blob: 312672e56b0170001e16709ac07ce6a624e47632 [file] [log] [blame]
//===- SampleProfileMatcher.cpp - Sampling-based Stale Profile Matcher ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SampleProfileMatcher used for stale
// profile matching.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/SampleProfileMatcher.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
using namespace sampleprof;
#define DEBUG_TYPE "sample-profile-matcher"
static cl::opt<unsigned> FuncProfileSimilarityThreshold(
"func-profile-similarity-threshold", cl::Hidden, cl::init(80),
cl::desc("Consider a profile matches a function if the similarity of their "
"callee sequences is above the specified percentile."));
static cl::opt<unsigned> MinFuncCountForCGMatching(
"min-func-count-for-cg-matching", cl::Hidden, cl::init(5),
cl::desc("The minimum number of basic blocks required for a function to "
"run stale profile call graph matching."));
static cl::opt<unsigned> MinCallCountForCGMatching(
"min-call-count-for-cg-matching", cl::Hidden, cl::init(3),
cl::desc("The minimum number of call anchors required for a function to "
"run stale profile call graph matching."));
extern cl::opt<bool> SalvageStaleProfile;
extern cl::opt<bool> SalvageUnusedProfile;
extern cl::opt<bool> PersistProfileStaleness;
extern cl::opt<bool> ReportProfileStaleness;
static cl::opt<unsigned> SalvageStaleProfileMaxCallsites(
"salvage-stale-profile-max-callsites", cl::Hidden, cl::init(UINT_MAX),
cl::desc("The maximum number of callsites in a function, above which stale "
"profile matching will be skipped."));
void SampleProfileMatcher::findIRAnchors(const Function &F,
AnchorMap &IRAnchors) const {
// For inlined code, recover the original callsite and callee by finding the
// top-level inline frame. e.g. For frame stack "main:1 @ foo:2 @ bar:3", the
// top-level frame is "main:1", the callsite is "1" and the callee is "foo".
auto FindTopLevelInlinedCallsite = [](const DILocation *DIL) {
assert((DIL && DIL->getInlinedAt()) && "No inlined callsite");
const DILocation *PrevDIL = nullptr;
do {
PrevDIL = DIL;
DIL = DIL->getInlinedAt();
} while (DIL->getInlinedAt());
LineLocation Callsite = FunctionSamples::getCallSiteIdentifier(
DIL, FunctionSamples::ProfileIsFS);
StringRef CalleeName = PrevDIL->getSubprogramLinkageName();
return std::make_pair(Callsite, FunctionId(CalleeName));
};
auto GetCanonicalCalleeName = [](const CallBase *CB) {
StringRef CalleeName = UnknownIndirectCallee;
if (Function *Callee = CB->getCalledFunction())
CalleeName = FunctionSamples::getCanonicalFnName(Callee->getName());
return CalleeName;
};
// Extract profile matching anchors in the IR.
for (auto &BB : F) {
for (auto &I : BB) {
DILocation *DIL = I.getDebugLoc();
if (!DIL)
continue;
if (FunctionSamples::ProfileIsProbeBased) {
if (auto Probe = extractProbe(I)) {
// Flatten inlined IR for the matching.
if (DIL->getInlinedAt()) {
IRAnchors.emplace(FindTopLevelInlinedCallsite(DIL));
} else {
// Use empty StringRef for basic block probe.
StringRef CalleeName;
if (const auto *CB = dyn_cast<CallBase>(&I)) {
// Skip the probe inst whose callee name is "llvm.pseudoprobe".
if (!isa<IntrinsicInst>(&I))
CalleeName = GetCanonicalCalleeName(CB);
}
LineLocation Loc = LineLocation(Probe->Id, 0);
IRAnchors.emplace(Loc, FunctionId(CalleeName));
}
}
} else {
// TODO: For line-number based profile(AutoFDO), currently only support
// find callsite anchors. In future, we need to parse all the non-call
// instructions to extract the line locations for profile matching.
if (!isa<CallBase>(&I) || isa<IntrinsicInst>(&I))
continue;
if (DIL->getInlinedAt()) {
IRAnchors.emplace(FindTopLevelInlinedCallsite(DIL));
} else {
LineLocation Callsite = FunctionSamples::getCallSiteIdentifier(
DIL, FunctionSamples::ProfileIsFS);
StringRef CalleeName = GetCanonicalCalleeName(dyn_cast<CallBase>(&I));
IRAnchors.emplace(Callsite, FunctionId(CalleeName));
}
}
}
}
}
void SampleProfileMatcher::findProfileAnchors(const FunctionSamples &FS,
AnchorMap &ProfileAnchors) const {
auto isInvalidLineOffset = [](uint32_t LineOffset) {
return LineOffset & 0x8000;
};
auto InsertAnchor = [](const LineLocation &Loc, const FunctionId &CalleeName,
AnchorMap &ProfileAnchors) {
auto Ret = ProfileAnchors.try_emplace(Loc, CalleeName);
if (!Ret.second) {
// For multiple callees, which indicates it's an indirect call, we use a
// dummy name(UnknownIndirectCallee) as the indrect callee name.
Ret.first->second = FunctionId(UnknownIndirectCallee);
}
};
for (const auto &I : FS.getBodySamples()) {
const LineLocation &Loc = I.first;
if (isInvalidLineOffset(Loc.LineOffset))
continue;
for (const auto &C : I.second.getCallTargets())
InsertAnchor(Loc, C.first, ProfileAnchors);
}
for (const auto &I : FS.getCallsiteSamples()) {
const LineLocation &Loc = I.first;
if (isInvalidLineOffset(Loc.LineOffset))
continue;
for (const auto &C : I.second)
InsertAnchor(Loc, C.first, ProfileAnchors);
}
}
bool SampleProfileMatcher::functionHasProfile(const FunctionId &IRFuncName,
Function *&FuncWithoutProfile) {
FuncWithoutProfile = nullptr;
auto R = FunctionsWithoutProfile.find(IRFuncName);
if (R != FunctionsWithoutProfile.end())
FuncWithoutProfile = R->second;
return !FuncWithoutProfile;
}
bool SampleProfileMatcher::isProfileUnused(const FunctionId &ProfileFuncName) {
return SymbolMap->find(ProfileFuncName) == SymbolMap->end();
}
bool SampleProfileMatcher::functionMatchesProfile(
const FunctionId &IRFuncName, const FunctionId &ProfileFuncName,
bool FindMatchedProfileOnly) {
if (IRFuncName == ProfileFuncName)
return true;
if (!SalvageUnusedProfile)
return false;
// If IR function doesn't have profile and the profile is unused, try
// matching them.
Function *IRFunc = nullptr;
if (functionHasProfile(IRFuncName, IRFunc) ||
!isProfileUnused(ProfileFuncName))
return false;
assert(FunctionId(IRFunc->getName()) != ProfileFuncName &&
"IR function should be different from profile function to match");
return functionMatchesProfile(*IRFunc, ProfileFuncName,
FindMatchedProfileOnly);
}
LocToLocMap
SampleProfileMatcher::longestCommonSequence(const AnchorList &AnchorList1,
const AnchorList &AnchorList2,
bool MatchUnusedFunction) {
int32_t Size1 = AnchorList1.size(), Size2 = AnchorList2.size(),
MaxDepth = Size1 + Size2;
auto Index = [&](int32_t I) { return I + MaxDepth; };
LocToLocMap EqualLocations;
if (MaxDepth == 0)
return EqualLocations;
// Backtrack the SES result.
auto Backtrack = [&](const std::vector<std::vector<int32_t>> &Trace,
const AnchorList &AnchorList1,
const AnchorList &AnchorList2,
LocToLocMap &EqualLocations) {
int32_t X = Size1, Y = Size2;
for (int32_t Depth = Trace.size() - 1; X > 0 || Y > 0; Depth--) {
const auto &P = Trace[Depth];
int32_t K = X - Y;
int32_t PrevK = K;
if (K == -Depth || (K != Depth && P[Index(K - 1)] < P[Index(K + 1)]))
PrevK = K + 1;
else
PrevK = K - 1;
int32_t PrevX = P[Index(PrevK)];
int32_t PrevY = PrevX - PrevK;
while (X > PrevX && Y > PrevY) {
X--;
Y--;
EqualLocations.insert({AnchorList1[X].first, AnchorList2[Y].first});
}
if (Depth == 0)
break;
if (Y == PrevY)
X--;
else if (X == PrevX)
Y--;
X = PrevX;
Y = PrevY;
}
};
// The greedy LCS/SES algorithm.
// An array contains the endpoints of the furthest reaching D-paths.
std::vector<int32_t> V(2 * MaxDepth + 1, -1);
V[Index(1)] = 0;
// Trace is used to backtrack the SES result.
std::vector<std::vector<int32_t>> Trace;
for (int32_t Depth = 0; Depth <= MaxDepth; Depth++) {
Trace.push_back(V);
for (int32_t K = -Depth; K <= Depth; K += 2) {
int32_t X = 0, Y = 0;
if (K == -Depth || (K != Depth && V[Index(K - 1)] < V[Index(K + 1)]))
X = V[Index(K + 1)];
else
X = V[Index(K - 1)] + 1;
Y = X - K;
while (X < Size1 && Y < Size2 &&
functionMatchesProfile(
AnchorList1[X].second, AnchorList2[Y].second,
!MatchUnusedFunction /* Find matched function only */))
X++, Y++;
V[Index(K)] = X;
if (X >= Size1 && Y >= Size2) {
// Length of an SES is D.
Backtrack(Trace, AnchorList1, AnchorList2, EqualLocations);
return EqualLocations;
}
}
}
// Length of an SES is greater than MaxDepth.
return EqualLocations;
}
void SampleProfileMatcher::matchNonCallsiteLocs(
const LocToLocMap &MatchedAnchors, const AnchorMap &IRAnchors,
LocToLocMap &IRToProfileLocationMap) {
auto InsertMatching = [&](const LineLocation &From, const LineLocation &To) {
// Skip the unchanged location mapping to save memory.
if (From != To)
IRToProfileLocationMap.insert({From, To});
};
// Use function's beginning location as the initial anchor.
int32_t LocationDelta = 0;
SmallVector<LineLocation> LastMatchedNonAnchors;
for (const auto &IR : IRAnchors) {
const auto &Loc = IR.first;
bool IsMatchedAnchor = false;
// Match the anchor location in lexical order.
auto R = MatchedAnchors.find(Loc);
if (R != MatchedAnchors.end()) {
const auto &Candidate = R->second;
InsertMatching(Loc, Candidate);
LLVM_DEBUG(dbgs() << "Callsite with callee:" << IR.second.stringRef()
<< " is matched from " << Loc << " to " << Candidate
<< "\n");
LocationDelta = Candidate.LineOffset - Loc.LineOffset;
// Match backwards for non-anchor locations.
// The locations in LastMatchedNonAnchors have been matched forwards
// based on the previous anchor, spilt it evenly and overwrite the
// second half based on the current anchor.
for (size_t I = (LastMatchedNonAnchors.size() + 1) / 2;
I < LastMatchedNonAnchors.size(); I++) {
const auto &L = LastMatchedNonAnchors[I];
uint32_t CandidateLineOffset = L.LineOffset + LocationDelta;
LineLocation Candidate(CandidateLineOffset, L.Discriminator);
InsertMatching(L, Candidate);
LLVM_DEBUG(dbgs() << "Location is rematched backwards from " << L
<< " to " << Candidate << "\n");
}
IsMatchedAnchor = true;
LastMatchedNonAnchors.clear();
}
// Match forwards for non-anchor locations.
if (!IsMatchedAnchor) {
uint32_t CandidateLineOffset = Loc.LineOffset + LocationDelta;
LineLocation Candidate(CandidateLineOffset, Loc.Discriminator);
InsertMatching(Loc, Candidate);
LLVM_DEBUG(dbgs() << "Location is matched from " << Loc << " to "
<< Candidate << "\n");
LastMatchedNonAnchors.emplace_back(Loc);
}
}
}
// Filter the non-call locations from IRAnchors and ProfileAnchors and write
// them into a list for random access later.
void SampleProfileMatcher::getFilteredAnchorList(
const AnchorMap &IRAnchors, const AnchorMap &ProfileAnchors,
AnchorList &FilteredIRAnchorsList, AnchorList &FilteredProfileAnchorList) {
for (const auto &I : IRAnchors) {
if (I.second.stringRef().empty())
continue;
FilteredIRAnchorsList.emplace_back(I);
}
for (const auto &I : ProfileAnchors)
FilteredProfileAnchorList.emplace_back(I);
}
// Call target name anchor based profile fuzzy matching.
// Input:
// For IR locations, the anchor is the callee name of direct callsite; For
// profile locations, it's the call target name for BodySamples or inlinee's
// profile name for CallsiteSamples.
// Matching heuristic:
// First match all the anchors using the diff algorithm, then split the
// non-anchor locations between the two anchors evenly, first half are matched
// based on the start anchor, second half are matched based on the end anchor.
// For example, given:
// IR locations: [1, 2(foo), 3, 5, 6(bar), 7]
// Profile locations: [1, 2, 3(foo), 4, 7, 8(bar), 9]
// The matching gives:
// [1, 2(foo), 3, 5, 6(bar), 7]
// | | | | | |
// [1, 2, 3(foo), 4, 7, 8(bar), 9]
// The output mapping: [2->3, 3->4, 5->7, 6->8, 7->9].
void SampleProfileMatcher::runStaleProfileMatching(
const Function &F, const AnchorMap &IRAnchors,
const AnchorMap &ProfileAnchors, LocToLocMap &IRToProfileLocationMap,
bool RunCFGMatching, bool RunCGMatching) {
if (!RunCFGMatching && !RunCGMatching)
return;
LLVM_DEBUG(dbgs() << "Run stale profile matching for " << F.getName()
<< "\n");
assert(IRToProfileLocationMap.empty() &&
"Run stale profile matching only once per function");
AnchorList FilteredProfileAnchorList;
AnchorList FilteredIRAnchorsList;
getFilteredAnchorList(IRAnchors, ProfileAnchors, FilteredIRAnchorsList,
FilteredProfileAnchorList);
if (FilteredIRAnchorsList.empty() || FilteredProfileAnchorList.empty())
return;
if (FilteredIRAnchorsList.size() > SalvageStaleProfileMaxCallsites ||
FilteredProfileAnchorList.size() > SalvageStaleProfileMaxCallsites) {
LLVM_DEBUG(dbgs() << "Skip stale profile matching for " << F.getName()
<< " because the number of callsites in the IR is "
<< FilteredIRAnchorsList.size()
<< " and in the profile is "
<< FilteredProfileAnchorList.size() << "\n");
return;
}
// Match the callsite anchors by finding the longest common subsequence
// between IR and profile.
// Define a match between two anchors as follows:
// 1) The function names of anchors are the same.
// 2) The similarity between the anchor functions is above a threshold if
// RunCGMatching is set.
// For 2), we only consider the anchor functions from IR and profile don't
// appear on either side to reduce the matching scope. Note that we need to
// use IR anchor as base(A side) to align with the order of
// IRToProfileLocationMap.
LocToLocMap MatchedAnchors =
longestCommonSequence(FilteredIRAnchorsList, FilteredProfileAnchorList,
RunCGMatching /* Match unused functions */);
// CFG level matching:
// Apply the callsite matchings to infer matching for the basic
// block(non-callsite) locations and write the result to
// IRToProfileLocationMap.
if (RunCFGMatching)
matchNonCallsiteLocs(MatchedAnchors, IRAnchors, IRToProfileLocationMap);
}
void SampleProfileMatcher::runOnFunction(Function &F) {
// We need to use flattened function samples for matching.
// Unlike IR, which includes all callsites from the source code, the callsites
// in profile only show up when they are hit by samples, i,e. the profile
// callsites in one context may differ from those in another context. To get
// the maximum number of callsites, we merge the function profiles from all
// contexts, aka, the flattened profile to find profile anchors.
const auto *FSFlattened = getFlattenedSamplesFor(F);
if (SalvageUnusedProfile && !FSFlattened) {
// Apply the matching in place to find the new function's matched profile.
// TODO: For extended profile format, if a function profile is unused and
// it's top-level, even if the profile is matched, it's not found in the
// profile. This is because sample reader only read the used profile at the
// beginning, we need to support loading the profile on-demand in future.
auto R = FuncToProfileNameMap.find(&F);
if (R != FuncToProfileNameMap.end())
FSFlattened = getFlattenedSamplesFor(R->second);
}
if (!FSFlattened)
return;
// Anchors for IR. It's a map from IR location to callee name, callee name is
// empty for non-call instruction and use a dummy name(UnknownIndirectCallee)
// for unknown indrect callee name.
AnchorMap IRAnchors;
findIRAnchors(F, IRAnchors);
// Anchors for profile. It's a map from callsite location to a set of callee
// name.
AnchorMap ProfileAnchors;
findProfileAnchors(*FSFlattened, ProfileAnchors);
// Compute the callsite match states for profile staleness report.
if (ReportProfileStaleness || PersistProfileStaleness)
recordCallsiteMatchStates(F, IRAnchors, ProfileAnchors, nullptr);
if (!SalvageStaleProfile)
return;
// For probe-based profiles, run matching only when profile checksum is
// mismatched.
bool ChecksumMismatch = FunctionSamples::ProfileIsProbeBased &&
!ProbeManager->profileIsValid(F, *FSFlattened);
bool RunCFGMatching =
!FunctionSamples::ProfileIsProbeBased || ChecksumMismatch;
bool RunCGMatching = SalvageUnusedProfile;
// For imported functions, the checksum metadata(pseudo_probe_desc) are
// dropped, so we leverage function attribute(profile-checksum-mismatch) to
// transfer the info: add the attribute during pre-link phase and check it
// during post-link phase(see "profileIsValid").
if (ChecksumMismatch && LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink)
F.addFnAttr("profile-checksum-mismatch");
// The matching result will be saved to IRToProfileLocationMap, create a
// new map for each function.
auto &IRToProfileLocationMap = getIRToProfileLocationMap(F);
runStaleProfileMatching(F, IRAnchors, ProfileAnchors, IRToProfileLocationMap,
RunCFGMatching, RunCGMatching);
// Find and update callsite match states after matching.
if (RunCFGMatching && (ReportProfileStaleness || PersistProfileStaleness))
recordCallsiteMatchStates(F, IRAnchors, ProfileAnchors,
&IRToProfileLocationMap);
}
void SampleProfileMatcher::recordCallsiteMatchStates(
const Function &F, const AnchorMap &IRAnchors,
const AnchorMap &ProfileAnchors,
const LocToLocMap *IRToProfileLocationMap) {
bool IsPostMatch = IRToProfileLocationMap != nullptr;
auto &CallsiteMatchStates =
FuncCallsiteMatchStates[FunctionSamples::getCanonicalFnName(F.getName())];
auto MapIRLocToProfileLoc = [&](const LineLocation &IRLoc) {
// IRToProfileLocationMap is null in pre-match phrase.
if (!IRToProfileLocationMap)
return IRLoc;
const auto &ProfileLoc = IRToProfileLocationMap->find(IRLoc);
if (ProfileLoc != IRToProfileLocationMap->end())
return ProfileLoc->second;
else
return IRLoc;
};
for (const auto &I : IRAnchors) {
// After fuzzy profile matching, use the matching result to remap the
// current IR callsite.
const auto &ProfileLoc = MapIRLocToProfileLoc(I.first);
const auto &IRCalleeId = I.second;
const auto &It = ProfileAnchors.find(ProfileLoc);
if (It == ProfileAnchors.end())
continue;
const auto &ProfCalleeId = It->second;
if (IRCalleeId == ProfCalleeId) {
auto It = CallsiteMatchStates.find(ProfileLoc);
if (It == CallsiteMatchStates.end())
CallsiteMatchStates.emplace(ProfileLoc, MatchState::InitialMatch);
else if (IsPostMatch) {
if (It->second == MatchState::InitialMatch)
It->second = MatchState::UnchangedMatch;
else if (It->second == MatchState::InitialMismatch)
It->second = MatchState::RecoveredMismatch;
}
}
}
// Check if there are any callsites in the profile that does not match to any
// IR callsites.
for (const auto &I : ProfileAnchors) {
const auto &Loc = I.first;
assert(!I.second.stringRef().empty() && "Callees should not be empty");
auto It = CallsiteMatchStates.find(Loc);
if (It == CallsiteMatchStates.end())
CallsiteMatchStates.emplace(Loc, MatchState::InitialMismatch);
else if (IsPostMatch) {
// Update the state if it's not matched(UnchangedMatch or
// RecoveredMismatch).
if (It->second == MatchState::InitialMismatch)
It->second = MatchState::UnchangedMismatch;
else if (It->second == MatchState::InitialMatch)
It->second = MatchState::RemovedMatch;
}
}
}
void SampleProfileMatcher::countMismatchedFuncSamples(const FunctionSamples &FS,
bool IsTopLevel) {
const auto *FuncDesc = ProbeManager->getDesc(FS.getGUID());
// Skip the function that is external or renamed.
if (!FuncDesc)
return;
if (ProbeManager->profileIsHashMismatched(*FuncDesc, FS)) {
if (IsTopLevel)
NumStaleProfileFunc++;
// Given currently all probe ids are after block probe ids, once the
// checksum is mismatched, it's likely all the callites are mismatched and
// dropped. We conservatively count all the samples as mismatched and stop
// counting the inlinees' profiles.
MismatchedFunctionSamples += FS.getTotalSamples();
return;
}
// Even the current-level function checksum is matched, it's possible that the
// nested inlinees' checksums are mismatched that affect the inlinee's sample
// loading, we need to go deeper to check the inlinees' function samples.
// Similarly, count all the samples as mismatched if the inlinee's checksum is
// mismatched using this recursive function.
for (const auto &I : FS.getCallsiteSamples())
for (const auto &CS : I.second)
countMismatchedFuncSamples(CS.second, false);
}
void SampleProfileMatcher::countMismatchedCallsiteSamples(
const FunctionSamples &FS) {
auto It = FuncCallsiteMatchStates.find(FS.getFuncName());
// Skip it if no mismatched callsite or this is an external function.
if (It == FuncCallsiteMatchStates.end() || It->second.empty())
return;
const auto &CallsiteMatchStates = It->second;
auto findMatchState = [&](const LineLocation &Loc) {
auto It = CallsiteMatchStates.find(Loc);
if (It == CallsiteMatchStates.end())
return MatchState::Unknown;
return It->second;
};
auto AttributeMismatchedSamples = [&](const enum MatchState &State,
uint64_t Samples) {
if (isMismatchState(State))
MismatchedCallsiteSamples += Samples;
else if (State == MatchState::RecoveredMismatch)
RecoveredCallsiteSamples += Samples;
};
// The non-inlined callsites are saved in the body samples of function
// profile, go through it to count the non-inlined callsite samples.
for (const auto &I : FS.getBodySamples())
AttributeMismatchedSamples(findMatchState(I.first), I.second.getSamples());
// Count the inlined callsite samples.
for (const auto &I : FS.getCallsiteSamples()) {
auto State = findMatchState(I.first);
uint64_t CallsiteSamples = 0;
for (const auto &CS : I.second)
CallsiteSamples += CS.second.getTotalSamples();
AttributeMismatchedSamples(State, CallsiteSamples);
if (isMismatchState(State))
continue;
// When the current level of inlined call site matches the profiled call
// site, we need to go deeper along the inline tree to count mismatches from
// lower level inlinees.
for (const auto &CS : I.second)
countMismatchedCallsiteSamples(CS.second);
}
}
void SampleProfileMatcher::countMismatchCallsites(const FunctionSamples &FS) {
auto It = FuncCallsiteMatchStates.find(FS.getFuncName());
// Skip it if no mismatched callsite or this is an external function.
if (It == FuncCallsiteMatchStates.end() || It->second.empty())
return;
const auto &MatchStates = It->second;
[[maybe_unused]] bool OnInitialState =
isInitialState(MatchStates.begin()->second);
for (const auto &I : MatchStates) {
TotalProfiledCallsites++;
assert(
(OnInitialState ? isInitialState(I.second) : isFinalState(I.second)) &&
"Profile matching state is inconsistent");
if (isMismatchState(I.second))
NumMismatchedCallsites++;
else if (I.second == MatchState::RecoveredMismatch)
NumRecoveredCallsites++;
}
}
void SampleProfileMatcher::countCallGraphRecoveredSamples(
const FunctionSamples &FS,
std::unordered_set<FunctionId> &CallGraphRecoveredProfiles) {
if (CallGraphRecoveredProfiles.count(FS.getFunction())) {
NumCallGraphRecoveredFuncSamples += FS.getTotalSamples();
return;
}
for (const auto &CM : FS.getCallsiteSamples()) {
for (const auto &CS : CM.second) {
countCallGraphRecoveredSamples(CS.second, CallGraphRecoveredProfiles);
}
}
}
void SampleProfileMatcher::computeAndReportProfileStaleness() {
if (!ReportProfileStaleness && !PersistProfileStaleness)
return;
std::unordered_set<FunctionId> CallGraphRecoveredProfiles;
if (SalvageUnusedProfile) {
for (const auto &I : FuncToProfileNameMap) {
CallGraphRecoveredProfiles.insert(I.second);
if (GlobalValue::isAvailableExternallyLinkage(I.first->getLinkage()))
continue;
NumCallGraphRecoveredProfiledFunc++;
}
}
// Count profile mismatches for profile staleness report.
for (const auto &F : M) {
if (skipProfileForFunction(F))
continue;
// As the stats will be merged by linker, skip reporting the metrics for
// imported functions to avoid repeated counting.
if (GlobalValue::isAvailableExternallyLinkage(F.getLinkage()))
continue;
const auto *FS = Reader.getSamplesFor(F);
if (!FS)
continue;
TotalProfiledFunc++;
TotalFunctionSamples += FS->getTotalSamples();
if (SalvageUnusedProfile && !CallGraphRecoveredProfiles.empty())
countCallGraphRecoveredSamples(*FS, CallGraphRecoveredProfiles);
// Checksum mismatch is only used in pseudo-probe mode.
if (FunctionSamples::ProfileIsProbeBased)
countMismatchedFuncSamples(*FS, true);
// Count mismatches and samples for calliste.
countMismatchCallsites(*FS);
countMismatchedCallsiteSamples(*FS);
}
if (ReportProfileStaleness) {
if (FunctionSamples::ProfileIsProbeBased) {
errs() << "(" << NumStaleProfileFunc << "/" << TotalProfiledFunc
<< ") of functions' profile are invalid and ("
<< MismatchedFunctionSamples << "/" << TotalFunctionSamples
<< ") of samples are discarded due to function hash mismatch.\n";
}
if (SalvageUnusedProfile) {
errs() << "(" << NumCallGraphRecoveredProfiledFunc << "/"
<< TotalProfiledFunc << ") of functions' profile are matched and ("
<< NumCallGraphRecoveredFuncSamples << "/" << TotalFunctionSamples
<< ") of samples are reused by call graph matching.\n";
}
errs() << "(" << (NumMismatchedCallsites + NumRecoveredCallsites) << "/"
<< TotalProfiledCallsites
<< ") of callsites' profile are invalid and ("
<< (MismatchedCallsiteSamples + RecoveredCallsiteSamples) << "/"
<< TotalFunctionSamples
<< ") of samples are discarded due to callsite location mismatch.\n";
errs() << "(" << NumRecoveredCallsites << "/"
<< (NumRecoveredCallsites + NumMismatchedCallsites)
<< ") of callsites and (" << RecoveredCallsiteSamples << "/"
<< (RecoveredCallsiteSamples + MismatchedCallsiteSamples)
<< ") of samples are recovered by stale profile matching.\n";
}
if (PersistProfileStaleness) {
LLVMContext &Ctx = M.getContext();
MDBuilder MDB(Ctx);
SmallVector<std::pair<StringRef, uint64_t>> ProfStatsVec;
if (FunctionSamples::ProfileIsProbeBased) {
ProfStatsVec.emplace_back("NumStaleProfileFunc", NumStaleProfileFunc);
ProfStatsVec.emplace_back("TotalProfiledFunc", TotalProfiledFunc);
ProfStatsVec.emplace_back("MismatchedFunctionSamples",
MismatchedFunctionSamples);
ProfStatsVec.emplace_back("TotalFunctionSamples", TotalFunctionSamples);
}
if (SalvageUnusedProfile) {
ProfStatsVec.emplace_back("NumCallGraphRecoveredProfiledFunc",
NumCallGraphRecoveredProfiledFunc);
ProfStatsVec.emplace_back("NumCallGraphRecoveredFuncSamples",
NumCallGraphRecoveredFuncSamples);
}
ProfStatsVec.emplace_back("NumMismatchedCallsites", NumMismatchedCallsites);
ProfStatsVec.emplace_back("NumRecoveredCallsites", NumRecoveredCallsites);
ProfStatsVec.emplace_back("TotalProfiledCallsites", TotalProfiledCallsites);
ProfStatsVec.emplace_back("MismatchedCallsiteSamples",
MismatchedCallsiteSamples);
ProfStatsVec.emplace_back("RecoveredCallsiteSamples",
RecoveredCallsiteSamples);
auto *MD = MDB.createLLVMStats(ProfStatsVec);
auto *NMD = M.getOrInsertNamedMetadata("llvm.stats");
NMD->addOperand(MD);
}
}
void SampleProfileMatcher::findFunctionsWithoutProfile() {
// TODO: Support MD5 profile.
if (FunctionSamples::UseMD5)
return;
StringSet<> NamesInProfile;
if (auto NameTable = Reader.getNameTable()) {
for (auto Name : *NameTable)
NamesInProfile.insert(Name.stringRef());
}
for (auto &F : M) {
// Skip declarations, as even if the function can be matched, we have
// nothing to do with it.
if (F.isDeclaration())
continue;
StringRef CanonFName = FunctionSamples::getCanonicalFnName(F.getName());
const auto *FS = getFlattenedSamplesFor(F);
if (FS)
continue;
// For extended binary, functions fully inlined may not be loaded in the
// top-level profile, so check the NameTable which has the all symbol names
// in profile.
if (NamesInProfile.count(CanonFName))
continue;
// For extended binary, non-profiled function symbols are in the profile
// symbol list table.
if (PSL && PSL->contains(CanonFName))
continue;
LLVM_DEBUG(dbgs() << "Function " << CanonFName
<< " is not in profile or profile symbol list.\n");
FunctionsWithoutProfile[FunctionId(CanonFName)] = &F;
}
}
bool SampleProfileMatcher::functionMatchesProfileHelper(
const Function &IRFunc, const FunctionId &ProfFunc) {
// The value is in the range [0, 1]. The bigger the value is, the more similar
// two sequences are.
float Similarity = 0.0;
const auto *FSFlattened = getFlattenedSamplesFor(ProfFunc);
if (!FSFlattened)
return false;
// The check for similarity or checksum may not be reliable if the function is
// tiny, we use the number of basic block as a proxy for the function
// complexity and skip the matching if it's too small.
if (IRFunc.size() < MinFuncCountForCGMatching ||
FSFlattened->getBodySamples().size() < MinFuncCountForCGMatching)
return false;
// For probe-based function, we first trust the checksum info. If the checksum
// doesn't match, we continue checking for similarity.
if (FunctionSamples::ProfileIsProbeBased) {
const auto *FuncDesc = ProbeManager->getDesc(IRFunc);
if (FuncDesc &&
!ProbeManager->profileIsHashMismatched(*FuncDesc, *FSFlattened)) {
LLVM_DEBUG(dbgs() << "The checksums for " << IRFunc.getName()
<< "(IR) and " << ProfFunc << "(Profile) match.\n");
return true;
}
}
AnchorMap IRAnchors;
findIRAnchors(IRFunc, IRAnchors);
AnchorMap ProfileAnchors;
findProfileAnchors(*FSFlattened, ProfileAnchors);
AnchorList FilteredIRAnchorsList;
AnchorList FilteredProfileAnchorList;
getFilteredAnchorList(IRAnchors, ProfileAnchors, FilteredIRAnchorsList,
FilteredProfileAnchorList);
// Similarly skip the matching if the num of anchors is not enough.
if (FilteredIRAnchorsList.size() < MinCallCountForCGMatching ||
FilteredProfileAnchorList.size() < MinCallCountForCGMatching)
return false;
// Use the diff algorithm to find the LCS between IR and profile.
// Don't recursively match the callee function to avoid infinite matching,
// callee functions will be handled later since it's processed in top-down
// order .
LocToLocMap MatchedAnchors =
longestCommonSequence(FilteredIRAnchorsList, FilteredProfileAnchorList,
false /* Match unused functions */);
Similarity =
static_cast<float>(MatchedAnchors.size()) * 2 /
(FilteredIRAnchorsList.size() + FilteredProfileAnchorList.size());
LLVM_DEBUG(dbgs() << "The similarity between " << IRFunc.getName()
<< "(IR) and " << ProfFunc << "(profile) is "
<< format("%.2f", Similarity) << "\n");
assert((Similarity >= 0 && Similarity <= 1.0) &&
"Similarity value should be in [0, 1]");
return Similarity * 100 > FuncProfileSimilarityThreshold;
}
// If FindMatchedProfileOnly is set to true, only use the processed function
// results. This is used for skipping the repeated recursive matching.
bool SampleProfileMatcher::functionMatchesProfile(Function &IRFunc,
const FunctionId &ProfFunc,
bool FindMatchedProfileOnly) {
auto R = FuncProfileMatchCache.find({&IRFunc, ProfFunc});
if (R != FuncProfileMatchCache.end())
return R->second;
if (FindMatchedProfileOnly)
return false;
bool Matched = functionMatchesProfileHelper(IRFunc, ProfFunc);
FuncProfileMatchCache[{&IRFunc, ProfFunc}] = Matched;
if (Matched) {
FuncToProfileNameMap[&IRFunc] = ProfFunc;
LLVM_DEBUG(dbgs() << "Function:" << IRFunc.getName()
<< " matches profile:" << ProfFunc << "\n");
}
return Matched;
}
void SampleProfileMatcher::runOnModule() {
ProfileConverter::flattenProfile(Reader.getProfiles(), FlattenedProfiles,
FunctionSamples::ProfileIsCS);
if (SalvageUnusedProfile)
findFunctionsWithoutProfile();
// Process the matching in top-down order so that the caller matching result
// can be used to the callee matching.
std::vector<Function *> TopDownFunctionList;
TopDownFunctionList.reserve(M.size());
buildTopDownFuncOrder(CG, TopDownFunctionList);
for (auto *F : TopDownFunctionList) {
if (skipProfileForFunction(*F))
continue;
runOnFunction(*F);
}
// Update the data in SampleLoader.
if (SalvageUnusedProfile)
for (auto &I : FuncToProfileNameMap) {
assert(I.first && "New function is null");
FunctionId FuncName(I.first->getName());
FuncNameToProfNameMap->emplace(FuncName, I.second);
// We need to remove the old entry to avoid duplicating the function
// processing.
SymbolMap->erase(FuncName);
SymbolMap->emplace(I.second, I.first);
}
if (SalvageStaleProfile)
distributeIRToProfileLocationMap();
computeAndReportProfileStaleness();
}
void SampleProfileMatcher::distributeIRToProfileLocationMap(
FunctionSamples &FS) {
const auto ProfileMappings = FuncMappings.find(FS.getFuncName());
if (ProfileMappings != FuncMappings.end()) {
FS.setIRToProfileLocationMap(&(ProfileMappings->second));
}
for (auto &Callees :
const_cast<CallsiteSampleMap &>(FS.getCallsiteSamples())) {
for (auto &FS : Callees.second) {
distributeIRToProfileLocationMap(FS.second);
}
}
}
// Use a central place to distribute the matching results. Outlined and inlined
// profile with the function name will be set to the same pointer.
void SampleProfileMatcher::distributeIRToProfileLocationMap() {
for (auto &I : Reader.getProfiles()) {
distributeIRToProfileLocationMap(I.second);
}
}