
}
}
return MadeChanges;
}
bool SCCPSolver::removeNonFeasibleEdges(BasicBlock *BB, DomTreeUpdater &DTU,
BasicBlock *&NewUnreachableBB) const {
SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors;
bool HasNonFeasibleEdges = false;
for (BasicBlock *Succ : successors(BB)) {
if (isEdgeFeasible(BB, Succ))
FeasibleSuccessors.insert(Succ);
else
HasNonFeasibleEdges = true;
}
// All edges feasible, nothing to do.
if (!HasNonFeasibleEdges)
return false;
// SCCP can only determine non-feasible edges for br, switch and indirectbr.
Instruction *TI = BB->getTerminator();
assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
isa<IndirectBrInst>(TI)) &&
"Terminator must be a br, switch or indirectbr");
if (FeasibleSuccessors.size() == 0) {
// Branch on undef/poison, replace with unreachable.
SmallPtrSet<BasicBlock *, 8> SeenSuccs;
SmallVector<DominatorTree::UpdateType, 8> Updates;
for (BasicBlock *Succ : successors(BB)) {
Succ->removePredecessor(BB);
if (SeenSuccs.insert(Succ).second)
Updates.push_back({DominatorTree::Delete, BB, Succ});
}
TI->eraseFromParent();
new UnreachableInst(BB->getContext(), BB);
DTU.applyUpdatesPermissive(Updates);
} else if (FeasibleSuccessors.size() == 1) {
// Replace with an unconditional branch to the only feasible successor.
BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin();
SmallVector<DominatorTree::UpdateType, 8> Updates;
bool HaveSeenOnlyFeasibleSuccessor = false;
for (BasicBlock *Succ : successors(BB)) {
if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) {
// Don't remove the edge to the only feasible successor the first time
// we see it. We still do need to remove any multi-edges to it though.
HaveSeenOnlyFeasibleSuccessor = true;
continue;
}
Succ->removePredecessor(BB);
Updates.push_back({DominatorTree::Delete, BB, Succ});
}
BranchInst::Create(OnlyFeasibleSuccessor, BB);
TI->eraseFromParent();
DTU.applyUpdatesPermissive(Updates);
} else if (FeasibleSuccessors.size() > 1) {
SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(TI));
SmallVector<DominatorTree::UpdateType, 8> Updates;
// If the default destination is unfeasible it will never be taken. Replace
// it with a new block with a single Unreachable instruction.
BasicBlock *DefaultDest = SI->getDefaultDest();
if (!FeasibleSuccessors.contains(DefaultDest)) {
if (!NewUnreachableBB) {
NewUnreachableBB =
BasicBlock::Create(DefaultDest->getContext(), "default.unreachable",
DefaultDest->getParent(), DefaultDest);
new UnreachableInst(DefaultDest->getContext(), NewUnreachableBB);
}
DefaultDest->removePredecessor(BB);
SI->setDefaultDest(NewUnreachableBB);
Updates.push_back({DominatorTree::Delete, BB, DefaultDest});
Updates.push_back({DominatorTree::Insert, BB, NewUnreachableBB});
}
for (auto CI = SI->case_begin(); CI != SI->case_end();) {
if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) {
++CI;
continue;
}
BasicBlock *Succ = CI->getCaseSuccessor();
Succ->removePredecessor(BB);
Updates.push_back({DominatorTree::Delete, BB, Succ});
SI.removeCase(CI);
// Don't increment CI, as we removed a case.
}
DTU.applyUpdatesPermissive(Updates);
} else {
llvm_unreachable("Must have at least one feasible successor");
}
return true;
}
/// Helper class for SCCPSolver. This implements the instruction visitor and
/// holds all the state.
class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> {
const DataLayout &DL;
std::function<const TargetLibraryInfo &(Function &)> GetTLI;
SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
DenseMap<Value *, ValueLatticeElement>
ValueState; // The state each value is in.
/// StructValueState - This maintains ValueState for values that have
/// StructType, for example for formal arguments, calls, insertelement, etc.
DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState;
/// GlobalValue - If we are tracking any values for the contents of a global
/// variable, we keep a mapping from the constant accessor to the element of
/// the global, to the currently known value. If the value becomes
/// overdefined, it's entry is simply removed from this map.
DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals;
/// TrackedRetVals - If we are tracking arguments into and the return
/// value out of a function, it will have an entry in this map, indicating
/// what the known return value for the function is.
MapVector<Function *, ValueLatticeElement> TrackedRetVals;
/// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
/// that return multiple values.
MapVector<std::pair<Function *, unsigned>, ValueLatticeElement>
TrackedMultipleRetVals;
/// The set of values whose lattice has been invalidated.
/// Populated by resetLatticeValueFor(), cleared after resolving undefs.
DenseSet<Value *> Invalidated;
/// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
/// represented here for efficient lookup.
SmallPtrSet<Function *, 16> MRVFunctionsTracked;
/// A list of functions whose return cannot be modified.
SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions;
/// TrackingIncomingArguments - This is the set of functions for whose
/// arguments we make optimistic assumptions about and try to prove as
/// constants.
SmallPtrSet<Function *, 16> TrackingIncomingArguments;
/// The reason for two worklists is that overdefined is the lowest state
/// on the lattice, and moving things to overdefined as fast as possible
/// makes SCCP converge much faster.
///
/// By having a separate worklist, we accomplish this because everything
/// possibly overdefined will become overdefined at the soonest possible
/// point.
SmallVector<Value *, 64> OverdefinedInstWorkList;
SmallVector<Value *, 64> InstWorkList;
// The BasicBlock work list
SmallVector<BasicBlock *, 64> BBWorkList;
/// KnownFeasibleEdges - Entries in this set are edges which have already had
/// PHI nodes retriggered.
using Edge = std::pair<BasicBlock *, BasicBlock *>;
DenseSet<Edge> KnownFeasibleEdges;
DenseMap<Function *, std::unique_ptr<PredicateInfo>> FnPredicateInfo;
DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
LLVMContext &Ctx;
private:
ConstantInt *getConstantInt(const ValueLatticeElement &IV, Type *Ty) const {
return dyn_cast_or_null<ConstantInt>(getConstant(IV, Ty));
}
// pushToWorkList - Helper for markConstant/markOverdefined
void pushToWorkList(ValueLatticeElement &IV, Value *V);
// Helper to push \p V to the worklist, after updating it to \p IV. Also
// prints a debug message with the updated value.
void pushToWorkListMsg(ValueLatticeElement &IV, Value *V);
// markConstant - Make a value be marked as "constant". If the value
// is not already a constant, add it to the instruction work list so that
// the users of the instruction are updated later.
bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
bool MayIncludeUndef = false);
bool markConstant(Value *V, Constant *C) {
assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
return markConstant(ValueState[V], V, C);
}
/// markConstantRange - Mark the object as constant range with \p CR. If the
/// object is not a constant range with the range \p CR, add it to the
/// instruction work list so that the users of the instruction are updated
/// later.
bool markConstantRange(ValueLatticeElement &IV, Value *V,
const ConstantRange &CR);
// markOverdefined - Make a value be marked as "overdefined". If the
// value is not already overdefined, add it to the overdefined instruction
// work list so that the users of the instruction are updated later.
bool markOverdefined(ValueLatticeElement &IV, Value *V);
/// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
/// changes.
bool mergeInValue(ValueLatticeElement &IV, Value *V,
ValueLatticeElement MergeWithV,
ValueLatticeElement::MergeOptions Opts = {
/*MayIncludeUndef=*/false, /*CheckWiden=*/false});
bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
ValueLatticeElement::MergeOptions Opts = {
/*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
assert(!V->getType()->isStructTy() &&
"non-structs should use markConstant");
return mergeInValue(ValueState[V], V, MergeWithV, Opts);
}
/// getValueState - Return the ValueLatticeElement object that corresponds to
/// the value. This function handles the case when the value hasn't been seen
/// yet by properly seeding constants etc.
ValueLatticeElement &getValueState(Value *V) {
assert(!V->getType()->isStructTy() && "Should use getStructValueState");
auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
ValueLatticeElement &LV = I.first->second;
if (!I.second)
return LV; // Common case, already in the map.
if (auto *C = dyn_cast<Constant>(V))
LV.markConstant(C); // Constants are constant
// All others are unknown by default.
return LV;
}
/// getStructValueState - Return the ValueLatticeElement object that
/// corresponds to the value/field pair. This function handles the case when
/// the value hasn't been seen yet by properly seeding constants etc.
ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
assert(V->getType()->isStructTy() && "Should use getValueState");
assert(i < cast<StructType>(V->getType())->getNumElements() &&
"Invalid element #");
auto I = StructValueState.insert(
std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
ValueLatticeElement &LV = I.first->second;
if (!I.second)
return LV; // Common case, already in the map.
if (auto *C = dyn_cast<Constant>(V)) {
Constant *Elt = C->getAggregateElement(i);
if (!Elt)
LV.markOverdefined(); // Unknown sort of constant.
else
LV.markConstant(Elt); // Constants are constant.
}
// All others are underdefined by default.
return LV;
}
/// Traverse the use-def chain of \p Call, marking itself and its users as
/// "unknown" on the way.
void invalidate(CallBase *Call) {
SmallVector<Instruction *, 64> ToInvalidate;
ToInvalidate.push_back(Call);
while (!ToInvalidate.empty()) {
Instruction *Inst = ToInvalidate.pop_back_val();
if (!Invalidated.insert(Inst).second)
continue;
if (!BBExecutable.count(Inst->getParent()))
continue;
Value *V = nullptr;
// For return instructions we need to invalidate the tracked returns map.
// Anything else has its lattice in the value map.
if (auto *RetInst = dyn_cast<ReturnInst>(Inst)) {
Function *F = RetInst->getParent()->getParent();
if (auto It = TrackedRetVals.find(F); It != TrackedRetVals.end()) {
It->second = ValueLatticeElement();
V = F;
} else if (MRVFunctionsTracked.count(F)) {
auto *STy = cast<StructType>(F->getReturnType());
for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
TrackedMultipleRetVals[{F, I}] = ValueLatticeElement();
V = F;
}
} else if (auto *STy = dyn_cast<StructType>(Inst->getType())) {
for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
if (auto It = StructValueState.find({Inst, I});
It != StructValueState.end()) {
It->second = ValueLatticeElement();
V = Inst;
}
}
} else if (auto It = ValueState.find(Inst); It != ValueState.end()) {
It->second = ValueLatticeElement();
V = Inst;
}
if (V) {
LLVM_DEBUG(dbgs() << "Invalidated lattice for " << *V << "\n");
for (User *U : V->users())
if (auto *UI = dyn_cast<Instruction>(U))
ToInvalidate.push_back(UI);
auto It = AdditionalUsers.find(V);
if (It != AdditionalUsers.end())
for (User *U : It->second)
if (auto *UI = dyn_cast<Instruction>(U))
ToInvalidate.push_back(UI);
}
}
}
/// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
/// work list if it is not already executable.
bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
// getFeasibleSuccessors - Return a vector of booleans to indicate which
// successors are reachable from a given terminator instruction.
void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
// OperandChangedState - This method is invoked on all of the users of an
// instruction that was just changed state somehow. Based on this
// information, we need to update the specified user of this instruction.
void operandChangedState(Instruction *I) {
if (BBExecutable.count(I->getParent())) // Inst is executable?
visit(*I);
}
// Add U as additional user of V.
void addAdditionalUser(Value *V, User *U) {
auto Iter = AdditionalUsers.insert({V, {}});
Iter.first->second.insert(U);
}
// Mark I's users as changed, including AdditionalUsers.
void markUsersAsChanged(Value *I) {
// Functions include their arguments in the use-list. Changed function
// values mean that the result of the function changed. We only need to
// update the call sites with the new function result and do not have to
// propagate the call arguments.
if (isa<Function>(I)) {
for (User *U : I->users()) {
if (auto *CB = dyn_cast<CallBase>(U))
handleCallResult(*CB);
}
} else {
for (User *U : I->users())
if (auto *UI = dyn_cast<Instruction>(U))
operandChangedState(UI);
}
auto Iter = AdditionalUsers.find(I);
if (Iter != AdditionalUsers.end()) {
// Copy additional users before notifying them of changes, because new
// users may be added, potentially invalidating the iterator.
SmallVector<Instruction *, 2> ToNotify;
for (User *U : Iter->second)
if (auto *UI = dyn_cast<Instruction>(U))
ToNotify.push_back(UI);
for (Instruction *UI : ToNotify)
operandChangedState(UI);
}
}
void handleCallOverdefined(CallBase &CB);
void handleCallResult(CallBase &CB);
void handleCallArguments(CallBase &CB);
void handleExtractOfWithOverflow(ExtractValueInst &EVI,
const WithOverflowInst *WO, unsigned Idx);
private:
friend class InstVisitor<SCCPInstVisitor>;
// visit implementations - Something changed in this instruction. Either an
// operand made a transition, or the instruction is newly executable. Change
// the value type of I to reflect these changes if appropriate.
void visitPHINode(PHINode &I);
// Terminators
void visitReturnInst(ReturnInst &I);
void visitTerminator(Instruction &TI);
void visitCastInst(CastInst &I);
void visitSelectInst(SelectInst &I);
void visitUnaryOperator(Instruction &I);
void visitFreezeInst(FreezeInst &I);
void visitBinaryOperator(Instruction &I);
void visitCmpInst(CmpInst &I);
void visitExtractValueInst(ExtractValueInst &EVI);
void visitInsertValueInst(InsertValueInst &IVI);
void visitCatchSwitchInst(CatchSwitchInst &CPI) {
markOverdefined(&CPI);
visitTerminator(CPI);
}
// Instructions that cannot be folded away.
void visitStoreInst(StoreInst &I);
void visitLoadInst(LoadInst &I);
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitInvokeInst(InvokeInst &II) {
visitCallBase(II);
visitTerminator(II);
}
void visitCallBrInst(CallBrInst &CBI) {
visitCallBase(CBI);
visitTerminator(CBI);
}
void visitCallBase(CallBase &CB);
void visitResumeInst(ResumeInst &I) { /*returns void*/
}
void visitUnreachableInst(UnreachableInst &I) { /*returns void*/
}
void visitFenceInst(FenceInst &I) { /*returns void*/
}
void visitInstruction(Instruction &I);
public:
void addPredicateInfo(Function &F, DominatorTree &DT, AssumptionCache &AC) {
FnPredicateInfo.insert({&F, std::make_unique<PredicateInfo>(F, DT, AC)});
}
void visitCallInst(CallInst &I) { visitCallBase(I); }
bool markBlockExecutable(BasicBlock *BB);
const PredicateBase *getPredicateInfoFor(Instruction *I) {
auto It = FnPredicateInfo.find(I->getParent()->getParent());
if (It == FnPredicateInfo.end())
return nullptr;
return It->second->getPredicateInfoFor(I);
}
SCCPInstVisitor(const DataLayout &DL,
std::function<const TargetLibraryInfo &(Function &)> GetTLI,
LLVMContext &Ctx)
: DL(DL), GetTLI(GetTLI), Ctx(Ctx) {}
void trackValueOfGlobalVariable(GlobalVariable *GV) {
// We only track the contents of scalar globals.
if (GV->getValueType()->isSingleValueType()) {
ValueLatticeElement &IV = TrackedGlobals[GV];
IV.markConstant(GV->getInitializer());
}
}
void addTrackedFunction(Function *F) {
// Add an entry, F -> undef.
if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
MRVFunctionsTracked.insert(F);
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
TrackedMultipleRetVals.insert(
std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
} else if (!F->getReturnType()->isVoidTy())
TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
}
void addToMustPreserveReturnsInFunctions(Function *F) {
MustPreserveReturnsInFunctions.insert(F);
}
bool mustPreserveReturn(Function *F) {
return MustPreserveReturnsInFunctions.count(F);
}
void addArgumentTrackedFunction(Function *F) {
TrackingIncomingArguments.insert(F);
}
bool isArgumentTrackedFunction(Function *F) {
return TrackingIncomingArguments.count(F);
}
void solve();
bool resolvedUndef(Instruction &I);
bool resolvedUndefsIn(Function &F);
bool isBlockExecutable(BasicBlock *BB) const {
return BBExecutable.count(BB);
}
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
std::vector<ValueLatticeElement> StructValues;
auto *STy = dyn_cast<StructType>(V->getType());
assert(STy && "getStructLatticeValueFor() can be called only on structs");
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
auto I = StructValueState.find(std::make_pair(V, i));
assert(I != StructValueState.end() && "Value not in valuemap!");
StructValues.push_back(I->second);
}
return StructValues;
}
void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
/// Invalidate the Lattice Value of \p Call and its users after specializing
/// the call. Then recompute it.
void resetLatticeValueFor(CallBase *Call) {
// Calls to void returning functions do not need invalidation.
Function *F = Call->getCalledFunction();
(void)F;
assert(!F->getReturnType()->isVoidTy() &&
(TrackedRetVals.count(F) || MRVFunctionsTracked.count(F)) &&
"All non void specializations should be tracked");
invalidate(Call);
handleCallResult(*Call);
}
const ValueLatticeElement &getLatticeValueFor(Value *V) const {
assert(!V->getType()->isStructTy() &&
"Should use getStructLatticeValueFor");
DenseMap<Value *, ValueLatticeElement>::const_iterator I =
ValueState.find(V);
assert(I != ValueState.end() &&
"V not found in ValueState nor Paramstate map!");
return I->second;
}
const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() {
return TrackedRetVals;
}
const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() {
return TrackedGlobals;
}
const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
return MRVFunctionsTracked;
}
void markOverdefined(Value *V) {
if (auto *STy = dyn_cast<StructType>(V->getType()))
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
markOverdefined(getStructValueState(V, i), V);
else
markOverdefined(ValueState[V], V);
}
void trackValueOfArgument(Argument *A) {
if (A->getType()->isIntegerTy()) {
if (std::optional<ConstantRange> Range = A->getRange()) {
markConstantRange(ValueState[A], A, *Range);
return;
}
}
// Assume nothing about the incoming arguments without range.
markOverdefined(A);
}
bool isStructLatticeConstant(Function *F, StructType *STy);
Constant *getConstant(const ValueLatticeElement &LV, Type *Ty) const;
Constant *getConstantOrNull(Value *V) const;
SmallPtrSetImpl<Function *> &getArgumentTrackedFunctions() {
return TrackingIncomingArguments;
}
void setLatticeValueForSpecializationArguments(Function *F,
const SmallVectorImpl<ArgInfo> &Args);
void markFunctionUnreachable(Function *F) {
for (auto &BB : *F)
BBExecutable.erase(&BB);
}
void solveWhileResolvedUndefsIn(Module &M) {
bool ResolvedUndefs = true;
while (ResolvedUndefs) {
solve();
ResolvedUndefs = false;
for (Function &F : M)
ResolvedUndefs |= resolvedUndefsIn(F);
}
}
void solveWhileResolvedUndefsIn(SmallVectorImpl<Function *> &WorkList) {
bool ResolvedUndefs = true;
while (ResolvedUndefs) {
solve();
ResolvedUndefs = false;
for (Function *F : WorkList)
ResolvedUndefs |= resolvedUndefsIn(*F);
}
}
void solveWhileResolvedUndefs() {
bool ResolvedUndefs = true;
while (ResolvedUndefs) {
solve();
ResolvedUndefs = false;
for (Value *V : Invalidated)
if (auto *I = dyn_cast<Instruction>(V))
ResolvedUndefs |= resolvedUndef(*I);
}
Invalidated.clear();
}
};
} // namespace llvm
bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) {
if (!BBExecutable.insert(BB).second)
return false;
LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
BBWorkList.push_back(BB); // Add the block to the work list!
return true;
}
void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) {
if (IV.isOverdefined()) {
if (OverdefinedInstWorkList.empty() || OverdefinedInstWorkList.back() != V)
OverdefinedInstWorkList.push_back(V);
return;
}
if (InstWorkList.empty() || InstWorkList.back() != V)
InstWorkList.push_back(V);
}
void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
pushToWorkList(IV, V);
}
bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V,
Constant *C, bool MayIncludeUndef) {
if (!IV.markConstant(C, MayIncludeUndef))
return false;
LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
pushToWorkList(IV, V);
return true;
}
bool SCCPInstVisitor::markConstantRange(ValueLatticeElement &IV, Value *V,
const ConstantRange &CR) {
if (!IV.markConstantRange(CR))
return false;
LLVM_DEBUG(dbgs() << "markConstantRange: " << CR << ": " << *V << '\n');
pushToWorkList(IV, V);
return true;
}
bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) {
if (!IV.markOverdefined())
return false;
LLVM_DEBUG(dbgs() << "markOverdefined: ";
if (auto *F = dyn_cast<Function>(V)) dbgs()
<< "Function '" << F->getName() << "'\n";
else dbgs() << *V << '\n');
// Only instructions go on the work list
pushToWorkList(IV, V);
return true;
}
bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) {
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
assert(It != TrackedMultipleRetVals.end());
ValueLatticeElement LV = It->second;
if (!SCCPSolver::isConstant(LV))
return false;
}
return true;
}
Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV,
Type *Ty) const {
if (LV.isConstant()) {
Constant *C = LV.getConstant();
assert(C->getType() == Ty && "Type mismatch");
return C;
}
if (LV.isConstantRange()) {
const auto &CR = LV.getConstantRange();
if (CR.getSingleElement())
return ConstantInt::get(Ty, *CR.getSingleElement());
}
return nullptr;
}
Constant *SCCPInstVisitor::getConstantOrNull(Value *V) const {
Constant *Const = nullptr;
if (V->getType()->isStructTy()) {
std::vector<ValueLatticeElement> LVs = getStructLatticeValueFor(V);
if (any_of(LVs, SCCPSolver::isOverdefined))
return nullptr;
std::vector<Constant *> ConstVals;
auto *ST = cast<StructType>(V->getType());
for (unsigned I = 0, E = ST->getNumElements(); I != E; ++I) {
ValueLatticeElement LV = LVs[I];
ConstVals.push_back(SCCPSolver::isConstant(LV)
? getConstant(LV, ST->getElementType(I))
: UndefValue::get(ST->getElementType(I)));
}
Const = ConstantStruct::get(ST, ConstVals);
} else {
const ValueLatticeElement &LV = getLatticeValueFor(V);
if (SCCPSolver::isOverdefined(LV))
return nullptr;
Const = SCCPSolver::isConstant(LV) ? getConstant(LV, V->getType())
: UndefValue::get(V->getType());
}
assert(Const && "Constant is nullptr here!");
return Const;
}
void SCCPInstVisitor::setLatticeValueForSpecializationArguments(Function *F,
const SmallVectorImpl<ArgInfo> &Args) {
assert(!Args.empty() && "Specialization without arguments");
assert(F->arg_size() == Args[0].Formal->getParent()->arg_size() &&
"Functions should have the same number of arguments");
auto Iter = Args.begin();
Function::arg_iterator NewArg = F->arg_begin();
Function::arg_iterator OldArg = Args[0].Formal->getParent()->arg_begin();
for (auto End = F->arg_end(); NewArg != End; ++NewArg, ++OldArg) {
LLVM_DEBUG(dbgs() << "SCCP: Marking argument "
<< NewArg->getNameOrAsOperand() << "\n");
// Mark the argument constants in the new function
// or copy the lattice state over from the old function.
if (Iter != Args.end() && Iter->Formal == &*OldArg) {
if (auto *STy = dyn_cast<StructType>(NewArg->getType())) {
for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}];
NewValue.markConstant(Iter->Actual->getAggregateElement(I));
}
} else {
ValueState[&*NewArg].markConstant(Iter->Actual);
}
++Iter;
} else {
if (auto *STy = dyn_cast<StructType>(NewArg->getType())) {
for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}];
NewValue = StructValueState[{&*OldArg, I}];
}
} else {
ValueLatticeElement &NewValue = ValueState[&*NewArg];
NewValue = ValueState[&*OldArg];
}
}
}
}
void SCCPInstVisitor::visitInstruction(Instruction &I) {
// All the instructions we don't do any special handling for just
// go to overdefined.
LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
markOverdefined(&I);
}
bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V,
ValueLatticeElement MergeWithV,
ValueLatticeElement::MergeOptions Opts) {
if (IV.mergeIn(MergeWithV, Opts)) {
pushToWorkList(IV, V);
LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
<< IV << "\n");
return true;
}
return false;
}
bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
return false; // This edge is already known to be executable!
if (!markBlockExecutable(Dest)) {
// If the destination is already executable, we just made an *edge*
// feasible that wasn't before. Revisit the PHI nodes in the block
// because they have potentially new operands.
LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
<< " -> " << Dest->getName() << '\n');
for (PHINode &PN : Dest->phis())
visitPHINode(PN);
}
return true;
}
// getFeasibleSuccessors - Return a vector of booleans to indicate which
// successors are reachable from a given terminator instruction.
void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI,
SmallVectorImpl<bool> &Succs) {
Succs.resize(TI.getNumSuccessors());
if (auto *BI = dyn_cast<BranchInst>(&TI)) {
if (BI->isUnconditional()) {
Succs[0] = true;
return;
}
ValueLatticeElement BCValue = getValueState(BI->getCondition());
ConstantInt *CI = getConstantInt(BCValue, BI->getCondition()->getType());
if (!CI) {
// Overdefined condition variables, and branches on unfoldable constant
// conditions, mean the branch could go either way.
if (!BCValue.isUnknownOrUndef())
Succs[0] = Succs[1] = true;
return;
}
// Constant condition variables mean the branch can only go a single way.
Succs[CI->isZero()] = true;
return;
}
// We cannot analyze special terminators, so consider all successors
// executable.
if (TI.isSpecialTerminator()) {
Succs.assign(TI.getNumSuccessors(), true);
return;
}
if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
if (!SI->getNumCases()) {
Succs[0] = true;
return;
}
const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
if (ConstantInt *CI =
getConstantInt(SCValue, SI->getCondition()->getType())) {
Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
return;
}
// TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
// is ready.
if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
const ConstantRange &Range = SCValue.getConstantRange();
unsigned ReachableCaseCount = 0;
for (const auto &Case : SI->cases()) {
const APInt &CaseValue = Case.getCaseValue()->getValue();
if (Range.contains(CaseValue)) {
Succs[Case.getSuccessorIndex()] = true;
++ReachableCaseCount;
}
}
Succs[SI->case_default()->getSuccessorIndex()] =
Range.isSizeLargerThan(ReachableCaseCount);
return;
}
// Overdefined or unknown condition? All destinations are executable!
if (!SCValue.isUnknownOrUndef())
Succs.assign(TI.getNumSuccessors(), true);
return;
}
// In case of indirect branch and its address is a blockaddress, we mark
// the target as executable.
if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
// Casts are folded by visitCastInst.
ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(
getConstant(IBRValue, IBR->getAddress()->getType()));
if (!Addr) { // Overdefined or unknown condition?
// All destinations are executable!
if (!IBRValue.isUnknownOrUndef())
Succs.assign(TI.getNumSuccessors(), true);
return;
}
BasicBlock *T = Addr->getBasicBlock();
assert(Addr->getFunction() == T->getParent() &&
"Block address of a different function ?");
for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
// This is the target.
if (IBR->getDestination(i) == T) {
Succs[i] = true;
return;
}
}
// If we didn't find our destination in the IBR successor list, then we
// have undefined behavior. Its ok to assume no successor is executable.
return;
}
LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
llvm_unreachable("SCCP: Don't know how to handle this terminator!");
}
// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
// block to the 'To' basic block is currently feasible.
bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
// Check if we've called markEdgeExecutable on the edge yet. (We could
// be more aggressive and try to consider edges which haven't been marked
// yet, but there isn't any need.)
return KnownFeasibleEdges.count(Edge(From, To));
}
// visit Implementations - Something changed in this instruction, either an
// operand made a transition, or the instruction is newly executable. Change
// the value type of I to reflect these changes if appropriate. This method
// makes sure to do the following actions:
//
// 1. If a phi node merges two constants in, and has conflicting value coming
// from different branches, or if the PHI node merges in an overdefined
// value, then the PHI node becomes overdefined.
// 2. If a phi node merges only constants in, and they all agree on value, the
// PHI node becomes a constant value equal to that.
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
// 6. If a conditional branch has a value that is constant, make the selected
// destination executable
// 7. If a conditional branch has a value that is overdefined, make all
// successors executable.
void SCCPInstVisitor::visitPHINode(PHINode &PN) {
// If this PN returns a struct, just mark the result overdefined.
// TODO: We could do a lot better than this if code actually uses this.
if (PN.getType()->isStructTy())
return (void)markOverdefined(&PN);
if (getValueState(&PN).isOverdefined())
return; // Quick exit
// Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
// and slow us down a lot. Just mark them overdefined.
if (PN.getNumIncomingValues() > 64)
return (void)markOverdefined(&PN);
unsigned NumActiveIncoming = 0;
// Look at all of the executable operands of the PHI node. If any of them
// are overdefined, the PHI becomes overdefined as well. If they are all
// constant, and they agree with each other, the PHI becomes the identical
// constant. If they are constant and don't agree, the PHI is a constant
// range. If there are no executable operands, the PHI remains unknown.
ValueLatticeElement PhiState = getValueState(&PN);
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
continue;
ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
PhiState.mergeIn(IV);
NumActiveIncoming++;
if (PhiState.isOverdefined())
break;
}
// We allow up to 1 range extension per active incoming value and one
// additional extension. Note that we manually adjust the number of range
// extensions to match the number of active incoming values. This helps to
// limit multiple extensions caused by the same incoming value, if other
// incoming values are equal.
mergeInValue(&PN, PhiState,
ValueLatticeElement::MergeOptions().setMaxWidenSteps(
NumActiveIncoming + 1));
ValueLatticeElement &PhiStateRef = getValueState(&PN);
PhiStateRef.setNumRangeExtensions(
std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
}
void SCCPInstVisitor::visitReturnInst(ReturnInst &I) {
if (I.getNumOperands() == 0)
return; // ret void
Function *F = I.getParent()->getParent();
Value *ResultOp = I.getOperand(0);
// If we are tracking the return value of this function, merge it in.
if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
auto TFRVI = TrackedRetVals.find(F);
if (TFRVI != TrackedRetVals.end()) {
mergeInValue(TFRVI->second, F, getValueState(ResultOp));
return;
}
}
// Handle functions that return multiple values.
if (!TrackedMultipleRetVals.empty()) {
if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
if (MRVFunctionsTracked.count(F))
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
getStructValueState(ResultOp, i));
}
}
void SCCPInstVisitor::visitTerminator(Instruction &TI) {
SmallVector<bool, 16> SuccFeasible;
getFeasibleSuccessors(TI, SuccFeasible);
BasicBlock *BB = TI.getParent();
// Mark all feasible successors executable.
for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
if (SuccFeasible[i])
markEdgeExecutable(BB, TI.getSuccessor(i));
}
void SCCPInstVisitor::visitCastInst(CastInst &I) {
// ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
// discover a concrete value later.
if (ValueState[&I].isOverdefined())
return;
ValueLatticeElement OpSt = getValueState(I.getOperand(0));
if (OpSt.isUnknownOrUndef())
return;
if (Constant *OpC = getConstant(OpSt, I.getOperand(0)->getType())) {
// Fold the constant as we build.
if (Constant *C =
ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL))
return (void)markConstant(&I, C);
}
if (I.getDestTy()->isIntegerTy() && I.getSrcTy()->isIntOrIntVectorTy()) {
auto &LV = getValueState(&I);
ConstantRange OpRange = getConstantRange(OpSt, I.getSrcTy());
Type *DestTy = I.getDestTy();
// Vectors where all elements have the same known constant range are treated
// as a single constant range in the lattice. When bitcasting such vectors,
// there is a mis-match between the width of the lattice value (single
// constant range) and the original operands (vector). Go to overdefined in
// that case.
if (I.getOpcode() == Instruction::BitCast &&
I.getOperand(0)->getType()->isVectorTy() &&
OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
return (void)markOverdefined(&I);
ConstantRange Res =
OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
} else
markOverdefined(&I);
}
void SCCPInstVisitor::handleExtractOfWithOverflow(ExtractValueInst &EVI,
const WithOverflowInst *WO,
unsigned Idx) {
Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
ValueLatticeElement L = getValueState(LHS);
ValueLatticeElement R = getValueState(RHS);
addAdditionalUser(LHS, &EVI);
addAdditionalUser(RHS, &EVI);
if (L.isUnknownOrUndef() || R.isUnknownOrUndef())
return; // Wait to resolve.
Type *Ty = LHS->getType();
ConstantRange LR = getConstantRange(L, Ty);
ConstantRange RR = getConstantRange(R, Ty);
if (Idx == 0) {
ConstantRange Res = LR.binaryOp(WO->getBinaryOp(), RR);
mergeInValue(&EVI, ValueLatticeElement::getRange(Res));
} else {
assert(Idx == 1 && "Index can only be 0 or 1");
ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
WO->getBinaryOp(), RR, WO->getNoWrapKind());
if (NWRegion.contains(LR))
return (void)markConstant(&EVI, ConstantInt::getFalse(EVI.getType()));
markOverdefined(&EVI);
}
}
void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) {
// If this returns a struct, mark all elements over defined, we don't track
// structs in structs.
if (EVI.getType()->isStructTy())
return (void)markOverdefined(&EVI);
// resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
// discover a concrete value later.
if (ValueState[&EVI].isOverdefined())
return (void)markOverdefined(&EVI);
// If this is extracting from more than one level of struct, we don't know.
if (EVI.getNumIndices() != 1)
return (void)markOverdefined(&EVI);
Value *AggVal = EVI.getAggregateOperand();
if (AggVal->getType()->isStructTy()) {
unsigned i = *EVI.idx_begin();
if (auto *WO = dyn_cast<WithOverflowInst>(AggVal))
return handleExtractOfWithOverflow(EVI, WO, i);
ValueLatticeElement EltVal = getStructValueState(AggVal, i);
mergeInValue(getValueState(&EVI), &EVI, EltVal);
} else {
// Otherwise, must be extracting from an array.
return (void)markOverdefined(&EVI);
}
}
void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) {
auto *STy = dyn_cast<StructType>(IVI.getType());
if (!STy)
return (void)markOverdefined(&IVI);
// resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
// discover a concrete value later.
if (SCCPSolver::isOverdefined(ValueState[&IVI]))
return (void)markOverdefined(&IVI);
// If this has more than one index, we can't handle it, drive all results to
// undef.
if (IVI.getNumIndices() != 1)
return (void)markOverdefined(&IVI);
Value *Aggr = IVI.getAggregateOperand();
unsigned Idx = *IVI.idx_begin();
// Compute the result based on what we're inserting.
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
// This passes through all values that aren't the inserted element.
if (i != Idx) {
ValueLatticeElement EltVal = getStructValueState(Aggr, i);
mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
continue;
}
Value *Val = IVI.getInsertedValueOperand();
if (Val->getType()->isStructTy())
// We don't track structs in structs.
markOverdefined(getStructValueState(&IVI, i), &IVI);
else {
ValueLatticeElement InVal = getValueState(Val);
mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
}
}
}
void SCCPInstVisitor::visitSelectInst(SelectInst &I) {
// If this select returns a struct, just mark the result overdefined.
// TODO: We could do a lot better than this if code actually uses this.
if (I.getType()->isStructTy())
return (void)markOverdefined(&I);
// resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
// discover a concrete value later.
if (ValueState[&I].isOverdefined())
return (void)markOverdefined(&I);
ValueLatticeElement CondValue = getValueState(I.getCondition());
if (CondValue.isUnknownOrUndef())
return;
if (ConstantInt *CondCB =
getConstantInt(CondValue, I.getCondition()->getType())) {
Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
mergeInValue(&I, getValueState(OpVal));
return;
}
// Otherwise, the condition is overdefined or a constant we can't evaluate.
// See if we can produce something better than overdefined based on the T/F
// value.
ValueLatticeElement TVal = getValueState(I.getTrueValue());
ValueLatticeElement FVal = getValueState(I.getFalseValue());
bool Changed = ValueState[&I].mergeIn(TVal);
Changed |= ValueState[&I].mergeIn(FVal);
if (Changed)
pushToWorkListMsg(ValueState[&I], &I);
}
// Handle Unary Operators.
void SCCPInstVisitor::visitUnaryOperator(Instruction &I) {
ValueLatticeElement V0State = getValueState(I.getOperand(0));
ValueLatticeElement &IV = ValueState[&I];
// resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
// discover a concrete value later.
if (SCCPSolver::isOverdefined(IV))
return (void)markOverdefined(&I);
// If something is unknown/undef, wait for it to resolve.
if (V0State.isUnknownOrUndef())
return;
if (SCCPSolver::isConstant(V0State))
if (Constant *C = ConstantFoldUnaryOpOperand(
I.getOpcode(), getConstant(V0State, I.getType()), DL))
return (void)markConstant(IV, &I, C);
markOverdefined(&I);
}
void SCCPInstVisitor::visitFreezeInst(FreezeInst &I) {
// If this freeze returns a struct, just mark the result overdefined.
// TODO: We could do a lot better than this.
if (I.getType()->isStructTy())
return (void)markOverdefined(&I);
ValueLatticeElement V0State = getValueState(I.getOperand(0));
ValueLatticeElement &IV = ValueState[&I];
// resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
// discover a concrete value later.
if (SCCPSolver::isOverdefined(IV))
return (void)markOverdefined(&I);
// If something is unknown/undef, wait for it to resolve.
if (V0State.isUnknownOrUndef())
return;
if (SCCPSolver::isConstant(V0State) &&
isGuaranteedNotToBeUndefOrPoison(getConstant(V0State, I.getType())))
return (void)markConstant(IV, &I, getConstant(V0State, I.getType()));
markOverdefined(&I);
}
// Handle Binary Operators.
void SCCPInstVisitor::visitBinaryOperator(Instruction &I) {
ValueLatticeElement V1State = getValueState(I.getOperand(0));
ValueLatticeElement V2State = getValueState(I.getOperand(1));
ValueLatticeElement &IV = ValueState[&I];
if (IV.isOverdefined())
return;
// If something is undef, wait for it to resolve.
if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
return;
if (V1State.isOverdefined() && V2State.isOverdefined())
return (void)markOverdefined(&I);
// If either of the operands is a constant, try to fold it to a constant.
// TODO: Use information from notconstant better.
if ((V1State.isConstant() || V2State.isConstant())) {
Value *V1 = SCCPSolver::isConstant(V1State)
? getConstant(V1State, I.getOperand(0)->getType())
: I.getOperand(0);
Value *V2 = SCCPSolver::isConstant(V2State)
? getConstant(V2State, I.getOperand(1)->getType())
: I.getOperand(1);
Value *R = simplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
auto *C = dyn_cast_or_null<Constant>(R);
if (C) {
// Conservatively assume that the result may be based on operands that may
// be undef. Note that we use mergeInValue to combine the constant with
// the existing lattice value for I, as different constants might be found
// after one of the operands go to overdefined, e.g. due to one operand
// being a special floating value.
ValueLatticeElement NewV;
NewV.markConstant(C, /*MayIncludeUndef=*/true);
return (void)mergeInValue(&I, NewV);
}
}
// Only use ranges for binary operators on integers.
if (!I.getType()->isIntegerTy())
return markOverdefined(&I);
// Try to simplify to a constant range.
ConstantRange A = getConstantRange(V1State, I.getType());
ConstantRange B = getConstantRange(V2State, I.getType());
auto *BO = cast<BinaryOperator>(&I);
ConstantRange R = ConstantRange::getEmpty(I.getType()->getScalarSizeInBits());
if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO))
R = A.overflowingBinaryOp(BO->getOpcode(), B, OBO->getNoWrapKind());
else
R = A.binaryOp(BO->getOpcode(), B);
mergeInValue(&I, ValueLatticeElement::getRange(R));
// TODO: Currently we do not exploit special values that produce something
// better than overdefined with an overdefined operand for vector or floating
// point types, like and <4 x i32> overdefined, zeroinitializer.
}
// Handle ICmpInst instruction.
void SCCPInstVisitor::visitCmpInst(CmpInst &I) {
// Do not cache this lookup, getValueState calls later in the function might
// invalidate the reference.
if (SCCPSolver::isOverdefined(ValueState[&I]))
return (void)markOverdefined(&I);
Value *Op1 = I.getOperand(0);
Value *Op2 = I.getOperand(1);
// For parameters, use ParamState which includes constant range info if
// available.
auto V1State = getValueState(Op1);
auto V2State = getValueState(Op2);
Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State, DL);
if (C) {
ValueLatticeElement CV;
CV.markConstant(C);
mergeInValue(&I, CV);
return;
}
// If operands are still unknown, wait for it to resolve.
if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
!SCCPSolver::isConstant(ValueState[&I]))
return;
markOverdefined(&I);
}
// Handle getelementptr instructions. If all operands are constants then we
// can turn this into a getelementptr ConstantExpr.
void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
if (SCCPSolver::isOverdefined(ValueState[&I]))
return (void)markOverdefined(&I);
SmallVector<Constant *, 8> Operands;
Operands.reserve(I.getNumOperands());
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
ValueLatticeElement State = getValueState(I.getOperand(i));
if (State.isUnknownOrUndef())
return; // Operands are not resolved yet.
if (SCCPSolver::isOverdefined(State))
return (void)markOverdefined(&I);
if (Constant *C = getConstant(State, I.getOperand(i)->getType())) {
Operands.push_back(C);
continue;
}
return (void)markOverdefined(&I);
}
if (Constant *C = ConstantFoldInstOperands(&I, Operands, DL))
markConstant(&I, C);
}
void SCCPInstVisitor::visitStoreInst(StoreInst &SI) {
// If this store is of a struct, ignore it.
if (SI.getOperand(0)->getType()->isStructTy())
return;
if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
return;
GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
auto I = TrackedGlobals.find(GV);
if (I == TrackedGlobals.end())
return;
// Get the value we are storing into the global, then merge it.
mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
ValueLatticeElement::MergeOptions().setCheckWiden(false));
if (I->second.isOverdefined())
TrackedGlobals.erase(I); // No need to keep tracking this!
}
static ValueLatticeElement getValueFromMetadata(const Instruction *I) {
if (I->getType()->isIntegerTy()) {
if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
return ValueLatticeElement::getRange(
getConstantRangeFromMetadata(*Ranges));
if (const auto *CB = dyn_cast<CallBase>(I))
if (std::optional<ConstantRange> Range = CB->getRange())
return ValueLatticeElement::getRange(*Range);
}
if (I->hasMetadata(LLVMContext::MD_nonnull))
return ValueLatticeElement::getNot(
ConstantPointerNull::get(cast<PointerType>(I->getType())));
return ValueLatticeElement::getOverdefined();
}
// Handle load instructions. If the operand is a constant pointer to a constant
// global, we can replace the load with the loaded constant value!
void SCCPInstVisitor::visitLoadInst(LoadInst &I) {
// If this load is of a struct or the load is volatile, just mark the result
// as overdefined.
if (I.getType()->isStructTy() || I.isVolatile())
return (void)markOverdefined(&I);
// resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
// discover a concrete value later.
if (ValueState[&I].isOverdefined())
return (void)markOverdefined(&I);
ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
if (PtrVal.isUnknownOrUndef())
return; // The pointer is not resolved yet!
ValueLatticeElement &IV = ValueState[&I];
if (SCCPSolver::isConstant(PtrVal)) {
Constant *Ptr = getConstant(PtrVal, I.getOperand(0)->getType());
// load null is undefined.
if (isa<ConstantPointerNull>(Ptr)) {
if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
return (void)markOverdefined(IV, &I);
else
return;
}
// Transform load (constant global) into the value loaded.
if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
if (!TrackedGlobals.empty()) {
// If we are tracking this global, merge in the known value for it.
auto It = TrackedGlobals.find(GV);
if (It != TrackedGlobals.end()) {
mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
return;
}
}
}
// Transform load from a constant into a constant if possible.
if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL))
return (void)markConstant(IV, &I, C);
}
// Fall back to metadata.
mergeInValue(&I, getValueFromMetadata(&I));
}
void SCCPInstVisitor::visitCallBase(CallBase &CB) {
handleCallResult(CB);
handleCallArguments(CB);
}
void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) {
Function *F = CB.getCalledFunction();
// Void return and not tracking callee, just bail.
if (CB.getType()->isVoidTy())
return;
// Always mark struct return as overdefined.
if (CB.getType()->isStructTy())
return (void)markOverdefined(&CB);
// Otherwise, if we have a single return value case, and if the function is
// a declaration, maybe we can constant fold it.
if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
SmallVector<Constant *, 8> Operands;
for (const Use &A : CB.args()) {
if (A.get()->getType()->isStructTy())
return markOverdefined(&CB); // Can't handle struct args.
if (A.get()->getType()->isMetadataTy())
continue; // Carried in CB, not allowed in Operands.
ValueLatticeElement State = getValueState(A);
if (State.isUnknownOrUndef())
return; // Operands are not resolved yet.
if (SCCPSolver::isOverdefined(State))
return (void)markOverdefined(&CB);
assert(SCCPSolver::isConstant(State) && "Unknown state!");
Operands.push_back(getConstant(State, A->getType()));
}
if (SCCPSolver::isOverdefined(getValueState(&CB)))
return (void)markOverdefined(&CB);
// If we can constant fold this, mark the result of the call as a
// constant.
if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F)))
return (void)markConstant(&CB, C);
}
// Fall back to metadata.
mergeInValue(&CB, getValueFromMetadata(&CB));
}
void SCCPInstVisitor::handleCallArguments(CallBase &CB) {
Function *F = CB.getCalledFunction();
// If this is a local function that doesn't have its address taken, mark its
// entry block executable and merge in the actual arguments to the call into
// the formal arguments of the function.
if (TrackingIncomingArguments.count(F)) {
markBlockExecutable(&F->front());
// Propagate information from this call site into the callee.
auto CAI = CB.arg_begin();
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
++AI, ++CAI) {
// If this argument is byval, and if the function is not readonly, there
// will be an implicit copy formed of the input aggregate.
if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
markOverdefined(&*AI);
continue;
}
if (auto *STy = dyn_cast<StructType>(AI->getType())) {
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
ValueLatticeElement CallArg = getStructValueState(*CAI, i);
mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
getMaxWidenStepsOpts());
}
} else
mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
}
}
}
void SCCPInstVisitor::handleCallResult(CallBase &CB) {
Function *F = CB.getCalledFunction();
if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
if (ValueState[&CB].isOverdefined())
return;
Value *CopyOf = CB.getOperand(0);
ValueLatticeElement CopyOfVal = getValueState(CopyOf);
const auto *PI = getPredicateInfoFor(&CB);
assert(PI && "Missing predicate info for ssa.copy");
const std::optional<PredicateConstraint> &Constraint =
PI->getConstraint();
if (!Constraint) {
mergeInValue(ValueState[&CB], &CB, CopyOfVal);
return;
}
CmpInst::Predicate Pred = Constraint->Predicate;
Value *OtherOp = Constraint->OtherOp;
// Wait until OtherOp is resolved.
if (getValueState(OtherOp).isUnknown()) {
addAdditionalUser(OtherOp, &CB);
return;
}
ValueLatticeElement CondVal = getValueState(OtherOp);
ValueLatticeElement &IV = ValueState[&CB];
if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
auto ImposedCR =
ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
// Get the range imposed by the condition.
if (CondVal.isConstantRange())
ImposedCR = ConstantRange::makeAllowedICmpRegion(
Pred, CondVal.getConstantRange());
// Combine range info for the original value with the new range from the
// condition.
auto CopyOfCR = getConstantRange(CopyOfVal, CopyOf->getType());
auto NewCR = ImposedCR.intersectWith(CopyOfCR);
// If the existing information is != x, do not use the information from
// a chained predicate, as the != x information is more likely to be
// helpful in practice.
if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
NewCR = CopyOfCR;
// The new range is based on a branch condition. That guarantees that
// neither of the compare operands can be undef in the branch targets,
// unless we have conditions that are always true/false (e.g. icmp ule
// i32, %a, i32_max). For the latter overdefined/empty range will be
// inferred, but the branch will get folded accordingly anyways.
addAdditionalUser(OtherOp, &CB);
mergeInValue(
IV, &CB,
ValueLatticeElement::getRange(NewCR, /*MayIncludeUndef*/ false));
return;
} else if (Pred == CmpInst::ICMP_EQ &&
(CondVal.isConstant() || CondVal.isNotConstant())) {
// For non-integer values or integer constant expressions, only
// propagate equal constants or not-constants.
addAdditionalUser(OtherOp, &CB);
mergeInValue(IV, &CB, CondVal);
return;
} else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant()) {
// Propagate inequalities.
addAdditionalUser(OtherOp, &CB);
mergeInValue(IV, &CB,
ValueLatticeElement::getNot(CondVal.getConstant()));
return;
}
return (void)mergeInValue(IV, &CB, CopyOfVal);
}
if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
// Compute result range for intrinsics supported by ConstantRange.
// Do this even if we don't know a range for all operands, as we may
// still know something about the result range, e.g. of abs(x).
SmallVector<ConstantRange, 2> OpRanges;
for (Value *Op : II->args()) {
const ValueLatticeElement &State = getValueState(Op);
if (State.isUnknownOrUndef())
return;
OpRanges.push_back(getConstantRange(State, Op->getType()));
}
ConstantRange Result =
ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
}
}
// The common case is that we aren't tracking the callee, either because we
// are not doing interprocedural analysis or the callee is indirect, or is
// external. Handle these cases first.
if (!F || F->isDeclaration())
return handleCallOverdefined(CB);
// If this is a single/zero retval case, see if we're tracking the function.
if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
if (!MRVFunctionsTracked.count(F))
return handleCallOverdefined(CB); // Not tracking this callee.
// If we are tracking this callee, propagate the result of the function
// into this call site.
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
mergeInValue(getStructValueState(&CB, i), &CB,
TrackedMultipleRetVals[std::make_pair(F, i)],
getMaxWidenStepsOpts());
} else {
auto TFRVI = TrackedRetVals.find(F);
if (TFRVI == TrackedRetVals.end())
return handleCallOverdefined(CB); // Not tracking this callee.
// If so, propagate the return value of the callee into this call result.
mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
}
}
void SCCPInstVisitor::solve() {
// Process the work lists until they are empty!
while (!BBWorkList.empty() || !InstWorkList.empty() ||
!OverdefinedInstWorkList.empty()) {
// Process the overdefined instruction's work list first, which drives other
// things to overdefined more quickly.
while (!OverdefinedInstWorkList.empty()) {
Value *I = OverdefinedInstWorkList.pop_back_val();
Invalidated.erase(I);
LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
// "I" got into the work list because it either made the transition from
// bottom to constant, or to overdefined.
//
// Anything on this worklist that is overdefined need not be visited
// since all of its users will have already been marked as overdefined
// Update all of the users of this instruction's value.
//
markUsersAsChanged(I);
}
// Process the instruction work list.
while (!InstWorkList.empty()) {
Value *I = InstWorkList.pop_back_val();
Invalidated.erase(I);
LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
// "I" got into the work list because it made the transition from undef to
// constant.
//
// Anything on this worklist that is overdefined need not be visited
// since all of its users will have already been marked as overdefined.
// Update all of the users of this instruction's value.
//
if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
markUsersAsChanged(I);
}
// Process the basic block work list.
while (!BBWorkList.empty()) {
BasicBlock *BB = BBWorkList.pop_back_val();
LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
// Notify all instructions in this basic block that they are newly
// executable.
visit(BB);
}
}
}
bool SCCPInstVisitor::resolvedUndef(Instruction &I) {
// Look for instructions which produce undef values.
if (I.getType()->isVoidTy())
return false;
if (auto *STy = dyn_cast<StructType>(I.getType())) {
// Only a few things that can be structs matter for undef.
// Tracked calls must never be marked overdefined in resolvedUndefsIn.
if (auto *CB = dyn_cast<CallBase>(&I))
if (Function *F = CB->getCalledFunction())
if (MRVFunctionsTracked.count(F))
return false;
// extractvalue and insertvalue don't need to be marked; they are
// tracked as precisely as their operands.
if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
return false;
// Send the results of everything else to overdefined. We could be
// more precise than this but it isn't worth bothering.
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
ValueLatticeElement &LV = getStructValueState(&I, i);
if (LV.isUnknown()) {
markOverdefined(LV, &I);
return true;
}
}
return false;
}
ValueLatticeElement &LV = getValueState(&I);
if (!LV.isUnknown())
return false;
// There are two reasons a call can have an undef result
// 1. It could be tracked.
// 2. It could be constant-foldable.
// Because of the way we solve return values, tracked calls must
// never be marked overdefined in resolvedUndefsIn.
if (auto *CB = dyn_cast<CallBase>(&I))
if (Function *F = CB->getCalledFunction())
if (TrackedRetVals.count(F))
return false;
if (isa<LoadInst>(I)) {
// A load here means one of two things: a load of undef from a global,
// a load from an unknown pointer. Either way, having it return undef
// is okay.
return false;
}
markOverdefined(&I);
return true;
}
/// While solving the dataflow for a function, we don't compute a result for
/// operations with an undef operand, to allow undef to be lowered to a
/// constant later. For example, constant folding of "zext i8 undef to i16"
/// would result in "i16 0", and if undef is later lowered to "i8 1", then the
/// zext result would become "i16 1" and would result into an overdefined
/// lattice value once merged with the previous result. Not computing the
/// result of the zext (treating undef the same as unknown) allows us to handle
/// a later undef->constant lowering more optimally.
///
/// However, if the operand remains undef when the solver returns, we do need
/// to assign some result to the instruction (otherwise we would treat it as
/// unreachable). For simplicity, we mark any instructions that are still
/// unknown as overdefined.
bool SCCPInstVisitor::resolvedUndefsIn(Function &F) {
bool MadeChange = false;
for (BasicBlock &BB : F) {
if (!BBExecutable.count(&BB))
continue;
for (Instruction &I : BB)
MadeChange |= resolvedUndef(I);
}
LLVM_DEBUG(if (MadeChange) dbgs()
<< "\nResolved undefs in " << F.getName() << '\n');
return MadeChange;
}
//===----------------------------------------------------------------------===//
//
// SCCPSolver implementations
//
SCCPSolver::SCCPSolver(
const DataLayout &DL,
std::function<const TargetLibraryInfo &(Function &)> GetTLI,
LLVMContext &Ctx)
: Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {}
SCCPSolver::~SCCPSolver() = default;
void SCCPSolver::addPredicateInfo(Function &F, DominatorTree &DT,
AssumptionCache &AC) {
Visitor->addPredicateInfo(F, DT, AC);
}
bool SCCPSolver::markBlockExecutable(BasicBlock *BB) {
return Visitor->markBlockExecutable(BB);
}
const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) {
return Visitor->getPredicateInfoFor(I);
}
void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) {
Visitor->trackValueOfGlobalVariable(GV);
}
void SCCPSolver::addTrackedFunction(Function *F) {
Visitor->addTrackedFunction(F);
}
void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) {
Visitor->addToMustPreserveReturnsInFunctions(F);
}
bool SCCPSolver::mustPreserveReturn(Function *F) {
return Visitor->mustPreserveReturn(F);
}
void SCCPSolver::addArgumentTrackedFunction(Function *F) {
Visitor->addArgumentTrackedFunction(F);
}
bool SCCPSolver::isArgumentTrackedFunction(Function *F) {
return Visitor->isArgumentTrackedFunction(F);
}
void SCCPSolver::solve() { Visitor->solve(); }
bool SCCPSolver::resolvedUndefsIn(Function &F) {
return Visitor->resolvedUndefsIn(F);
}
void SCCPSolver::solveWhileResolvedUndefsIn(Module &M) {
Visitor->solveWhileResolvedUndefsIn(M);
}
void
SCCPSolver::solveWhileResolvedUndefsIn(SmallVectorImpl<Function *> &WorkList) {
Visitor->solveWhileResolvedUndefsIn(WorkList);
}
void SCCPSolver::solveWhileResolvedUndefs() {
Visitor->solveWhileResolvedUndefs();
}
bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const {
return Visitor->isBlockExecutable(BB);
}
bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
return Visitor->isEdgeFeasible(From, To);
}
std::vector<ValueLatticeElement>
SCCPSolver::getStructLatticeValueFor(Value *V) const {
return Visitor->getStructLatticeValueFor(V);
}
void SCCPSolver::removeLatticeValueFor(Value *V) {
return Visitor->removeLatticeValueFor(V);
}
void SCCPSolver::resetLatticeValueFor(CallBase *Call) {
Visitor->resetLatticeValueFor(Call);
}
const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const {
return Visitor->getLatticeValueFor(V);
}
const MapVector<Function *, ValueLatticeElement> &
SCCPSolver::getTrackedRetVals() {
return Visitor->getTrackedRetVals();
}
const DenseMap<GlobalVariable *, ValueLatticeElement> &
SCCPSolver::getTrackedGlobals() {
return Visitor->getTrackedGlobals();
}
const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() {
return Visitor->getMRVFunctionsTracked();
}
void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); }
void SCCPSolver::trackValueOfArgument(Argument *V) {
Visitor->trackValueOfArgument(V);
}
bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) {
return Visitor->isStructLatticeConstant(F, STy);
}
Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV,
Type *Ty) const {
return Visitor->getConstant(LV, Ty);
}
Constant *SCCPSolver::getConstantOrNull(Value *V) const {
return Visitor->getConstantOrNull(V);
}
SmallPtrSetImpl<Function *> &SCCPSolver::getArgumentTrackedFunctions() {
return Visitor->getArgumentTrackedFunctions();
}
void SCCPSolver::setLatticeValueForSpecializationArguments(Function *F,
const SmallVectorImpl<ArgInfo> &Args) {
Visitor->setLatticeValueForSpecializationArguments(F, Args);
}
void SCCPSolver::markFunctionUnreachable(Function *F) {
Visitor->markFunctionUnreachable(F);
}
void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); }
void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); }