| //===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SampleProfileProber transformation. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO/SampleProfileProbe.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/EHUtils.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PseudoProbe.h" |
| #include "llvm/ProfileData/SampleProf.h" |
| #include "llvm/Support/CRC.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Transforms/Utils/Instrumentation.h" |
| #include "llvm/Transforms/Utils/ModuleUtils.h" |
| #include <unordered_set> |
| #include <vector> |
| |
| using namespace llvm; |
| #define DEBUG_TYPE "pseudo-probe" |
| |
| STATISTIC(ArtificialDbgLine, |
| "Number of probes that have an artificial debug line"); |
| |
| static cl::opt<bool> |
| VerifyPseudoProbe("verify-pseudo-probe", cl::init(false), cl::Hidden, |
| cl::desc("Do pseudo probe verification")); |
| |
| static cl::list<std::string> VerifyPseudoProbeFuncList( |
| "verify-pseudo-probe-funcs", cl::Hidden, |
| cl::desc("The option to specify the name of the functions to verify.")); |
| |
| static cl::opt<bool> |
| UpdatePseudoProbe("update-pseudo-probe", cl::init(true), cl::Hidden, |
| cl::desc("Update pseudo probe distribution factor")); |
| |
| static uint64_t getCallStackHash(const DILocation *DIL) { |
| uint64_t Hash = 0; |
| const DILocation *InlinedAt = DIL ? DIL->getInlinedAt() : nullptr; |
| while (InlinedAt) { |
| Hash ^= MD5Hash(std::to_string(InlinedAt->getLine())); |
| Hash ^= MD5Hash(std::to_string(InlinedAt->getColumn())); |
| auto Name = InlinedAt->getSubprogramLinkageName(); |
| Hash ^= MD5Hash(Name); |
| InlinedAt = InlinedAt->getInlinedAt(); |
| } |
| return Hash; |
| } |
| |
| static uint64_t computeCallStackHash(const Instruction &Inst) { |
| return getCallStackHash(Inst.getDebugLoc()); |
| } |
| |
| bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) { |
| // Skip function declaration. |
| if (F->isDeclaration()) |
| return false; |
| // Skip function that will not be emitted into object file. The prevailing |
| // defintion will be verified instead. |
| if (F->hasAvailableExternallyLinkage()) |
| return false; |
| // Do a name matching. |
| static std::unordered_set<std::string> VerifyFuncNames( |
| VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end()); |
| return VerifyFuncNames.empty() || VerifyFuncNames.count(F->getName().str()); |
| } |
| |
| void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) { |
| if (VerifyPseudoProbe) { |
| PIC.registerAfterPassCallback( |
| [this](StringRef P, Any IR, const PreservedAnalyses &) { |
| this->runAfterPass(P, IR); |
| }); |
| } |
| } |
| |
| // Callback to run after each transformation for the new pass manager. |
| void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) { |
| std::string Banner = |
| "\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n"; |
| dbgs() << Banner; |
| if (const auto **M = llvm::any_cast<const Module *>(&IR)) |
| runAfterPass(*M); |
| else if (const auto **F = llvm::any_cast<const Function *>(&IR)) |
| runAfterPass(*F); |
| else if (const auto **C = llvm::any_cast<const LazyCallGraph::SCC *>(&IR)) |
| runAfterPass(*C); |
| else if (const auto **L = llvm::any_cast<const Loop *>(&IR)) |
| runAfterPass(*L); |
| else |
| llvm_unreachable("Unknown IR unit"); |
| } |
| |
| void PseudoProbeVerifier::runAfterPass(const Module *M) { |
| for (const Function &F : *M) |
| runAfterPass(&F); |
| } |
| |
| void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) { |
| for (const LazyCallGraph::Node &N : *C) |
| runAfterPass(&N.getFunction()); |
| } |
| |
| void PseudoProbeVerifier::runAfterPass(const Function *F) { |
| if (!shouldVerifyFunction(F)) |
| return; |
| ProbeFactorMap ProbeFactors; |
| for (const auto &BB : *F) |
| collectProbeFactors(&BB, ProbeFactors); |
| verifyProbeFactors(F, ProbeFactors); |
| } |
| |
| void PseudoProbeVerifier::runAfterPass(const Loop *L) { |
| const Function *F = L->getHeader()->getParent(); |
| runAfterPass(F); |
| } |
| |
| void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block, |
| ProbeFactorMap &ProbeFactors) { |
| for (const auto &I : *Block) { |
| if (std::optional<PseudoProbe> Probe = extractProbe(I)) { |
| uint64_t Hash = computeCallStackHash(I); |
| ProbeFactors[{Probe->Id, Hash}] += Probe->Factor; |
| } |
| } |
| } |
| |
| void PseudoProbeVerifier::verifyProbeFactors( |
| const Function *F, const ProbeFactorMap &ProbeFactors) { |
| bool BannerPrinted = false; |
| auto &PrevProbeFactors = FunctionProbeFactors[F->getName()]; |
| for (const auto &I : ProbeFactors) { |
| float CurProbeFactor = I.second; |
| auto [It, Inserted] = PrevProbeFactors.try_emplace(I.first); |
| if (!Inserted) { |
| float PrevProbeFactor = It->second; |
| if (std::abs(CurProbeFactor - PrevProbeFactor) > |
| DistributionFactorVariance) { |
| if (!BannerPrinted) { |
| dbgs() << "Function " << F->getName() << ":\n"; |
| BannerPrinted = true; |
| } |
| dbgs() << "Probe " << I.first.first << "\tprevious factor " |
| << format("%0.2f", PrevProbeFactor) << "\tcurrent factor " |
| << format("%0.2f", CurProbeFactor) << "\n"; |
| } |
| } |
| |
| // Update |
| It->second = I.second; |
| } |
| } |
| |
| SampleProfileProber::SampleProfileProber(Function &Func, |
| const std::string &CurModuleUniqueId) |
| : F(&Func), CurModuleUniqueId(CurModuleUniqueId) { |
| BlockProbeIds.clear(); |
| CallProbeIds.clear(); |
| LastProbeId = (uint32_t)PseudoProbeReservedId::Last; |
| |
| DenseSet<BasicBlock *> BlocksToIgnore; |
| DenseSet<BasicBlock *> BlocksAndCallsToIgnore; |
| computeBlocksToIgnore(BlocksToIgnore, BlocksAndCallsToIgnore); |
| |
| computeProbeId(BlocksToIgnore, BlocksAndCallsToIgnore); |
| computeCFGHash(BlocksToIgnore); |
| } |
| |
| // Two purposes to compute the blocks to ignore: |
| // 1. Reduce the IR size. |
| // 2. Make the instrumentation(checksum) stable. e.g. the frondend may |
| // generate unstable IR while optimizing nounwind attribute, some versions are |
| // optimized with the call-to-invoke conversion, while other versions do not. |
| // This discrepancy in probe ID could cause profile mismatching issues. |
| // Note that those ignored blocks are either cold blocks or new split blocks |
| // whose original blocks are instrumented, so it shouldn't degrade the profile |
| // quality. |
| void SampleProfileProber::computeBlocksToIgnore( |
| DenseSet<BasicBlock *> &BlocksToIgnore, |
| DenseSet<BasicBlock *> &BlocksAndCallsToIgnore) { |
| // Ignore the cold EH and unreachable blocks and calls. |
| computeEHOnlyBlocks(*F, BlocksAndCallsToIgnore); |
| findUnreachableBlocks(BlocksAndCallsToIgnore); |
| |
| BlocksToIgnore.insert(BlocksAndCallsToIgnore.begin(), |
| BlocksAndCallsToIgnore.end()); |
| |
| // Handle the call-to-invoke conversion case: make sure that the probe id and |
| // callsite id are consistent before and after the block split. For block |
| // probe, we only keep the head block probe id and ignore the block ids of the |
| // normal dests. For callsite probe, it's different to block probe, there is |
| // no additional callsite in the normal dests, so we don't ignore the |
| // callsites. |
| findInvokeNormalDests(BlocksToIgnore); |
| } |
| |
| // Unreachable blocks and calls are always cold, ignore them. |
| void SampleProfileProber::findUnreachableBlocks( |
| DenseSet<BasicBlock *> &BlocksToIgnore) { |
| for (auto &BB : *F) { |
| if (&BB != &F->getEntryBlock() && pred_size(&BB) == 0) |
| BlocksToIgnore.insert(&BB); |
| } |
| } |
| |
| // In call-to-invoke conversion, basic block can be split into multiple blocks, |
| // only instrument probe in the head block, ignore the normal dests. |
| void SampleProfileProber::findInvokeNormalDests( |
| DenseSet<BasicBlock *> &InvokeNormalDests) { |
| for (auto &BB : *F) { |
| auto *TI = BB.getTerminator(); |
| if (auto *II = dyn_cast<InvokeInst>(TI)) { |
| auto *ND = II->getNormalDest(); |
| InvokeNormalDests.insert(ND); |
| |
| // The normal dest and the try/catch block are connected by an |
| // unconditional branch. |
| while (pred_size(ND) == 1) { |
| auto *Pred = *pred_begin(ND); |
| if (succ_size(Pred) == 1) { |
| InvokeNormalDests.insert(Pred); |
| ND = Pred; |
| } else |
| break; |
| } |
| } |
| } |
| } |
| |
| // The call-to-invoke conversion splits the original block into a list of block, |
| // we need to compute the hash using the original block's successors to keep the |
| // CFG Hash consistent. For a given head block, we keep searching the |
| // succesor(normal dest or unconditional branch dest) to find the tail block, |
| // the tail block's successors are the original block's successors. |
| const Instruction *SampleProfileProber::getOriginalTerminator( |
| const BasicBlock *Head, const DenseSet<BasicBlock *> &BlocksToIgnore) { |
| auto *TI = Head->getTerminator(); |
| if (auto *II = dyn_cast<InvokeInst>(TI)) { |
| return getOriginalTerminator(II->getNormalDest(), BlocksToIgnore); |
| } else if (succ_size(Head) == 1 && |
| BlocksToIgnore.contains(*succ_begin(Head))) { |
| // Go to the unconditional branch dest. |
| return getOriginalTerminator(*succ_begin(Head), BlocksToIgnore); |
| } |
| return TI; |
| } |
| |
| // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index |
| // value of each BB in the CFG. The higher 32 bits record the number of edges |
| // preceded by the number of indirect calls. |
| // This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash(). |
| void SampleProfileProber::computeCFGHash( |
| const DenseSet<BasicBlock *> &BlocksToIgnore) { |
| std::vector<uint8_t> Indexes; |
| JamCRC JC; |
| for (auto &BB : *F) { |
| if (BlocksToIgnore.contains(&BB)) |
| continue; |
| |
| auto *TI = getOriginalTerminator(&BB, BlocksToIgnore); |
| for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { |
| auto *Succ = TI->getSuccessor(I); |
| auto Index = getBlockId(Succ); |
| // Ingore ignored-block(zero ID) to avoid unstable checksum. |
| if (Index == 0) |
| continue; |
| for (int J = 0; J < 4; J++) |
| Indexes.push_back((uint8_t)(Index >> (J * 8))); |
| } |
| } |
| |
| JC.update(Indexes); |
| |
| FunctionHash = (uint64_t)CallProbeIds.size() << 48 | |
| (uint64_t)Indexes.size() << 32 | JC.getCRC(); |
| // Reserve bit 60-63 for other information purpose. |
| FunctionHash &= 0x0FFFFFFFFFFFFFFF; |
| assert(FunctionHash && "Function checksum should not be zero"); |
| LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName() |
| << ":\n" |
| << " CRC = " << JC.getCRC() << ", Edges = " |
| << Indexes.size() << ", ICSites = " << CallProbeIds.size() |
| << ", Hash = " << FunctionHash << "\n"); |
| } |
| |
| void SampleProfileProber::computeProbeId( |
| const DenseSet<BasicBlock *> &BlocksToIgnore, |
| const DenseSet<BasicBlock *> &BlocksAndCallsToIgnore) { |
| LLVMContext &Ctx = F->getContext(); |
| Module *M = F->getParent(); |
| |
| for (auto &BB : *F) { |
| if (!BlocksToIgnore.contains(&BB)) |
| BlockProbeIds[&BB] = ++LastProbeId; |
| |
| if (BlocksAndCallsToIgnore.contains(&BB)) |
| continue; |
| for (auto &I : BB) { |
| if (!isa<CallBase>(I) || isa<IntrinsicInst>(&I)) |
| continue; |
| |
| // The current implementation uses the lower 16 bits of the discriminator |
| // so anything larger than 0xFFFF will be ignored. |
| if (LastProbeId >= 0xFFFF) { |
| std::string Msg = "Pseudo instrumentation incomplete for " + |
| std::string(F->getName()) + " because it's too large"; |
| Ctx.diagnose( |
| DiagnosticInfoSampleProfile(M->getName().data(), Msg, DS_Warning)); |
| return; |
| } |
| |
| CallProbeIds[&I] = ++LastProbeId; |
| } |
| } |
| } |
| |
| uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const { |
| auto I = BlockProbeIds.find(const_cast<BasicBlock *>(BB)); |
| return I == BlockProbeIds.end() ? 0 : I->second; |
| } |
| |
| uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const { |
| auto Iter = CallProbeIds.find(const_cast<Instruction *>(Call)); |
| return Iter == CallProbeIds.end() ? 0 : Iter->second; |
| } |
| |
| void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) { |
| Module *M = F.getParent(); |
| MDBuilder MDB(F.getContext()); |
| // Since the GUID from probe desc and inline stack are computed separately, we |
| // need to make sure their names are consistent, so here also use the name |
| // from debug info. |
| StringRef FName = F.getName(); |
| if (auto *SP = F.getSubprogram()) { |
| FName = SP->getLinkageName(); |
| if (FName.empty()) |
| FName = SP->getName(); |
| } |
| uint64_t Guid = Function::getGUID(FName); |
| |
| // Assign an artificial debug line to a probe that doesn't come with a real |
| // line. A probe not having a debug line will get an incomplete inline |
| // context. This will cause samples collected on the probe to be counted |
| // into the base profile instead of a context profile. The line number |
| // itself is not important though. |
| auto AssignDebugLoc = [&](Instruction *I) { |
| assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) && |
| "Expecting pseudo probe or call instructions"); |
| if (!I->getDebugLoc()) { |
| if (auto *SP = F.getSubprogram()) { |
| auto DIL = DILocation::get(SP->getContext(), 0, 0, SP); |
| I->setDebugLoc(DIL); |
| ArtificialDbgLine++; |
| LLVM_DEBUG({ |
| dbgs() << "\nIn Function " << F.getName() |
| << " Probe gets an artificial debug line\n"; |
| I->dump(); |
| }); |
| } |
| } |
| }; |
| |
| // Probe basic blocks. |
| for (auto &I : BlockProbeIds) { |
| BasicBlock *BB = I.first; |
| uint32_t Index = I.second; |
| // Insert a probe before an instruction with a valid debug line number which |
| // will be assigned to the probe. The line number will be used later to |
| // model the inline context when the probe is inlined into other functions. |
| // Debug instructions, phi nodes and lifetime markers do not have an valid |
| // line number. Real instructions generated by optimizations may not come |
| // with a line number either. |
| auto HasValidDbgLine = [](Instruction *J) { |
| return !isa<PHINode>(J) && !isa<DbgInfoIntrinsic>(J) && |
| !J->isLifetimeStartOrEnd() && J->getDebugLoc(); |
| }; |
| |
| Instruction *J = &*BB->getFirstInsertionPt(); |
| while (J != BB->getTerminator() && !HasValidDbgLine(J)) { |
| J = J->getNextNode(); |
| } |
| |
| IRBuilder<> Builder(J); |
| assert(Builder.GetInsertPoint() != BB->end() && |
| "Cannot get the probing point"); |
| Function *ProbeFn = |
| llvm::Intrinsic::getOrInsertDeclaration(M, Intrinsic::pseudoprobe); |
| Value *Args[] = {Builder.getInt64(Guid), Builder.getInt64(Index), |
| Builder.getInt32(0), |
| Builder.getInt64(PseudoProbeFullDistributionFactor)}; |
| auto *Probe = Builder.CreateCall(ProbeFn, Args); |
| AssignDebugLoc(Probe); |
| // Reset the dwarf discriminator if the debug location comes with any. The |
| // discriminator field may be used by FS-AFDO later in the pipeline. |
| if (auto DIL = Probe->getDebugLoc()) { |
| if (DIL->getDiscriminator()) { |
| DIL = DIL->cloneWithDiscriminator(0); |
| Probe->setDebugLoc(DIL); |
| } |
| } |
| } |
| |
| // Probe both direct calls and indirect calls. Direct calls are probed so that |
| // their probe ID can be used as an call site identifier to represent a |
| // calling context. |
| for (auto &I : CallProbeIds) { |
| auto *Call = I.first; |
| uint32_t Index = I.second; |
| uint32_t Type = cast<CallBase>(Call)->getCalledFunction() |
| ? (uint32_t)PseudoProbeType::DirectCall |
| : (uint32_t)PseudoProbeType::IndirectCall; |
| AssignDebugLoc(Call); |
| if (auto DIL = Call->getDebugLoc()) { |
| // Levarge the 32-bit discriminator field of debug data to store the ID |
| // and type of a callsite probe. This gets rid of the dependency on |
| // plumbing a customized metadata through the codegen pipeline. |
| uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData( |
| Index, Type, 0, PseudoProbeDwarfDiscriminator::FullDistributionFactor, |
| DIL->getBaseDiscriminator()); |
| DIL = DIL->cloneWithDiscriminator(V); |
| Call->setDebugLoc(DIL); |
| } |
| } |
| |
| // Create module-level metadata that contains function info necessary to |
| // synthesize probe-based sample counts, which are |
| // - FunctionGUID |
| // - FunctionHash. |
| // - FunctionName |
| auto Hash = getFunctionHash(); |
| auto *MD = MDB.createPseudoProbeDesc(Guid, Hash, FName); |
| auto *NMD = M->getNamedMetadata(PseudoProbeDescMetadataName); |
| assert(NMD && "llvm.pseudo_probe_desc should be pre-created"); |
| NMD->addOperand(MD); |
| } |
| |
| PreservedAnalyses SampleProfileProbePass::run(Module &M, |
| ModuleAnalysisManager &AM) { |
| auto ModuleId = getUniqueModuleId(&M); |
| // Create the pseudo probe desc metadata beforehand. |
| // Note that modules with only data but no functions will require this to |
| // be set up so that they will be known as probed later. |
| M.getOrInsertNamedMetadata(PseudoProbeDescMetadataName); |
| |
| for (auto &F : M) { |
| if (F.isDeclaration()) |
| continue; |
| SampleProfileProber ProbeManager(F, ModuleId); |
| ProbeManager.instrumentOneFunc(F, TM); |
| } |
| |
| return PreservedAnalyses::none(); |
| } |
| |
| void PseudoProbeUpdatePass::runOnFunction(Function &F, |
| FunctionAnalysisManager &FAM) { |
| BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F); |
| auto BBProfileCount = [&BFI](BasicBlock *BB) { |
| return BFI.getBlockProfileCount(BB).value_or(0); |
| }; |
| |
| // Collect the sum of execution weight for each probe. |
| ProbeFactorMap ProbeFactors; |
| for (auto &Block : F) { |
| for (auto &I : Block) { |
| if (std::optional<PseudoProbe> Probe = extractProbe(I)) { |
| uint64_t Hash = computeCallStackHash(I); |
| ProbeFactors[{Probe->Id, Hash}] += BBProfileCount(&Block); |
| } |
| } |
| } |
| |
| // Fix up over-counted probes. |
| for (auto &Block : F) { |
| for (auto &I : Block) { |
| if (std::optional<PseudoProbe> Probe = extractProbe(I)) { |
| uint64_t Hash = computeCallStackHash(I); |
| float Sum = ProbeFactors[{Probe->Id, Hash}]; |
| if (Sum != 0) |
| setProbeDistributionFactor(I, BBProfileCount(&Block) / Sum); |
| } |
| } |
| } |
| } |
| |
| PreservedAnalyses PseudoProbeUpdatePass::run(Module &M, |
| ModuleAnalysisManager &AM) { |
| if (UpdatePseudoProbe) { |
| for (auto &F : M) { |
| if (F.isDeclaration()) |
| continue; |
| FunctionAnalysisManager &FAM = |
| AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); |
| runOnFunction(F, FAM); |
| } |
| } |
| return PreservedAnalyses::none(); |
| } |