blob: 042578d26818a0fefce96c8ae19c02b17cdd7cb5 [file] [log] [blame]
//===-- ExpandVariadicsPass.cpp --------------------------------*- C++ -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is an optimization pass for variadic functions. If called from codegen,
// it can serve as the implementation of variadic functions for a given target.
//
// The strategy is to turn the ... part of a variadic function into a va_list
// and fix up the call sites. The majority of the pass is target independent.
// The exceptions are the va_list type itself and the rules for where to store
// variables in memory such that va_arg can iterate over them given a va_list.
//
// The majority of the plumbing is splitting the variadic function into a
// single basic block that packs the variadic arguments into a va_list and
// a second function that does the work of the original. That packing is
// exactly what is done by va_start. Further, the transform from ... to va_list
// replaced va_start with an operation to copy a va_list from the new argument,
// which is exactly a va_copy. This is useful for reducing target-dependence.
//
// A va_list instance is a forward iterator, where the primary operation va_arg
// is dereference-then-increment. This interface forces significant convergent
// evolution between target specific implementations. The variation in runtime
// data layout is limited to that representable by the iterator, parameterised
// by the type passed to the va_arg instruction.
//
// Therefore the majority of the target specific subtlety is packing arguments
// into a stack allocated buffer such that a va_list can be initialised with it
// and the va_arg expansion for the target will find the arguments at runtime.
//
// The aggregate effect is to unblock other transforms, most critically the
// general purpose inliner. Known calls to variadic functions become zero cost.
//
// Consistency with clang is primarily tested by emitting va_arg using clang
// then expanding the variadic functions using this pass, followed by trying
// to constant fold the functions to no-ops.
//
// Target specific behaviour is tested in IR - mainly checking that values are
// put into positions in call frames that make sense for that particular target.
//
// There is one "clever" invariant in use. va_start intrinsics that are not
// within a varidic functions are an error in the IR verifier. When this
// transform moves blocks from a variadic function into a fixed arity one, it
// moves va_start intrinsics along with everything else. That means that the
// va_start intrinsics that need to be rewritten to use the trailing argument
// are exactly those that are in non-variadic functions so no further state
// is needed to distinguish those that need to be rewritten.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/ExpandVariadics.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/TargetParser/Triple.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#define DEBUG_TYPE "expand-variadics"
using namespace llvm;
namespace {
cl::opt<ExpandVariadicsMode> ExpandVariadicsModeOption(
DEBUG_TYPE "-override", cl::desc("Override the behaviour of " DEBUG_TYPE),
cl::init(ExpandVariadicsMode::Unspecified),
cl::values(clEnumValN(ExpandVariadicsMode::Unspecified, "unspecified",
"Use the implementation defaults"),
clEnumValN(ExpandVariadicsMode::Disable, "disable",
"Disable the pass entirely"),
clEnumValN(ExpandVariadicsMode::Optimize, "optimize",
"Optimise without changing ABI"),
clEnumValN(ExpandVariadicsMode::Lowering, "lowering",
"Change variadic calling convention")));
bool commandLineOverride() {
return ExpandVariadicsModeOption != ExpandVariadicsMode::Unspecified;
}
// Instances of this class encapsulate the target-dependant behaviour as a
// function of triple. Implementing a new ABI is adding a case to the switch
// in create(llvm::Triple) at the end of this file.
// This class may end up instantiated in TargetMachine instances, keeping it
// here for now until enough targets are implemented for the API to evolve.
class VariadicABIInfo {
protected:
VariadicABIInfo() = default;
public:
static std::unique_ptr<VariadicABIInfo> create(const Triple &T);
// Allow overriding whether the pass runs on a per-target basis
virtual bool enableForTarget() = 0;
// Whether a valist instance is passed by value or by address
// I.e. does it need to be alloca'ed and stored into, or can
// it be passed directly in a SSA register
virtual bool vaListPassedInSSARegister() = 0;
// The type of a va_list iterator object
virtual Type *vaListType(LLVMContext &Ctx) = 0;
// The type of a va_list as a function argument as lowered by C
virtual Type *vaListParameterType(Module &M) = 0;
// Initialize an allocated va_list object to point to an already
// initialized contiguous memory region.
// Return the value to pass as the va_list argument
virtual Value *initializeVaList(Module &M, LLVMContext &Ctx,
IRBuilder<> &Builder, AllocaInst *VaList,
Value *Buffer) = 0;
struct VAArgSlotInfo {
Align DataAlign; // With respect to the call frame
bool Indirect; // Passed via a pointer
};
virtual VAArgSlotInfo slotInfo(const DataLayout &DL, Type *Parameter) = 0;
// Targets implemented so far all have the same trivial lowering for these
bool vaEndIsNop() { return true; }
bool vaCopyIsMemcpy() { return true; }
virtual ~VariadicABIInfo() = default;
};
class ExpandVariadics : public ModulePass {
// The pass construction sets the default to optimize when called from middle
// end and lowering when called from the backend. The command line variable
// overrides that. This is useful for testing and debugging. It also allows
// building an applications with variadic functions wholly removed if one
// has sufficient control over the dependencies, e.g. a statically linked
// clang that has no variadic function calls remaining in the binary.
public:
static char ID;
const ExpandVariadicsMode Mode;
std::unique_ptr<VariadicABIInfo> ABI;
ExpandVariadics(ExpandVariadicsMode Mode)
: ModulePass(ID),
Mode(commandLineOverride() ? ExpandVariadicsModeOption : Mode) {}
StringRef getPassName() const override { return "Expand variadic functions"; }
bool rewriteABI() { return Mode == ExpandVariadicsMode::Lowering; }
bool runOnModule(Module &M) override;
bool runOnFunction(Module &M, IRBuilder<> &Builder, Function *F);
Function *replaceAllUsesWithNewDeclaration(Module &M,
Function *OriginalFunction);
Function *deriveFixedArityReplacement(Module &M, IRBuilder<> &Builder,
Function *OriginalFunction);
Function *defineVariadicWrapper(Module &M, IRBuilder<> &Builder,
Function *VariadicWrapper,
Function *FixedArityReplacement);
bool expandCall(Module &M, IRBuilder<> &Builder, CallBase *CB, FunctionType *,
Function *NF);
// The intrinsic functions va_copy and va_end are removed unconditionally.
// They correspond to a memcpy and a no-op on all implemented targets.
// The va_start intrinsic is removed from basic blocks that were not created
// by this pass, some may remain if needed to maintain the external ABI.
template <Intrinsic::ID ID, typename InstructionType>
bool expandIntrinsicUsers(Module &M, IRBuilder<> &Builder,
PointerType *IntrinsicArgType) {
bool Changed = false;
const DataLayout &DL = M.getDataLayout();
if (Function *Intrinsic =
Intrinsic::getDeclarationIfExists(&M, ID, {IntrinsicArgType})) {
for (User *U : make_early_inc_range(Intrinsic->users()))
if (auto *I = dyn_cast<InstructionType>(U))
Changed |= expandVAIntrinsicCall(Builder, DL, I);
if (Intrinsic->use_empty())
Intrinsic->eraseFromParent();
}
return Changed;
}
bool expandVAIntrinsicUsersWithAddrspace(Module &M, IRBuilder<> &Builder,
unsigned Addrspace) {
auto &Ctx = M.getContext();
PointerType *IntrinsicArgType = PointerType::get(Ctx, Addrspace);
bool Changed = false;
// expand vastart before vacopy as vastart may introduce a vacopy
Changed |= expandIntrinsicUsers<Intrinsic::vastart, VAStartInst>(
M, Builder, IntrinsicArgType);
Changed |= expandIntrinsicUsers<Intrinsic::vaend, VAEndInst>(
M, Builder, IntrinsicArgType);
Changed |= expandIntrinsicUsers<Intrinsic::vacopy, VACopyInst>(
M, Builder, IntrinsicArgType);
return Changed;
}
bool expandVAIntrinsicCall(IRBuilder<> &Builder, const DataLayout &DL,
VAStartInst *Inst);
bool expandVAIntrinsicCall(IRBuilder<> &, const DataLayout &,
VAEndInst *Inst);
bool expandVAIntrinsicCall(IRBuilder<> &Builder, const DataLayout &DL,
VACopyInst *Inst);
FunctionType *inlinableVariadicFunctionType(Module &M, FunctionType *FTy) {
// The type of "FTy" with the ... removed and a va_list appended
SmallVector<Type *> ArgTypes(FTy->params());
ArgTypes.push_back(ABI->vaListParameterType(M));
return FunctionType::get(FTy->getReturnType(), ArgTypes,
/*IsVarArgs=*/false);
}
bool expansionApplicableToFunction(Module &M, Function *F) {
if (F->isIntrinsic() || !F->isVarArg() ||
F->hasFnAttribute(Attribute::Naked))
return false;
if (F->getCallingConv() != CallingConv::C)
return false;
if (rewriteABI())
return true;
if (!F->hasExactDefinition())
return false;
return true;
}
bool expansionApplicableToFunctionCall(CallBase *CB) {
if (CallInst *CI = dyn_cast<CallInst>(CB)) {
if (CI->isMustTailCall()) {
// Cannot expand musttail calls
return false;
}
if (CI->getCallingConv() != CallingConv::C)
return false;
return true;
}
if (isa<InvokeInst>(CB)) {
// Invoke not implemented in initial implementation of pass
return false;
}
// Other unimplemented derivative of CallBase
return false;
}
class ExpandedCallFrame {
// Helper for constructing an alloca instance containing the arguments bound
// to the variadic ... parameter, rearranged to allow indexing through a
// va_list iterator
enum { N = 4 };
SmallVector<Type *, N> FieldTypes;
enum Tag { Store, Memcpy, Padding };
SmallVector<std::tuple<Value *, uint64_t, Tag>, N> Source;
template <Tag tag> void append(Type *FieldType, Value *V, uint64_t Bytes) {
FieldTypes.push_back(FieldType);
Source.push_back({V, Bytes, tag});
}
public:
void store(LLVMContext &Ctx, Type *T, Value *V) { append<Store>(T, V, 0); }
void memcpy(LLVMContext &Ctx, Type *T, Value *V, uint64_t Bytes) {
append<Memcpy>(T, V, Bytes);
}
void padding(LLVMContext &Ctx, uint64_t By) {
append<Padding>(ArrayType::get(Type::getInt8Ty(Ctx), By), nullptr, 0);
}
size_t size() const { return FieldTypes.size(); }
bool empty() const { return FieldTypes.empty(); }
StructType *asStruct(LLVMContext &Ctx, StringRef Name) {
const bool IsPacked = true;
return StructType::create(Ctx, FieldTypes,
(Twine(Name) + ".vararg").str(), IsPacked);
}
void initializeStructAlloca(const DataLayout &DL, IRBuilder<> &Builder,
AllocaInst *Alloced) {
StructType *VarargsTy = cast<StructType>(Alloced->getAllocatedType());
for (size_t I = 0; I < size(); I++) {
auto [V, bytes, tag] = Source[I];
if (tag == Padding) {
assert(V == nullptr);
continue;
}
auto Dst = Builder.CreateStructGEP(VarargsTy, Alloced, I);
assert(V != nullptr);
if (tag == Store)
Builder.CreateStore(V, Dst);
if (tag == Memcpy)
Builder.CreateMemCpy(Dst, {}, V, {}, bytes);
}
}
};
};
bool ExpandVariadics::runOnModule(Module &M) {
bool Changed = false;
if (Mode == ExpandVariadicsMode::Disable)
return Changed;
Triple TT(M.getTargetTriple());
ABI = VariadicABIInfo::create(TT);
if (!ABI)
return Changed;
if (!ABI->enableForTarget())
return Changed;
auto &Ctx = M.getContext();
const DataLayout &DL = M.getDataLayout();
IRBuilder<> Builder(Ctx);
// Lowering needs to run on all functions exactly once.
// Optimize could run on functions containing va_start exactly once.
for (Function &F : make_early_inc_range(M))
Changed |= runOnFunction(M, Builder, &F);
// After runOnFunction, all known calls to known variadic functions have been
// replaced. va_start intrinsics are presently (and invalidly!) only present
// in functions that used to be variadic and have now been replaced to take a
// va_list instead. If lowering as opposed to optimising, calls to unknown
// variadic functions have also been replaced.
{
// 0 and AllocaAddrSpace are sufficient for the targets implemented so far
unsigned Addrspace = 0;
Changed |= expandVAIntrinsicUsersWithAddrspace(M, Builder, Addrspace);
Addrspace = DL.getAllocaAddrSpace();
if (Addrspace != 0)
Changed |= expandVAIntrinsicUsersWithAddrspace(M, Builder, Addrspace);
}
if (Mode != ExpandVariadicsMode::Lowering)
return Changed;
for (Function &F : make_early_inc_range(M)) {
if (F.isDeclaration())
continue;
// Now need to track down indirect calls. Can't find those
// by walking uses of variadic functions, need to crawl the instruction
// stream. Fortunately this is only necessary for the ABI rewrite case.
for (BasicBlock &BB : F) {
for (Instruction &I : make_early_inc_range(BB)) {
if (CallBase *CB = dyn_cast<CallBase>(&I)) {
if (CB->isIndirectCall()) {
FunctionType *FTy = CB->getFunctionType();
if (FTy->isVarArg())
Changed |= expandCall(M, Builder, CB, FTy, 0);
}
}
}
}
}
return Changed;
}
bool ExpandVariadics::runOnFunction(Module &M, IRBuilder<> &Builder,
Function *OriginalFunction) {
bool Changed = false;
if (!expansionApplicableToFunction(M, OriginalFunction))
return Changed;
[[maybe_unused]] const bool OriginalFunctionIsDeclaration =
OriginalFunction->isDeclaration();
assert(rewriteABI() || !OriginalFunctionIsDeclaration);
// Declare a new function and redirect every use to that new function
Function *VariadicWrapper =
replaceAllUsesWithNewDeclaration(M, OriginalFunction);
assert(VariadicWrapper->isDeclaration());
assert(OriginalFunction->use_empty());
// Create a new function taking va_list containing the implementation of the
// original
Function *FixedArityReplacement =
deriveFixedArityReplacement(M, Builder, OriginalFunction);
assert(OriginalFunction->isDeclaration());
assert(FixedArityReplacement->isDeclaration() ==
OriginalFunctionIsDeclaration);
assert(VariadicWrapper->isDeclaration());
// Create a single block forwarding wrapper that turns a ... into a va_list
[[maybe_unused]] Function *VariadicWrapperDefine =
defineVariadicWrapper(M, Builder, VariadicWrapper, FixedArityReplacement);
assert(VariadicWrapperDefine == VariadicWrapper);
assert(!VariadicWrapper->isDeclaration());
// We now have:
// 1. the original function, now as a declaration with no uses
// 2. a variadic function that unconditionally calls a fixed arity replacement
// 3. a fixed arity function equivalent to the original function
// Replace known calls to the variadic with calls to the va_list equivalent
for (User *U : make_early_inc_range(VariadicWrapper->users())) {
if (CallBase *CB = dyn_cast<CallBase>(U)) {
Value *CalledOperand = CB->getCalledOperand();
if (VariadicWrapper == CalledOperand)
Changed |=
expandCall(M, Builder, CB, VariadicWrapper->getFunctionType(),
FixedArityReplacement);
}
}
// The original function will be erased.
// One of the two new functions will become a replacement for the original.
// When preserving the ABI, the other is an internal implementation detail.
// When rewriting the ABI, RAUW then the variadic one.
Function *const ExternallyAccessible =
rewriteABI() ? FixedArityReplacement : VariadicWrapper;
Function *const InternalOnly =
rewriteABI() ? VariadicWrapper : FixedArityReplacement;
// The external function is the replacement for the original
ExternallyAccessible->setLinkage(OriginalFunction->getLinkage());
ExternallyAccessible->setVisibility(OriginalFunction->getVisibility());
ExternallyAccessible->setComdat(OriginalFunction->getComdat());
ExternallyAccessible->takeName(OriginalFunction);
// Annotate the internal one as internal
InternalOnly->setVisibility(GlobalValue::DefaultVisibility);
InternalOnly->setLinkage(GlobalValue::InternalLinkage);
// The original is unused and obsolete
OriginalFunction->eraseFromParent();
InternalOnly->removeDeadConstantUsers();
if (rewriteABI()) {
// All known calls to the function have been removed by expandCall
// Resolve everything else by replaceAllUsesWith
VariadicWrapper->replaceAllUsesWith(FixedArityReplacement);
VariadicWrapper->eraseFromParent();
}
return Changed;
}
Function *
ExpandVariadics::replaceAllUsesWithNewDeclaration(Module &M,
Function *OriginalFunction) {
auto &Ctx = M.getContext();
Function &F = *OriginalFunction;
FunctionType *FTy = F.getFunctionType();
Function *NF = Function::Create(FTy, F.getLinkage(), F.getAddressSpace());
NF->setName(F.getName() + ".varargs");
F.getParent()->getFunctionList().insert(F.getIterator(), NF);
AttrBuilder ParamAttrs(Ctx);
AttributeList Attrs = NF->getAttributes();
Attrs = Attrs.addParamAttributes(Ctx, FTy->getNumParams(), ParamAttrs);
NF->setAttributes(Attrs);
OriginalFunction->replaceAllUsesWith(NF);
return NF;
}
Function *
ExpandVariadics::deriveFixedArityReplacement(Module &M, IRBuilder<> &Builder,
Function *OriginalFunction) {
Function &F = *OriginalFunction;
// The purpose here is split the variadic function F into two functions
// One is a variadic function that bundles the passed argument into a va_list
// and passes it to the second function. The second function does whatever
// the original F does, except that it takes a va_list instead of the ...
assert(expansionApplicableToFunction(M, &F));
auto &Ctx = M.getContext();
// Returned value isDeclaration() is equal to F.isDeclaration()
// but that property is not invariant throughout this function
const bool FunctionIsDefinition = !F.isDeclaration();
FunctionType *FTy = F.getFunctionType();
SmallVector<Type *> ArgTypes(FTy->params());
ArgTypes.push_back(ABI->vaListParameterType(M));
FunctionType *NFTy = inlinableVariadicFunctionType(M, FTy);
Function *NF = Function::Create(NFTy, F.getLinkage(), F.getAddressSpace());
// Note - same attribute handling as DeadArgumentElimination
NF->copyAttributesFrom(&F);
NF->setComdat(F.getComdat());
F.getParent()->getFunctionList().insert(F.getIterator(), NF);
NF->setName(F.getName() + ".valist");
AttrBuilder ParamAttrs(Ctx);
AttributeList Attrs = NF->getAttributes();
Attrs = Attrs.addParamAttributes(Ctx, NFTy->getNumParams() - 1, ParamAttrs);
NF->setAttributes(Attrs);
// Splice the implementation into the new function with minimal changes
if (FunctionIsDefinition) {
NF->splice(NF->begin(), &F);
auto NewArg = NF->arg_begin();
for (Argument &Arg : F.args()) {
Arg.replaceAllUsesWith(NewArg);
NewArg->setName(Arg.getName()); // takeName without killing the old one
++NewArg;
}
NewArg->setName("varargs");
}
SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
F.getAllMetadata(MDs);
for (auto [KindID, Node] : MDs)
NF->addMetadata(KindID, *Node);
F.clearMetadata();
return NF;
}
Function *
ExpandVariadics::defineVariadicWrapper(Module &M, IRBuilder<> &Builder,
Function *VariadicWrapper,
Function *FixedArityReplacement) {
auto &Ctx = Builder.getContext();
const DataLayout &DL = M.getDataLayout();
assert(VariadicWrapper->isDeclaration());
Function &F = *VariadicWrapper;
assert(F.isDeclaration());
Type *VaListTy = ABI->vaListType(Ctx);
auto *BB = BasicBlock::Create(Ctx, "entry", &F);
Builder.SetInsertPoint(BB);
AllocaInst *VaListInstance =
Builder.CreateAlloca(VaListTy, nullptr, "va_start");
Builder.CreateLifetimeStart(VaListInstance);
Builder.CreateIntrinsic(Intrinsic::vastart, {DL.getAllocaPtrType(Ctx)},
{VaListInstance});
SmallVector<Value *> Args(llvm::make_pointer_range(F.args()));
Type *ParameterType = ABI->vaListParameterType(M);
if (ABI->vaListPassedInSSARegister())
Args.push_back(Builder.CreateLoad(ParameterType, VaListInstance));
else
Args.push_back(Builder.CreateAddrSpaceCast(VaListInstance, ParameterType));
CallInst *Result = Builder.CreateCall(FixedArityReplacement, Args);
Builder.CreateIntrinsic(Intrinsic::vaend, {DL.getAllocaPtrType(Ctx)},
{VaListInstance});
Builder.CreateLifetimeEnd(VaListInstance);
if (Result->getType()->isVoidTy())
Builder.CreateRetVoid();
else
Builder.CreateRet(Result);
return VariadicWrapper;
}
bool ExpandVariadics::expandCall(Module &M, IRBuilder<> &Builder, CallBase *CB,
FunctionType *VarargFunctionType,
Function *NF) {
bool Changed = false;
const DataLayout &DL = M.getDataLayout();
if (!expansionApplicableToFunctionCall(CB)) {
if (rewriteABI())
report_fatal_error("Cannot lower callbase instruction");
return Changed;
}
// This is tricky. The call instruction's function type might not match
// the type of the caller. When optimising, can leave it unchanged.
// Webassembly detects that inconsistency and repairs it.
FunctionType *FuncType = CB->getFunctionType();
if (FuncType != VarargFunctionType) {
if (!rewriteABI())
return Changed;
FuncType = VarargFunctionType;
}
auto &Ctx = CB->getContext();
Align MaxFieldAlign(1);
// The strategy is to allocate a call frame containing the variadic
// arguments laid out such that a target specific va_list can be initialized
// with it, such that target specific va_arg instructions will correctly
// iterate over it. This means getting the alignment right and sometimes
// embedding a pointer to the value instead of embedding the value itself.
Function *CBF = CB->getParent()->getParent();
ExpandedCallFrame Frame;
uint64_t CurrentOffset = 0;
for (unsigned I = FuncType->getNumParams(), E = CB->arg_size(); I < E; ++I) {
Value *ArgVal = CB->getArgOperand(I);
const bool IsByVal = CB->paramHasAttr(I, Attribute::ByVal);
const bool IsByRef = CB->paramHasAttr(I, Attribute::ByRef);
// The type of the value being passed, decoded from byval/byref metadata if
// required
Type *const UnderlyingType = IsByVal ? CB->getParamByValType(I)
: IsByRef ? CB->getParamByRefType(I)
: ArgVal->getType();
const uint64_t UnderlyingSize =
DL.getTypeAllocSize(UnderlyingType).getFixedValue();
// The type to be written into the call frame
Type *FrameFieldType = UnderlyingType;
// The value to copy from when initialising the frame alloca
Value *SourceValue = ArgVal;
VariadicABIInfo::VAArgSlotInfo SlotInfo = ABI->slotInfo(DL, UnderlyingType);
if (SlotInfo.Indirect) {
// The va_arg lowering loads through a pointer. Set up an alloca to aim
// that pointer at.
Builder.SetInsertPointPastAllocas(CBF);
Builder.SetCurrentDebugLocation(CB->getStableDebugLoc());
Value *CallerCopy =
Builder.CreateAlloca(UnderlyingType, nullptr, "IndirectAlloca");
Builder.SetInsertPoint(CB);
if (IsByVal)
Builder.CreateMemCpy(CallerCopy, {}, ArgVal, {}, UnderlyingSize);
else
Builder.CreateStore(ArgVal, CallerCopy);
// Indirection now handled, pass the alloca ptr by value
FrameFieldType = DL.getAllocaPtrType(Ctx);
SourceValue = CallerCopy;
}
// Alignment of the value within the frame
// This probably needs to be controllable as a function of type
Align DataAlign = SlotInfo.DataAlign;
MaxFieldAlign = std::max(MaxFieldAlign, DataAlign);
uint64_t DataAlignV = DataAlign.value();
if (uint64_t Rem = CurrentOffset % DataAlignV) {
// Inject explicit padding to deal with alignment requirements
uint64_t Padding = DataAlignV - Rem;
Frame.padding(Ctx, Padding);
CurrentOffset += Padding;
}
if (SlotInfo.Indirect) {
Frame.store(Ctx, FrameFieldType, SourceValue);
} else {
if (IsByVal)
Frame.memcpy(Ctx, FrameFieldType, SourceValue, UnderlyingSize);
else
Frame.store(Ctx, FrameFieldType, SourceValue);
}
CurrentOffset += DL.getTypeAllocSize(FrameFieldType).getFixedValue();
}
if (Frame.empty()) {
// Not passing any arguments, hopefully va_arg won't try to read any
// Creating a single byte frame containing nothing to point the va_list
// instance as that is less special-casey in the compiler and probably
// easier to interpret in a debugger.
Frame.padding(Ctx, 1);
}
StructType *VarargsTy = Frame.asStruct(Ctx, CBF->getName());
// The struct instance needs to be at least MaxFieldAlign for the alignment of
// the fields to be correct at runtime. Use the native stack alignment instead
// if that's greater as that tends to give better codegen.
// This is an awkward way to guess whether there is a known stack alignment
// without hitting an assert in DL.getStackAlignment, 1024 is an arbitrary
// number likely to be greater than the natural stack alignment.
Align AllocaAlign = MaxFieldAlign;
if (MaybeAlign StackAlign = DL.getStackAlignment();
StackAlign && *StackAlign > AllocaAlign)
AllocaAlign = *StackAlign;
// Put the alloca to hold the variadic args in the entry basic block.
Builder.SetInsertPointPastAllocas(CBF);
// SetCurrentDebugLocation when the builder SetInsertPoint method does not
Builder.SetCurrentDebugLocation(CB->getStableDebugLoc());
// The awkward construction here is to set the alignment on the instance
AllocaInst *Alloced = Builder.Insert(
new AllocaInst(VarargsTy, DL.getAllocaAddrSpace(), nullptr, AllocaAlign),
"vararg_buffer");
Changed = true;
assert(Alloced->getAllocatedType() == VarargsTy);
// Initialize the fields in the struct
Builder.SetInsertPoint(CB);
Builder.CreateLifetimeStart(Alloced);
Frame.initializeStructAlloca(DL, Builder, Alloced);
const unsigned NumArgs = FuncType->getNumParams();
SmallVector<Value *> Args(CB->arg_begin(), CB->arg_begin() + NumArgs);
// Initialize a va_list pointing to that struct and pass it as the last
// argument
AllocaInst *VaList = nullptr;
{
if (!ABI->vaListPassedInSSARegister()) {
Type *VaListTy = ABI->vaListType(Ctx);
Builder.SetInsertPointPastAllocas(CBF);
Builder.SetCurrentDebugLocation(CB->getStableDebugLoc());
VaList = Builder.CreateAlloca(VaListTy, nullptr, "va_argument");
Builder.SetInsertPoint(CB);
Builder.CreateLifetimeStart(VaList);
}
Builder.SetInsertPoint(CB);
Args.push_back(ABI->initializeVaList(M, Ctx, Builder, VaList, Alloced));
}
// Attributes excluding any on the vararg arguments
AttributeList PAL = CB->getAttributes();
if (!PAL.isEmpty()) {
SmallVector<AttributeSet, 8> ArgAttrs;
for (unsigned ArgNo = 0; ArgNo < NumArgs; ArgNo++)
ArgAttrs.push_back(PAL.getParamAttrs(ArgNo));
PAL =
AttributeList::get(Ctx, PAL.getFnAttrs(), PAL.getRetAttrs(), ArgAttrs);
}
SmallVector<OperandBundleDef, 1> OpBundles;
CB->getOperandBundlesAsDefs(OpBundles);
CallBase *NewCB = nullptr;
if (CallInst *CI = dyn_cast<CallInst>(CB)) {
Value *Dst = NF ? NF : CI->getCalledOperand();
FunctionType *NFTy = inlinableVariadicFunctionType(M, VarargFunctionType);
NewCB = CallInst::Create(NFTy, Dst, Args, OpBundles, "", CI->getIterator());
CallInst::TailCallKind TCK = CI->getTailCallKind();
assert(TCK != CallInst::TCK_MustTail);
// Can't tail call a function that is being passed a pointer to an alloca
if (TCK == CallInst::TCK_Tail)
TCK = CallInst::TCK_None;
CI->setTailCallKind(TCK);
} else {
llvm_unreachable("Unreachable when !expansionApplicableToFunctionCall()");
}
if (VaList)
Builder.CreateLifetimeEnd(VaList);
Builder.CreateLifetimeEnd(Alloced);
NewCB->setAttributes(PAL);
NewCB->takeName(CB);
NewCB->setCallingConv(CB->getCallingConv());
NewCB->setDebugLoc(DebugLoc());
// DeadArgElim and ArgPromotion copy exactly this metadata
NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
CB->replaceAllUsesWith(NewCB);
CB->eraseFromParent();
return Changed;
}
bool ExpandVariadics::expandVAIntrinsicCall(IRBuilder<> &Builder,
const DataLayout &DL,
VAStartInst *Inst) {
// Only removing va_start instructions that are not in variadic functions.
// Those would be rejected by the IR verifier before this pass.
// After splicing basic blocks from a variadic function into a fixed arity
// one the va_start that used to refer to the ... parameter still exist.
// There are also variadic functions that this pass did not change and
// va_start instances in the created single block wrapper functions.
// Replace exactly the instances in non-variadic functions as those are
// the ones to be fixed up to use the va_list passed as the final argument.
Function *ContainingFunction = Inst->getFunction();
if (ContainingFunction->isVarArg()) {
return false;
}
// The last argument is a vaListParameterType, either a va_list
// or a pointer to one depending on the target.
bool PassedByValue = ABI->vaListPassedInSSARegister();
Argument *PassedVaList =
ContainingFunction->getArg(ContainingFunction->arg_size() - 1);
// va_start takes a pointer to a va_list, e.g. one on the stack
Value *VaStartArg = Inst->getArgList();
Builder.SetInsertPoint(Inst);
if (PassedByValue) {
// The general thing to do is create an alloca, store the va_list argument
// to it, then create a va_copy. When vaCopyIsMemcpy(), this optimises to a
// store to the VaStartArg.
assert(ABI->vaCopyIsMemcpy());
Builder.CreateStore(PassedVaList, VaStartArg);
} else {
// Otherwise emit a vacopy to pick up target-specific handling if any
auto &Ctx = Builder.getContext();
Builder.CreateIntrinsic(Intrinsic::vacopy, {DL.getAllocaPtrType(Ctx)},
{VaStartArg, PassedVaList});
}
Inst->eraseFromParent();
return true;
}
bool ExpandVariadics::expandVAIntrinsicCall(IRBuilder<> &, const DataLayout &,
VAEndInst *Inst) {
assert(ABI->vaEndIsNop());
Inst->eraseFromParent();
return true;
}
bool ExpandVariadics::expandVAIntrinsicCall(IRBuilder<> &Builder,
const DataLayout &DL,
VACopyInst *Inst) {
assert(ABI->vaCopyIsMemcpy());
Builder.SetInsertPoint(Inst);
auto &Ctx = Builder.getContext();
Type *VaListTy = ABI->vaListType(Ctx);
uint64_t Size = DL.getTypeAllocSize(VaListTy).getFixedValue();
Builder.CreateMemCpy(Inst->getDest(), {}, Inst->getSrc(), {},
Builder.getInt32(Size));
Inst->eraseFromParent();
return true;
}
struct Amdgpu final : public VariadicABIInfo {
bool enableForTarget() override { return true; }
bool vaListPassedInSSARegister() override { return true; }
Type *vaListType(LLVMContext &Ctx) override {
return PointerType::getUnqual(Ctx);
}
Type *vaListParameterType(Module &M) override {
return PointerType::getUnqual(M.getContext());
}
Value *initializeVaList(Module &M, LLVMContext &Ctx, IRBuilder<> &Builder,
AllocaInst * /*va_list*/, Value *Buffer) override {
// Given Buffer, which is an AllocInst of vararg_buffer
// need to return something usable as parameter type
return Builder.CreateAddrSpaceCast(Buffer, vaListParameterType(M));
}
VAArgSlotInfo slotInfo(const DataLayout &DL, Type *Parameter) override {
return {Align(4), false};
}
};
struct NVPTX final : public VariadicABIInfo {
bool enableForTarget() override { return true; }
bool vaListPassedInSSARegister() override { return true; }
Type *vaListType(LLVMContext &Ctx) override {
return PointerType::getUnqual(Ctx);
}
Type *vaListParameterType(Module &M) override {
return PointerType::getUnqual(M.getContext());
}
Value *initializeVaList(Module &M, LLVMContext &Ctx, IRBuilder<> &Builder,
AllocaInst *, Value *Buffer) override {
return Builder.CreateAddrSpaceCast(Buffer, vaListParameterType(M));
}
VAArgSlotInfo slotInfo(const DataLayout &DL, Type *Parameter) override {
// NVPTX expects natural alignment in all cases. The variadic call ABI will
// handle promoting types to their appropriate size and alignment.
Align A = DL.getABITypeAlign(Parameter);
return {A, false};
}
};
struct Wasm final : public VariadicABIInfo {
bool enableForTarget() override {
// Currently wasm is only used for testing.
return commandLineOverride();
}
bool vaListPassedInSSARegister() override { return true; }
Type *vaListType(LLVMContext &Ctx) override {
return PointerType::getUnqual(Ctx);
}
Type *vaListParameterType(Module &M) override {
return PointerType::getUnqual(M.getContext());
}
Value *initializeVaList(Module &M, LLVMContext &Ctx, IRBuilder<> &Builder,
AllocaInst * /*va_list*/, Value *Buffer) override {
return Buffer;
}
VAArgSlotInfo slotInfo(const DataLayout &DL, Type *Parameter) override {
LLVMContext &Ctx = Parameter->getContext();
const unsigned MinAlign = 4;
Align A = DL.getABITypeAlign(Parameter);
if (A < MinAlign)
A = Align(MinAlign);
if (auto *S = dyn_cast<StructType>(Parameter)) {
if (S->getNumElements() > 1) {
return {DL.getABITypeAlign(PointerType::getUnqual(Ctx)), true};
}
}
return {A, false};
}
};
std::unique_ptr<VariadicABIInfo> VariadicABIInfo::create(const Triple &T) {
switch (T.getArch()) {
case Triple::r600:
case Triple::amdgcn: {
return std::make_unique<Amdgpu>();
}
case Triple::wasm32: {
return std::make_unique<Wasm>();
}
case Triple::nvptx:
case Triple::nvptx64: {
return std::make_unique<NVPTX>();
}
default:
return {};
}
}
} // namespace
char ExpandVariadics::ID = 0;
INITIALIZE_PASS(ExpandVariadics, DEBUG_TYPE, "Expand variadic functions", false,
false)
ModulePass *llvm::createExpandVariadicsPass(ExpandVariadicsMode M) {
return new ExpandVariadics(M);
}
PreservedAnalyses ExpandVariadicsPass::run(Module &M, ModuleAnalysisManager &) {
return ExpandVariadics(Mode).runOnModule(M) ? PreservedAnalyses::none()
: PreservedAnalyses::all();
}
ExpandVariadicsPass::ExpandVariadicsPass(ExpandVariadicsMode M) : Mode(M) {}