|  | //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // The LowerSwitch transformation rewrites switch instructions with a sequence | 
|  | // of branches, which allows targets to get away with not implementing the | 
|  | // switch instruction until it is convenient. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Utils/LowerSwitch.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/LazyValueInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "lower-switch" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct IntRange { | 
|  | APInt Low, High; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | namespace { | 
|  | // Return true iff R is covered by Ranges. | 
|  | bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) { | 
|  | // Note: Ranges must be sorted, non-overlapping and non-adjacent. | 
|  |  | 
|  | // Find the first range whose High field is >= R.High, | 
|  | // then check if the Low field is <= R.Low. If so, we | 
|  | // have a Range that covers R. | 
|  | auto I = llvm::lower_bound( | 
|  | Ranges, R, [](IntRange A, IntRange B) { return A.High.slt(B.High); }); | 
|  | return I != Ranges.end() && I->Low.sle(R.Low); | 
|  | } | 
|  |  | 
|  | struct CaseRange { | 
|  | ConstantInt *Low; | 
|  | ConstantInt *High; | 
|  | BasicBlock *BB; | 
|  |  | 
|  | CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb) | 
|  | : Low(low), High(high), BB(bb) {} | 
|  | }; | 
|  |  | 
|  | using CaseVector = std::vector<CaseRange>; | 
|  | using CaseItr = std::vector<CaseRange>::iterator; | 
|  |  | 
|  | /// The comparison function for sorting the switch case values in the vector. | 
|  | /// WARNING: Case ranges should be disjoint! | 
|  | struct CaseCmp { | 
|  | bool operator()(const CaseRange &C1, const CaseRange &C2) { | 
|  | const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low); | 
|  | const ConstantInt *CI2 = cast<const ConstantInt>(C2.High); | 
|  | return CI1->getValue().slt(CI2->getValue()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Used for debugging purposes. | 
|  | LLVM_ATTRIBUTE_USED | 
|  | raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) { | 
|  | O << "["; | 
|  |  | 
|  | for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) { | 
|  | O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]"; | 
|  | if (++B != E) | 
|  | O << ", "; | 
|  | } | 
|  |  | 
|  | return O << "]"; | 
|  | } | 
|  |  | 
|  | /// Update the first occurrence of the "switch statement" BB in the PHI | 
|  | /// node with the "new" BB. The other occurrences will: | 
|  | /// | 
|  | /// 1) Be updated by subsequent calls to this function.  Switch statements may | 
|  | /// have more than one outcoming edge into the same BB if they all have the same | 
|  | /// value. When the switch statement is converted these incoming edges are now | 
|  | /// coming from multiple BBs. | 
|  | /// 2) Removed if subsequent incoming values now share the same case, i.e., | 
|  | /// multiple outcome edges are condensed into one. This is necessary to keep the | 
|  | /// number of phi values equal to the number of branches to SuccBB. | 
|  | void FixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, | 
|  | const APInt &NumMergedCases) { | 
|  | for (auto &I : SuccBB->phis()) { | 
|  | PHINode *PN = cast<PHINode>(&I); | 
|  |  | 
|  | // Only update the first occurrence if NewBB exists. | 
|  | unsigned Idx = 0, E = PN->getNumIncomingValues(); | 
|  | APInt LocalNumMergedCases = NumMergedCases; | 
|  | for (; Idx != E && NewBB; ++Idx) { | 
|  | if (PN->getIncomingBlock(Idx) == OrigBB) { | 
|  | PN->setIncomingBlock(Idx, NewBB); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Skip the updated incoming block so that it will not be removed. | 
|  | if (NewBB) | 
|  | ++Idx; | 
|  |  | 
|  | // Remove additional occurrences coming from condensed cases and keep the | 
|  | // number of incoming values equal to the number of branches to SuccBB. | 
|  | SmallVector<unsigned, 8> Indices; | 
|  | for (; LocalNumMergedCases.ugt(0) && Idx < E; ++Idx) | 
|  | if (PN->getIncomingBlock(Idx) == OrigBB) { | 
|  | Indices.push_back(Idx); | 
|  | LocalNumMergedCases -= 1; | 
|  | } | 
|  | // Remove incoming values in the reverse order to prevent invalidating | 
|  | // *successive* index. | 
|  | for (unsigned III : llvm::reverse(Indices)) | 
|  | PN->removeIncomingValue(III); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Create a new leaf block for the binary lookup tree. It checks if the | 
|  | /// switch's value == the case's value. If not, then it jumps to the default | 
|  | /// branch. At this point in the tree, the value can't be another valid case | 
|  | /// value, so the jump to the "default" branch is warranted. | 
|  | BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound, | 
|  | ConstantInt *UpperBound, BasicBlock *OrigBlock, | 
|  | BasicBlock *Default) { | 
|  | Function *F = OrigBlock->getParent(); | 
|  | BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock"); | 
|  | F->insert(++OrigBlock->getIterator(), NewLeaf); | 
|  |  | 
|  | // Emit comparison | 
|  | ICmpInst *Comp = nullptr; | 
|  | if (Leaf.Low == Leaf.High) { | 
|  | // Make the seteq instruction... | 
|  | Comp = | 
|  | new ICmpInst(NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf"); | 
|  | } else { | 
|  | // Make range comparison | 
|  | if (Leaf.Low == LowerBound) { | 
|  | // Val >= Min && Val <= Hi --> Val <= Hi | 
|  | Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, | 
|  | "SwitchLeaf"); | 
|  | } else if (Leaf.High == UpperBound) { | 
|  | // Val <= Max && Val >= Lo --> Val >= Lo | 
|  | Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low, | 
|  | "SwitchLeaf"); | 
|  | } else if (Leaf.Low->isZero()) { | 
|  | // Val >= 0 && Val <= Hi --> Val <=u Hi | 
|  | Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, | 
|  | "SwitchLeaf"); | 
|  | } else { | 
|  | // Emit V-Lo <=u Hi-Lo | 
|  | Constant *NegLo = ConstantExpr::getNeg(Leaf.Low); | 
|  | Instruction *Add = BinaryOperator::CreateAdd( | 
|  | Val, NegLo, Val->getName() + ".off", NewLeaf); | 
|  | Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High); | 
|  | Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, | 
|  | "SwitchLeaf"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make the conditional branch... | 
|  | BasicBlock *Succ = Leaf.BB; | 
|  | BranchInst::Create(Succ, Default, Comp, NewLeaf); | 
|  |  | 
|  | // Update the PHI incoming value/block for the default. | 
|  | for (auto &I : Default->phis()) { | 
|  | PHINode *PN = cast<PHINode>(&I); | 
|  | auto *V = PN->getIncomingValueForBlock(OrigBlock); | 
|  | PN->addIncoming(V, NewLeaf); | 
|  | } | 
|  |  | 
|  | // If there were any PHI nodes in this successor, rewrite one entry | 
|  | // from OrigBlock to come from NewLeaf. | 
|  | for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  | // Remove all but one incoming entries from the cluster | 
|  | APInt Range = Leaf.High->getValue() - Leaf.Low->getValue(); | 
|  | for (APInt j(Range.getBitWidth(), 0, false); j.ult(Range); ++j) { | 
|  | PN->removeIncomingValue(OrigBlock); | 
|  | } | 
|  |  | 
|  | int BlockIdx = PN->getBasicBlockIndex(OrigBlock); | 
|  | assert(BlockIdx != -1 && "Switch didn't go to this successor??"); | 
|  | PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); | 
|  | } | 
|  |  | 
|  | return NewLeaf; | 
|  | } | 
|  |  | 
|  | /// Convert the switch statement into a binary lookup of the case values. | 
|  | /// The function recursively builds this tree. LowerBound and UpperBound are | 
|  | /// used to keep track of the bounds for Val that have already been checked by | 
|  | /// a block emitted by one of the previous calls to switchConvert in the call | 
|  | /// stack. | 
|  | BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, | 
|  | ConstantInt *UpperBound, Value *Val, | 
|  | BasicBlock *Predecessor, BasicBlock *OrigBlock, | 
|  | BasicBlock *Default, | 
|  | const std::vector<IntRange> &UnreachableRanges) { | 
|  | assert(LowerBound && UpperBound && "Bounds must be initialized"); | 
|  | unsigned Size = End - Begin; | 
|  |  | 
|  | if (Size == 1) { | 
|  | // Check if the Case Range is perfectly squeezed in between | 
|  | // already checked Upper and Lower bounds. If it is then we can avoid | 
|  | // emitting the code that checks if the value actually falls in the range | 
|  | // because the bounds already tell us so. | 
|  | if (Begin->Low == LowerBound && Begin->High == UpperBound) { | 
|  | APInt NumMergedCases = UpperBound->getValue() - LowerBound->getValue(); | 
|  | FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases); | 
|  | return Begin->BB; | 
|  | } | 
|  | return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock, | 
|  | Default); | 
|  | } | 
|  |  | 
|  | unsigned Mid = Size / 2; | 
|  | std::vector<CaseRange> LHS(Begin, Begin + Mid); | 
|  | LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n"); | 
|  | std::vector<CaseRange> RHS(Begin + Mid, End); | 
|  | LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n"); | 
|  |  | 
|  | CaseRange &Pivot = *(Begin + Mid); | 
|  | LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", " | 
|  | << Pivot.High->getValue() << "]\n"); | 
|  |  | 
|  | // NewLowerBound here should never be the integer minimal value. | 
|  | // This is because it is computed from a case range that is never | 
|  | // the smallest, so there is always a case range that has at least | 
|  | // a smaller value. | 
|  | ConstantInt *NewLowerBound = Pivot.Low; | 
|  |  | 
|  | // Because NewLowerBound is never the smallest representable integer | 
|  | // it is safe here to subtract one. | 
|  | ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(), | 
|  | NewLowerBound->getValue() - 1); | 
|  |  | 
|  | if (!UnreachableRanges.empty()) { | 
|  | // Check if the gap between LHS's highest and NewLowerBound is unreachable. | 
|  | APInt GapLow = LHS.back().High->getValue() + 1; | 
|  | APInt GapHigh = NewLowerBound->getValue() - 1; | 
|  | IntRange Gap = {GapLow, GapHigh}; | 
|  | if (GapHigh.sge(GapLow) && IsInRanges(Gap, UnreachableRanges)) | 
|  | NewUpperBound = LHS.back().High; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getValue() << ", " | 
|  | << NewUpperBound->getValue() << "]\n" | 
|  | << "RHS Bounds ==> [" << NewLowerBound->getValue() << ", " | 
|  | << UpperBound->getValue() << "]\n"); | 
|  |  | 
|  | // Create a new node that checks if the value is < pivot. Go to the | 
|  | // left branch if it is and right branch if not. | 
|  | Function *F = OrigBlock->getParent(); | 
|  | BasicBlock *NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock"); | 
|  |  | 
|  | ICmpInst *Comp = new ICmpInst(ICmpInst::ICMP_SLT, Val, Pivot.Low, "Pivot"); | 
|  |  | 
|  | BasicBlock *LBranch = | 
|  | SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val, | 
|  | NewNode, OrigBlock, Default, UnreachableRanges); | 
|  | BasicBlock *RBranch = | 
|  | SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val, | 
|  | NewNode, OrigBlock, Default, UnreachableRanges); | 
|  |  | 
|  | F->insert(++OrigBlock->getIterator(), NewNode); | 
|  | Comp->insertInto(NewNode, NewNode->end()); | 
|  |  | 
|  | BranchInst::Create(LBranch, RBranch, Comp, NewNode); | 
|  | return NewNode; | 
|  | } | 
|  |  | 
|  | /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases. | 
|  | /// \post \p Cases wouldn't contain references to \p SI's default BB. | 
|  | /// \returns Number of \p SI's cases that do not reference \p SI's default BB. | 
|  | unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) { | 
|  | unsigned NumSimpleCases = 0; | 
|  |  | 
|  | // Start with "simple" cases | 
|  | for (auto Case : SI->cases()) { | 
|  | if (Case.getCaseSuccessor() == SI->getDefaultDest()) | 
|  | continue; | 
|  | Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(), | 
|  | Case.getCaseSuccessor())); | 
|  | ++NumSimpleCases; | 
|  | } | 
|  |  | 
|  | llvm::sort(Cases, CaseCmp()); | 
|  |  | 
|  | // Merge case into clusters | 
|  | if (Cases.size() >= 2) { | 
|  | CaseItr I = Cases.begin(); | 
|  | for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) { | 
|  | const APInt &nextValue = J->Low->getValue(); | 
|  | const APInt ¤tValue = I->High->getValue(); | 
|  | BasicBlock *nextBB = J->BB; | 
|  | BasicBlock *currentBB = I->BB; | 
|  |  | 
|  | // If the two neighboring cases go to the same destination, merge them | 
|  | // into a single case. | 
|  | assert(nextValue.sgt(currentValue) && | 
|  | "Cases should be strictly ascending"); | 
|  | if ((nextValue == currentValue + 1) && (currentBB == nextBB)) { | 
|  | I->High = J->High; | 
|  | // FIXME: Combine branch weights. | 
|  | } else if (++I != J) { | 
|  | *I = *J; | 
|  | } | 
|  | } | 
|  | Cases.erase(std::next(I), Cases.end()); | 
|  | } | 
|  |  | 
|  | return NumSimpleCases; | 
|  | } | 
|  |  | 
|  | /// Replace the specified switch instruction with a sequence of chained if-then | 
|  | /// insts in a balanced binary search. | 
|  | void ProcessSwitchInst(SwitchInst *SI, | 
|  | SmallPtrSetImpl<BasicBlock *> &DeleteList, | 
|  | AssumptionCache *AC, LazyValueInfo *LVI) { | 
|  | BasicBlock *OrigBlock = SI->getParent(); | 
|  | Function *F = OrigBlock->getParent(); | 
|  | Value *Val = SI->getCondition(); // The value we are switching on... | 
|  | BasicBlock *Default = SI->getDefaultDest(); | 
|  |  | 
|  | // Don't handle unreachable blocks. If there are successors with phis, this | 
|  | // would leave them behind with missing predecessors. | 
|  | if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) || | 
|  | OrigBlock->getSinglePredecessor() == OrigBlock) { | 
|  | DeleteList.insert(OrigBlock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Prepare cases vector. | 
|  | CaseVector Cases; | 
|  | const unsigned NumSimpleCases = Clusterify(Cases, SI); | 
|  | IntegerType *IT = cast<IntegerType>(SI->getCondition()->getType()); | 
|  | const unsigned BitWidth = IT->getBitWidth(); | 
|  | // Explicitly use higher precision to prevent unsigned overflow where | 
|  | // `UnsignedMax - 0 + 1 == 0` | 
|  | APInt UnsignedZero(BitWidth + 1, 0); | 
|  | APInt UnsignedMax = APInt::getMaxValue(BitWidth); | 
|  | LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() | 
|  | << ". Total non-default cases: " << NumSimpleCases | 
|  | << "\nCase clusters: " << Cases << "\n"); | 
|  |  | 
|  | // If there is only the default destination, just branch. | 
|  | if (Cases.empty()) { | 
|  | BranchInst::Create(Default, OrigBlock); | 
|  | // Remove all the references from Default's PHIs to OrigBlock, but one. | 
|  | FixPhis(Default, OrigBlock, OrigBlock, UnsignedMax); | 
|  | SI->eraseFromParent(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ConstantInt *LowerBound = nullptr; | 
|  | ConstantInt *UpperBound = nullptr; | 
|  | bool DefaultIsUnreachableFromSwitch = false; | 
|  |  | 
|  | if (SI->defaultDestUnreachable()) { | 
|  | // Make the bounds tightly fitted around the case value range, because we | 
|  | // know that the value passed to the switch must be exactly one of the case | 
|  | // values. | 
|  | LowerBound = Cases.front().Low; | 
|  | UpperBound = Cases.back().High; | 
|  | DefaultIsUnreachableFromSwitch = true; | 
|  | } else { | 
|  | // Constraining the range of the value being switched over helps eliminating | 
|  | // unreachable BBs and minimizing the number of `add` instructions | 
|  | // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after | 
|  | // LowerSwitch isn't as good, and also much more expensive in terms of | 
|  | // compile time for the following reasons: | 
|  | // 1. it processes many kinds of instructions, not just switches; | 
|  | // 2. even if limited to icmp instructions only, it will have to process | 
|  | //    roughly C icmp's per switch, where C is the number of cases in the | 
|  | //    switch, while LowerSwitch only needs to call LVI once per switch. | 
|  | const DataLayout &DL = F->getDataLayout(); | 
|  | KnownBits Known = computeKnownBits(Val, DL, AC, SI); | 
|  | // TODO Shouldn't this create a signed range? | 
|  | ConstantRange KnownBitsRange = | 
|  | ConstantRange::fromKnownBits(Known, /*IsSigned=*/false); | 
|  | const ConstantRange LVIRange = | 
|  | LVI->getConstantRange(Val, SI, /*UndefAllowed*/ false); | 
|  | ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange); | 
|  | // We delegate removal of unreachable non-default cases to other passes. In | 
|  | // the unlikely event that some of them survived, we just conservatively | 
|  | // maintain the invariant that all the cases lie between the bounds. This | 
|  | // may, however, still render the default case effectively unreachable. | 
|  | const APInt &Low = Cases.front().Low->getValue(); | 
|  | const APInt &High = Cases.back().High->getValue(); | 
|  | APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low); | 
|  | APInt Max = APIntOps::smax(ValRange.getSignedMax(), High); | 
|  |  | 
|  | LowerBound = ConstantInt::get(SI->getContext(), Min); | 
|  | UpperBound = ConstantInt::get(SI->getContext(), Max); | 
|  | DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max); | 
|  | } | 
|  |  | 
|  | std::vector<IntRange> UnreachableRanges; | 
|  |  | 
|  | if (DefaultIsUnreachableFromSwitch) { | 
|  | DenseMap<BasicBlock *, APInt> Popularity; | 
|  | APInt MaxPop(UnsignedZero); | 
|  | BasicBlock *PopSucc = nullptr; | 
|  |  | 
|  | APInt SignedMax = APInt::getSignedMaxValue(BitWidth); | 
|  | APInt SignedMin = APInt::getSignedMinValue(BitWidth); | 
|  | IntRange R = {SignedMin, SignedMax}; | 
|  | UnreachableRanges.push_back(R); | 
|  | for (const auto &I : Cases) { | 
|  | const APInt &Low = I.Low->getValue(); | 
|  | const APInt &High = I.High->getValue(); | 
|  |  | 
|  | IntRange &LastRange = UnreachableRanges.back(); | 
|  | if (LastRange.Low.eq(Low)) { | 
|  | // There is nothing left of the previous range. | 
|  | UnreachableRanges.pop_back(); | 
|  | } else { | 
|  | // Terminate the previous range. | 
|  | assert(Low.sgt(LastRange.Low)); | 
|  | LastRange.High = Low - 1; | 
|  | } | 
|  | if (High.ne(SignedMax)) { | 
|  | IntRange R = {High + 1, SignedMax}; | 
|  | UnreachableRanges.push_back(R); | 
|  | } | 
|  |  | 
|  | // Count popularity. | 
|  | assert(High.sge(Low) && "Popularity shouldn't be negative."); | 
|  | APInt N = High.sext(BitWidth + 1) - Low.sext(BitWidth + 1) + 1; | 
|  | // Explict insert to make sure the bitwidth of APInts match | 
|  | APInt &Pop = Popularity.insert({I.BB, APInt(UnsignedZero)}).first->second; | 
|  | if ((Pop += N).ugt(MaxPop)) { | 
|  | MaxPop = Pop; | 
|  | PopSucc = I.BB; | 
|  | } | 
|  | } | 
|  | #ifndef NDEBUG | 
|  | /* UnreachableRanges should be sorted and the ranges non-adjacent. */ | 
|  | for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); | 
|  | I != E; ++I) { | 
|  | assert(I->Low.sle(I->High)); | 
|  | auto Next = I + 1; | 
|  | if (Next != E) { | 
|  | assert(Next->Low.sgt(I->High)); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // As the default block in the switch is unreachable, update the PHI nodes | 
|  | // (remove all of the references to the default block) to reflect this. | 
|  | const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases; | 
|  | for (unsigned I = 0; I < NumDefaultEdges; ++I) | 
|  | Default->removePredecessor(OrigBlock); | 
|  |  | 
|  | // Use the most popular block as the new default, reducing the number of | 
|  | // cases. | 
|  | Default = PopSucc; | 
|  | llvm::erase_if(Cases, | 
|  | [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }); | 
|  |  | 
|  | // If there are no cases left, just branch. | 
|  | if (Cases.empty()) { | 
|  | BranchInst::Create(Default, OrigBlock); | 
|  | SI->eraseFromParent(); | 
|  | // As all the cases have been replaced with a single branch, only keep | 
|  | // one entry in the PHI nodes. | 
|  | if (!MaxPop.isZero()) | 
|  | for (APInt I(UnsignedZero); I.ult(MaxPop - 1); ++I) | 
|  | PopSucc->removePredecessor(OrigBlock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the condition was a PHI node with the switch block as a predecessor | 
|  | // removing predecessors may have caused the condition to be erased. | 
|  | // Getting the condition value again here protects against that. | 
|  | Val = SI->getCondition(); | 
|  | } | 
|  |  | 
|  | BasicBlock *SwitchBlock = | 
|  | SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val, | 
|  | OrigBlock, OrigBlock, Default, UnreachableRanges); | 
|  |  | 
|  | // We have added incoming values for newly-created predecessors in | 
|  | // NewLeafBlock(). The only meaningful work we offload to FixPhis() is to | 
|  | // remove the incoming values from OrigBlock. There might be a special case | 
|  | // that SwitchBlock is the same as Default, under which the PHIs in Default | 
|  | // are fixed inside SwitchConvert(). | 
|  | if (SwitchBlock != Default) | 
|  | FixPhis(Default, OrigBlock, nullptr, UnsignedMax); | 
|  |  | 
|  | // Branch to our shiny new if-then stuff... | 
|  | BranchInst::Create(SwitchBlock, OrigBlock); | 
|  |  | 
|  | // We are now done with the switch instruction, delete it. | 
|  | BasicBlock *OldDefault = SI->getDefaultDest(); | 
|  | SI->eraseFromParent(); | 
|  |  | 
|  | // If the Default block has no more predecessors just add it to DeleteList. | 
|  | if (pred_empty(OldDefault)) | 
|  | DeleteList.insert(OldDefault); | 
|  | } | 
|  |  | 
|  | bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) { | 
|  | bool Changed = false; | 
|  | SmallPtrSet<BasicBlock *, 8> DeleteList; | 
|  |  | 
|  | // We use make_early_inc_range here so that we don't traverse new blocks. | 
|  | for (BasicBlock &Cur : llvm::make_early_inc_range(F)) { | 
|  | // If the block is a dead Default block that will be deleted later, don't | 
|  | // waste time processing it. | 
|  | if (DeleteList.count(&Cur)) | 
|  | continue; | 
|  |  | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur.getTerminator())) { | 
|  | Changed = true; | 
|  | ProcessSwitchInst(SI, DeleteList, AC, LVI); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (BasicBlock *BB : DeleteList) { | 
|  | LVI->eraseBlock(BB); | 
|  | DeleteDeadBlock(BB); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Replace all SwitchInst instructions with chained branch instructions. | 
|  | class LowerSwitchLegacyPass : public FunctionPass { | 
|  | public: | 
|  | // Pass identification, replacement for typeid | 
|  | static char ID; | 
|  |  | 
|  | LowerSwitchLegacyPass() : FunctionPass(ID) { | 
|  | initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override; | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<LazyValueInfoWrapperPass>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char LowerSwitchLegacyPass::ID = 0; | 
|  |  | 
|  | // Publicly exposed interface to pass... | 
|  | char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch", | 
|  | "Lower SwitchInst's to branches", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch", | 
|  | "Lower SwitchInst's to branches", false, false) | 
|  |  | 
|  | // createLowerSwitchPass - Interface to this file... | 
|  | FunctionPass *llvm::createLowerSwitchPass() { | 
|  | return new LowerSwitchLegacyPass(); | 
|  | } | 
|  |  | 
|  | bool LowerSwitchLegacyPass::runOnFunction(Function &F) { | 
|  | LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); | 
|  | auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>(); | 
|  | AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr; | 
|  | return LowerSwitch(F, LVI, AC); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses LowerSwitchPass::run(Function &F, | 
|  | FunctionAnalysisManager &AM) { | 
|  | LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F); | 
|  | AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F); | 
|  | return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none() | 
|  | : PreservedAnalyses::all(); | 
|  | } |