blob: f19031383f5cb363f744f73df9aed375e33415dd [file] [log] [blame]
//===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass deletes dead arguments from internal functions. Dead argument
// elimination removes arguments which are directly dead, as well as arguments
// only passed into function calls as dead arguments of other functions. This
// pass also deletes dead return values in a similar way.
//
// This pass is often useful as a cleanup pass to run after aggressive
// interprocedural passes, which add possibly-dead arguments or return values.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/DeadArgumentElimination.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/AttributeMask.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <cassert>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "deadargelim"
STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
STATISTIC(NumRetValsEliminated, "Number of unused return values removed");
STATISTIC(NumArgumentsReplacedWithPoison,
"Number of unread args replaced with poison");
namespace {
/// The dead argument elimination pass.
class DAE : public ModulePass {
protected:
// DAH uses this to specify a different ID.
explicit DAE(char &ID) : ModulePass(ID) {}
public:
static char ID; // Pass identification, replacement for typeid
DAE() : ModulePass(ID) {
initializeDAEPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
if (skipModule(M))
return false;
DeadArgumentEliminationPass DAEP(shouldHackArguments());
ModuleAnalysisManager DummyMAM;
PreservedAnalyses PA = DAEP.run(M, DummyMAM);
return !PA.areAllPreserved();
}
virtual bool shouldHackArguments() const { return false; }
};
bool isMustTailCalleeAnalyzable(const CallBase &CB) {
assert(CB.isMustTailCall());
return CB.getCalledFunction() && !CB.getCalledFunction()->isDeclaration();
}
} // end anonymous namespace
char DAE::ID = 0;
INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
namespace {
/// The DeadArgumentHacking pass, same as dead argument elimination, but deletes
/// arguments to functions which are external. This is only for use by bugpoint.
struct DAH : public DAE {
static char ID;
DAH() : DAE(ID) {}
bool shouldHackArguments() const override { return true; }
};
} // end anonymous namespace
char DAH::ID = 0;
INITIALIZE_PASS(DAH, "deadarghaX0r",
"Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", false,
false)
/// This pass removes arguments from functions which are not used by the body of
/// the function.
ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
/// If this is an function that takes a ... list, and if llvm.vastart is never
/// called, the varargs list is dead for the function.
bool DeadArgumentEliminationPass::deleteDeadVarargs(Function &F) {
assert(F.getFunctionType()->isVarArg() && "Function isn't varargs!");
if (F.isDeclaration() || !F.hasLocalLinkage())
return false;
// Ensure that the function is only directly called.
if (F.hasAddressTaken())
return false;
// Don't touch naked functions. The assembly might be using an argument, or
// otherwise rely on the frame layout in a way that this analysis will not
// see.
if (F.hasFnAttribute(Attribute::Naked)) {
return false;
}
// Okay, we know we can transform this function if safe. Scan its body
// looking for calls marked musttail or calls to llvm.vastart.
for (BasicBlock &BB : F) {
for (Instruction &I : BB) {
CallInst *CI = dyn_cast<CallInst>(&I);
if (!CI)
continue;
if (CI->isMustTailCall())
return false;
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
if (II->getIntrinsicID() == Intrinsic::vastart)
return false;
}
}
}
// If we get here, there are no calls to llvm.vastart in the function body,
// remove the "..." and adjust all the calls.
// Start by computing a new prototype for the function, which is the same as
// the old function, but doesn't have isVarArg set.
FunctionType *FTy = F.getFunctionType();
std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
unsigned NumArgs = Params.size();
// Create the new function body and insert it into the module...
Function *NF = Function::Create(NFTy, F.getLinkage(), F.getAddressSpace());
NF->copyAttributesFrom(&F);
NF->setComdat(F.getComdat());
F.getParent()->getFunctionList().insert(F.getIterator(), NF);
NF->takeName(&F);
NF->IsNewDbgInfoFormat = F.IsNewDbgInfoFormat;
// Loop over all the callers of the function, transforming the call sites
// to pass in a smaller number of arguments into the new function.
//
std::vector<Value *> Args;
for (User *U : llvm::make_early_inc_range(F.users())) {
CallBase *CB = dyn_cast<CallBase>(U);
if (!CB)
continue;
// Pass all the same arguments.
Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs);
// Drop any attributes that were on the vararg arguments.
AttributeList PAL = CB->getAttributes();
if (!PAL.isEmpty()) {
SmallVector<AttributeSet, 8> ArgAttrs;
for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
ArgAttrs.push_back(PAL.getParamAttrs(ArgNo));
PAL = AttributeList::get(F.getContext(), PAL.getFnAttrs(),
PAL.getRetAttrs(), ArgAttrs);
}
SmallVector<OperandBundleDef, 1> OpBundles;
CB->getOperandBundlesAsDefs(OpBundles);
CallBase *NewCB = nullptr;
if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) {
NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
Args, OpBundles, "", CB->getIterator());
} else {
NewCB = CallInst::Create(NF, Args, OpBundles, "", CB->getIterator());
cast<CallInst>(NewCB)->setTailCallKind(
cast<CallInst>(CB)->getTailCallKind());
}
NewCB->setCallingConv(CB->getCallingConv());
NewCB->setAttributes(PAL);
NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
Args.clear();
if (!CB->use_empty())
CB->replaceAllUsesWith(NewCB);
NewCB->takeName(CB);
// Finally, remove the old call from the program, reducing the use-count of
// F.
CB->eraseFromParent();
}
// Since we have now created the new function, splice the body of the old
// function right into the new function, leaving the old rotting hulk of the
// function empty.
NF->splice(NF->begin(), &F);
// Loop over the argument list, transferring uses of the old arguments over to
// the new arguments, also transferring over the names as well. While we're
// at it, remove the dead arguments from the DeadArguments list.
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(),
I2 = NF->arg_begin();
I != E; ++I, ++I2) {
// Move the name and users over to the new version.
I->replaceAllUsesWith(&*I2);
I2->takeName(&*I);
}
// Clone metadata from the old function, including debug info descriptor.
SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
F.getAllMetadata(MDs);
for (auto [KindID, Node] : MDs)
NF->addMetadata(KindID, *Node);
// Fix up any BlockAddresses that refer to the function.
F.replaceAllUsesWith(NF);
// Delete the bitcast that we just created, so that NF does not
// appear to be address-taken.
NF->removeDeadConstantUsers();
// Finally, nuke the old function.
F.eraseFromParent();
return true;
}
/// Checks if the given function has any arguments that are unused, and changes
/// the caller parameters to be poison instead.
bool DeadArgumentEliminationPass::removeDeadArgumentsFromCallers(Function &F) {
// We cannot change the arguments if this TU does not define the function or
// if the linker may choose a function body from another TU, even if the
// nominal linkage indicates that other copies of the function have the same
// semantics. In the below example, the dead load from %p may not have been
// eliminated from the linker-chosen copy of f, so replacing %p with poison
// in callers may introduce undefined behavior.
//
// define linkonce_odr void @f(i32* %p) {
// %v = load i32 %p
// ret void
// }
if (!F.hasExactDefinition())
return false;
// Functions with local linkage should already have been handled, except if
// they are fully alive (e.g., called indirectly) and except for the fragile
// (variadic) ones. In these cases, we may still be able to improve their
// statically known call sites.
if ((F.hasLocalLinkage() && !LiveFunctions.count(&F)) &&
!F.getFunctionType()->isVarArg())
return false;
// Don't touch naked functions. The assembly might be using an argument, or
// otherwise rely on the frame layout in a way that this analysis will not
// see.
if (F.hasFnAttribute(Attribute::Naked))
return false;
if (F.use_empty())
return false;
SmallVector<unsigned, 8> UnusedArgs;
bool Changed = false;
AttributeMask UBImplyingAttributes =
AttributeFuncs::getUBImplyingAttributes();
for (Argument &Arg : F.args()) {
if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() &&
!Arg.hasPassPointeeByValueCopyAttr()) {
if (Arg.isUsedByMetadata()) {
Arg.replaceAllUsesWith(PoisonValue::get(Arg.getType()));
Changed = true;
}
UnusedArgs.push_back(Arg.getArgNo());
F.removeParamAttrs(Arg.getArgNo(), UBImplyingAttributes);
}
}
if (UnusedArgs.empty())
return false;
for (Use &U : F.uses()) {
CallBase *CB = dyn_cast<CallBase>(U.getUser());
if (!CB || !CB->isCallee(&U) ||
CB->getFunctionType() != F.getFunctionType())
continue;
// Now go through all unused args and replace them with poison.
for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
unsigned ArgNo = UnusedArgs[I];
Value *Arg = CB->getArgOperand(ArgNo);
CB->setArgOperand(ArgNo, PoisonValue::get(Arg->getType()));
CB->removeParamAttrs(ArgNo, UBImplyingAttributes);
++NumArgumentsReplacedWithPoison;
Changed = true;
}
}
return Changed;
}
/// Convenience function that returns the number of return values. It returns 0
/// for void functions and 1 for functions not returning a struct. It returns
/// the number of struct elements for functions returning a struct.
static unsigned numRetVals(const Function *F) {
Type *RetTy = F->getReturnType();
if (RetTy->isVoidTy())
return 0;
if (StructType *STy = dyn_cast<StructType>(RetTy))
return STy->getNumElements();
if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
return ATy->getNumElements();
return 1;
}
/// Returns the sub-type a function will return at a given Idx. Should
/// correspond to the result type of an ExtractValue instruction executed with
/// just that one Idx (i.e. only top-level structure is considered).
static Type *getRetComponentType(const Function *F, unsigned Idx) {
Type *RetTy = F->getReturnType();
assert(!RetTy->isVoidTy() && "void type has no subtype");
if (StructType *STy = dyn_cast<StructType>(RetTy))
return STy->getElementType(Idx);
if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
return ATy->getElementType();
return RetTy;
}
/// Checks Use for liveness in LiveValues. If Use is not live, it adds Use to
/// the MaybeLiveUses argument. Returns the determined liveness of Use.
DeadArgumentEliminationPass::Liveness
DeadArgumentEliminationPass::markIfNotLive(RetOrArg Use,
UseVector &MaybeLiveUses) {
// We're live if our use or its Function is already marked as live.
if (isLive(Use))
return Live;
// We're maybe live otherwise, but remember that we must become live if
// Use becomes live.
MaybeLiveUses.push_back(Use);
return MaybeLive;
}
/// Looks at a single use of an argument or return value and determines if it
/// should be alive or not. Adds this use to MaybeLiveUses if it causes the
/// used value to become MaybeLive.
///
/// RetValNum is the return value number to use when this use is used in a
/// return instruction. This is used in the recursion, you should always leave
/// it at 0.
DeadArgumentEliminationPass::Liveness
DeadArgumentEliminationPass::surveyUse(const Use *U, UseVector &MaybeLiveUses,
unsigned RetValNum) {
const User *V = U->getUser();
if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
// The value is returned from a function. It's only live when the
// function's return value is live. We use RetValNum here, for the case
// that U is really a use of an insertvalue instruction that uses the
// original Use.
const Function *F = RI->getParent()->getParent();
if (RetValNum != -1U) {
RetOrArg Use = createRet(F, RetValNum);
// We might be live, depending on the liveness of Use.
return markIfNotLive(Use, MaybeLiveUses);
}
DeadArgumentEliminationPass::Liveness Result = MaybeLive;
for (unsigned Ri = 0; Ri < numRetVals(F); ++Ri) {
RetOrArg Use = createRet(F, Ri);
// We might be live, depending on the liveness of Use. If any
// sub-value is live, then the entire value is considered live. This
// is a conservative choice, and better tracking is possible.
DeadArgumentEliminationPass::Liveness SubResult =
markIfNotLive(Use, MaybeLiveUses);
if (Result != Live)
Result = SubResult;
}
return Result;
}
if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() &&
IV->hasIndices())
// The use we are examining is inserted into an aggregate. Our liveness
// depends on all uses of that aggregate, but if it is used as a return
// value, only index at which we were inserted counts.
RetValNum = *IV->idx_begin();
// Note that if we are used as the aggregate operand to the insertvalue,
// we don't change RetValNum, but do survey all our uses.
Liveness Result = MaybeLive;
for (const Use &UU : IV->uses()) {
Result = surveyUse(&UU, MaybeLiveUses, RetValNum);
if (Result == Live)
break;
}
return Result;
}
if (const auto *CB = dyn_cast<CallBase>(V)) {
const Function *F = CB->getCalledFunction();
if (F) {
// Used in a direct call.
// The function argument is live if it is used as a bundle operand.
if (CB->isBundleOperand(U))
return Live;
// Find the argument number. We know for sure that this use is an
// argument, since if it was the function argument this would be an
// indirect call and that we know can't be looking at a value of the
// label type (for the invoke instruction).
unsigned ArgNo = CB->getArgOperandNo(U);
if (ArgNo >= F->getFunctionType()->getNumParams())
// The value is passed in through a vararg! Must be live.
return Live;
assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) &&
"Argument is not where we expected it");
// Value passed to a normal call. It's only live when the corresponding
// argument to the called function turns out live.
RetOrArg Use = createArg(F, ArgNo);
return markIfNotLive(Use, MaybeLiveUses);
}
}
// Used in any other way? Value must be live.
return Live;
}
/// Looks at all the uses of the given value
/// Returns the Liveness deduced from the uses of this value.
///
/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
/// the result is Live, MaybeLiveUses might be modified but its content should
/// be ignored (since it might not be complete).
DeadArgumentEliminationPass::Liveness
DeadArgumentEliminationPass::surveyUses(const Value *V,
UseVector &MaybeLiveUses) {
// Assume it's dead (which will only hold if there are no uses at all..).
Liveness Result = MaybeLive;
// Check each use.
for (const Use &U : V->uses()) {
Result = surveyUse(&U, MaybeLiveUses);
if (Result == Live)
break;
}
return Result;
}
/// Performs the initial survey of the specified function, checking out whether
/// it uses any of its incoming arguments or whether any callers use the return
/// value. This fills in the LiveValues set and Uses map.
///
/// We consider arguments of non-internal functions to be intrinsically alive as
/// well as arguments to functions which have their "address taken".
void DeadArgumentEliminationPass::surveyFunction(const Function &F) {
// Functions with inalloca/preallocated parameters are expecting args in a
// particular register and memory layout.
if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
markLive(F);
return;
}
// Don't touch naked functions. The assembly might be using an argument, or
// otherwise rely on the frame layout in a way that this analysis will not
// see.
if (F.hasFnAttribute(Attribute::Naked)) {
markLive(F);
return;
}
unsigned RetCount = numRetVals(&F);
// Assume all return values are dead
using RetVals = SmallVector<Liveness, 5>;
RetVals RetValLiveness(RetCount, MaybeLive);
using RetUses = SmallVector<UseVector, 5>;
// These vectors map each return value to the uses that make it MaybeLive, so
// we can add those to the Uses map if the return value really turns out to be
// MaybeLive. Initialized to a list of RetCount empty lists.
RetUses MaybeLiveRetUses(RetCount);
bool HasMustTailCalls = false;
for (const BasicBlock &BB : F) {
// If we have any returns of `musttail` results - the signature can't
// change
if (const auto *TC = BB.getTerminatingMustTailCall()) {
HasMustTailCalls = true;
// In addition, if the called function is not locally defined (or unknown,
// if this is an indirect call), we can't change the callsite and thus
// can't change this function's signature either.
if (!isMustTailCalleeAnalyzable(*TC)) {
markLive(F);
return;
}
}
}
if (HasMustTailCalls) {
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
<< " has musttail calls\n");
}
if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
markLive(F);
return;
}
LLVM_DEBUG(
dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
<< F.getName() << "\n");
// Keep track of the number of live retvals, so we can skip checks once all
// of them turn out to be live.
unsigned NumLiveRetVals = 0;
bool HasMustTailCallers = false;
// Loop all uses of the function.
for (const Use &U : F.uses()) {
// If the function is PASSED IN as an argument, its address has been
// taken.
const auto *CB = dyn_cast<CallBase>(U.getUser());
if (!CB || !CB->isCallee(&U) ||
CB->getFunctionType() != F.getFunctionType()) {
markLive(F);
return;
}
// The number of arguments for `musttail` call must match the number of
// arguments of the caller
if (CB->isMustTailCall())
HasMustTailCallers = true;
// If we end up here, we are looking at a direct call to our function.
// Now, check how our return value(s) is/are used in this caller. Don't
// bother checking return values if all of them are live already.
if (NumLiveRetVals == RetCount)
continue;
// Check all uses of the return value.
for (const Use &UU : CB->uses()) {
if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(UU.getUser())) {
// This use uses a part of our return value, survey the uses of
// that part and store the results for this index only.
unsigned Idx = *Ext->idx_begin();
if (RetValLiveness[Idx] != Live) {
RetValLiveness[Idx] = surveyUses(Ext, MaybeLiveRetUses[Idx]);
if (RetValLiveness[Idx] == Live)
NumLiveRetVals++;
}
} else {
// Used by something else than extractvalue. Survey, but assume that the
// result applies to all sub-values.
UseVector MaybeLiveAggregateUses;
if (surveyUse(&UU, MaybeLiveAggregateUses) == Live) {
NumLiveRetVals = RetCount;
RetValLiveness.assign(RetCount, Live);
break;
}
for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
if (RetValLiveness[Ri] != Live)
MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(),
MaybeLiveAggregateUses.end());
}
}
}
}
if (HasMustTailCallers) {
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
<< " has musttail callers\n");
}
// Now we've inspected all callers, record the liveness of our return values.
for (unsigned Ri = 0; Ri != RetCount; ++Ri)
markValue(createRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]);
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
<< F.getName() << "\n");
// Now, check all of our arguments.
unsigned ArgI = 0;
UseVector MaybeLiveArgUses;
for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end();
AI != E; ++AI, ++ArgI) {
Liveness Result;
if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
HasMustTailCalls) {
// Variadic functions will already have a va_arg function expanded inside
// them, making them potentially very sensitive to ABI changes resulting
// from removing arguments entirely, so don't. For example AArch64 handles
// register and stack HFAs very differently, and this is reflected in the
// IR which has already been generated.
//
// `musttail` calls to this function restrict argument removal attempts.
// The signature of the caller must match the signature of the function.
//
// `musttail` calls in this function prevents us from changing its
// signature
Result = Live;
} else {
// See what the effect of this use is (recording any uses that cause
// MaybeLive in MaybeLiveArgUses).
Result = surveyUses(&*AI, MaybeLiveArgUses);
}
// Mark the result.
markValue(createArg(&F, ArgI), Result, MaybeLiveArgUses);
// Clear the vector again for the next iteration.
MaybeLiveArgUses.clear();
}
}
/// Marks the liveness of RA depending on L. If L is MaybeLive, it also takes
/// all uses in MaybeLiveUses and records them in Uses, such that RA will be
/// marked live if any use in MaybeLiveUses gets marked live later on.
void DeadArgumentEliminationPass::markValue(const RetOrArg &RA, Liveness L,
const UseVector &MaybeLiveUses) {
switch (L) {
case Live:
markLive(RA);
break;
case MaybeLive:
assert(!isLive(RA) && "Use is already live!");
for (const auto &MaybeLiveUse : MaybeLiveUses) {
if (isLive(MaybeLiveUse)) {
// A use is live, so this value is live.
markLive(RA);
break;
}
// Note any uses of this value, so this value can be
// marked live whenever one of the uses becomes live.
Uses.emplace(MaybeLiveUse, RA);
}
break;
}
}
/// Mark the given Function as alive, meaning that it cannot be changed in any
/// way. Additionally, mark any values that are used as this function's
/// parameters or by its return values (according to Uses) live as well.
void DeadArgumentEliminationPass::markLive(const Function &F) {
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
<< F.getName() << "\n");
// Mark the function as live.
LiveFunctions.insert(&F);
// Mark all arguments as live.
for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI)
propagateLiveness(createArg(&F, ArgI));
// Mark all return values as live.
for (unsigned Ri = 0, E = numRetVals(&F); Ri != E; ++Ri)
propagateLiveness(createRet(&F, Ri));
}
/// Mark the given return value or argument as live. Additionally, mark any
/// values that are used by this value (according to Uses) live as well.
void DeadArgumentEliminationPass::markLive(const RetOrArg &RA) {
if (isLive(RA))
return; // Already marked Live.
LiveValues.insert(RA);
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
<< RA.getDescription() << " live\n");
propagateLiveness(RA);
}
bool DeadArgumentEliminationPass::isLive(const RetOrArg &RA) {
return LiveFunctions.count(RA.F) || LiveValues.count(RA);
}
/// Given that RA is a live value, propagate it's liveness to any other values
/// it uses (according to Uses).
void DeadArgumentEliminationPass::propagateLiveness(const RetOrArg &RA) {
// We don't use upper_bound (or equal_range) here, because our recursive call
// to ourselves is likely to cause the upper_bound (which is the first value
// not belonging to RA) to become erased and the iterator invalidated.
UseMap::iterator Begin = Uses.lower_bound(RA);
UseMap::iterator E = Uses.end();
UseMap::iterator I;
for (I = Begin; I != E && I->first == RA; ++I)
markLive(I->second);
// Erase RA from the Uses map (from the lower bound to wherever we ended up
// after the loop).
Uses.erase(Begin, I);
}
/// Remove any arguments and return values from F that are not in LiveValues.
/// Transform the function and all the callees of the function to not have these
/// arguments and return values.
bool DeadArgumentEliminationPass::removeDeadStuffFromFunction(Function *F) {
// Don't modify fully live functions
if (LiveFunctions.count(F))
return false;
// Start by computing a new prototype for the function, which is the same as
// the old function, but has fewer arguments and a different return type.
FunctionType *FTy = F->getFunctionType();
std::vector<Type *> Params;
// Keep track of if we have a live 'returned' argument
bool HasLiveReturnedArg = false;
// Set up to build a new list of parameter attributes.
SmallVector<AttributeSet, 8> ArgAttrVec;
const AttributeList &PAL = F->getAttributes();
// Remember which arguments are still alive.
SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
// Construct the new parameter list from non-dead arguments. Also construct
// a new set of parameter attributes to correspond. Skip the first parameter
// attribute, since that belongs to the return value.
unsigned ArgI = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
++I, ++ArgI) {
RetOrArg Arg = createArg(F, ArgI);
if (LiveValues.erase(Arg)) {
Params.push_back(I->getType());
ArgAlive[ArgI] = true;
ArgAttrVec.push_back(PAL.getParamAttrs(ArgI));
HasLiveReturnedArg |= PAL.hasParamAttr(ArgI, Attribute::Returned);
} else {
++NumArgumentsEliminated;
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
<< ArgI << " (" << I->getName() << ") from "
<< F->getName() << "\n");
}
}
// Find out the new return value.
Type *RetTy = FTy->getReturnType();
Type *NRetTy = nullptr;
unsigned RetCount = numRetVals(F);
// -1 means unused, other numbers are the new index
SmallVector<int, 5> NewRetIdxs(RetCount, -1);
std::vector<Type *> RetTypes;
// If there is a function with a live 'returned' argument but a dead return
// value, then there are two possible actions:
// 1) Eliminate the return value and take off the 'returned' attribute on the
// argument.
// 2) Retain the 'returned' attribute and treat the return value (but not the
// entire function) as live so that it is not eliminated.
//
// It's not clear in the general case which option is more profitable because,
// even in the absence of explicit uses of the return value, code generation
// is free to use the 'returned' attribute to do things like eliding
// save/restores of registers across calls. Whether this happens is target and
// ABI-specific as well as depending on the amount of register pressure, so
// there's no good way for an IR-level pass to figure this out.
//
// Fortunately, the only places where 'returned' is currently generated by
// the FE are places where 'returned' is basically free and almost always a
// performance win, so the second option can just be used always for now.
//
// This should be revisited if 'returned' is ever applied more liberally.
if (RetTy->isVoidTy() || HasLiveReturnedArg) {
NRetTy = RetTy;
} else {
// Look at each of the original return values individually.
for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
RetOrArg Ret = createRet(F, Ri);
if (LiveValues.erase(Ret)) {
RetTypes.push_back(getRetComponentType(F, Ri));
NewRetIdxs[Ri] = RetTypes.size() - 1;
} else {
++NumRetValsEliminated;
LLVM_DEBUG(
dbgs() << "DeadArgumentEliminationPass - Removing return value "
<< Ri << " from " << F->getName() << "\n");
}
}
if (RetTypes.size() > 1) {
// More than one return type? Reduce it down to size.
if (StructType *STy = dyn_cast<StructType>(RetTy)) {
// Make the new struct packed if we used to return a packed struct
// already.
NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
} else {
assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
}
} else if (RetTypes.size() == 1)
// One return type? Just a simple value then, but only if we didn't use to
// return a struct with that simple value before.
NRetTy = RetTypes.front();
else if (RetTypes.empty())
// No return types? Make it void, but only if we didn't use to return {}.
NRetTy = Type::getVoidTy(F->getContext());
}
assert(NRetTy && "No new return type found?");
// The existing function return attributes.
AttrBuilder RAttrs(F->getContext(), PAL.getRetAttrs());
// Remove any incompatible attributes, but only if we removed all return
// values. Otherwise, ensure that we don't have any conflicting attributes
// here. Currently, this should not be possible, but special handling might be
// required when new return value attributes are added.
if (NRetTy->isVoidTy())
RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
else
assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
"Return attributes no longer compatible?");
AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
// Strip allocsize attributes. They might refer to the deleted arguments.
AttributeSet FnAttrs =
PAL.getFnAttrs().removeAttribute(F->getContext(), Attribute::AllocSize);
// Reconstruct the AttributesList based on the vector we constructed.
assert(ArgAttrVec.size() == Params.size());
AttributeList NewPAL =
AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
// Create the new function type based on the recomputed parameters.
FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
// No change?
if (NFTy == FTy)
return false;
// Create the new function body and insert it into the module...
Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
NF->copyAttributesFrom(F);
NF->setComdat(F->getComdat());
NF->setAttributes(NewPAL);
// Insert the new function before the old function, so we won't be processing
// it again.
F->getParent()->getFunctionList().insert(F->getIterator(), NF);
NF->takeName(F);
NF->IsNewDbgInfoFormat = F->IsNewDbgInfoFormat;
// Loop over all the callers of the function, transforming the call sites to
// pass in a smaller number of arguments into the new function.
std::vector<Value *> Args;
while (!F->use_empty()) {
CallBase &CB = cast<CallBase>(*F->user_back());
ArgAttrVec.clear();
const AttributeList &CallPAL = CB.getAttributes();
// Adjust the call return attributes in case the function was changed to
// return void.
AttrBuilder RAttrs(F->getContext(), CallPAL.getRetAttrs());
RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
// Declare these outside of the loops, so we can reuse them for the second
// loop, which loops the varargs.
auto *I = CB.arg_begin();
unsigned Pi = 0;
// Loop over those operands, corresponding to the normal arguments to the
// original function, and add those that are still alive.
for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi)
if (ArgAlive[Pi]) {
Args.push_back(*I);
// Get original parameter attributes, but skip return attributes.
AttributeSet Attrs = CallPAL.getParamAttrs(Pi);
if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
// If the return type has changed, then get rid of 'returned' on the
// call site. The alternative is to make all 'returned' attributes on
// call sites keep the return value alive just like 'returned'
// attributes on function declaration, but it's less clearly a win and
// this is not an expected case anyway
ArgAttrVec.push_back(AttributeSet::get(
F->getContext(), AttrBuilder(F->getContext(), Attrs)
.removeAttribute(Attribute::Returned)));
} else {
// Otherwise, use the original attributes.
ArgAttrVec.push_back(Attrs);
}
}
// Push any varargs arguments on the list. Don't forget their attributes.
for (auto *E = CB.arg_end(); I != E; ++I, ++Pi) {
Args.push_back(*I);
ArgAttrVec.push_back(CallPAL.getParamAttrs(Pi));
}
// Reconstruct the AttributesList based on the vector we constructed.
assert(ArgAttrVec.size() == Args.size());
// Again, be sure to remove any allocsize attributes, since their indices
// may now be incorrect.
AttributeSet FnAttrs = CallPAL.getFnAttrs().removeAttribute(
F->getContext(), Attribute::AllocSize);
AttributeList NewCallPAL =
AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
SmallVector<OperandBundleDef, 1> OpBundles;
CB.getOperandBundlesAsDefs(OpBundles);
CallBase *NewCB = nullptr;
if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
Args, OpBundles, "", CB.getParent());
} else {
NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", CB.getIterator());
cast<CallInst>(NewCB)->setTailCallKind(
cast<CallInst>(&CB)->getTailCallKind());
}
NewCB->setCallingConv(CB.getCallingConv());
NewCB->setAttributes(NewCallPAL);
NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
Args.clear();
ArgAttrVec.clear();
if (!CB.use_empty() || CB.isUsedByMetadata()) {
if (NewCB->getType() == CB.getType()) {
// Return type not changed? Just replace users then.
CB.replaceAllUsesWith(NewCB);
NewCB->takeName(&CB);
} else if (NewCB->getType()->isVoidTy()) {
// If the return value is dead, replace any uses of it with poison
// (any non-debug value uses will get removed later on).
if (!CB.getType()->isX86_MMXTy())
CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
} else {
assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
"Return type changed, but not into a void. The old return type"
" must have been a struct or an array!");
Instruction *InsertPt = &CB;
if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
BasicBlock *NewEdge =
SplitEdge(NewCB->getParent(), II->getNormalDest());
InsertPt = &*NewEdge->getFirstInsertionPt();
}
// We used to return a struct or array. Instead of doing smart stuff
// with all the uses, we will just rebuild it using extract/insertvalue
// chaining and let instcombine clean that up.
//
// Start out building up our return value from poison
Value *RetVal = PoisonValue::get(RetTy);
for (unsigned Ri = 0; Ri != RetCount; ++Ri)
if (NewRetIdxs[Ri] != -1) {
Value *V;
IRBuilder<NoFolder> IRB(InsertPt);
if (RetTypes.size() > 1)
// We are still returning a struct, so extract the value from our
// return value
V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret");
else
// We are now returning a single element, so just insert that
V = NewCB;
// Insert the value at the old position
RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret");
}
// Now, replace all uses of the old call instruction with the return
// struct we built
CB.replaceAllUsesWith(RetVal);
NewCB->takeName(&CB);
}
}
// Finally, remove the old call from the program, reducing the use-count of
// F.
CB.eraseFromParent();
}
// Since we have now created the new function, splice the body of the old
// function right into the new function, leaving the old rotting hulk of the
// function empty.
NF->splice(NF->begin(), F);
// Loop over the argument list, transferring uses of the old arguments over to
// the new arguments, also transferring over the names as well.
ArgI = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
I2 = NF->arg_begin();
I != E; ++I, ++ArgI)
if (ArgAlive[ArgI]) {
// If this is a live argument, move the name and users over to the new
// version.
I->replaceAllUsesWith(&*I2);
I2->takeName(&*I);
++I2;
} else {
// If this argument is dead, replace any uses of it with poison
// (any non-debug value uses will get removed later on).
if (!I->getType()->isX86_MMXTy())
I->replaceAllUsesWith(PoisonValue::get(I->getType()));
}
// If we change the return value of the function we must rewrite any return
// instructions. Check this now.
if (F->getReturnType() != NF->getReturnType())
for (BasicBlock &BB : *NF)
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
IRBuilder<NoFolder> IRB(RI);
Value *RetVal = nullptr;
if (!NFTy->getReturnType()->isVoidTy()) {
assert(RetTy->isStructTy() || RetTy->isArrayTy());
// The original return value was a struct or array, insert
// extractvalue/insertvalue chains to extract only the values we need
// to return and insert them into our new result.
// This does generate messy code, but we'll let it to instcombine to
// clean that up.
Value *OldRet = RI->getOperand(0);
// Start out building up our return value from poison
RetVal = PoisonValue::get(NRetTy);
for (unsigned RetI = 0; RetI != RetCount; ++RetI)
if (NewRetIdxs[RetI] != -1) {
Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret");
if (RetTypes.size() > 1) {
// We're still returning a struct, so reinsert the value into
// our new return value at the new index
RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI],
"newret");
} else {
// We are now only returning a simple value, so just return the
// extracted value.
RetVal = EV;
}
}
}
// Replace the return instruction with one returning the new return
// value (possibly 0 if we became void).
auto *NewRet =
ReturnInst::Create(F->getContext(), RetVal, RI->getIterator());
NewRet->setDebugLoc(RI->getDebugLoc());
RI->eraseFromParent();
}
// Clone metadata from the old function, including debug info descriptor.
SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
F->getAllMetadata(MDs);
for (auto [KindID, Node] : MDs)
NF->addMetadata(KindID, *Node);
// If either the return value(s) or argument(s) are removed, then probably the
// function does not follow standard calling conventions anymore. Hence, add
// DW_CC_nocall to DISubroutineType to inform debugger that it may not be safe
// to call this function or try to interpret the return value.
if (NFTy != FTy && NF->getSubprogram()) {
DISubprogram *SP = NF->getSubprogram();
auto Temp = SP->getType()->cloneWithCC(llvm::dwarf::DW_CC_nocall);
SP->replaceType(MDNode::replaceWithPermanent(std::move(Temp)));
}
// Now that the old function is dead, delete it.
F->eraseFromParent();
return true;
}
void DeadArgumentEliminationPass::propagateVirtMustcallLiveness(
const Module &M) {
// If a function was marked "live", and it has musttail callers, they in turn
// can't change either.
LiveFuncSet NewLiveFuncs(LiveFunctions);
while (!NewLiveFuncs.empty()) {
LiveFuncSet Temp;
for (const auto *F : NewLiveFuncs)
for (const auto *U : F->users())
if (const auto *CB = dyn_cast<CallBase>(U))
if (CB->isMustTailCall())
if (!LiveFunctions.count(CB->getParent()->getParent()))
Temp.insert(CB->getParent()->getParent());
NewLiveFuncs.clear();
NewLiveFuncs.insert(Temp.begin(), Temp.end());
for (const auto *F : Temp)
markLive(*F);
}
}
PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
ModuleAnalysisManager &) {
bool Changed = false;
// First pass: Do a simple check to see if any functions can have their "..."
// removed. We can do this if they never call va_start. This loop cannot be
// fused with the next loop, because deleting a function invalidates
// information computed while surveying other functions.
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
for (Function &F : llvm::make_early_inc_range(M))
if (F.getFunctionType()->isVarArg())
Changed |= deleteDeadVarargs(F);
// Second phase: Loop through the module, determining which arguments are
// live. We assume all arguments are dead unless proven otherwise (allowing us
// to determine that dead arguments passed into recursive functions are dead).
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
for (auto &F : M)
surveyFunction(F);
propagateVirtMustcallLiveness(M);
// Now, remove all dead arguments and return values from each function in
// turn. We use make_early_inc_range here because functions will probably get
// removed (i.e. replaced by new ones).
for (Function &F : llvm::make_early_inc_range(M))
Changed |= removeDeadStuffFromFunction(&F);
// Finally, look for any unused parameters in functions with non-local
// linkage and replace the passed in parameters with poison.
for (auto &F : M)
Changed |= removeDeadArgumentsFromCallers(F);
if (!Changed)
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}