blob: 23ee23eb047f5805ae0713174f6808942b5c04fd [file] [log] [blame]
//===- Inliner.cpp - Code common to all inliners --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the mechanics required to implement inlining without
// missing any calls and updating the call graph. The decisions of which calls
// are profitable to inline are implemented elsewhere.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/Inliner.h"
#include "llvm/ADT/PriorityWorklist.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/InlineAdvisor.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/ReplayInlineAdvisor.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "inline"
STATISTIC(NumInlined, "Number of functions inlined");
STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
static cl::opt<int> IntraSCCCostMultiplier(
"intra-scc-cost-multiplier", cl::init(2), cl::Hidden,
cl::desc(
"Cost multiplier to multiply onto inlined call sites where the "
"new call was previously an intra-SCC call (not relevant when the "
"original call was already intra-SCC). This can accumulate over "
"multiple inlinings (e.g. if a call site already had a cost "
"multiplier and one of its inlined calls was also subject to "
"this, the inlined call would have the original multiplier "
"multiplied by intra-scc-cost-multiplier). This is to prevent tons of "
"inlining through a child SCC which can cause terrible compile times"));
/// A flag for test, so we can print the content of the advisor when running it
/// as part of the default (e.g. -O3) pipeline.
static cl::opt<bool> KeepAdvisorForPrinting("keep-inline-advisor-for-printing",
cl::init(false), cl::Hidden);
/// Allows printing the contents of the advisor after each SCC inliner pass.
static cl::opt<bool>
EnablePostSCCAdvisorPrinting("enable-scc-inline-advisor-printing",
cl::init(false), cl::Hidden);
static cl::opt<std::string> CGSCCInlineReplayFile(
"cgscc-inline-replay", cl::init(""), cl::value_desc("filename"),
cl::desc(
"Optimization remarks file containing inline remarks to be replayed "
"by cgscc inlining."),
cl::Hidden);
static cl::opt<ReplayInlinerSettings::Scope> CGSCCInlineReplayScope(
"cgscc-inline-replay-scope",
cl::init(ReplayInlinerSettings::Scope::Function),
cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function",
"Replay on functions that have remarks associated "
"with them (default)"),
clEnumValN(ReplayInlinerSettings::Scope::Module, "Module",
"Replay on the entire module")),
cl::desc("Whether inline replay should be applied to the entire "
"Module or just the Functions (default) that are present as "
"callers in remarks during cgscc inlining."),
cl::Hidden);
static cl::opt<ReplayInlinerSettings::Fallback> CGSCCInlineReplayFallback(
"cgscc-inline-replay-fallback",
cl::init(ReplayInlinerSettings::Fallback::Original),
cl::values(
clEnumValN(
ReplayInlinerSettings::Fallback::Original, "Original",
"All decisions not in replay send to original advisor (default)"),
clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline,
"AlwaysInline", "All decisions not in replay are inlined"),
clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline",
"All decisions not in replay are not inlined")),
cl::desc(
"How cgscc inline replay treats sites that don't come from the replay. "
"Original: defers to original advisor, AlwaysInline: inline all sites "
"not in replay, NeverInline: inline no sites not in replay"),
cl::Hidden);
static cl::opt<CallSiteFormat::Format> CGSCCInlineReplayFormat(
"cgscc-inline-replay-format",
cl::init(CallSiteFormat::Format::LineColumnDiscriminator),
cl::values(
clEnumValN(CallSiteFormat::Format::Line, "Line", "<Line Number>"),
clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn",
"<Line Number>:<Column Number>"),
clEnumValN(CallSiteFormat::Format::LineDiscriminator,
"LineDiscriminator", "<Line Number>.<Discriminator>"),
clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator,
"LineColumnDiscriminator",
"<Line Number>:<Column Number>.<Discriminator> (default)")),
cl::desc("How cgscc inline replay file is formatted"), cl::Hidden);
/// Return true if the specified inline history ID
/// indicates an inline history that includes the specified function.
static bool inlineHistoryIncludes(
Function *F, int InlineHistoryID,
const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
while (InlineHistoryID != -1) {
assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
"Invalid inline history ID");
if (InlineHistory[InlineHistoryID].first == F)
return true;
InlineHistoryID = InlineHistory[InlineHistoryID].second;
}
return false;
}
InlineAdvisor &
InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM,
FunctionAnalysisManager &FAM, Module &M) {
if (OwnedAdvisor)
return *OwnedAdvisor;
auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M);
if (!IAA) {
// It should still be possible to run the inliner as a stand-alone SCC pass,
// for test scenarios. In that case, we default to the
// DefaultInlineAdvisor, which doesn't need to keep state between SCC pass
// runs. It also uses just the default InlineParams.
// In this case, we need to use the provided FAM, which is valid for the
// duration of the inliner pass, and thus the lifetime of the owned advisor.
// The one we would get from the MAM can be invalidated as a result of the
// inliner's activity.
OwnedAdvisor = std::make_unique<DefaultInlineAdvisor>(
M, FAM, getInlineParams(),
InlineContext{LTOPhase, InlinePass::CGSCCInliner});
if (!CGSCCInlineReplayFile.empty())
OwnedAdvisor = getReplayInlineAdvisor(
M, FAM, M.getContext(), std::move(OwnedAdvisor),
ReplayInlinerSettings{CGSCCInlineReplayFile,
CGSCCInlineReplayScope,
CGSCCInlineReplayFallback,
{CGSCCInlineReplayFormat}},
/*EmitRemarks=*/true,
InlineContext{LTOPhase, InlinePass::ReplayCGSCCInliner});
return *OwnedAdvisor;
}
assert(IAA->getAdvisor() &&
"Expected a present InlineAdvisorAnalysis also have an "
"InlineAdvisor initialized");
return *IAA->getAdvisor();
}
void makeFunctionBodyUnreachable(Function &F) {
F.dropAllReferences();
for (BasicBlock &BB : make_early_inc_range(F))
BB.eraseFromParent();
BasicBlock *BB = BasicBlock::Create(F.getContext(), "", &F);
new UnreachableInst(F.getContext(), BB);
}
PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
CGSCCAnalysisManager &AM, LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
const auto &MAMProxy =
AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG);
bool Changed = false;
assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
Module &M = *InitialC.begin()->getFunction().getParent();
ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M);
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
.getManager();
InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M);
Advisor.onPassEntry(&InitialC);
// We use a single common worklist for calls across the entire SCC. We
// process these in-order and append new calls introduced during inlining to
// the end. The PriorityInlineOrder is optional here, in which the smaller
// callee would have a higher priority to inline.
//
// Note that this particular order of processing is actually critical to
// avoid very bad behaviors. Consider *highly connected* call graphs where
// each function contains a small amount of code and a couple of calls to
// other functions. Because the LLVM inliner is fundamentally a bottom-up
// inliner, it can handle gracefully the fact that these all appear to be
// reasonable inlining candidates as it will flatten things until they become
// too big to inline, and then move on and flatten another batch.
//
// However, when processing call edges *within* an SCC we cannot rely on this
// bottom-up behavior. As a consequence, with heavily connected *SCCs* of
// functions we can end up incrementally inlining N calls into each of
// N functions because each incremental inlining decision looks good and we
// don't have a topological ordering to prevent explosions.
//
// To compensate for this, we don't process transitive edges made immediate
// by inlining until we've done one pass of inlining across the entire SCC.
// Large, highly connected SCCs still lead to some amount of code bloat in
// this model, but it is uniformly spread across all the functions in the SCC
// and eventually they all become too large to inline, rather than
// incrementally maknig a single function grow in a super linear fashion.
SmallVector<std::pair<CallBase *, int>, 16> Calls;
// Populate the initial list of calls in this SCC.
for (auto &N : InitialC) {
auto &ORE =
FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
// We want to generally process call sites top-down in order for
// simplifications stemming from replacing the call with the returned value
// after inlining to be visible to subsequent inlining decisions.
// FIXME: Using instructions sequence is a really bad way to do this.
// Instead we should do an actual RPO walk of the function body.
for (Instruction &I : instructions(N.getFunction()))
if (auto *CB = dyn_cast<CallBase>(&I))
if (Function *Callee = CB->getCalledFunction()) {
if (!Callee->isDeclaration())
Calls.push_back({CB, -1});
else if (!isa<IntrinsicInst>(I)) {
using namespace ore;
setInlineRemark(*CB, "unavailable definition");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
<< NV("Callee", Callee) << " will not be inlined into "
<< NV("Caller", CB->getCaller())
<< " because its definition is unavailable"
<< setIsVerbose();
});
}
}
}
// Capture updatable variable for the current SCC.
auto *C = &InitialC;
auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(C); });
if (Calls.empty())
return PreservedAnalyses::all();
// When inlining a callee produces new call sites, we want to keep track of
// the fact that they were inlined from the callee. This allows us to avoid
// infinite inlining in some obscure cases. To represent this, we use an
// index into the InlineHistory vector.
SmallVector<std::pair<Function *, int>, 16> InlineHistory;
// Track a set vector of inlined callees so that we can augment the caller
// with all of their edges in the call graph before pruning out the ones that
// got simplified away.
SmallSetVector<Function *, 4> InlinedCallees;
// Track the dead functions to delete once finished with inlining calls. We
// defer deleting these to make it easier to handle the call graph updates.
SmallVector<Function *, 4> DeadFunctions;
// Track potentially dead non-local functions with comdats to see if they can
// be deleted as a batch after inlining.
SmallVector<Function *, 4> DeadFunctionsInComdats;
// Loop forward over all of the calls. Note that we cannot cache the size as
// inlining can introduce new calls that need to be processed.
for (int I = 0; I < (int)Calls.size(); ++I) {
// We expect the calls to typically be batched with sequences of calls that
// have the same caller, so we first set up some shared infrastructure for
// this caller. We also do any pruning we can at this layer on the caller
// alone.
Function &F = *Calls[I].first->getCaller();
LazyCallGraph::Node &N = *CG.lookup(F);
if (CG.lookupSCC(N) != C)
continue;
LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"
<< " Function size: " << F.getInstructionCount()
<< "\n");
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
return FAM.getResult<AssumptionAnalysis>(F);
};
// Now process as many calls as we have within this caller in the sequence.
// We bail out as soon as the caller has to change so we can update the
// call graph and prepare the context of that new caller.
bool DidInline = false;
for (; I < (int)Calls.size() && Calls[I].first->getCaller() == &F; ++I) {
auto &P = Calls[I];
CallBase *CB = P.first;
const int InlineHistoryID = P.second;
Function &Callee = *CB->getCalledFunction();
if (InlineHistoryID != -1 &&
inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
LLVM_DEBUG(dbgs() << "Skipping inlining due to history: " << F.getName()
<< " -> " << Callee.getName() << "\n");
setInlineRemark(*CB, "recursive");
// Set noinline so that we don't forget this decision across CGSCC
// iterations.
CB->setIsNoInline();
continue;
}
// Check if this inlining may repeat breaking an SCC apart that has
// already been split once before. In that case, inlining here may
// trigger infinite inlining, much like is prevented within the inliner
// itself by the InlineHistory above, but spread across CGSCC iterations
// and thus hidden from the full inline history.
LazyCallGraph::SCC *CalleeSCC = CG.lookupSCC(*CG.lookup(Callee));
if (CalleeSCC == C && UR.InlinedInternalEdges.count({&N, C})) {
LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
"previously split out of this SCC by inlining: "
<< F.getName() << " -> " << Callee.getName() << "\n");
setInlineRemark(*CB, "recursive SCC split");
continue;
}
std::unique_ptr<InlineAdvice> Advice =
Advisor.getAdvice(*CB, OnlyMandatory);
// Check whether we want to inline this callsite.
if (!Advice)
continue;
if (!Advice->isInliningRecommended()) {
Advice->recordUnattemptedInlining();
continue;
}
int CBCostMult =
getStringFnAttrAsInt(
*CB, InlineConstants::FunctionInlineCostMultiplierAttributeName)
.value_or(1);
// Setup the data structure used to plumb customization into the
// `InlineFunction` routine.
InlineFunctionInfo IFI(
GetAssumptionCache, PSI,
&FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
&FAM.getResult<BlockFrequencyAnalysis>(Callee));
InlineResult IR =
InlineFunction(*CB, IFI, /*MergeAttributes=*/true,
&FAM.getResult<AAManager>(*CB->getCaller()));
if (!IR.isSuccess()) {
Advice->recordUnsuccessfulInlining(IR);
continue;
}
DidInline = true;
InlinedCallees.insert(&Callee);
++NumInlined;
LLVM_DEBUG(dbgs() << " Size after inlining: "
<< F.getInstructionCount() << "\n");
// Add any new callsites to defined functions to the worklist.
if (!IFI.InlinedCallSites.empty()) {
int NewHistoryID = InlineHistory.size();
InlineHistory.push_back({&Callee, InlineHistoryID});
for (CallBase *ICB : reverse(IFI.InlinedCallSites)) {
Function *NewCallee = ICB->getCalledFunction();
assert(!(NewCallee && NewCallee->isIntrinsic()) &&
"Intrinsic calls should not be tracked.");
if (!NewCallee) {
// Try to promote an indirect (virtual) call without waiting for
// the post-inline cleanup and the next DevirtSCCRepeatedPass
// iteration because the next iteration may not happen and we may
// miss inlining it.
if (tryPromoteCall(*ICB))
NewCallee = ICB->getCalledFunction();
}
if (NewCallee) {
if (!NewCallee->isDeclaration()) {
Calls.push_back({ICB, NewHistoryID});
// Continually inlining through an SCC can result in huge compile
// times and bloated code since we arbitrarily stop at some point
// when the inliner decides it's not profitable to inline anymore.
// We attempt to mitigate this by making these calls exponentially
// more expensive.
// This doesn't apply to calls in the same SCC since if we do
// inline through the SCC the function will end up being
// self-recursive which the inliner bails out on, and inlining
// within an SCC is necessary for performance.
if (CalleeSCC != C &&
CalleeSCC == CG.lookupSCC(CG.get(*NewCallee))) {
Attribute NewCBCostMult = Attribute::get(
M.getContext(),
InlineConstants::FunctionInlineCostMultiplierAttributeName,
itostr(CBCostMult * IntraSCCCostMultiplier));
ICB->addFnAttr(NewCBCostMult);
}
}
}
}
}
// For local functions or discardable functions without comdats, check
// whether this makes the callee trivially dead. In that case, we can drop
// the body of the function eagerly which may reduce the number of callers
// of other functions to one, changing inline cost thresholds. Non-local
// discardable functions with comdats are checked later on.
bool CalleeWasDeleted = false;
if (Callee.isDiscardableIfUnused() && Callee.hasZeroLiveUses() &&
!CG.isLibFunction(Callee)) {
if (Callee.hasLocalLinkage() || !Callee.hasComdat()) {
Calls.erase(
std::remove_if(Calls.begin() + I + 1, Calls.end(),
[&](const std::pair<CallBase *, int> &Call) {
return Call.first->getCaller() == &Callee;
}),
Calls.end());
// Clear the body and queue the function itself for call graph
// updating when we finish inlining.
makeFunctionBodyUnreachable(Callee);
assert(!is_contained(DeadFunctions, &Callee) &&
"Cannot put cause a function to become dead twice!");
DeadFunctions.push_back(&Callee);
CalleeWasDeleted = true;
} else {
DeadFunctionsInComdats.push_back(&Callee);
}
}
if (CalleeWasDeleted)
Advice->recordInliningWithCalleeDeleted();
else
Advice->recordInlining();
}
// Back the call index up by one to put us in a good position to go around
// the outer loop.
--I;
if (!DidInline)
continue;
Changed = true;
// At this point, since we have made changes we have at least removed
// a call instruction. However, in the process we do some incremental
// simplification of the surrounding code. This simplification can
// essentially do all of the same things as a function pass and we can
// re-use the exact same logic for updating the call graph to reflect the
// change.
// Inside the update, we also update the FunctionAnalysisManager in the
// proxy for this particular SCC. We do this as the SCC may have changed and
// as we're going to mutate this particular function we want to make sure
// the proxy is in place to forward any invalidation events.
LazyCallGraph::SCC *OldC = C;
C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM);
LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
// If this causes an SCC to split apart into multiple smaller SCCs, there
// is a subtle risk we need to prepare for. Other transformations may
// expose an "infinite inlining" opportunity later, and because of the SCC
// mutation, we will revisit this function and potentially re-inline. If we
// do, and that re-inlining also has the potentially to mutate the SCC
// structure, the infinite inlining problem can manifest through infinite
// SCC splits and merges. To avoid this, we capture the originating caller
// node and the SCC containing the call edge. This is a slight over
// approximation of the possible inlining decisions that must be avoided,
// but is relatively efficient to store. We use C != OldC to know when
// a new SCC is generated and the original SCC may be generated via merge
// in later iterations.
//
// It is also possible that even if no new SCC is generated
// (i.e., C == OldC), the original SCC could be split and then merged
// into the same one as itself. and the original SCC will be added into
// UR.CWorklist again, we want to catch such cases too.
//
// FIXME: This seems like a very heavyweight way of retaining the inline
// history, we should look for a more efficient way of tracking it.
if ((C != OldC || UR.CWorklist.count(OldC)) &&
llvm::any_of(InlinedCallees, [&](Function *Callee) {
return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
})) {
LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
"retaining this to avoid infinite inlining.\n");
UR.InlinedInternalEdges.insert({&N, OldC});
}
InlinedCallees.clear();
// Invalidate analyses for this function now so that we don't have to
// invalidate analyses for all functions in this SCC later.
FAM.invalidate(F, PreservedAnalyses::none());
}
// We must ensure that we only delete functions with comdats if every function
// in the comdat is going to be deleted.
if (!DeadFunctionsInComdats.empty()) {
filterDeadComdatFunctions(DeadFunctionsInComdats);
for (auto *Callee : DeadFunctionsInComdats)
makeFunctionBodyUnreachable(*Callee);
DeadFunctions.append(DeadFunctionsInComdats);
}
// Now that we've finished inlining all of the calls across this SCC, delete
// all of the trivially dead functions, updating the call graph and the CGSCC
// pass manager in the process.
//
// Note that this walks a pointer set which has non-deterministic order but
// that is OK as all we do is delete things and add pointers to unordered
// sets.
for (Function *DeadF : DeadFunctions) {
CG.markDeadFunction(*DeadF);
// Get the necessary information out of the call graph and nuke the
// function there. Also, clear out any cached analyses.
auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
FAM.clear(*DeadF, DeadF->getName());
AM.clear(DeadC, DeadC.getName());
// Mark the relevant parts of the call graph as invalid so we don't visit
// them.
UR.InvalidatedSCCs.insert(&DeadC);
UR.DeadFunctions.push_back(DeadF);
++NumDeleted;
}
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
// Even if we change the IR, we update the core CGSCC data structures and so
// can preserve the proxy to the function analysis manager.
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
// We have already invalidated all analyses on modified functions.
PA.preserveSet<AllAnalysesOn<Function>>();
return PA;
}
ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params,
bool MandatoryFirst,
InlineContext IC,
InliningAdvisorMode Mode,
unsigned MaxDevirtIterations)
: Params(Params), IC(IC), Mode(Mode),
MaxDevirtIterations(MaxDevirtIterations) {
// Run the inliner first. The theory is that we are walking bottom-up and so
// the callees have already been fully optimized, and we want to inline them
// into the callers so that our optimizations can reflect that.
// For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO
// because it makes profile annotation in the backend inaccurate.
if (MandatoryFirst) {
PM.addPass(InlinerPass(/*OnlyMandatory*/ true));
if (EnablePostSCCAdvisorPrinting)
PM.addPass(InlineAdvisorAnalysisPrinterPass(dbgs()));
}
PM.addPass(InlinerPass());
if (EnablePostSCCAdvisorPrinting)
PM.addPass(InlineAdvisorAnalysisPrinterPass(dbgs()));
}
PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M,
ModuleAnalysisManager &MAM) {
auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M);
if (!IAA.tryCreate(Params, Mode,
{CGSCCInlineReplayFile,
CGSCCInlineReplayScope,
CGSCCInlineReplayFallback,
{CGSCCInlineReplayFormat}},
IC)) {
M.getContext().emitError(
"Could not setup Inlining Advisor for the requested "
"mode and/or options");
return PreservedAnalyses::all();
}
// We wrap the CGSCC pipeline in a devirtualization repeater. This will try
// to detect when we devirtualize indirect calls and iterate the SCC passes
// in that case to try and catch knock-on inlining or function attrs
// opportunities. Then we add it to the module pipeline by walking the SCCs
// in postorder (or bottom-up).
// If MaxDevirtIterations is 0, we just don't use the devirtualization
// wrapper.
if (MaxDevirtIterations == 0)
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM)));
else
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations)));
MPM.addPass(std::move(AfterCGMPM));
MPM.run(M, MAM);
// Discard the InlineAdvisor, a subsequent inlining session should construct
// its own.
auto PA = PreservedAnalyses::all();
if (!KeepAdvisorForPrinting)
PA.abandon<InlineAdvisorAnalysis>();
return PA;
}
void InlinerPass::printPipeline(
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
static_cast<PassInfoMixin<InlinerPass> *>(this)->printPipeline(
OS, MapClassName2PassName);
if (OnlyMandatory)
OS << "<only-mandatory>";
}
void ModuleInlinerWrapperPass::printPipeline(
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
// Print some info about passes added to the wrapper. This is however
// incomplete as InlineAdvisorAnalysis part isn't included (which also depends
// on Params and Mode).
if (!MPM.isEmpty()) {
MPM.printPipeline(OS, MapClassName2PassName);
OS << ',';
}
OS << "cgscc(";
if (MaxDevirtIterations != 0)
OS << "devirt<" << MaxDevirtIterations << ">(";
PM.printPipeline(OS, MapClassName2PassName);
if (MaxDevirtIterations != 0)
OS << ')';
OS << ')';
}