blob: e7a188e9431db5132aaa5e56e9800daa431b5219 [file] [log] [blame]
//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements whole program optimization of virtual calls in cases
// where we know (via !type metadata) that the list of callees is fixed. This
// includes the following:
// - Single implementation devirtualization: if a virtual call has a single
// possible callee, replace all calls with a direct call to that callee.
// - Virtual constant propagation: if the virtual function's return type is an
// integer <=64 bits and all possible callees are readnone, for each class and
// each list of constant arguments: evaluate the function, store the return
// value alongside the virtual table, and rewrite each virtual call as a load
// from the virtual table.
// - Uniform return value optimization: if the conditions for virtual constant
// propagation hold and each function returns the same constant value, replace
// each virtual call with that constant.
// - Unique return value optimization for i1 return values: if the conditions
// for virtual constant propagation hold and a single vtable's function
// returns 0, or a single vtable's function returns 1, replace each virtual
// call with a comparison of the vptr against that vtable's address.
//
// This pass is intended to be used during the regular and thin LTO pipelines:
//
// During regular LTO, the pass determines the best optimization for each
// virtual call and applies the resolutions directly to virtual calls that are
// eligible for virtual call optimization (i.e. calls that use either of the
// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
//
// During hybrid Regular/ThinLTO, the pass operates in two phases:
// - Export phase: this is run during the thin link over a single merged module
// that contains all vtables with !type metadata that participate in the link.
// The pass computes a resolution for each virtual call and stores it in the
// type identifier summary.
// - Import phase: this is run during the thin backends over the individual
// modules. The pass applies the resolutions previously computed during the
// import phase to each eligible virtual call.
//
// During ThinLTO, the pass operates in two phases:
// - Export phase: this is run during the thin link over the index which
// contains a summary of all vtables with !type metadata that participate in
// the link. It computes a resolution for each virtual call and stores it in
// the type identifier summary. Only single implementation devirtualization
// is supported.
// - Import phase: (same as with hybrid case above).
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndexYAML.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/GlobPattern.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/TargetParser/Triple.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
#include "llvm/Transforms/Utils/Evaluator.h"
#include <algorithm>
#include <cstddef>
#include <map>
#include <set>
#include <string>
using namespace llvm;
using namespace wholeprogramdevirt;
#define DEBUG_TYPE "wholeprogramdevirt"
STATISTIC(NumDevirtTargets, "Number of whole program devirtualization targets");
STATISTIC(NumSingleImpl, "Number of single implementation devirtualizations");
STATISTIC(NumBranchFunnel, "Number of branch funnels");
STATISTIC(NumUniformRetVal, "Number of uniform return value optimizations");
STATISTIC(NumUniqueRetVal, "Number of unique return value optimizations");
STATISTIC(NumVirtConstProp1Bit,
"Number of 1 bit virtual constant propagations");
STATISTIC(NumVirtConstProp, "Number of virtual constant propagations");
static cl::opt<PassSummaryAction> ClSummaryAction(
"wholeprogramdevirt-summary-action",
cl::desc("What to do with the summary when running this pass"),
cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
clEnumValN(PassSummaryAction::Import, "import",
"Import typeid resolutions from summary and globals"),
clEnumValN(PassSummaryAction::Export, "export",
"Export typeid resolutions to summary and globals")),
cl::Hidden);
static cl::opt<std::string> ClReadSummary(
"wholeprogramdevirt-read-summary",
cl::desc(
"Read summary from given bitcode or YAML file before running pass"),
cl::Hidden);
static cl::opt<std::string> ClWriteSummary(
"wholeprogramdevirt-write-summary",
cl::desc("Write summary to given bitcode or YAML file after running pass. "
"Output file format is deduced from extension: *.bc means writing "
"bitcode, otherwise YAML"),
cl::Hidden);
static cl::opt<unsigned>
ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
cl::init(10),
cl::desc("Maximum number of call targets per "
"call site to enable branch funnels"));
static cl::opt<bool>
PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
cl::desc("Print index-based devirtualization messages"));
/// Provide a way to force enable whole program visibility in tests.
/// This is needed to support legacy tests that don't contain
/// !vcall_visibility metadata (the mere presense of type tests
/// previously implied hidden visibility).
static cl::opt<bool>
WholeProgramVisibility("whole-program-visibility", cl::Hidden,
cl::desc("Enable whole program visibility"));
/// Provide a way to force disable whole program for debugging or workarounds,
/// when enabled via the linker.
static cl::opt<bool> DisableWholeProgramVisibility(
"disable-whole-program-visibility", cl::Hidden,
cl::desc("Disable whole program visibility (overrides enabling options)"));
/// Provide way to prevent certain function from being devirtualized
static cl::list<std::string>
SkipFunctionNames("wholeprogramdevirt-skip",
cl::desc("Prevent function(s) from being devirtualized"),
cl::Hidden, cl::CommaSeparated);
/// Mechanism to add runtime checking of devirtualization decisions, optionally
/// trapping or falling back to indirect call on any that are not correct.
/// Trapping mode is useful for debugging undefined behavior leading to failures
/// with WPD. Fallback mode is useful for ensuring safety when whole program
/// visibility may be compromised.
enum WPDCheckMode { None, Trap, Fallback };
static cl::opt<WPDCheckMode> DevirtCheckMode(
"wholeprogramdevirt-check", cl::Hidden,
cl::desc("Type of checking for incorrect devirtualizations"),
cl::values(clEnumValN(WPDCheckMode::None, "none", "No checking"),
clEnumValN(WPDCheckMode::Trap, "trap", "Trap when incorrect"),
clEnumValN(WPDCheckMode::Fallback, "fallback",
"Fallback to indirect when incorrect")));
namespace {
struct PatternList {
std::vector<GlobPattern> Patterns;
template <class T> void init(const T &StringList) {
for (const auto &S : StringList)
if (Expected<GlobPattern> Pat = GlobPattern::create(S))
Patterns.push_back(std::move(*Pat));
}
bool match(StringRef S) {
for (const GlobPattern &P : Patterns)
if (P.match(S))
return true;
return false;
}
};
} // namespace
// Find the minimum offset that we may store a value of size Size bits at. If
// IsAfter is set, look for an offset before the object, otherwise look for an
// offset after the object.
uint64_t
wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
bool IsAfter, uint64_t Size) {
// Find a minimum offset taking into account only vtable sizes.
uint64_t MinByte = 0;
for (const VirtualCallTarget &Target : Targets) {
if (IsAfter)
MinByte = std::max(MinByte, Target.minAfterBytes());
else
MinByte = std::max(MinByte, Target.minBeforeBytes());
}
// Build a vector of arrays of bytes covering, for each target, a slice of the
// used region (see AccumBitVector::BytesUsed in
// llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
// this aligns the used regions to start at MinByte.
//
// In this example, A, B and C are vtables, # is a byte already allocated for
// a virtual function pointer, AAAA... (etc.) are the used regions for the
// vtables and Offset(X) is the value computed for the Offset variable below
// for X.
//
// Offset(A)
// | |
// |MinByte
// A: ################AAAAAAAA|AAAAAAAA
// B: ########BBBBBBBBBBBBBBBB|BBBB
// C: ########################|CCCCCCCCCCCCCCCC
// | Offset(B) |
//
// This code produces the slices of A, B and C that appear after the divider
// at MinByte.
std::vector<ArrayRef<uint8_t>> Used;
for (const VirtualCallTarget &Target : Targets) {
ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
: Target.TM->Bits->Before.BytesUsed;
uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
: MinByte - Target.minBeforeBytes();
// Disregard used regions that are smaller than Offset. These are
// effectively all-free regions that do not need to be checked.
if (VTUsed.size() > Offset)
Used.push_back(VTUsed.slice(Offset));
}
if (Size == 1) {
// Find a free bit in each member of Used.
for (unsigned I = 0;; ++I) {
uint8_t BitsUsed = 0;
for (auto &&B : Used)
if (I < B.size())
BitsUsed |= B[I];
if (BitsUsed != 0xff)
return (MinByte + I) * 8 + llvm::countr_zero(uint8_t(~BitsUsed));
}
} else {
// Find a free (Size/8) byte region in each member of Used.
// FIXME: see if alignment helps.
for (unsigned I = 0;; ++I) {
for (auto &&B : Used) {
unsigned Byte = 0;
while ((I + Byte) < B.size() && Byte < (Size / 8)) {
if (B[I + Byte])
goto NextI;
++Byte;
}
}
return (MinByte + I) * 8;
NextI:;
}
}
}
void wholeprogramdevirt::setBeforeReturnValues(
MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
if (BitWidth == 1)
OffsetByte = -(AllocBefore / 8 + 1);
else
OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
OffsetBit = AllocBefore % 8;
for (VirtualCallTarget &Target : Targets) {
if (BitWidth == 1)
Target.setBeforeBit(AllocBefore);
else
Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
}
}
void wholeprogramdevirt::setAfterReturnValues(
MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
if (BitWidth == 1)
OffsetByte = AllocAfter / 8;
else
OffsetByte = (AllocAfter + 7) / 8;
OffsetBit = AllocAfter % 8;
for (VirtualCallTarget &Target : Targets) {
if (BitWidth == 1)
Target.setAfterBit(AllocAfter);
else
Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
}
}
VirtualCallTarget::VirtualCallTarget(GlobalValue *Fn, const TypeMemberInfo *TM)
: Fn(Fn), TM(TM),
IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()),
WasDevirt(false) {}
namespace {
// A slot in a set of virtual tables. The TypeID identifies the set of virtual
// tables, and the ByteOffset is the offset in bytes from the address point to
// the virtual function pointer.
struct VTableSlot {
Metadata *TypeID;
uint64_t ByteOffset;
};
} // end anonymous namespace
namespace llvm {
template <> struct DenseMapInfo<VTableSlot> {
static VTableSlot getEmptyKey() {
return {DenseMapInfo<Metadata *>::getEmptyKey(),
DenseMapInfo<uint64_t>::getEmptyKey()};
}
static VTableSlot getTombstoneKey() {
return {DenseMapInfo<Metadata *>::getTombstoneKey(),
DenseMapInfo<uint64_t>::getTombstoneKey()};
}
static unsigned getHashValue(const VTableSlot &I) {
return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
}
static bool isEqual(const VTableSlot &LHS,
const VTableSlot &RHS) {
return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
}
};
template <> struct DenseMapInfo<VTableSlotSummary> {
static VTableSlotSummary getEmptyKey() {
return {DenseMapInfo<StringRef>::getEmptyKey(),
DenseMapInfo<uint64_t>::getEmptyKey()};
}
static VTableSlotSummary getTombstoneKey() {
return {DenseMapInfo<StringRef>::getTombstoneKey(),
DenseMapInfo<uint64_t>::getTombstoneKey()};
}
static unsigned getHashValue(const VTableSlotSummary &I) {
return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
}
static bool isEqual(const VTableSlotSummary &LHS,
const VTableSlotSummary &RHS) {
return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
}
};
} // end namespace llvm
// Returns true if the function must be unreachable based on ValueInfo.
//
// In particular, identifies a function as unreachable in the following
// conditions
// 1) All summaries are live.
// 2) All function summaries indicate it's unreachable
// 3) There is no non-function with the same GUID (which is rare)
static bool mustBeUnreachableFunction(ValueInfo TheFnVI) {
if ((!TheFnVI) || TheFnVI.getSummaryList().empty()) {
// Returns false if ValueInfo is absent, or the summary list is empty
// (e.g., function declarations).
return false;
}
for (const auto &Summary : TheFnVI.getSummaryList()) {
// Conservatively returns false if any non-live functions are seen.
// In general either all summaries should be live or all should be dead.
if (!Summary->isLive())
return false;
if (auto *FS = dyn_cast<FunctionSummary>(Summary->getBaseObject())) {
if (!FS->fflags().MustBeUnreachable)
return false;
}
// Be conservative if a non-function has the same GUID (which is rare).
else
return false;
}
// All function summaries are live and all of them agree that the function is
// unreachble.
return true;
}
namespace {
// A virtual call site. VTable is the loaded virtual table pointer, and CS is
// the indirect virtual call.
struct VirtualCallSite {
Value *VTable = nullptr;
CallBase &CB;
// If non-null, this field points to the associated unsafe use count stored in
// the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
// of that field for details.
unsigned *NumUnsafeUses = nullptr;
void
emitRemark(const StringRef OptName, const StringRef TargetName,
function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
Function *F = CB.getCaller();
DebugLoc DLoc = CB.getDebugLoc();
BasicBlock *Block = CB.getParent();
using namespace ore;
OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
<< NV("Optimization", OptName)
<< ": devirtualized a call to "
<< NV("FunctionName", TargetName));
}
void replaceAndErase(
const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
Value *New) {
if (RemarksEnabled)
emitRemark(OptName, TargetName, OREGetter);
CB.replaceAllUsesWith(New);
if (auto *II = dyn_cast<InvokeInst>(&CB)) {
BranchInst::Create(II->getNormalDest(), CB.getIterator());
II->getUnwindDest()->removePredecessor(II->getParent());
}
CB.eraseFromParent();
// This use is no longer unsafe.
if (NumUnsafeUses)
--*NumUnsafeUses;
}
};
// Call site information collected for a specific VTableSlot and possibly a list
// of constant integer arguments. The grouping by arguments is handled by the
// VTableSlotInfo class.
struct CallSiteInfo {
/// The set of call sites for this slot. Used during regular LTO and the
/// import phase of ThinLTO (as well as the export phase of ThinLTO for any
/// call sites that appear in the merged module itself); in each of these
/// cases we are directly operating on the call sites at the IR level.
std::vector<VirtualCallSite> CallSites;
/// Whether all call sites represented by this CallSiteInfo, including those
/// in summaries, have been devirtualized. This starts off as true because a
/// default constructed CallSiteInfo represents no call sites.
bool AllCallSitesDevirted = true;
// These fields are used during the export phase of ThinLTO and reflect
// information collected from function summaries.
/// Whether any function summary contains an llvm.assume(llvm.type.test) for
/// this slot.
bool SummaryHasTypeTestAssumeUsers = false;
/// CFI-specific: a vector containing the list of function summaries that use
/// the llvm.type.checked.load intrinsic and therefore will require
/// resolutions for llvm.type.test in order to implement CFI checks if
/// devirtualization was unsuccessful. If devirtualization was successful, the
/// pass will clear this vector by calling markDevirt(). If at the end of the
/// pass the vector is non-empty, we will need to add a use of llvm.type.test
/// to each of the function summaries in the vector.
std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
bool isExported() const {
return SummaryHasTypeTestAssumeUsers ||
!SummaryTypeCheckedLoadUsers.empty();
}
void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
SummaryTypeCheckedLoadUsers.push_back(FS);
AllCallSitesDevirted = false;
}
void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
SummaryTypeTestAssumeUsers.push_back(FS);
SummaryHasTypeTestAssumeUsers = true;
AllCallSitesDevirted = false;
}
void markDevirt() {
AllCallSitesDevirted = true;
// As explained in the comment for SummaryTypeCheckedLoadUsers.
SummaryTypeCheckedLoadUsers.clear();
}
};
// Call site information collected for a specific VTableSlot.
struct VTableSlotInfo {
// The set of call sites which do not have all constant integer arguments
// (excluding "this").
CallSiteInfo CSInfo;
// The set of call sites with all constant integer arguments (excluding
// "this"), grouped by argument list.
std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses);
private:
CallSiteInfo &findCallSiteInfo(CallBase &CB);
};
CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) {
std::vector<uint64_t> Args;
auto *CBType = dyn_cast<IntegerType>(CB.getType());
if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty())
return CSInfo;
for (auto &&Arg : drop_begin(CB.args())) {
auto *CI = dyn_cast<ConstantInt>(Arg);
if (!CI || CI->getBitWidth() > 64)
return CSInfo;
Args.push_back(CI->getZExtValue());
}
return ConstCSInfo[Args];
}
void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB,
unsigned *NumUnsafeUses) {
auto &CSI = findCallSiteInfo(CB);
CSI.AllCallSitesDevirted = false;
CSI.CallSites.push_back({VTable, CB, NumUnsafeUses});
}
struct DevirtModule {
Module &M;
function_ref<AAResults &(Function &)> AARGetter;
function_ref<DominatorTree &(Function &)> LookupDomTree;
ModuleSummaryIndex *ExportSummary;
const ModuleSummaryIndex *ImportSummary;
IntegerType *Int8Ty;
PointerType *Int8PtrTy;
IntegerType *Int32Ty;
IntegerType *Int64Ty;
IntegerType *IntPtrTy;
/// Sizeless array type, used for imported vtables. This provides a signal
/// to analyzers that these imports may alias, as they do for example
/// when multiple unique return values occur in the same vtable.
ArrayType *Int8Arr0Ty;
bool RemarksEnabled;
function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
MapVector<VTableSlot, VTableSlotInfo> CallSlots;
// Calls that have already been optimized. We may add a call to multiple
// VTableSlotInfos if vtable loads are coalesced and need to make sure not to
// optimize a call more than once.
SmallPtrSet<CallBase *, 8> OptimizedCalls;
// Store calls that had their ptrauth bundle removed. They are to be deleted
// at the end of the optimization.
SmallVector<CallBase *, 8> CallsWithPtrAuthBundleRemoved;
// This map keeps track of the number of "unsafe" uses of a loaded function
// pointer. The key is the associated llvm.type.test intrinsic call generated
// by this pass. An unsafe use is one that calls the loaded function pointer
// directly. Every time we eliminate an unsafe use (for example, by
// devirtualizing it or by applying virtual constant propagation), we
// decrement the value stored in this map. If a value reaches zero, we can
// eliminate the type check by RAUWing the associated llvm.type.test call with
// true.
std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
PatternList FunctionsToSkip;
DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
function_ref<DominatorTree &(Function &)> LookupDomTree,
ModuleSummaryIndex *ExportSummary,
const ModuleSummaryIndex *ImportSummary)
: M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
ExportSummary(ExportSummary), ImportSummary(ImportSummary),
Int8Ty(Type::getInt8Ty(M.getContext())),
Int8PtrTy(PointerType::getUnqual(M.getContext())),
Int32Ty(Type::getInt32Ty(M.getContext())),
Int64Ty(Type::getInt64Ty(M.getContext())),
IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)),
RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
assert(!(ExportSummary && ImportSummary));
FunctionsToSkip.init(SkipFunctionNames);
}
bool areRemarksEnabled();
void
scanTypeTestUsers(Function *TypeTestFunc,
DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
void buildTypeIdentifierMap(
std::vector<VTableBits> &Bits,
DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
bool
tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
const std::set<TypeMemberInfo> &TypeMemberInfos,
uint64_t ByteOffset,
ModuleSummaryIndex *ExportSummary);
void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
bool &IsExported);
bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
VTableSlotInfo &SlotInfo,
WholeProgramDevirtResolution *Res);
void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
bool &IsExported);
void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
VTableSlotInfo &SlotInfo,
WholeProgramDevirtResolution *Res, VTableSlot Slot);
bool tryEvaluateFunctionsWithArgs(
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
ArrayRef<uint64_t> Args);
void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
uint64_t TheRetVal);
bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
CallSiteInfo &CSInfo,
WholeProgramDevirtResolution::ByArg *Res);
// Returns the global symbol name that is used to export information about the
// given vtable slot and list of arguments.
std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
StringRef Name);
bool shouldExportConstantsAsAbsoluteSymbols();
// This function is called during the export phase to create a symbol
// definition containing information about the given vtable slot and list of
// arguments.
void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
Constant *C);
void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
uint32_t Const, uint32_t &Storage);
// This function is called during the import phase to create a reference to
// the symbol definition created during the export phase.
Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
StringRef Name);
Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
StringRef Name, IntegerType *IntTy,
uint32_t Storage);
Constant *getMemberAddr(const TypeMemberInfo *M);
void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
Constant *UniqueMemberAddr);
bool tryUniqueRetValOpt(unsigned BitWidth,
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
CallSiteInfo &CSInfo,
WholeProgramDevirtResolution::ByArg *Res,
VTableSlot Slot, ArrayRef<uint64_t> Args);
void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
Constant *Byte, Constant *Bit);
bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
VTableSlotInfo &SlotInfo,
WholeProgramDevirtResolution *Res, VTableSlot Slot);
void rebuildGlobal(VTableBits &B);
// Apply the summary resolution for Slot to all virtual calls in SlotInfo.
void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
// If we were able to eliminate all unsafe uses for a type checked load,
// eliminate the associated type tests by replacing them with true.
void removeRedundantTypeTests();
bool run();
// Look up the corresponding ValueInfo entry of `TheFn` in `ExportSummary`.
//
// Caller guarantees that `ExportSummary` is not nullptr.
static ValueInfo lookUpFunctionValueInfo(Function *TheFn,
ModuleSummaryIndex *ExportSummary);
// Returns true if the function definition must be unreachable.
//
// Note if this helper function returns true, `F` is guaranteed
// to be unreachable; if it returns false, `F` might still
// be unreachable but not covered by this helper function.
//
// Implementation-wise, if function definition is present, IR is analyzed; if
// not, look up function flags from ExportSummary as a fallback.
static bool mustBeUnreachableFunction(Function *const F,
ModuleSummaryIndex *ExportSummary);
// Lower the module using the action and summary passed as command line
// arguments. For testing purposes only.
static bool
runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
function_ref<DominatorTree &(Function &)> LookupDomTree);
};
struct DevirtIndex {
ModuleSummaryIndex &ExportSummary;
// The set in which to record GUIDs exported from their module by
// devirtualization, used by client to ensure they are not internalized.
std::set<GlobalValue::GUID> &ExportedGUIDs;
// A map in which to record the information necessary to locate the WPD
// resolution for local targets in case they are exported by cross module
// importing.
std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
PatternList FunctionsToSkip;
DevirtIndex(
ModuleSummaryIndex &ExportSummary,
std::set<GlobalValue::GUID> &ExportedGUIDs,
std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
: ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
LocalWPDTargetsMap(LocalWPDTargetsMap) {
FunctionsToSkip.init(SkipFunctionNames);
}
bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
const TypeIdCompatibleVtableInfo TIdInfo,
uint64_t ByteOffset);
bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
VTableSlotSummary &SlotSummary,
VTableSlotInfo &SlotInfo,
WholeProgramDevirtResolution *Res,
std::set<ValueInfo> &DevirtTargets);
void run();
};
} // end anonymous namespace
PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
ModuleAnalysisManager &AM) {
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto AARGetter = [&](Function &F) -> AAResults & {
return FAM.getResult<AAManager>(F);
};
auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
};
auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
return FAM.getResult<DominatorTreeAnalysis>(F);
};
if (UseCommandLine) {
if (!DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}
if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
ImportSummary)
.run())
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}
// Enable whole program visibility if enabled by client (e.g. linker) or
// internal option, and not force disabled.
bool llvm::hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) {
return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) &&
!DisableWholeProgramVisibility;
}
static bool
typeIDVisibleToRegularObj(StringRef TypeID,
function_ref<bool(StringRef)> IsVisibleToRegularObj) {
// TypeID for member function pointer type is an internal construct
// and won't exist in IsVisibleToRegularObj. The full TypeID
// will be present and participate in invalidation.
if (TypeID.ends_with(".virtual"))
return false;
// TypeID that doesn't start with Itanium mangling (_ZTS) will be
// non-externally visible types which cannot interact with
// external native files. See CodeGenModule::CreateMetadataIdentifierImpl.
if (!TypeID.consume_front("_ZTS"))
return false;
// TypeID is keyed off the type name symbol (_ZTS). However, the native
// object may not contain this symbol if it does not contain a key
// function for the base type and thus only contains a reference to the
// type info (_ZTI). To catch this case we query using the type info
// symbol corresponding to the TypeID.
std::string typeInfo = ("_ZTI" + TypeID).str();
return IsVisibleToRegularObj(typeInfo);
}
static bool
skipUpdateDueToValidation(GlobalVariable &GV,
function_ref<bool(StringRef)> IsVisibleToRegularObj) {
SmallVector<MDNode *, 2> Types;
GV.getMetadata(LLVMContext::MD_type, Types);
for (auto Type : Types)
if (auto *TypeID = dyn_cast<MDString>(Type->getOperand(1).get()))
return typeIDVisibleToRegularObj(TypeID->getString(),
IsVisibleToRegularObj);
return false;
}
/// If whole program visibility asserted, then upgrade all public vcall
/// visibility metadata on vtable definitions to linkage unit visibility in
/// Module IR (for regular or hybrid LTO).
void llvm::updateVCallVisibilityInModule(
Module &M, bool WholeProgramVisibilityEnabledInLTO,
const DenseSet<GlobalValue::GUID> &DynamicExportSymbols,
bool ValidateAllVtablesHaveTypeInfos,
function_ref<bool(StringRef)> IsVisibleToRegularObj) {
if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
return;
for (GlobalVariable &GV : M.globals()) {
// Add linkage unit visibility to any variable with type metadata, which are
// the vtable definitions. We won't have an existing vcall_visibility
// metadata on vtable definitions with public visibility.
if (GV.hasMetadata(LLVMContext::MD_type) &&
GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic &&
// Don't upgrade the visibility for symbols exported to the dynamic
// linker, as we have no information on their eventual use.
!DynamicExportSymbols.count(GV.getGUID()) &&
// With validation enabled, we want to exclude symbols visible to
// regular objects. Local symbols will be in this group due to the
// current implementation but those with VCallVisibilityTranslationUnit
// will have already been marked in clang so are unaffected.
!(ValidateAllVtablesHaveTypeInfos &&
skipUpdateDueToValidation(GV, IsVisibleToRegularObj)))
GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit);
}
}
void llvm::updatePublicTypeTestCalls(Module &M,
bool WholeProgramVisibilityEnabledInLTO) {
Function *PublicTypeTestFunc =
M.getFunction(Intrinsic::getName(Intrinsic::public_type_test));
if (!PublicTypeTestFunc)
return;
if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) {
Function *TypeTestFunc =
Intrinsic::getDeclaration(&M, Intrinsic::type_test);
for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) {
auto *CI = cast<CallInst>(U.getUser());
auto *NewCI = CallInst::Create(
TypeTestFunc, {CI->getArgOperand(0), CI->getArgOperand(1)},
std::nullopt, "", CI->getIterator());
CI->replaceAllUsesWith(NewCI);
CI->eraseFromParent();
}
} else {
auto *True = ConstantInt::getTrue(M.getContext());
for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) {
auto *CI = cast<CallInst>(U.getUser());
CI->replaceAllUsesWith(True);
CI->eraseFromParent();
}
}
}
/// Based on typeID string, get all associated vtable GUIDS that are
/// visible to regular objects.
void llvm::getVisibleToRegularObjVtableGUIDs(
ModuleSummaryIndex &Index,
DenseSet<GlobalValue::GUID> &VisibleToRegularObjSymbols,
function_ref<bool(StringRef)> IsVisibleToRegularObj) {
for (const auto &typeID : Index.typeIdCompatibleVtableMap()) {
if (typeIDVisibleToRegularObj(typeID.first, IsVisibleToRegularObj))
for (const TypeIdOffsetVtableInfo &P : typeID.second)
VisibleToRegularObjSymbols.insert(P.VTableVI.getGUID());
}
}
/// If whole program visibility asserted, then upgrade all public vcall
/// visibility metadata on vtable definition summaries to linkage unit
/// visibility in Module summary index (for ThinLTO).
void llvm::updateVCallVisibilityInIndex(
ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO,
const DenseSet<GlobalValue::GUID> &DynamicExportSymbols,
const DenseSet<GlobalValue::GUID> &VisibleToRegularObjSymbols) {
if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
return;
for (auto &P : Index) {
// Don't upgrade the visibility for symbols exported to the dynamic
// linker, as we have no information on their eventual use.
if (DynamicExportSymbols.count(P.first))
continue;
for (auto &S : P.second.SummaryList) {
auto *GVar = dyn_cast<GlobalVarSummary>(S.get());
if (!GVar ||
GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic)
continue;
// With validation enabled, we want to exclude symbols visible to regular
// objects. Local symbols will be in this group due to the current
// implementation but those with VCallVisibilityTranslationUnit will have
// already been marked in clang so are unaffected.
if (VisibleToRegularObjSymbols.count(P.first))
continue;
GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit);
}
}
}
void llvm::runWholeProgramDevirtOnIndex(
ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
}
void llvm::updateIndexWPDForExports(
ModuleSummaryIndex &Summary,
function_ref<bool(StringRef, ValueInfo)> isExported,
std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
for (auto &T : LocalWPDTargetsMap) {
auto &VI = T.first;
// This was enforced earlier during trySingleImplDevirt.
assert(VI.getSummaryList().size() == 1 &&
"Devirt of local target has more than one copy");
auto &S = VI.getSummaryList()[0];
if (!isExported(S->modulePath(), VI))
continue;
// It's been exported by a cross module import.
for (auto &SlotSummary : T.second) {
auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
assert(TIdSum);
auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
assert(WPDRes != TIdSum->WPDRes.end());
WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
WPDRes->second.SingleImplName,
Summary.getModuleHash(S->modulePath()));
}
}
}
static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
// Check that summary index contains regular LTO module when performing
// export to prevent occasional use of index from pure ThinLTO compilation
// (-fno-split-lto-module). This kind of summary index is passed to
// DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
const auto &ModPaths = Summary->modulePaths();
if (ClSummaryAction != PassSummaryAction::Import &&
!ModPaths.contains(ModuleSummaryIndex::getRegularLTOModuleName()))
return createStringError(
errc::invalid_argument,
"combined summary should contain Regular LTO module");
return ErrorSuccess();
}
bool DevirtModule::runForTesting(
Module &M, function_ref<AAResults &(Function &)> AARGetter,
function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
function_ref<DominatorTree &(Function &)> LookupDomTree) {
std::unique_ptr<ModuleSummaryIndex> Summary =
std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
// Handle the command-line summary arguments. This code is for testing
// purposes only, so we handle errors directly.
if (!ClReadSummary.empty()) {
ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
": ");
auto ReadSummaryFile =
ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
getModuleSummaryIndex(*ReadSummaryFile)) {
Summary = std::move(*SummaryOrErr);
ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
} else {
// Try YAML if we've failed with bitcode.
consumeError(SummaryOrErr.takeError());
yaml::Input In(ReadSummaryFile->getBuffer());
In >> *Summary;
ExitOnErr(errorCodeToError(In.error()));
}
}
bool Changed =
DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
ClSummaryAction == PassSummaryAction::Export ? Summary.get()
: nullptr,
ClSummaryAction == PassSummaryAction::Import ? Summary.get()
: nullptr)
.run();
if (!ClWriteSummary.empty()) {
ExitOnError ExitOnErr(
"-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
std::error_code EC;
if (StringRef(ClWriteSummary).ends_with(".bc")) {
raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
ExitOnErr(errorCodeToError(EC));
writeIndexToFile(*Summary, OS);
} else {
raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_TextWithCRLF);
ExitOnErr(errorCodeToError(EC));
yaml::Output Out(OS);
Out << *Summary;
}
}
return Changed;
}
void DevirtModule::buildTypeIdentifierMap(
std::vector<VTableBits> &Bits,
DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
DenseMap<GlobalVariable *, VTableBits *> GVToBits;
Bits.reserve(M.global_size());
SmallVector<MDNode *, 2> Types;
for (GlobalVariable &GV : M.globals()) {
Types.clear();
GV.getMetadata(LLVMContext::MD_type, Types);
if (GV.isDeclaration() || Types.empty())
continue;
VTableBits *&BitsPtr = GVToBits[&GV];
if (!BitsPtr) {
Bits.emplace_back();
Bits.back().GV = &GV;
Bits.back().ObjectSize =
M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
BitsPtr = &Bits.back();
}
for (MDNode *Type : Types) {
auto TypeID = Type->getOperand(1).get();
uint64_t Offset =
cast<ConstantInt>(
cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
->getZExtValue();
TypeIdMap[TypeID].insert({BitsPtr, Offset});
}
}
}
bool DevirtModule::tryFindVirtualCallTargets(
std::vector<VirtualCallTarget> &TargetsForSlot,
const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset,
ModuleSummaryIndex *ExportSummary) {
for (const TypeMemberInfo &TM : TypeMemberInfos) {
if (!TM.Bits->GV->isConstant())
return false;
// We cannot perform whole program devirtualization analysis on a vtable
// with public LTO visibility.
if (TM.Bits->GV->getVCallVisibility() ==
GlobalObject::VCallVisibilityPublic)
return false;
Function *Fn = nullptr;
Constant *C = nullptr;
std::tie(Fn, C) =
getFunctionAtVTableOffset(TM.Bits->GV, TM.Offset + ByteOffset, M);
if (!Fn)
return false;
if (FunctionsToSkip.match(Fn->getName()))
return false;
// We can disregard __cxa_pure_virtual as a possible call target, as
// calls to pure virtuals are UB.
if (Fn->getName() == "__cxa_pure_virtual")
continue;
// We can disregard unreachable functions as possible call targets, as
// unreachable functions shouldn't be called.
if (mustBeUnreachableFunction(Fn, ExportSummary))
continue;
// Save the symbol used in the vtable to use as the devirtualization
// target.
auto GV = dyn_cast<GlobalValue>(C);
assert(GV);
TargetsForSlot.push_back({GV, &TM});
}
// Give up if we couldn't find any targets.
return !TargetsForSlot.empty();
}
bool DevirtIndex::tryFindVirtualCallTargets(
std::vector<ValueInfo> &TargetsForSlot,
const TypeIdCompatibleVtableInfo TIdInfo, uint64_t ByteOffset) {
for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
// Find a representative copy of the vtable initializer.
// We can have multiple available_externally, linkonce_odr and weak_odr
// vtable initializers. We can also have multiple external vtable
// initializers in the case of comdats, which we cannot check here.
// The linker should give an error in this case.
//
// Also, handle the case of same-named local Vtables with the same path
// and therefore the same GUID. This can happen if there isn't enough
// distinguishing path when compiling the source file. In that case we
// conservatively return false early.
const GlobalVarSummary *VS = nullptr;
bool LocalFound = false;
for (const auto &S : P.VTableVI.getSummaryList()) {
if (GlobalValue::isLocalLinkage(S->linkage())) {
if (LocalFound)
return false;
LocalFound = true;
}
auto *CurVS = cast<GlobalVarSummary>(S->getBaseObject());
if (!CurVS->vTableFuncs().empty() ||
// Previously clang did not attach the necessary type metadata to
// available_externally vtables, in which case there would not
// be any vtable functions listed in the summary and we need
// to treat this case conservatively (in case the bitcode is old).
// However, we will also not have any vtable functions in the
// case of a pure virtual base class. In that case we do want
// to set VS to avoid treating it conservatively.
!GlobalValue::isAvailableExternallyLinkage(S->linkage())) {
VS = CurVS;
// We cannot perform whole program devirtualization analysis on a vtable
// with public LTO visibility.
if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
return false;
}
}
// There will be no VS if all copies are available_externally having no
// type metadata. In that case we can't safely perform WPD.
if (!VS)
return false;
if (!VS->isLive())
continue;
for (auto VTP : VS->vTableFuncs()) {
if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
continue;
if (mustBeUnreachableFunction(VTP.FuncVI))
continue;
TargetsForSlot.push_back(VTP.FuncVI);
}
}
// Give up if we couldn't find any targets.
return !TargetsForSlot.empty();
}
void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
Constant *TheFn, bool &IsExported) {
// Don't devirtualize function if we're told to skip it
// in -wholeprogramdevirt-skip.
if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName()))
return;
auto Apply = [&](CallSiteInfo &CSInfo) {
for (auto &&VCallSite : CSInfo.CallSites) {
if (!OptimizedCalls.insert(&VCallSite.CB).second)
continue;
if (RemarksEnabled)
VCallSite.emitRemark("single-impl",
TheFn->stripPointerCasts()->getName(), OREGetter);
NumSingleImpl++;
auto &CB = VCallSite.CB;
assert(!CB.getCalledFunction() && "devirtualizing direct call?");
IRBuilder<> Builder(&CB);
Value *Callee =
Builder.CreateBitCast(TheFn, CB.getCalledOperand()->getType());
// If trap checking is enabled, add support to compare the virtual
// function pointer to the devirtualized target. In case of a mismatch,
// perform a debug trap.
if (DevirtCheckMode == WPDCheckMode::Trap) {
auto *Cond = Builder.CreateICmpNE(CB.getCalledOperand(), Callee);
Instruction *ThenTerm =
SplitBlockAndInsertIfThen(Cond, &CB, /*Unreachable=*/false);
Builder.SetInsertPoint(ThenTerm);
Function *TrapFn = Intrinsic::getDeclaration(&M, Intrinsic::debugtrap);
auto *CallTrap = Builder.CreateCall(TrapFn);
CallTrap->setDebugLoc(CB.getDebugLoc());
}
// If fallback checking is enabled, add support to compare the virtual
// function pointer to the devirtualized target. In case of a mismatch,
// fall back to indirect call.
if (DevirtCheckMode == WPDCheckMode::Fallback) {
MDNode *Weights = MDBuilder(M.getContext()).createLikelyBranchWeights();
// Version the indirect call site. If the called value is equal to the
// given callee, 'NewInst' will be executed, otherwise the original call
// site will be executed.
CallBase &NewInst = versionCallSite(CB, Callee, Weights);
NewInst.setCalledOperand(Callee);
// Since the new call site is direct, we must clear metadata that
// is only appropriate for indirect calls. This includes !prof and
// !callees metadata.
NewInst.setMetadata(LLVMContext::MD_prof, nullptr);
NewInst.setMetadata(LLVMContext::MD_callees, nullptr);
// Additionally, we should remove them from the fallback indirect call,
// so that we don't attempt to perform indirect call promotion later.
CB.setMetadata(LLVMContext::MD_prof, nullptr);
CB.setMetadata(LLVMContext::MD_callees, nullptr);
}
// In either trapping or non-checking mode, devirtualize original call.
else {
// Devirtualize unconditionally.
CB.setCalledOperand(Callee);
// Since the call site is now direct, we must clear metadata that
// is only appropriate for indirect calls. This includes !prof and
// !callees metadata.
CB.setMetadata(LLVMContext::MD_prof, nullptr);
CB.setMetadata(LLVMContext::MD_callees, nullptr);
if (CB.getCalledOperand() &&
CB.getOperandBundle(LLVMContext::OB_ptrauth)) {
auto *NewCS = CallBase::removeOperandBundle(
&CB, LLVMContext::OB_ptrauth, CB.getIterator());
CB.replaceAllUsesWith(NewCS);
// Schedule for deletion at the end of pass run.
CallsWithPtrAuthBundleRemoved.push_back(&CB);
}
}
// This use is no longer unsafe.
if (VCallSite.NumUnsafeUses)
--*VCallSite.NumUnsafeUses;
}
if (CSInfo.isExported())
IsExported = true;
CSInfo.markDevirt();
};
Apply(SlotInfo.CSInfo);
for (auto &P : SlotInfo.ConstCSInfo)
Apply(P.second);
}
static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
// We can't add calls if we haven't seen a definition
if (Callee.getSummaryList().empty())
return false;
// Insert calls into the summary index so that the devirtualized targets
// are eligible for import.
// FIXME: Annotate type tests with hotness. For now, mark these as hot
// to better ensure we have the opportunity to inline them.
bool IsExported = false;
auto &S = Callee.getSummaryList()[0];
CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* HasTailCall = */ false,
/* RelBF = */ 0);
auto AddCalls = [&](CallSiteInfo &CSInfo) {
for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
FS->addCall({Callee, CI});
IsExported |= S->modulePath() != FS->modulePath();
}
for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
FS->addCall({Callee, CI});
IsExported |= S->modulePath() != FS->modulePath();
}
};
AddCalls(SlotInfo.CSInfo);
for (auto &P : SlotInfo.ConstCSInfo)
AddCalls(P.second);
return IsExported;
}
bool DevirtModule::trySingleImplDevirt(
ModuleSummaryIndex *ExportSummary,
MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
WholeProgramDevirtResolution *Res) {
// See if the program contains a single implementation of this virtual
// function.
auto *TheFn = TargetsForSlot[0].Fn;
for (auto &&Target : TargetsForSlot)
if (TheFn != Target.Fn)
return false;
// If so, update each call site to call that implementation directly.
if (RemarksEnabled || AreStatisticsEnabled())
TargetsForSlot[0].WasDevirt = true;
bool IsExported = false;
applySingleImplDevirt(SlotInfo, TheFn, IsExported);
if (!IsExported)
return false;
// If the only implementation has local linkage, we must promote to external
// to make it visible to thin LTO objects. We can only get here during the
// ThinLTO export phase.
if (TheFn->hasLocalLinkage()) {
std::string NewName = (TheFn->getName() + ".llvm.merged").str();
// Since we are renaming the function, any comdats with the same name must
// also be renamed. This is required when targeting COFF, as the comdat name
// must match one of the names of the symbols in the comdat.
if (Comdat *C = TheFn->getComdat()) {
if (C->getName() == TheFn->getName()) {
Comdat *NewC = M.getOrInsertComdat(NewName);
NewC->setSelectionKind(C->getSelectionKind());
for (GlobalObject &GO : M.global_objects())
if (GO.getComdat() == C)
GO.setComdat(NewC);
}
}
TheFn->setLinkage(GlobalValue::ExternalLinkage);
TheFn->setVisibility(GlobalValue::HiddenVisibility);
TheFn->setName(NewName);
}
if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
// Any needed promotion of 'TheFn' has already been done during
// LTO unit split, so we can ignore return value of AddCalls.
AddCalls(SlotInfo, TheFnVI);
Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
Res->SingleImplName = std::string(TheFn->getName());
return true;
}
bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
VTableSlotSummary &SlotSummary,
VTableSlotInfo &SlotInfo,
WholeProgramDevirtResolution *Res,
std::set<ValueInfo> &DevirtTargets) {
// See if the program contains a single implementation of this virtual
// function.
auto TheFn = TargetsForSlot[0];
for (auto &&Target : TargetsForSlot)
if (TheFn != Target)
return false;
// Don't devirtualize if we don't have target definition.
auto Size = TheFn.getSummaryList().size();
if (!Size)
return false;
// Don't devirtualize function if we're told to skip it
// in -wholeprogramdevirt-skip.
if (FunctionsToSkip.match(TheFn.name()))
return false;
// If the summary list contains multiple summaries where at least one is
// a local, give up, as we won't know which (possibly promoted) name to use.
for (const auto &S : TheFn.getSummaryList())
if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
return false;
// Collect functions devirtualized at least for one call site for stats.
if (PrintSummaryDevirt || AreStatisticsEnabled())
DevirtTargets.insert(TheFn);
auto &S = TheFn.getSummaryList()[0];
bool IsExported = AddCalls(SlotInfo, TheFn);
if (IsExported)
ExportedGUIDs.insert(TheFn.getGUID());
// Record in summary for use in devirtualization during the ThinLTO import
// step.
Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
if (GlobalValue::isLocalLinkage(S->linkage())) {
if (IsExported)
// If target is a local function and we are exporting it by
// devirtualizing a call in another module, we need to record the
// promoted name.
Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
else {
LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
Res->SingleImplName = std::string(TheFn.name());
}
} else
Res->SingleImplName = std::string(TheFn.name());
// Name will be empty if this thin link driven off of serialized combined
// index (e.g. llvm-lto). However, WPD is not supported/invoked for the
// legacy LTO API anyway.
assert(!Res->SingleImplName.empty());
return true;
}
void DevirtModule::tryICallBranchFunnel(
MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
WholeProgramDevirtResolution *Res, VTableSlot Slot) {
Triple T(M.getTargetTriple());
if (T.getArch() != Triple::x86_64)
return;
if (TargetsForSlot.size() > ClThreshold)
return;
bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
if (!HasNonDevirt)
for (auto &P : SlotInfo.ConstCSInfo)
if (!P.second.AllCallSitesDevirted) {
HasNonDevirt = true;
break;
}
if (!HasNonDevirt)
return;
FunctionType *FT =
FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
Function *JT;
if (isa<MDString>(Slot.TypeID)) {
JT = Function::Create(FT, Function::ExternalLinkage,
M.getDataLayout().getProgramAddressSpace(),
getGlobalName(Slot, {}, "branch_funnel"), &M);
JT->setVisibility(GlobalValue::HiddenVisibility);
} else {
JT = Function::Create(FT, Function::InternalLinkage,
M.getDataLayout().getProgramAddressSpace(),
"branch_funnel", &M);
}
JT->addParamAttr(0, Attribute::Nest);
std::vector<Value *> JTArgs;
JTArgs.push_back(JT->arg_begin());
for (auto &T : TargetsForSlot) {
JTArgs.push_back(getMemberAddr(T.TM));
JTArgs.push_back(T.Fn);
}
BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
Function *Intr =
Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
CI->setTailCallKind(CallInst::TCK_MustTail);
ReturnInst::Create(M.getContext(), nullptr, BB);
bool IsExported = false;
applyICallBranchFunnel(SlotInfo, JT, IsExported);
if (IsExported)
Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
}
void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
Constant *JT, bool &IsExported) {
auto Apply = [&](CallSiteInfo &CSInfo) {
if (CSInfo.isExported())
IsExported = true;
if (CSInfo.AllCallSitesDevirted)
return;
std::map<CallBase *, CallBase *> CallBases;
for (auto &&VCallSite : CSInfo.CallSites) {
CallBase &CB = VCallSite.CB;
if (CallBases.find(&CB) != CallBases.end()) {
// When finding devirtualizable calls, it's possible to find the same
// vtable passed to multiple llvm.type.test or llvm.type.checked.load
// calls, which can cause duplicate call sites to be recorded in
// [Const]CallSites. If we've already found one of these
// call instances, just ignore it. It will be replaced later.
continue;
}
// Jump tables are only profitable if the retpoline mitigation is enabled.
Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features");
if (!FSAttr.isValid() ||
!FSAttr.getValueAsString().contains("+retpoline"))
continue;
NumBranchFunnel++;
if (RemarksEnabled)
VCallSite.emitRemark("branch-funnel",
JT->stripPointerCasts()->getName(), OREGetter);
// Pass the address of the vtable in the nest register, which is r10 on
// x86_64.
std::vector<Type *> NewArgs;
NewArgs.push_back(Int8PtrTy);
append_range(NewArgs, CB.getFunctionType()->params());
FunctionType *NewFT =
FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs,
CB.getFunctionType()->isVarArg());
PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
IRBuilder<> IRB(&CB);
std::vector<Value *> Args;
Args.push_back(VCallSite.VTable);
llvm::append_range(Args, CB.args());
CallBase *NewCS = nullptr;
if (isa<CallInst>(CB))
NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
else
NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr),
cast<InvokeInst>(CB).getNormalDest(),
cast<InvokeInst>(CB).getUnwindDest(), Args);
NewCS->setCallingConv(CB.getCallingConv());
AttributeList Attrs = CB.getAttributes();
std::vector<AttributeSet> NewArgAttrs;
NewArgAttrs.push_back(AttributeSet::get(
M.getContext(), ArrayRef<Attribute>{Attribute::get(
M.getContext(), Attribute::Nest)}));
for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I)
NewArgAttrs.push_back(Attrs.getParamAttrs(I));
NewCS->setAttributes(
AttributeList::get(M.getContext(), Attrs.getFnAttrs(),
Attrs.getRetAttrs(), NewArgAttrs));
CallBases[&CB] = NewCS;
// This use is no longer unsafe.
if (VCallSite.NumUnsafeUses)
--*VCallSite.NumUnsafeUses;
}
// Don't mark as devirtualized because there may be callers compiled without
// retpoline mitigation, which would mean that they are lowered to
// llvm.type.test and therefore require an llvm.type.test resolution for the
// type identifier.
for (auto &[Old, New] : CallBases) {
Old->replaceAllUsesWith(New);
Old->eraseFromParent();
}
};
Apply(SlotInfo.CSInfo);
for (auto &P : SlotInfo.ConstCSInfo)
Apply(P.second);
}
bool DevirtModule::tryEvaluateFunctionsWithArgs(
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
ArrayRef<uint64_t> Args) {
// Evaluate each function and store the result in each target's RetVal
// field.
for (VirtualCallTarget &Target : TargetsForSlot) {
// TODO: Skip for now if the vtable symbol was an alias to a function,
// need to evaluate whether it would be correct to analyze the aliasee
// function for this optimization.
auto Fn = dyn_cast<Function>(Target.Fn);
if (!Fn)
return false;
if (Fn->arg_size() != Args.size() + 1)
return false;
Evaluator Eval(M.getDataLayout(), nullptr);
SmallVector<Constant *, 2> EvalArgs;
EvalArgs.push_back(
Constant::getNullValue(Fn->getFunctionType()->getParamType(0)));
for (unsigned I = 0; I != Args.size(); ++I) {
auto *ArgTy =
dyn_cast<IntegerType>(Fn->getFunctionType()->getParamType(I + 1));
if (!ArgTy)
return false;
EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
}
Constant *RetVal;
if (!Eval.EvaluateFunction(Fn, RetVal, EvalArgs) ||
!isa<ConstantInt>(RetVal))
return false;
Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
}
return true;
}
void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
uint64_t TheRetVal) {
for (auto Call : CSInfo.CallSites) {
if (!OptimizedCalls.insert(&Call.CB).second)
continue;
NumUniformRetVal++;
Call.replaceAndErase(
"uniform-ret-val", FnName, RemarksEnabled, OREGetter,
ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal));
}
CSInfo.markDevirt();
}
bool DevirtModule::tryUniformRetValOpt(
MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
WholeProgramDevirtResolution::ByArg *Res) {
// Uniform return value optimization. If all functions return the same
// constant, replace all calls with that constant.
uint64_t TheRetVal = TargetsForSlot[0].RetVal;
for (const VirtualCallTarget &Target : TargetsForSlot)
if (Target.RetVal != TheRetVal)
return false;
if (CSInfo.isExported()) {
Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
Res->Info = TheRetVal;
}
applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
if (RemarksEnabled || AreStatisticsEnabled())
for (auto &&Target : TargetsForSlot)
Target.WasDevirt = true;
return true;
}
std::string DevirtModule::getGlobalName(VTableSlot Slot,
ArrayRef<uint64_t> Args,
StringRef Name) {
std::string FullName = "__typeid_";
raw_string_ostream OS(FullName);
OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
for (uint64_t Arg : Args)
OS << '_' << Arg;
OS << '_' << Name;
return OS.str();
}
bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
Triple T(M.getTargetTriple());
return T.isX86() && T.getObjectFormat() == Triple::ELF;
}
void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
StringRef Name, Constant *C) {
GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
getGlobalName(Slot, Args, Name), C, &M);
GA->setVisibility(GlobalValue::HiddenVisibility);
}
void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
StringRef Name, uint32_t Const,
uint32_t &Storage) {
if (shouldExportConstantsAsAbsoluteSymbols()) {
exportGlobal(
Slot, Args, Name,
ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
return;
}
Storage = Const;
}
Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
StringRef Name) {
Constant *C =
M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty);
auto *GV = dyn_cast<GlobalVariable>(C);
if (GV)
GV->setVisibility(GlobalValue::HiddenVisibility);
return C;
}
Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
StringRef Name, IntegerType *IntTy,
uint32_t Storage) {
if (!shouldExportConstantsAsAbsoluteSymbols())
return ConstantInt::get(IntTy, Storage);
Constant *C = importGlobal(Slot, Args, Name);
auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
C = ConstantExpr::getPtrToInt(C, IntTy);
// We only need to set metadata if the global is newly created, in which
// case it would not have hidden visibility.
if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
return C;
auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
GV->setMetadata(LLVMContext::MD_absolute_symbol,
MDNode::get(M.getContext(), {MinC, MaxC}));
};
unsigned AbsWidth = IntTy->getBitWidth();
if (AbsWidth == IntPtrTy->getBitWidth())
SetAbsRange(~0ull, ~0ull); // Full set.
else
SetAbsRange(0, 1ull << AbsWidth);
return C;
}
void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
bool IsOne,
Constant *UniqueMemberAddr) {
for (auto &&Call : CSInfo.CallSites) {
if (!OptimizedCalls.insert(&Call.CB).second)
continue;
IRBuilder<> B(&Call.CB);
Value *Cmp =
B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable,
B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType()));
Cmp = B.CreateZExt(Cmp, Call.CB.getType());
NumUniqueRetVal++;
Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
Cmp);
}
CSInfo.markDevirt();
}
Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
return ConstantExpr::getGetElementPtr(Int8Ty, M->Bits->GV,
ConstantInt::get(Int64Ty, M->Offset));
}
bool DevirtModule::tryUniqueRetValOpt(
unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
VTableSlot Slot, ArrayRef<uint64_t> Args) {
// IsOne controls whether we look for a 0 or a 1.
auto tryUniqueRetValOptFor = [&](bool IsOne) {
const TypeMemberInfo *UniqueMember = nullptr;
for (const VirtualCallTarget &Target : TargetsForSlot) {
if (Target.RetVal == (IsOne ? 1 : 0)) {
if (UniqueMember)
return false;
UniqueMember = Target.TM;
}
}
// We should have found a unique member or bailed out by now. We already
// checked for a uniform return value in tryUniformRetValOpt.
assert(UniqueMember);
Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
if (CSInfo.isExported()) {
Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
Res->Info = IsOne;
exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
}
// Replace each call with the comparison.
applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
UniqueMemberAddr);
// Update devirtualization statistics for targets.
if (RemarksEnabled || AreStatisticsEnabled())
for (auto &&Target : TargetsForSlot)
Target.WasDevirt = true;
return true;
};
if (BitWidth == 1) {
if (tryUniqueRetValOptFor(true))
return true;
if (tryUniqueRetValOptFor(false))
return true;
}
return false;
}
void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
Constant *Byte, Constant *Bit) {
for (auto Call : CSInfo.CallSites) {
if (!OptimizedCalls.insert(&Call.CB).second)
continue;
auto *RetType = cast<IntegerType>(Call.CB.getType());
IRBuilder<> B(&Call.CB);
Value *Addr = B.CreatePtrAdd(Call.VTable, Byte);
if (RetType->getBitWidth() == 1) {
Value *Bits = B.CreateLoad(Int8Ty, Addr);
Value *BitsAndBit = B.CreateAnd(Bits, Bit);
auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
NumVirtConstProp1Bit++;
Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
OREGetter, IsBitSet);
} else {
Value *Val = B.CreateLoad(RetType, Addr);
NumVirtConstProp++;
Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
OREGetter, Val);
}
}
CSInfo.markDevirt();
}
bool DevirtModule::tryVirtualConstProp(
MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
WholeProgramDevirtResolution *Res, VTableSlot Slot) {
// TODO: Skip for now if the vtable symbol was an alias to a function,
// need to evaluate whether it would be correct to analyze the aliasee
// function for this optimization.
auto Fn = dyn_cast<Function>(TargetsForSlot[0].Fn);
if (!Fn)
return false;
// This only works if the function returns an integer.
auto RetType = dyn_cast<IntegerType>(Fn->getReturnType());
if (!RetType)
return false;
unsigned BitWidth = RetType->getBitWidth();
if (BitWidth > 64)
return false;
// Make sure that each function is defined, does not access memory, takes at
// least one argument, does not use its first argument (which we assume is
// 'this'), and has the same return type.
//
// Note that we test whether this copy of the function is readnone, rather
// than testing function attributes, which must hold for any copy of the
// function, even a less optimized version substituted at link time. This is
// sound because the virtual constant propagation optimizations effectively
// inline all implementations of the virtual function into each call site,
// rather than using function attributes to perform local optimization.
for (VirtualCallTarget &Target : TargetsForSlot) {
// TODO: Skip for now if the vtable symbol was an alias to a function,
// need to evaluate whether it would be correct to analyze the aliasee
// function for this optimization.
auto Fn = dyn_cast<Function>(Target.Fn);
if (!Fn)
return false;
if (Fn->isDeclaration() ||
!computeFunctionBodyMemoryAccess(*Fn, AARGetter(*Fn))
.doesNotAccessMemory() ||
Fn->arg_empty() || !Fn->arg_begin()->use_empty() ||
Fn->getReturnType() != RetType)
return false;
}
for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
continue;
WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
if (Res)
ResByArg = &Res->ResByArg[CSByConstantArg.first];
if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
continue;
if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
ResByArg, Slot, CSByConstantArg.first))
continue;
// Find an allocation offset in bits in all vtables associated with the
// type.
uint64_t AllocBefore =
findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
uint64_t AllocAfter =
findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
// Calculate the total amount of padding needed to store a value at both
// ends of the object.
uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
for (auto &&Target : TargetsForSlot) {
TotalPaddingBefore += std::max<int64_t>(
(AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
TotalPaddingAfter += std::max<int64_t>(
(AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
}
// If the amount of padding is too large, give up.
// FIXME: do something smarter here.
if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
continue;
// Calculate the offset to the value as a (possibly negative) byte offset
// and (if applicable) a bit offset, and store the values in the targets.
int64_t OffsetByte;
uint64_t OffsetBit;
if (TotalPaddingBefore <= TotalPaddingAfter)
setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
OffsetBit);
else
setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
OffsetBit);
if (RemarksEnabled || AreStatisticsEnabled())
for (auto &&Target : TargetsForSlot)
Target.WasDevirt = true;
if (CSByConstantArg.second.isExported()) {
ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
ResByArg->Byte);
exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
ResByArg->Bit);
}
// Rewrite each call to a load from OffsetByte/OffsetBit.
Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
applyVirtualConstProp(CSByConstantArg.second,
TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
}
return true;
}
void DevirtModule::rebuildGlobal(VTableBits &B) {
if (B.Before.Bytes.empty() && B.After.Bytes.empty())
return;
// Align the before byte array to the global's minimum alignment so that we
// don't break any alignment requirements on the global.
Align Alignment = M.getDataLayout().getValueOrABITypeAlignment(
B.GV->getAlign(), B.GV->getValueType());
B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
// Before was stored in reverse order; flip it now.
for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
// Build an anonymous global containing the before bytes, followed by the
// original initializer, followed by the after bytes.
auto NewInit = ConstantStruct::getAnon(
{ConstantDataArray::get(M.getContext(), B.Before.Bytes),
B.GV->getInitializer(),
ConstantDataArray::get(M.getContext(), B.After.Bytes)});
auto NewGV =
new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
NewGV->setSection(B.GV->getSection());
NewGV->setComdat(B.GV->getComdat());
NewGV->setAlignment(B.GV->getAlign());
// Copy the original vtable's metadata to the anonymous global, adjusting
// offsets as required.
NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
// Build an alias named after the original global, pointing at the second
// element (the original initializer).
auto Alias = GlobalAlias::create(
B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
ConstantExpr::getGetElementPtr(
NewInit->getType(), NewGV,
ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
ConstantInt::get(Int32Ty, 1)}),
&M);
Alias->setVisibility(B.GV->getVisibility());
Alias->takeName(B.GV);
B.GV->replaceAllUsesWith(Alias);
B.GV->eraseFromParent();
}
bool DevirtModule::areRemarksEnabled() {
const auto &FL = M.getFunctionList();
for (const Function &Fn : FL) {
if (Fn.empty())
continue;
auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &Fn.front());
return DI.isEnabled();
}
return false;
}
void DevirtModule::scanTypeTestUsers(
Function *TypeTestFunc,
DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
// Find all virtual calls via a virtual table pointer %p under an assumption
// of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
// points to a member of the type identifier %md. Group calls by (type ID,
// offset) pair (effectively the identity of the virtual function) and store
// to CallSlots.
for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
auto *CI = dyn_cast<CallInst>(U.getUser());
if (!CI)
continue;
// Search for virtual calls based on %p and add them to DevirtCalls.
SmallVector<DevirtCallSite, 1> DevirtCalls;
SmallVector<CallInst *, 1> Assumes;
auto &DT = LookupDomTree(*CI->getFunction());
findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
Metadata *TypeId =
cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
// If we found any, add them to CallSlots.
if (!Assumes.empty()) {
Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
for (DevirtCallSite Call : DevirtCalls)
CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr);
}
auto RemoveTypeTestAssumes = [&]() {
// We no longer need the assumes or the type test.
for (auto *Assume : Assumes)
Assume->eraseFromParent();
// We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
// may use the vtable argument later.
if (CI->use_empty())
CI->eraseFromParent();
};
// At this point we could remove all type test assume sequences, as they
// were originally inserted for WPD. However, we can keep these in the
// code stream for later analysis (e.g. to help drive more efficient ICP
// sequences). They will eventually be removed by a second LowerTypeTests
// invocation that cleans them up. In order to do this correctly, the first
// LowerTypeTests invocation needs to know that they have "Unknown" type
// test resolution, so that they aren't treated as Unsat and lowered to
// False, which will break any uses on assumes. Below we remove any type
// test assumes that will not be treated as Unknown by LTT.
// The type test assumes will be treated by LTT as Unsat if the type id is
// not used on a global (in which case it has no entry in the TypeIdMap).
if (!TypeIdMap.count(TypeId))
RemoveTypeTestAssumes();
// For ThinLTO importing, we need to remove the type test assumes if this is
// an MDString type id without a corresponding TypeIdSummary. Any
// non-MDString type ids are ignored and treated as Unknown by LTT, so their
// type test assumes can be kept. If the MDString type id is missing a
// TypeIdSummary (e.g. because there was no use on a vcall, preventing the
// exporting phase of WPD from analyzing it), then it would be treated as
// Unsat by LTT and we need to remove its type test assumes here. If not
// used on a vcall we don't need them for later optimization use in any
// case.
else if (ImportSummary && isa<MDString>(TypeId)) {
const TypeIdSummary *TidSummary =
ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString());
if (!TidSummary)
RemoveTypeTestAssumes();
else
// If one was created it should not be Unsat, because if we reached here
// the type id was used on a global.
assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat);
}
}
}
void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
for (Use &U : llvm::make_early_inc_range(TypeCheckedLoadFunc->uses())) {
auto *CI = dyn_cast<CallInst>(U.getUser());
if (!CI)
continue;
Value *Ptr = CI->getArgOperand(0);
Value *Offset = CI->getArgOperand(1);
Value *TypeIdValue = CI->getArgOperand(2);
Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
SmallVector<DevirtCallSite, 1> DevirtCalls;
SmallVector<Instruction *, 1> LoadedPtrs;
SmallVector<Instruction *, 1> Preds;
bool HasNonCallUses = false;
auto &DT = LookupDomTree(*CI->getFunction());
findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
HasNonCallUses, CI, DT);
// Start by generating "pessimistic" code that explicitly loads the function
// pointer from the vtable and performs the type check. If possible, we will
// eliminate the load and the type check later.
// If possible, only generate the load at the point where it is used.
// This helps avoid unnecessary spills.
IRBuilder<> LoadB(
(LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
Value *LoadedValue = nullptr;
if (TypeCheckedLoadFunc->getIntrinsicID() ==
Intrinsic::type_checked_load_relative) {
Value *GEP = LoadB.CreatePtrAdd(Ptr, Offset);
LoadedValue = LoadB.CreateLoad(Int32Ty, GEP);
LoadedValue = LoadB.CreateSExt(LoadedValue, IntPtrTy);
GEP = LoadB.CreatePtrToInt(GEP, IntPtrTy);
LoadedValue = LoadB.CreateAdd(GEP, LoadedValue);
LoadedValue = LoadB.CreateIntToPtr(LoadedValue, Int8PtrTy);
} else {
Value *GEP = LoadB.CreatePtrAdd(Ptr, Offset);
LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEP);
}
for (Instruction *LoadedPtr : LoadedPtrs) {
LoadedPtr->replaceAllUsesWith(LoadedValue);
LoadedPtr->eraseFromParent();
}
// Likewise for the type test.
IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
for (Instruction *Pred : Preds) {
Pred->replaceAllUsesWith(TypeTestCall);
Pred->eraseFromParent();
}
// We have already erased any extractvalue instructions that refer to the
// intrinsic call, but the intrinsic may have other non-extractvalue uses
// (although this is unlikely). In that case, explicitly build a pair and
// RAUW it.
if (!CI->use_empty()) {
Value *Pair = PoisonValue::get(CI->getType());
IRBuilder<> B(CI);
Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
CI->replaceAllUsesWith(Pair);
}
// The number of unsafe uses is initially the number of uses.
auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
NumUnsafeUses = DevirtCalls.size();
// If the function pointer has a non-call user, we cannot eliminate the type
// check, as one of those users may eventually call the pointer. Increment
// the unsafe use count to make sure it cannot reach zero.
if (HasNonCallUses)
++NumUnsafeUses;
for (DevirtCallSite Call : DevirtCalls) {
CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB,
&NumUnsafeUses);
}
CI->eraseFromParent();
}
}
void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
if (!TypeId)
return;
const TypeIdSummary *TidSummary =
ImportSummary->getTypeIdSummary(TypeId->getString());
if (!TidSummary)
return;
auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
if (ResI == TidSummary->WPDRes.end())
return;
const WholeProgramDevirtResolution &Res = ResI->second;
if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
assert(!Res.SingleImplName.empty());
// The type of the function in the declaration is irrelevant because every
// call site will cast it to the correct type.
Constant *SingleImpl =
cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
Type::getVoidTy(M.getContext()))
.getCallee());
// This is the import phase so we should not be exporting anything.
bool IsExported = false;
applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
assert(!IsExported);
}
for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
auto I = Res.ResByArg.find(CSByConstantArg.first);
if (I == Res.ResByArg.end())
continue;
auto &ResByArg = I->second;
// FIXME: We should figure out what to do about the "function name" argument
// to the apply* functions, as the function names are unavailable during the
// importing phase. For now we just pass the empty string. This does not
// impact correctness because the function names are just used for remarks.
switch (ResByArg.TheKind) {
case WholeProgramDevirtResolution::ByArg::UniformRetVal:
applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
break;
case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
Constant *UniqueMemberAddr =
importGlobal(Slot, CSByConstantArg.first, "unique_member");
applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
UniqueMemberAddr);
break;
}
case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
Int32Ty, ResByArg.Byte);
Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
ResByArg.Bit);
applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
break;
}
default:
break;
}
}
if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
// The type of the function is irrelevant, because it's bitcast at calls
// anyhow.
Constant *JT = cast<Constant>(
M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
Type::getVoidTy(M.getContext()))
.getCallee());
bool IsExported = false;
applyICallBranchFunnel(SlotInfo, JT, IsExported);
assert(!IsExported);
}
}
void DevirtModule::removeRedundantTypeTests() {
auto True = ConstantInt::getTrue(M.getContext());
for (auto &&U : NumUnsafeUsesForTypeTest) {
if (U.second == 0) {
U.first->replaceAllUsesWith(True);
U.first->eraseFromParent();
}
}
}
ValueInfo
DevirtModule::lookUpFunctionValueInfo(Function *TheFn,
ModuleSummaryIndex *ExportSummary) {
assert((ExportSummary != nullptr) &&
"Caller guarantees ExportSummary is not nullptr");
const auto TheFnGUID = TheFn->getGUID();
const auto TheFnGUIDWithExportedName = GlobalValue::getGUID(TheFn->getName());
// Look up ValueInfo with the GUID in the current linkage.
ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFnGUID);
// If no entry is found and GUID is different from GUID computed using
// exported name, look up ValueInfo with the exported name unconditionally.
// This is a fallback.
//
// The reason to have a fallback:
// 1. LTO could enable global value internalization via
// `enable-lto-internalization`.
// 2. The GUID in ExportedSummary is computed using exported name.
if ((!TheFnVI) && (TheFnGUID != TheFnGUIDWithExportedName)) {
TheFnVI = ExportSummary->getValueInfo(TheFnGUIDWithExportedName);
}
return TheFnVI;
}
bool DevirtModule::mustBeUnreachableFunction(
Function *const F, ModuleSummaryIndex *ExportSummary) {
// First, learn unreachability by analyzing function IR.
if (!F->isDeclaration()) {
// A function must be unreachable if its entry block ends with an
// 'unreachable'.
return isa<UnreachableInst>(F->getEntryBlock().getTerminator());
}
// Learn unreachability from ExportSummary if ExportSummary is present.
return ExportSummary &&
::mustBeUnreachableFunction(
DevirtModule::lookUpFunctionValueInfo(F, ExportSummary));
}
bool DevirtModule::run() {
// If only some of the modules were split, we cannot correctly perform
// this transformation. We already checked for the presense of type tests
// with partially split modules during the thin link, and would have emitted
// an error if any were found, so here we can simply return.
if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
(ImportSummary && ImportSummary->partiallySplitLTOUnits()))
return false;
Function *TypeTestFunc =
M.getFunction(Intrinsic::getName(Intrinsic::type_test));
Function *TypeCheckedLoadFunc =
M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
Function *TypeCheckedLoadRelativeFunc =
M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load_relative));
Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
// Normally if there are no users of the devirtualization intrinsics in the
// module, this pass has nothing to do. But if we are exporting, we also need
// to handle any users that appear only in the function summaries.
if (!ExportSummary &&
(!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
AssumeFunc->use_empty()) &&
(!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()) &&
(!TypeCheckedLoadRelativeFunc ||
TypeCheckedLoadRelativeFunc->use_empty()))
return false;
// Rebuild type metadata into a map for easy lookup.
std::vector<VTableBits> Bits;
DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
buildTypeIdentifierMap(Bits, TypeIdMap);
if (TypeTestFunc && AssumeFunc)
scanTypeTestUsers(TypeTestFunc, TypeIdMap);
if (TypeCheckedLoadFunc)
scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
if (TypeCheckedLoadRelativeFunc)
scanTypeCheckedLoadUsers(TypeCheckedLoadRelativeFunc);
if (ImportSummary) {
for (auto &S : CallSlots)
importResolution(S.first, S.second);
removeRedundantTypeTests();
// We have lowered or deleted the type intrinsics, so we will no longer have
// enough information to reason about the liveness of virtual function
// pointers in GlobalDCE.
for (GlobalVariable &GV : M.globals())
GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
// The rest of the code is only necessary when exporting or during regular
// LTO, so we are done.
return true;
}
if (TypeIdMap.empty())
return true;
// Collect information from summary about which calls to try to devirtualize.
if (ExportSummary) {
DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
for (auto &P : TypeIdMap) {
if (auto *TypeId = dyn_cast<MDString>(P.first))
MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
TypeId);
}
for (auto &P : *ExportSummary) {
for (auto &S : P.second.SummaryList) {
auto *FS = dyn_cast<FunctionSummary>(S.get());
if (!FS)
continue;
// FIXME: Only add live functions.
for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
for (Metadata *MD : MetadataByGUID[VF.GUID]) {
CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
}
}
for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
for (Metadata *MD : MetadataByGUID[VF.GUID]) {
CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
}
}
for (const FunctionSummary::ConstVCall &VC :
FS->type_test_assume_const_vcalls()) {
for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
CallSlots[{MD, VC.VFunc.Offset}]
.ConstCSInfo[VC.Args]
.addSummaryTypeTestAssumeUser(FS);
}
}
for (const FunctionSummary::ConstVCall &VC :
FS->type_checked_load_const_vcalls()) {
for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
CallSlots[{MD, VC.VFunc.Offset}]
.ConstCSInfo[VC.Args]
.addSummaryTypeCheckedLoadUser(FS);
}
}
}
}
}
// For each (type, offset) pair:
bool DidVirtualConstProp = false;
std::map<std::string, GlobalValue *> DevirtTargets;
for (auto &S : CallSlots) {
// Search each of the members of the type identifier for the virtual
// function implementation at offset S.first.ByteOffset, and add to
// TargetsForSlot.
std::vector<VirtualCallTarget> TargetsForSlot;
WholeProgramDevirtResolution *Res = nullptr;
const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID];
if (ExportSummary && isa<MDString>(S.first.TypeID) &&
TypeMemberInfos.size())
// For any type id used on a global's type metadata, create the type id
// summary resolution regardless of whether we can devirtualize, so that
// lower type tests knows the type id is not Unsat. If it was not used on
// a global's type metadata, the TypeIdMap entry set will be empty, and
// we don't want to create an entry (with the default Unknown type
// resolution), which can prevent detection of the Unsat.
Res = &ExportSummary
->getOrInsertTypeIdSummary(
cast<MDString>(S.first.TypeID)->getString())
.WPDRes[S.first.ByteOffset];
if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos,
S.first.ByteOffset, ExportSummary)) {
if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
DidVirtualConstProp |=
tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
}
// Collect functions devirtualized at least for one call site for stats.
if (RemarksEnabled || AreStatisticsEnabled())
for (const auto &T : TargetsForSlot)
if (T.WasDevirt)
DevirtTargets[std::string(T.Fn->getName())] = T.Fn;
}
// CFI-specific: if we are exporting and any llvm.type.checked.load
// intrinsics were *not* devirtualized, we need to add the resulting
// llvm.type.test intrinsics to the function summaries so that the
// LowerTypeTests pass will export them.
if (ExportSummary && isa<MDString>(S.first.TypeID)) {
auto GUID =
GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
for (auto *FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
FS->addTypeTest(GUID);
for (auto &CCS : S.second.ConstCSInfo)
for (auto *FS : CCS.second.SummaryTypeCheckedLoadUsers)
FS->addTypeTest(GUID);
}
}
if (RemarksEnabled) {
// Generate remarks for each devirtualized function.
for (const auto &DT : DevirtTargets) {
GlobalValue *GV = DT.second;
auto F = dyn_cast<Function>(GV);
if (!F) {
auto A = dyn_cast<GlobalAlias>(GV);
assert(A && isa<Function>(A->getAliasee()));
F = dyn_cast<Function>(A->getAliasee());
assert(F);
}
using namespace ore;
OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
<< "devirtualized "
<< NV("FunctionName", DT.first));
}
}
NumDevirtTargets += DevirtTargets.size();
removeRedundantTypeTests();
// Rebuild each global we touched as part of virtual constant propagation to
// include the before and after bytes.
if (DidVirtualConstProp)
for (VTableBits &B : Bits)
rebuildGlobal(B);
// We have lowered or deleted the type intrinsics, so we will no longer have
// enough information to reason about the liveness of virtual function
// pointers in GlobalDCE.
for (GlobalVariable &GV : M.globals())
GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
for (auto *CI : CallsWithPtrAuthBundleRemoved)
CI->eraseFromParent();
return true;
}
void DevirtIndex::run() {
if (ExportSummary.typeIdCompatibleVtableMap().empty())
return;
DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
for (const auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
// Create the type id summary resolution regardlness of whether we can
// devirtualize, so that lower type tests knows the type id is used on
// a global and not Unsat. We do this here rather than in the loop over the
// CallSlots, since that handling will only see type tests that directly
// feed assumes, and we would miss any that aren't currently handled by WPD
// (such as type tests that feed assumes via phis).
ExportSummary.getOrInsertTypeIdSummary(P.first);
}
// Collect information from summary about which calls to try to devirtualize.
for (auto &P : ExportSummary) {
for (auto &S : P.second.SummaryList) {
auto *FS = dyn_cast<FunctionSummary>(S.get());
if (!FS)
continue;
// FIXME: Only add live functions.
for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
for (StringRef Name : NameByGUID[VF.GUID]) {
CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
}
}
for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
for (StringRef Name : NameByGUID[VF.GUID]) {
CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
}
}
for (const FunctionSummary::ConstVCall &VC :
FS->type_test_assume_const_vcalls()) {
for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
CallSlots[{Name, VC.VFunc.Offset}]
.ConstCSInfo[VC.Args]
.addSummaryTypeTestAssumeUser(FS);
}
}
for (const FunctionSummary::ConstVCall &VC :
FS->type_checked_load_const_vcalls()) {
for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
CallSlots[{Name, VC.VFunc.Offset}]
.ConstCSInfo[VC.Args]
.addSummaryTypeCheckedLoadUser(FS);
}
}
}
}
std::set<ValueInfo> DevirtTargets;
// For each (type, offset) pair:
for (auto &S : CallSlots) {
// Search each of the members of the type identifier for the virtual
// function implementation at offset S.first.ByteOffset, and add to
// TargetsForSlot.
std::vector<ValueInfo> TargetsForSlot;
auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
assert(TidSummary);
// The type id summary would have been created while building the NameByGUID
// map earlier.
WholeProgramDevirtResolution *Res =
&ExportSummary.getTypeIdSummary(S.first.TypeID)
->WPDRes[S.first.ByteOffset];
if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
S.first.ByteOffset)) {
if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
DevirtTargets))
continue;
}
}
// Optionally have the thin link print message for each devirtualized
// function.
if (PrintSummaryDevirt)
for (const auto &DT : DevirtTargets)
errs() << "Devirtualized call to " << DT << "\n";
NumDevirtTargets += DevirtTargets.size();
}