blob: 3aa8ea3f51471305c8e85d4ae9a9a1c995fea5ac [file] [log] [blame]
//===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// This pass promotes "by reference" arguments to be "by value" arguments. In
// practice, this means looking for internal functions that have pointer
// arguments. If it can prove, through the use of alias analysis, that an
// argument is *only* loaded, then it can pass the value into the function
// instead of the address of the value. This can cause recursive simplification
// of code and lead to the elimination of allocas (especially in C++ template
// code like the STL).
// This pass also handles aggregate arguments that are passed into a function,
// scalarizing them if the elements of the aggregate are only loaded. Note that
// by default it refuses to scalarize aggregates which would require passing in
// more than three operands to the function, because passing thousands of
// operands for a large array or structure is unprofitable! This limit can be
// configured or disabled, however.
// Note that this transformation could also be done for arguments that are only
// stored to (returning the value instead), but does not currently. This case
// would be best handled when and if LLVM begins supporting multiple return
// values from functions.
#include "llvm/Transforms/IPO/ArgumentPromotion.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "argpromotion"
STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
namespace {
struct ArgPart {
Type *Ty;
Align Alignment;
/// A representative guaranteed-executed load or store instruction for use by
/// metadata transfer.
Instruction *MustExecInstr;
using OffsetAndArgPart = std::pair<int64_t, ArgPart>;
} // end anonymous namespace
static Value *createByteGEP(IRBuilderBase &IRB, const DataLayout &DL,
Value *Ptr, Type *ResElemTy, int64_t Offset) {
if (Offset != 0) {
APInt APOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
Ptr = IRB.CreatePtrAdd(Ptr, IRB.getInt(APOffset));
return Ptr;
/// DoPromotion - This method actually performs the promotion of the specified
/// arguments, and returns the new function. At this point, we know that it's
/// safe to do so.
static Function *
doPromotion(Function *F, FunctionAnalysisManager &FAM,
const DenseMap<Argument *, SmallVector<OffsetAndArgPart, 4>>
&ArgsToPromote) {
// Start by computing a new prototype for the function, which is the same as
// the old function, but has modified arguments.
FunctionType *FTy = F->getFunctionType();
std::vector<Type *> Params;
// Attribute - Keep track of the parameter attributes for the arguments
// that we are *not* promoting. For the ones that we do promote, the parameter
// attributes are lost
SmallVector<AttributeSet, 8> ArgAttrVec;
// Mapping from old to new argument indices. -1 for promoted or removed
// arguments.
SmallVector<unsigned> NewArgIndices;
AttributeList PAL = F->getAttributes();
// First, determine the new argument list
unsigned ArgNo = 0, NewArgNo = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
++I, ++ArgNo) {
if (!ArgsToPromote.count(&*I)) {
// Unchanged argument
} else if (I->use_empty()) {
// Dead argument (which are always marked as promotable)
} else {
const auto &ArgParts = ArgsToPromote.find(&*I)->second;
for (const auto &Pair : ArgParts) {
NewArgNo += ArgParts.size();
Type *RetTy = FTy->getReturnType();
// Construct the new function type using the new arguments.
FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
// Create the new function body and insert it into the module.
Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
NF->copyMetadata(F, 0);
// The new function will have the !dbg metadata copied from the original
// function. The original function may not be deleted, and dbg metadata need
// to be unique, so we need to drop it.
LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
<< "From: " << *F);
uint64_t LargestVectorWidth = 0;
for (auto *I : Params)
if (auto *VT = dyn_cast<llvm::VectorType>(I))
LargestVectorWidth = std::max(
LargestVectorWidth, VT->getPrimitiveSizeInBits().getKnownMinValue());
// Recompute the parameter attributes list based on the new arguments for
// the function.
NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttrs(),
PAL.getRetAttrs(), ArgAttrVec));
// Remap argument indices in allocsize attribute.
if (auto AllocSize = NF->getAttributes().getFnAttrs().getAllocSizeArgs()) {
unsigned Arg1 = NewArgIndices[AllocSize->first];
assert(Arg1 != (unsigned)-1 && "allocsize cannot be promoted argument");
std::optional<unsigned> Arg2;
if (AllocSize->second) {
Arg2 = NewArgIndices[*AllocSize->second];
assert(Arg2 != (unsigned)-1 && "allocsize cannot be promoted argument");
NF->addFnAttr(Attribute::getWithAllocSizeArgs(F->getContext(), Arg1, Arg2));
AttributeFuncs::updateMinLegalVectorWidthAttr(*NF, LargestVectorWidth);
F->getParent()->getFunctionList().insert(F->getIterator(), NF);
// Loop over all the callers of the function, transforming the call sites to
// pass in the loaded pointers.
SmallVector<Value *, 16> Args;
const DataLayout &DL = F->getParent()->getDataLayout();
SmallVector<WeakTrackingVH, 16> DeadArgs;
while (!F->use_empty()) {
CallBase &CB = cast<CallBase>(*F->user_back());
assert(CB.getCalledFunction() == F);
const AttributeList &CallPAL = CB.getAttributes();
IRBuilder<NoFolder> IRB(&CB);
// Loop over the operands, inserting GEP and loads in the caller as
// appropriate.
auto *AI = CB.arg_begin();
ArgNo = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
++I, ++AI, ++ArgNo) {
if (!ArgsToPromote.count(&*I)) {
Args.push_back(*AI); // Unmodified argument
} else if (!I->use_empty()) {
Value *V = *AI;
const auto &ArgParts = ArgsToPromote.find(&*I)->second;
for (const auto &Pair : ArgParts) {
LoadInst *LI = IRB.CreateAlignedLoad(
createByteGEP(IRB, DL, V, Pair.second.Ty, Pair.first),
Pair.second.Alignment, V->getName() + ".val");
if (Pair.second.MustExecInstr) {
// Only transfer poison-generating metadata if we also have
// !noundef.
// TODO: Without !noundef, we could merge this metadata across
// all promoted loads.
if (LI->hasMetadata(LLVMContext::MD_noundef))
{LLVMContext::MD_range, LLVMContext::MD_nonnull,
} else {
assert(ArgsToPromote.count(&*I) && I->use_empty());
// Push any varargs arguments on the list.
for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
SmallVector<OperandBundleDef, 1> OpBundles;
CallBase *NewCS = nullptr;
if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
Args, OpBundles, "", CB.getIterator());
} else {
auto *NewCall =
CallInst::Create(NF, Args, OpBundles, "", CB.getIterator());
NewCS = NewCall;
CallPAL.getRetAttrs(), ArgAttrVec));
NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
if (!CB.use_empty()) {
// Finally, remove the old call from the program, reducing the use-count of
// F.
// Since we have now created the new function, splice the body of the old
// function right into the new function, leaving the old rotting hulk of the
// function empty.
NF->splice(NF->begin(), F);
// We will collect all the new created allocas to promote them into registers
// after the following loop
SmallVector<AllocaInst *, 4> Allocas;
// Loop over the argument list, transferring uses of the old arguments over to
// the new arguments, also transferring over the names as well.
Function::arg_iterator I2 = NF->arg_begin();
for (Argument &Arg : F->args()) {
if (!ArgsToPromote.count(&Arg)) {
// If this is an unmodified argument, move the name and users over to the
// new version.
// There potentially are metadata uses for things like llvm.dbg.value.
// Replace them with undef, after handling the other regular uses.
auto RauwUndefMetadata = make_scope_exit(
[&]() { Arg.replaceAllUsesWith(UndefValue::get(Arg.getType())); });
if (Arg.use_empty())
// Otherwise, if we promoted this argument, we have to create an alloca in
// the callee for every promotable part and store each of the new incoming
// arguments into the corresponding alloca, what lets the old code (the
// store instructions if they are allowed especially) a chance to work as
// before.
assert(Arg.getType()->isPointerTy() &&
"Only arguments with a pointer type are promotable");
IRBuilder<NoFolder> IRB(&NF->begin()->front());
// Add only the promoted elements, so parts from ArgsToPromote
SmallDenseMap<int64_t, AllocaInst *> OffsetToAlloca;
for (const auto &Pair : ArgsToPromote.find(&Arg)->second) {
int64_t Offset = Pair.first;
const ArgPart &Part = Pair.second;
Argument *NewArg = I2++;
NewArg->setName(Arg.getName() + "." + Twine(Offset) + ".val");
AllocaInst *NewAlloca = IRB.CreateAlloca(
Part.Ty, nullptr, Arg.getName() + "." + Twine(Offset) + ".allc");
IRB.CreateAlignedStore(NewArg, NewAlloca, Pair.second.Alignment);
// Collect the alloca to retarget the users to
OffsetToAlloca.insert({Offset, NewAlloca});
auto GetAlloca = [&](Value *Ptr) {
APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
/* AllowNonInbounds */ true);
assert(Ptr == &Arg && "Not constant offset from arg?");
return OffsetToAlloca.lookup(Offset.getSExtValue());
// Cleanup the code from the dead instructions: GEPs and BitCasts in between
// the original argument and its users: loads and stores. Retarget every
// user to the new created alloca.
SmallVector<Value *, 16> Worklist;
SmallVector<Instruction *, 16> DeadInsts;
append_range(Worklist, Arg.users());
while (!Worklist.empty()) {
Value *V = Worklist.pop_back_val();
if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V)) {
append_range(Worklist, V->users());
if (auto *LI = dyn_cast<LoadInst>(V)) {
Value *Ptr = LI->getPointerOperand();
LI->setOperand(LoadInst::getPointerOperandIndex(), GetAlloca(Ptr));
if (auto *SI = dyn_cast<StoreInst>(V)) {
assert(!SI->isVolatile() && "Volatile operations can't be promoted.");
Value *Ptr = SI->getPointerOperand();
SI->setOperand(StoreInst::getPointerOperandIndex(), GetAlloca(Ptr));
llvm_unreachable("Unexpected user");
for (Instruction *I : DeadInsts) {
// Collect the allocas for promotion
for (const auto &Pair : OffsetToAlloca) {
assert(isAllocaPromotable(Pair.second) &&
"By design, only promotable allocas should be produced.");
LLVM_DEBUG(dbgs() << "ARG PROMOTION: " << Allocas.size()
<< " alloca(s) are promotable by Mem2Reg\n");
if (!Allocas.empty()) {
// And we are able to call the `promoteMemoryToRegister()` function.
// Our earlier checks have ensured that PromoteMemToReg() will
// succeed.
auto &DT = FAM.getResult<DominatorTreeAnalysis>(*NF);
auto &AC = FAM.getResult<AssumptionAnalysis>(*NF);
PromoteMemToReg(Allocas, DT, &AC);
return NF;
/// Return true if we can prove that all callees pass in a valid pointer for the
/// specified function argument.
static bool allCallersPassValidPointerForArgument(Argument *Arg,
Align NeededAlign,
uint64_t NeededDerefBytes) {
Function *Callee = Arg->getParent();
const DataLayout &DL = Callee->getParent()->getDataLayout();
APInt Bytes(64, NeededDerefBytes);
// Check if the argument itself is marked dereferenceable and aligned.
if (isDereferenceableAndAlignedPointer(Arg, NeededAlign, Bytes, DL))
return true;
// Look at all call sites of the function. At this point we know we only have
// direct callees.
return all_of(Callee->users(), [&](User *U) {
CallBase &CB = cast<CallBase>(*U);
return isDereferenceableAndAlignedPointer(CB.getArgOperand(Arg->getArgNo()),
NeededAlign, Bytes, DL);
/// Determine that this argument is safe to promote, and find the argument
/// parts it can be promoted into.
static bool findArgParts(Argument *Arg, const DataLayout &DL, AAResults &AAR,
unsigned MaxElements, bool IsRecursive,
SmallVectorImpl<OffsetAndArgPart> &ArgPartsVec) {
// Quick exit for unused arguments
if (Arg->use_empty())
return true;
// We can only promote this argument if all the uses are loads at known
// offsets.
// Promoting the argument causes it to be loaded in the caller
// unconditionally. This is only safe if we can prove that either the load
// would have happened in the callee anyway (ie, there is a load in the entry
// block) or the pointer passed in at every call site is guaranteed to be
// valid.
// In the former case, invalid loads can happen, but would have happened
// anyway, in the latter case, invalid loads won't happen. This prevents us
// from introducing an invalid load that wouldn't have happened in the
// original code.
SmallDenseMap<int64_t, ArgPart, 4> ArgParts;
Align NeededAlign(1);
uint64_t NeededDerefBytes = 0;
// And if this is a byval argument we also allow to have store instructions.
// Only handle in such way arguments with specified alignment;
// if it's unspecified, the actual alignment of the argument is
// target-specific.
bool AreStoresAllowed = Arg->getParamByValType() && Arg->getParamAlign();
// An end user of a pointer argument is a load or store instruction.
// Returns std::nullopt if this load or store is not based on the argument.
// Return true if we can promote the instruction, false otherwise.
auto HandleEndUser = [&](auto *I, Type *Ty,
bool GuaranteedToExecute) -> std::optional<bool> {
// Don't promote volatile or atomic instructions.
if (!I->isSimple())
return false;
Value *Ptr = I->getPointerOperand();
APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
/* AllowNonInbounds */ true);
if (Ptr != Arg)
return std::nullopt;
if (Offset.getSignificantBits() >= 64)
return false;
TypeSize Size = DL.getTypeStoreSize(Ty);
// Don't try to promote scalable types.
if (Size.isScalable())
return false;
// If this is a recursive function and one of the types is a pointer,
// then promoting it might lead to recursive promotion.
if (IsRecursive && Ty->isPointerTy())
return false;
int64_t Off = Offset.getSExtValue();
auto Pair = ArgParts.try_emplace(
Off, ArgPart{Ty, I->getAlign(), GuaranteedToExecute ? I : nullptr});
ArgPart &Part = Pair.first->second;
bool OffsetNotSeenBefore = Pair.second;
// We limit promotion to only promoting up to a fixed number of elements of
// the aggregate.
if (MaxElements > 0 && ArgParts.size() > MaxElements) {
LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: "
<< "more than " << MaxElements << " parts\n");
return false;
// For now, we only support loading/storing one specific type at a given
// offset.
if (Part.Ty != Ty) {
LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: "
<< "accessed as both " << *Part.Ty << " and " << *Ty
<< " at offset " << Off << "\n");
return false;
// If this instruction is not guaranteed to execute, and we haven't seen a
// load or store at this offset before (or it had lower alignment), then we
// need to remember that requirement.
// Note that skipping instructions of previously seen offsets is only
// correct because we only allow a single type for a given offset, which
// also means that the number of accessed bytes will be the same.
if (!GuaranteedToExecute &&
(OffsetNotSeenBefore || Part.Alignment < I->getAlign())) {
// We won't be able to prove dereferenceability for negative offsets.
if (Off < 0)
return false;
// If the offset is not aligned, an aligned base pointer won't help.
if (!isAligned(I->getAlign(), Off))
return false;
NeededDerefBytes = std::max(NeededDerefBytes, Off + Size.getFixedValue());
NeededAlign = std::max(NeededAlign, I->getAlign());
Part.Alignment = std::max(Part.Alignment, I->getAlign());
return true;
// Look for loads and stores that are guaranteed to execute on entry.
for (Instruction &I : Arg->getParent()->getEntryBlock()) {
std::optional<bool> Res{};
if (LoadInst *LI = dyn_cast<LoadInst>(&I))
Res = HandleEndUser(LI, LI->getType(), /* GuaranteedToExecute */ true);
else if (StoreInst *SI = dyn_cast<StoreInst>(&I))
Res = HandleEndUser(SI, SI->getValueOperand()->getType(),
/* GuaranteedToExecute */ true);
if (Res && !*Res)
return false;
if (!isGuaranteedToTransferExecutionToSuccessor(&I))
// Now look at all loads of the argument. Remember the load instructions
// for the aliasing check below.
SmallVector<const Use *, 16> Worklist;
SmallPtrSet<const Use *, 16> Visited;
SmallVector<LoadInst *, 16> Loads;
auto AppendUses = [&](const Value *V) {
for (const Use &U : V->uses())
if (Visited.insert(&U).second)
while (!Worklist.empty()) {
const Use *U = Worklist.pop_back_val();
Value *V = U->getUser();
if (isa<BitCastInst>(V)) {
if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
if (!GEP->hasAllConstantIndices())
return false;
if (auto *LI = dyn_cast<LoadInst>(V)) {
if (!*HandleEndUser(LI, LI->getType(), /* GuaranteedToExecute */ false))
return false;
// Stores are allowed for byval arguments
auto *SI = dyn_cast<StoreInst>(V);
if (AreStoresAllowed && SI &&
U->getOperandNo() == StoreInst::getPointerOperandIndex()) {
if (!*HandleEndUser(SI, SI->getValueOperand()->getType(),
/* GuaranteedToExecute */ false))
return false;
// Only stores TO the argument is allowed, all the other stores are
// unknown users
// Unknown user.
LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: "
<< "unknown user " << *V << "\n");
return false;
if (NeededDerefBytes || NeededAlign > 1) {
// Try to prove a required deref / aligned requirement.
if (!allCallersPassValidPointerForArgument(Arg, NeededAlign,
NeededDerefBytes)) {
LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: "
<< "not dereferenceable or aligned\n");
return false;
if (ArgParts.empty())
return true; // No users, this is a dead argument.
// Sort parts by offset.
append_range(ArgPartsVec, ArgParts);
sort(ArgPartsVec, llvm::less_first());
// Make sure the parts are non-overlapping.
int64_t Offset = ArgPartsVec[0].first;
for (const auto &Pair : ArgPartsVec) {
if (Pair.first < Offset)
return false; // Overlap with previous part.
Offset = Pair.first + DL.getTypeStoreSize(Pair.second.Ty);
// If store instructions are allowed, the path from the entry of the function
// to each load may be not free of instructions that potentially invalidate
// the load, and this is an admissible situation.
if (AreStoresAllowed)
return true;
// Okay, now we know that the argument is only used by load instructions, and
// it is safe to unconditionally perform all of them. Use alias analysis to
// check to see if the pointer is guaranteed to not be modified from entry of
// the function to each of the load instructions.
for (LoadInst *Load : Loads) {
// Check to see if the load is invalidated from the start of the block to
// the load itself.
BasicBlock *BB = Load->getParent();
MemoryLocation Loc = MemoryLocation::get(Load);
if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
return false; // Pointer is invalidated!
// Now check every path from the entry block to the load for transparency.
// To do this, we perform a depth first search on the inverse CFG from the
// loading block.
for (BasicBlock *P : predecessors(BB)) {
for (BasicBlock *TranspBB : inverse_depth_first(P))
if (AAR.canBasicBlockModify(*TranspBB, Loc))
return false;
// If the path from the entry of the function to each load is free of
// instructions that potentially invalidate the load, we can make the
// transformation!
return true;
/// Check if callers and callee agree on how promoted arguments would be
/// passed.
static bool areTypesABICompatible(ArrayRef<Type *> Types, const Function &F,
const TargetTransformInfo &TTI) {
return all_of(F.uses(), [&](const Use &U) {
CallBase *CB = dyn_cast<CallBase>(U.getUser());
if (!CB)
return false;
const Function *Caller = CB->getCaller();
const Function *Callee = CB->getCalledFunction();
return TTI.areTypesABICompatible(Caller, Callee, Types);
/// PromoteArguments - This method checks the specified function to see if there
/// are any promotable arguments and if it is safe to promote the function (for
/// example, all callers are direct). If safe to promote some arguments, it
/// calls the DoPromotion method.
static Function *promoteArguments(Function *F, FunctionAnalysisManager &FAM,
unsigned MaxElements, bool IsRecursive) {
// Don't perform argument promotion for naked functions; otherwise we can end
// up removing parameters that are seemingly 'not used' as they are referred
// to in the assembly.
if (F->hasFnAttribute(Attribute::Naked))
return nullptr;
// Make sure that it is local to this module.
if (!F->hasLocalLinkage())
return nullptr;
// Don't promote arguments for variadic functions. Adding, removing, or
// changing non-pack parameters can change the classification of pack
// parameters. Frontends encode that classification at the call site in the
// IR, while in the callee the classification is determined dynamically based
// on the number of registers consumed so far.
if (F->isVarArg())
return nullptr;
// Don't transform functions that receive inallocas, as the transformation may
// not be safe depending on calling convention.
if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
return nullptr;
// First check: see if there are any pointer arguments! If not, quick exit.
SmallVector<Argument *, 16> PointerArgs;
for (Argument &I : F->args())
if (I.getType()->isPointerTy())
if (PointerArgs.empty())
return nullptr;
// Second check: make sure that all callers are direct callers. We can't
// transform functions that have indirect callers. Also see if the function
// is self-recursive.
for (Use &U : F->uses()) {
CallBase *CB = dyn_cast<CallBase>(U.getUser());
// Must be a direct call.
if (CB == nullptr || !CB->isCallee(&U) ||
CB->getFunctionType() != F->getFunctionType())
return nullptr;
// Can't change signature of musttail callee
if (CB->isMustTailCall())
return nullptr;
if (CB->getFunction() == F)
IsRecursive = true;
// Can't change signature of musttail caller
// FIXME: Support promoting whole chain of musttail functions
for (BasicBlock &BB : *F)
if (BB.getTerminatingMustTailCall())
return nullptr;
const DataLayout &DL = F->getParent()->getDataLayout();
auto &AAR = FAM.getResult<AAManager>(*F);
const auto &TTI = FAM.getResult<TargetIRAnalysis>(*F);
// Check to see which arguments are promotable. If an argument is promotable,
// add it to ArgsToPromote.
DenseMap<Argument *, SmallVector<OffsetAndArgPart, 4>> ArgsToPromote;
unsigned NumArgsAfterPromote = F->getFunctionType()->getNumParams();
for (Argument *PtrArg : PointerArgs) {
// Replace sret attribute with noalias. This reduces register pressure by
// avoiding a register copy.
if (PtrArg->hasStructRetAttr()) {
unsigned ArgNo = PtrArg->getArgNo();
F->removeParamAttr(ArgNo, Attribute::StructRet);
F->addParamAttr(ArgNo, Attribute::NoAlias);
for (Use &U : F->uses()) {
CallBase &CB = cast<CallBase>(*U.getUser());
CB.removeParamAttr(ArgNo, Attribute::StructRet);
CB.addParamAttr(ArgNo, Attribute::NoAlias);
// If we can promote the pointer to its value.
SmallVector<OffsetAndArgPart, 4> ArgParts;
if (findArgParts(PtrArg, DL, AAR, MaxElements, IsRecursive, ArgParts)) {
SmallVector<Type *, 4> Types;
for (const auto &Pair : ArgParts)
if (areTypesABICompatible(Types, *F, TTI)) {
NumArgsAfterPromote += ArgParts.size() - 1;
ArgsToPromote.insert({PtrArg, std::move(ArgParts)});
// No promotable pointer arguments.
if (ArgsToPromote.empty())
return nullptr;
if (NumArgsAfterPromote > TTI.getMaxNumArgs())
return nullptr;
return doPromotion(F, FAM, ArgsToPromote);
PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
CGSCCAnalysisManager &AM,
LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
bool Changed = false, LocalChange;
// Iterate until we stop promoting from this SCC.
do {
LocalChange = false;
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
bool IsRecursive = C.size() > 1;
for (LazyCallGraph::Node &N : C) {
Function &OldF = N.getFunction();
Function *NewF = promoteArguments(&OldF, FAM, MaxElements, IsRecursive);
if (!NewF)
LocalChange = true;
// Directly substitute the functions in the call graph. Note that this
// requires the old function to be completely dead and completely
// replaced by the new function. It does no call graph updates, it merely
// swaps out the particular function mapped to a particular node in the
// graph.
C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
FAM.clear(OldF, OldF.getName());
PreservedAnalyses FuncPA;
for (auto *U : NewF->users()) {
auto *UserF = cast<CallBase>(U)->getFunction();
FAM.invalidate(*UserF, FuncPA);
Changed |= LocalChange;
} while (LocalChange);
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
// We've cleared out analyses for deleted functions.
// We've manually invalidated analyses for functions we've modified.
return PA;