| //===-- RISCVAsmBackend.cpp - RISC-V Assembler Backend --------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "RISCVAsmBackend.h" |
| #include "RISCVFixupKinds.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCAssembler.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCELFObjectWriter.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCObjectWriter.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/MCValue.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/EndianStream.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/LEB128.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| // Temporary workaround for old linkers that do not support ULEB128 relocations, |
| // which are abused by DWARF v5 DW_LLE_offset_pair/DW_RLE_offset_pair |
| // implemented in Clang/LLVM. |
| static cl::opt<bool> ULEB128Reloc( |
| "riscv-uleb128-reloc", cl::init(true), cl::Hidden, |
| cl::desc("Emit R_RISCV_SET_ULEB128/E_RISCV_SUB_ULEB128 if appropriate")); |
| |
| static cl::opt<bool> |
| AlignRvc("riscv-align-rvc", cl::init(true), cl::Hidden, |
| cl::desc("When generating R_RISCV_ALIGN, insert $alignment-2 " |
| "bytes of NOPs even in norvc code")); |
| |
| RISCVAsmBackend::RISCVAsmBackend(const MCSubtargetInfo &STI, uint8_t OSABI, |
| bool Is64Bit, bool IsLittleEndian, |
| const MCTargetOptions &Options) |
| : MCAsmBackend(IsLittleEndian ? llvm::endianness::little |
| : llvm::endianness::big), |
| STI(STI), OSABI(OSABI), Is64Bit(Is64Bit), TargetOptions(Options) { |
| RISCVFeatures::validate(STI.getTargetTriple(), STI.getFeatureBits()); |
| } |
| |
| std::optional<MCFixupKind> RISCVAsmBackend::getFixupKind(StringRef Name) const { |
| if (STI.getTargetTriple().isOSBinFormatELF()) { |
| unsigned Type; |
| Type = llvm::StringSwitch<unsigned>(Name) |
| #define ELF_RELOC(NAME, ID) .Case(#NAME, ID) |
| #include "llvm/BinaryFormat/ELFRelocs/RISCV.def" |
| #undef ELF_RELOC |
| #define ELF_RISCV_NONSTANDARD_RELOC(_VENDOR, NAME, ID) .Case(#NAME, ID) |
| #include "llvm/BinaryFormat/ELFRelocs/RISCV_nonstandard.def" |
| #undef ELF_RISCV_NONSTANDARD_RELOC |
| .Case("BFD_RELOC_NONE", ELF::R_RISCV_NONE) |
| .Case("BFD_RELOC_32", ELF::R_RISCV_32) |
| .Case("BFD_RELOC_64", ELF::R_RISCV_64) |
| .Default(-1u); |
| if (Type != -1u) |
| return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type); |
| } |
| return std::nullopt; |
| } |
| |
| MCFixupKindInfo RISCVAsmBackend::getFixupKindInfo(MCFixupKind Kind) const { |
| const static MCFixupKindInfo Infos[] = { |
| // This table *must* be in the order that the fixup_* kinds are defined in |
| // RISCVFixupKinds.h. |
| // |
| // name offset bits flags |
| {"fixup_riscv_hi20", 12, 20, 0}, |
| {"fixup_riscv_lo12_i", 20, 12, 0}, |
| {"fixup_riscv_12_i", 20, 12, 0}, |
| {"fixup_riscv_lo12_s", 0, 32, 0}, |
| {"fixup_riscv_pcrel_hi20", 12, 20, 0}, |
| {"fixup_riscv_pcrel_lo12_i", 20, 12, 0}, |
| {"fixup_riscv_pcrel_lo12_s", 0, 32, 0}, |
| {"fixup_riscv_jal", 12, 20, 0}, |
| {"fixup_riscv_branch", 0, 32, 0}, |
| {"fixup_riscv_rvc_jump", 2, 11, 0}, |
| {"fixup_riscv_rvc_branch", 0, 16, 0}, |
| {"fixup_riscv_rvc_imm", 0, 16, 0}, |
| {"fixup_riscv_call", 0, 64, 0}, |
| {"fixup_riscv_call_plt", 0, 64, 0}, |
| |
| {"fixup_riscv_qc_e_branch", 0, 48, 0}, |
| {"fixup_riscv_qc_e_32", 16, 32, 0}, |
| {"fixup_riscv_qc_abs20_u", 0, 32, 0}, |
| {"fixup_riscv_qc_e_call_plt", 0, 48, 0}, |
| |
| // Andes fixups |
| {"fixup_riscv_nds_branch_10", 0, 32, 0}, |
| }; |
| static_assert((std::size(Infos)) == RISCV::NumTargetFixupKinds, |
| "Not all fixup kinds added to Infos array"); |
| |
| // Fixup kinds from raw relocation types and .reloc directives force |
| // relocations and do not use these fields. |
| if (mc::isRelocation(Kind)) |
| return {}; |
| |
| if (Kind < FirstTargetFixupKind) |
| return MCAsmBackend::getFixupKindInfo(Kind); |
| |
| assert(unsigned(Kind - FirstTargetFixupKind) < RISCV::NumTargetFixupKinds && |
| "Invalid kind!"); |
| return Infos[Kind - FirstTargetFixupKind]; |
| } |
| |
| bool RISCVAsmBackend::fixupNeedsRelaxationAdvanced(const MCFragment &, |
| const MCFixup &Fixup, |
| const MCValue &, |
| uint64_t Value, |
| bool Resolved) const { |
| int64_t Offset = int64_t(Value); |
| auto Kind = Fixup.getKind(); |
| |
| // Return true if the symbol is unresolved. |
| if (!Resolved) |
| return true; |
| |
| switch (Kind) { |
| default: |
| return false; |
| case RISCV::fixup_riscv_rvc_branch: |
| // For compressed branch instructions the immediate must be |
| // in the range [-256, 254]. |
| return Offset > 254 || Offset < -256; |
| case RISCV::fixup_riscv_rvc_jump: |
| // For compressed jump instructions the immediate must be |
| // in the range [-2048, 2046]. |
| return Offset > 2046 || Offset < -2048; |
| case RISCV::fixup_riscv_branch: |
| case RISCV::fixup_riscv_qc_e_branch: |
| // For conditional branch instructions the immediate must be |
| // in the range [-4096, 4094]. |
| return Offset > 4094 || Offset < -4096; |
| case RISCV::fixup_riscv_jal: |
| // For jump instructions the immediate must be in the range |
| // [-1048576, 1048574] |
| return Offset > 1048574 || Offset < -1048576; |
| case RISCV::fixup_riscv_rvc_imm: |
| // This fixup can never be emitted as a relocation, so always needs to be |
| // relaxed. |
| return true; |
| } |
| } |
| |
| // Given a compressed control flow instruction this function returns |
| // the expanded instruction, or the original instruction code if no |
| // expansion is available. |
| static unsigned getRelaxedOpcode(unsigned Opcode, ArrayRef<MCOperand> Operands, |
| const MCSubtargetInfo &STI) { |
| switch (Opcode) { |
| case RISCV::C_BEQZ: |
| return RISCV::BEQ; |
| case RISCV::C_BNEZ: |
| return RISCV::BNE; |
| case RISCV::C_J: |
| case RISCV::C_JAL: // fall through. |
| // This only relaxes one "step" - i.e. from C.J to JAL, not from C.J to |
| // QC.E.J, because we can always relax again if needed. |
| return RISCV::JAL; |
| case RISCV::C_LI: |
| if (!STI.hasFeature(RISCV::FeatureVendorXqcili)) |
| break; |
| // We only need this because `QC.E.LI` can be compressed into a `C.LI`. This |
| // happens because the `simm6` MCOperandPredicate accepts bare symbols, and |
| // `QC.E.LI` is the only instruction that accepts bare symbols at parse-time |
| // and compresses to `C.LI`. `C.LI` does not itself accept bare symbols at |
| // parse time. |
| // |
| // If we have a bare symbol, we need to turn this back to a `QC.E.LI`, as we |
| // have no way to emit a relocation on a `C.LI` instruction. |
| return RISCV::QC_E_LI; |
| case RISCV::JAL: { |
| // We can only relax JAL if we have Xqcilb |
| if (!STI.hasFeature(RISCV::FeatureVendorXqcilb)) |
| break; |
| |
| // And only if it is using X0 or X1 for rd. |
| MCRegister Reg = Operands[0].getReg(); |
| if (Reg == RISCV::X0) |
| return RISCV::QC_E_J; |
| if (Reg == RISCV::X1) |
| return RISCV::QC_E_JAL; |
| |
| break; |
| } |
| case RISCV::BEQ: |
| return RISCV::PseudoLongBEQ; |
| case RISCV::BNE: |
| return RISCV::PseudoLongBNE; |
| case RISCV::BLT: |
| return RISCV::PseudoLongBLT; |
| case RISCV::BGE: |
| return RISCV::PseudoLongBGE; |
| case RISCV::BLTU: |
| return RISCV::PseudoLongBLTU; |
| case RISCV::BGEU: |
| return RISCV::PseudoLongBGEU; |
| case RISCV::QC_BEQI: |
| return RISCV::PseudoLongQC_BEQI; |
| case RISCV::QC_BNEI: |
| return RISCV::PseudoLongQC_BNEI; |
| case RISCV::QC_BLTI: |
| return RISCV::PseudoLongQC_BLTI; |
| case RISCV::QC_BGEI: |
| return RISCV::PseudoLongQC_BGEI; |
| case RISCV::QC_BLTUI: |
| return RISCV::PseudoLongQC_BLTUI; |
| case RISCV::QC_BGEUI: |
| return RISCV::PseudoLongQC_BGEUI; |
| case RISCV::QC_E_BEQI: |
| return RISCV::PseudoLongQC_E_BEQI; |
| case RISCV::QC_E_BNEI: |
| return RISCV::PseudoLongQC_E_BNEI; |
| case RISCV::QC_E_BLTI: |
| return RISCV::PseudoLongQC_E_BLTI; |
| case RISCV::QC_E_BGEI: |
| return RISCV::PseudoLongQC_E_BGEI; |
| case RISCV::QC_E_BLTUI: |
| return RISCV::PseudoLongQC_E_BLTUI; |
| case RISCV::QC_E_BGEUI: |
| return RISCV::PseudoLongQC_E_BGEUI; |
| } |
| |
| // Returning the original opcode means we cannot relax the instruction. |
| return Opcode; |
| } |
| |
| void RISCVAsmBackend::relaxInstruction(MCInst &Inst, |
| const MCSubtargetInfo &STI) const { |
| if (STI.hasFeature(RISCV::FeatureExactAssembly)) |
| return; |
| |
| MCInst Res; |
| switch (Inst.getOpcode()) { |
| default: |
| llvm_unreachable("Opcode not expected!"); |
| case RISCV::C_BEQZ: |
| case RISCV::C_BNEZ: |
| case RISCV::C_J: |
| case RISCV::C_JAL: { |
| [[maybe_unused]] bool Success = RISCVRVC::uncompress(Res, Inst, STI); |
| assert(Success && "Can't uncompress instruction"); |
| assert(Res.getOpcode() == |
| getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI) && |
| "Branch Relaxation Error"); |
| break; |
| } |
| case RISCV::JAL: { |
| // This has to be written manually because the QC.E.J -> JAL is |
| // compression-only, so that it is not used when printing disassembly. |
| assert(STI.hasFeature(RISCV::FeatureVendorXqcilb) && |
| "JAL is only relaxable with Xqcilb"); |
| assert((Inst.getOperand(0).getReg() == RISCV::X0 || |
| Inst.getOperand(0).getReg() == RISCV::X1) && |
| "JAL only relaxable with rd=x0 or rd=x1"); |
| Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI)); |
| Res.addOperand(Inst.getOperand(1)); |
| break; |
| } |
| case RISCV::C_LI: { |
| // This should only be hit when trying to relax a `C.LI` into a `QC.E.LI` |
| // because the `C.LI` has a bare symbol. We cannot use |
| // `RISCVRVC::uncompress` because it will use decompression patterns. The |
| // `QC.E.LI` compression pattern to `C.LI` is compression-only (because we |
| // don't want `c.li` ever printed as `qc.e.li`, which might be done if the |
| // pattern applied to decompression), but that doesn't help much becuase |
| // `C.LI` with a bare symbol will decompress to an `ADDI` anyway (because |
| // `simm12`'s MCOperandPredicate accepts a bare symbol and that pattern |
| // comes first), and we still cannot emit an `ADDI` with a bare symbol. |
| assert(STI.hasFeature(RISCV::FeatureVendorXqcili) && |
| "C.LI is only relaxable with Xqcili"); |
| Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI)); |
| Res.addOperand(Inst.getOperand(0)); |
| Res.addOperand(Inst.getOperand(1)); |
| break; |
| } |
| case RISCV::BEQ: |
| case RISCV::BNE: |
| case RISCV::BLT: |
| case RISCV::BGE: |
| case RISCV::BLTU: |
| case RISCV::BGEU: |
| case RISCV::QC_BEQI: |
| case RISCV::QC_BNEI: |
| case RISCV::QC_BLTI: |
| case RISCV::QC_BGEI: |
| case RISCV::QC_BLTUI: |
| case RISCV::QC_BGEUI: |
| case RISCV::QC_E_BEQI: |
| case RISCV::QC_E_BNEI: |
| case RISCV::QC_E_BLTI: |
| case RISCV::QC_E_BGEI: |
| case RISCV::QC_E_BLTUI: |
| case RISCV::QC_E_BGEUI: |
| Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI)); |
| Res.addOperand(Inst.getOperand(0)); |
| Res.addOperand(Inst.getOperand(1)); |
| Res.addOperand(Inst.getOperand(2)); |
| break; |
| } |
| Inst = std::move(Res); |
| } |
| |
| // Check if an R_RISCV_ALIGN relocation is needed for an alignment directive. |
| // If conditions are met, compute the padding size and create a fixup encoding |
| // the padding size in the addend. |
| bool RISCVAsmBackend::relaxAlign(MCFragment &F, unsigned &Size) { |
| // Alignments before the first linker-relaxable instruction have fixed sizes |
| // and do not require relocations. Alignments after a linker-relaxable |
| // instruction require a relocation, even if the STI specifies norelax. |
| // |
| // firstLinkerRelaxable is the layout order within the subsection, which may |
| // be smaller than the section's order. Therefore, alignments in a |
| // lower-numbered subsection may be unnecessarily treated as linker-relaxable. |
| auto *Sec = F.getParent(); |
| if (F.getLayoutOrder() <= Sec->firstLinkerRelaxable()) |
| return false; |
| |
| // Use default handling unless the alignment is larger than the nop size. |
| const MCSubtargetInfo *STI = F.getSubtargetInfo(); |
| unsigned MinNopLen = |
| AlignRvc || STI->hasFeature(RISCV::FeatureStdExtZca) ? 2 : 4; |
| if (F.getAlignment() <= MinNopLen) |
| return false; |
| |
| Size = F.getAlignment().value() - MinNopLen; |
| auto *Expr = MCConstantExpr::create(Size, getContext()); |
| MCFixup Fixup = |
| MCFixup::create(0, Expr, FirstLiteralRelocationKind + ELF::R_RISCV_ALIGN); |
| F.setVarFixups({Fixup}); |
| F.setLinkerRelaxable(); |
| return true; |
| } |
| |
| bool RISCVAsmBackend::relaxDwarfLineAddr(MCFragment &F) const { |
| int64_t LineDelta = F.getDwarfLineDelta(); |
| const MCExpr &AddrDelta = F.getDwarfAddrDelta(); |
| int64_t Value; |
| // If the label difference can be resolved, use the default handling, which |
| // utilizes a shorter special opcode. |
| if (AddrDelta.evaluateAsAbsolute(Value, *Asm)) |
| return false; |
| [[maybe_unused]] bool IsAbsolute = |
| AddrDelta.evaluateKnownAbsolute(Value, *Asm); |
| assert(IsAbsolute && "CFA with invalid expression"); |
| |
| SmallVector<char> Data; |
| raw_svector_ostream OS(Data); |
| |
| // INT64_MAX is a signal that this is actually a DW_LNE_end_sequence. |
| if (LineDelta != INT64_MAX) { |
| OS << uint8_t(dwarf::DW_LNS_advance_line); |
| encodeSLEB128(LineDelta, OS); |
| } |
| |
| // According to the DWARF specification, the `DW_LNS_fixed_advance_pc` opcode |
| // takes a single unsigned half (unencoded) operand. The maximum encodable |
| // value is therefore 65535. Set a conservative upper bound for relaxation. |
| unsigned PCBytes; |
| if (Value > 60000) { |
| PCBytes = getContext().getAsmInfo()->getCodePointerSize(); |
| OS << uint8_t(dwarf::DW_LNS_extended_op) << uint8_t(PCBytes + 1) |
| << uint8_t(dwarf::DW_LNE_set_address); |
| OS.write_zeros(PCBytes); |
| } else { |
| PCBytes = 2; |
| OS << uint8_t(dwarf::DW_LNS_fixed_advance_pc); |
| support::endian::write<uint16_t>(OS, 0, Endian); |
| } |
| auto Offset = OS.tell() - PCBytes; |
| |
| if (LineDelta == INT64_MAX) { |
| OS << uint8_t(dwarf::DW_LNS_extended_op); |
| OS << uint8_t(1); |
| OS << uint8_t(dwarf::DW_LNE_end_sequence); |
| } else { |
| OS << uint8_t(dwarf::DW_LNS_copy); |
| } |
| |
| F.setVarContents(Data); |
| F.setVarFixups({MCFixup::create(Offset, &AddrDelta, |
| MCFixup::getDataKindForSize(PCBytes))}); |
| return true; |
| } |
| |
| bool RISCVAsmBackend::relaxDwarfCFA(MCFragment &F) const { |
| const MCExpr &AddrDelta = F.getDwarfAddrDelta(); |
| SmallVector<MCFixup, 2> Fixups; |
| int64_t Value; |
| if (AddrDelta.evaluateAsAbsolute(Value, *Asm)) |
| return false; |
| [[maybe_unused]] bool IsAbsolute = |
| AddrDelta.evaluateKnownAbsolute(Value, *Asm); |
| assert(IsAbsolute && "CFA with invalid expression"); |
| |
| assert(getContext().getAsmInfo()->getMinInstAlignment() == 1 && |
| "expected 1-byte alignment"); |
| if (Value == 0) { |
| F.clearVarContents(); |
| F.clearVarFixups(); |
| return true; |
| } |
| |
| auto AddFixups = [&Fixups, &AddrDelta](unsigned Offset, |
| std::pair<unsigned, unsigned> Fixup) { |
| const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta); |
| Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(Fixup))); |
| Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(Fixup))); |
| }; |
| |
| SmallVector<char, 8> Data; |
| raw_svector_ostream OS(Data); |
| if (isUIntN(6, Value)) { |
| OS << uint8_t(dwarf::DW_CFA_advance_loc); |
| AddFixups(0, {ELF::R_RISCV_SET6, ELF::R_RISCV_SUB6}); |
| } else if (isUInt<8>(Value)) { |
| OS << uint8_t(dwarf::DW_CFA_advance_loc1); |
| support::endian::write<uint8_t>(OS, 0, Endian); |
| AddFixups(1, {ELF::R_RISCV_SET8, ELF::R_RISCV_SUB8}); |
| } else if (isUInt<16>(Value)) { |
| OS << uint8_t(dwarf::DW_CFA_advance_loc2); |
| support::endian::write<uint16_t>(OS, 0, Endian); |
| AddFixups(1, {ELF::R_RISCV_SET16, ELF::R_RISCV_SUB16}); |
| } else if (isUInt<32>(Value)) { |
| OS << uint8_t(dwarf::DW_CFA_advance_loc4); |
| support::endian::write<uint32_t>(OS, 0, Endian); |
| AddFixups(1, {ELF::R_RISCV_SET32, ELF::R_RISCV_SUB32}); |
| } else { |
| llvm_unreachable("unsupported CFA encoding"); |
| } |
| F.setVarContents(Data); |
| F.setVarFixups(Fixups); |
| return true; |
| } |
| |
| std::pair<bool, bool> RISCVAsmBackend::relaxLEB128(MCFragment &LF, |
| int64_t &Value) const { |
| if (LF.isLEBSigned()) |
| return std::make_pair(false, false); |
| const MCExpr &Expr = LF.getLEBValue(); |
| if (ULEB128Reloc) { |
| LF.setVarFixups({MCFixup::create(0, &Expr, FK_Data_leb128)}); |
| } |
| return std::make_pair(Expr.evaluateKnownAbsolute(Value, *Asm), false); |
| } |
| |
| bool RISCVAsmBackend::mayNeedRelaxation(unsigned Opcode, |
| ArrayRef<MCOperand> Operands, |
| const MCSubtargetInfo &STI) const { |
| // This function has access to two STIs, the member of the AsmBackend, and the |
| // one passed as an argument. The latter is more specific, so we query it for |
| // specific features. |
| if (STI.hasFeature(RISCV::FeatureExactAssembly)) |
| return false; |
| |
| return getRelaxedOpcode(Opcode, Operands, STI) != Opcode; |
| } |
| |
| bool RISCVAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count, |
| const MCSubtargetInfo *STI) const { |
| // We mostly follow binutils' convention here: align to even boundary with a |
| // 0-fill padding. We emit up to 1 2-byte nop, though we use c.nop if RVC is |
| // enabled or 0-fill otherwise. The remainder is now padded with 4-byte nops. |
| |
| // Instructions always are at even addresses. We must be in a data area or |
| // be unaligned due to some other reason. |
| if (Count % 2) { |
| OS.write("\0", 1); |
| Count -= 1; |
| } |
| |
| // TODO: emit a mapping symbol right here |
| |
| if (Count % 4 == 2) { |
| // The canonical nop with Zca is c.nop. For .balign 4, we generate a 2-byte |
| // c.nop even in a norvc region. |
| OS.write("\x01\0", 2); |
| Count -= 2; |
| } |
| |
| // The canonical nop on RISC-V is addi x0, x0, 0. |
| for (; Count >= 4; Count -= 4) |
| OS.write("\x13\0\0\0", 4); |
| |
| return true; |
| } |
| |
| static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value, |
| MCContext &Ctx) { |
| switch (Fixup.getKind()) { |
| default: |
| llvm_unreachable("Unknown fixup kind!"); |
| case FK_Data_1: |
| case FK_Data_2: |
| case FK_Data_4: |
| case FK_Data_8: |
| case FK_Data_leb128: |
| return Value; |
| case RISCV::fixup_riscv_lo12_i: |
| case RISCV::fixup_riscv_pcrel_lo12_i: |
| return Value & 0xfff; |
| case RISCV::fixup_riscv_12_i: |
| if (!isInt<12>(Value)) { |
| Ctx.reportError(Fixup.getLoc(), |
| "operand must be a constant 12-bit integer"); |
| } |
| return Value & 0xfff; |
| case RISCV::fixup_riscv_lo12_s: |
| case RISCV::fixup_riscv_pcrel_lo12_s: |
| return (((Value >> 5) & 0x7f) << 25) | ((Value & 0x1f) << 7); |
| case RISCV::fixup_riscv_hi20: |
| case RISCV::fixup_riscv_pcrel_hi20: |
| // Add 1 if bit 11 is 1, to compensate for low 12 bits being negative. |
| return ((Value + 0x800) >> 12) & 0xfffff; |
| case RISCV::fixup_riscv_jal: { |
| if (!isInt<21>(Value)) |
| Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); |
| if (Value & 0x1) |
| Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned"); |
| // Need to produce imm[19|10:1|11|19:12] from the 21-bit Value. |
| unsigned Sbit = (Value >> 20) & 0x1; |
| unsigned Hi8 = (Value >> 12) & 0xff; |
| unsigned Mid1 = (Value >> 11) & 0x1; |
| unsigned Lo10 = (Value >> 1) & 0x3ff; |
| // Inst{31} = Sbit; |
| // Inst{30-21} = Lo10; |
| // Inst{20} = Mid1; |
| // Inst{19-12} = Hi8; |
| Value = (Sbit << 19) | (Lo10 << 9) | (Mid1 << 8) | Hi8; |
| return Value; |
| } |
| case RISCV::fixup_riscv_qc_e_branch: |
| case RISCV::fixup_riscv_branch: { |
| if (!isInt<13>(Value)) |
| Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); |
| if (Value & 0x1) |
| Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned"); |
| // Need to extract imm[12], imm[10:5], imm[4:1], imm[11] from the 13-bit |
| // Value. |
| unsigned Sbit = (Value >> 12) & 0x1; |
| unsigned Hi1 = (Value >> 11) & 0x1; |
| unsigned Mid6 = (Value >> 5) & 0x3f; |
| unsigned Lo4 = (Value >> 1) & 0xf; |
| // Inst{31} = Sbit; |
| // Inst{30-25} = Mid6; |
| // Inst{11-8} = Lo4; |
| // Inst{7} = Hi1; |
| Value = (Sbit << 31) | (Mid6 << 25) | (Lo4 << 8) | (Hi1 << 7); |
| return Value; |
| } |
| case RISCV::fixup_riscv_call: |
| case RISCV::fixup_riscv_call_plt: { |
| // Jalr will add UpperImm with the sign-extended 12-bit LowerImm, |
| // we need to add 0x800ULL before extract upper bits to reflect the |
| // effect of the sign extension. |
| uint64_t UpperImm = (Value + 0x800ULL) & 0xfffff000ULL; |
| uint64_t LowerImm = Value & 0xfffULL; |
| return UpperImm | ((LowerImm << 20) << 32); |
| } |
| case RISCV::fixup_riscv_rvc_jump: { |
| if (!isInt<12>(Value)) |
| Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); |
| // Need to produce offset[11|4|9:8|10|6|7|3:1|5] from the 11-bit Value. |
| unsigned Bit11 = (Value >> 11) & 0x1; |
| unsigned Bit4 = (Value >> 4) & 0x1; |
| unsigned Bit9_8 = (Value >> 8) & 0x3; |
| unsigned Bit10 = (Value >> 10) & 0x1; |
| unsigned Bit6 = (Value >> 6) & 0x1; |
| unsigned Bit7 = (Value >> 7) & 0x1; |
| unsigned Bit3_1 = (Value >> 1) & 0x7; |
| unsigned Bit5 = (Value >> 5) & 0x1; |
| Value = (Bit11 << 10) | (Bit4 << 9) | (Bit9_8 << 7) | (Bit10 << 6) | |
| (Bit6 << 5) | (Bit7 << 4) | (Bit3_1 << 1) | Bit5; |
| return Value; |
| } |
| case RISCV::fixup_riscv_rvc_branch: { |
| if (!isInt<9>(Value)) |
| Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); |
| // Need to produce offset[8|4:3], [reg 3 bit], offset[7:6|2:1|5] |
| unsigned Bit8 = (Value >> 8) & 0x1; |
| unsigned Bit7_6 = (Value >> 6) & 0x3; |
| unsigned Bit5 = (Value >> 5) & 0x1; |
| unsigned Bit4_3 = (Value >> 3) & 0x3; |
| unsigned Bit2_1 = (Value >> 1) & 0x3; |
| Value = (Bit8 << 12) | (Bit4_3 << 10) | (Bit7_6 << 5) | (Bit2_1 << 3) | |
| (Bit5 << 2); |
| return Value; |
| } |
| case RISCV::fixup_riscv_rvc_imm: { |
| if (!isInt<6>(Value)) |
| Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); |
| unsigned Bit5 = (Value >> 5) & 0x1; |
| unsigned Bit4_0 = Value & 0x1f; |
| Value = (Bit5 << 12) | (Bit4_0 << 2); |
| return Value; |
| } |
| case RISCV::fixup_riscv_qc_e_32: { |
| if (!isInt<32>(Value)) |
| Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); |
| return Value & 0xffffffffu; |
| } |
| case RISCV::fixup_riscv_qc_abs20_u: { |
| if (!isInt<20>(Value)) |
| Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); |
| unsigned Bit19 = (Value >> 19) & 0x1; |
| unsigned Bit14_0 = Value & 0x7fff; |
| unsigned Bit18_15 = (Value >> 15) & 0xf; |
| Value = (Bit19 << 31) | (Bit14_0 << 16) | (Bit18_15 << 12); |
| return Value; |
| } |
| case RISCV::fixup_riscv_qc_e_call_plt: { |
| if (!isInt<32>(Value)) |
| Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); |
| if (Value & 0x1) |
| Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned"); |
| uint64_t Bit31_16 = (Value >> 16) & 0xffff; |
| uint64_t Bit12 = (Value >> 12) & 0x1; |
| uint64_t Bit10_5 = (Value >> 5) & 0x3f; |
| uint64_t Bit15_13 = (Value >> 13) & 0x7; |
| uint64_t Bit4_1 = (Value >> 1) & 0xf; |
| uint64_t Bit11 = (Value >> 11) & 0x1; |
| Value = (Bit31_16 << 32ull) | (Bit12 << 31) | (Bit10_5 << 25) | |
| (Bit15_13 << 17) | (Bit4_1 << 8) | (Bit11 << 7); |
| return Value; |
| } |
| case RISCV::fixup_riscv_nds_branch_10: { |
| if (!isInt<11>(Value)) |
| Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); |
| if (Value & 0x1) |
| Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned"); |
| // Need to extract imm[10], imm[9:5], imm[4:1] from the 11-bit Value. |
| unsigned Sbit = (Value >> 10) & 0x1; |
| unsigned Hi5 = (Value >> 5) & 0x1f; |
| unsigned Lo4 = (Value >> 1) & 0xf; |
| // Inst{31} = Sbit; |
| // Inst{29-25} = Hi5; |
| // Inst{11-8} = Lo4; |
| Value = (Sbit << 31) | (Hi5 << 25) | (Lo4 << 8); |
| return Value; |
| } |
| } |
| } |
| |
| bool RISCVAsmBackend::isPCRelFixupResolved(const MCSymbol *SymA, |
| const MCFragment &F) { |
| // If the section does not contain linker-relaxable fragments, PC-relative |
| // fixups can be resolved. |
| if (!F.getParent()->isLinkerRelaxable()) |
| return true; |
| |
| // Otherwise, check if the offset between the symbol and fragment is fully |
| // resolved, unaffected by linker-relaxable fragments (e.g. instructions or |
| // offset-affected FT_Align fragments). Complements the generic |
| // isSymbolRefDifferenceFullyResolvedImpl. |
| if (!PCRelTemp) |
| PCRelTemp = getContext().createTempSymbol(); |
| PCRelTemp->setFragment(const_cast<MCFragment *>(&F)); |
| MCValue Res; |
| MCExpr::evaluateSymbolicAdd(Asm, false, MCValue::get(SymA), |
| MCValue::get(nullptr, PCRelTemp), Res); |
| return !Res.getSubSym(); |
| } |
| |
| // Get the corresponding PC-relative HI fixup that a S_PCREL_LO points to, and |
| // optionally the fragment containing it. |
| // |
| // \returns nullptr if this isn't a S_PCREL_LO pointing to a known PC-relative |
| // HI fixup. |
| static const MCFixup *getPCRelHiFixup(const MCSpecifierExpr &Expr, |
| const MCFragment **DFOut) { |
| MCValue AUIPCLoc; |
| if (!Expr.getSubExpr()->evaluateAsRelocatable(AUIPCLoc, nullptr)) |
| return nullptr; |
| |
| const MCSymbol *AUIPCSymbol = AUIPCLoc.getAddSym(); |
| if (!AUIPCSymbol) |
| return nullptr; |
| const auto *DF = AUIPCSymbol->getFragment(); |
| if (!DF) |
| return nullptr; |
| |
| uint64_t Offset = AUIPCSymbol->getOffset(); |
| if (DF->getContents().size() == Offset) { |
| DF = DF->getNext(); |
| if (!DF) |
| return nullptr; |
| Offset = 0; |
| } |
| |
| for (const MCFixup &F : DF->getFixups()) { |
| if (F.getOffset() != Offset) |
| continue; |
| auto Kind = F.getKind(); |
| if (!mc::isRelocation(F.getKind())) { |
| if (Kind == RISCV::fixup_riscv_pcrel_hi20) { |
| *DFOut = DF; |
| return &F; |
| } |
| break; |
| } |
| switch (Kind) { |
| case ELF::R_RISCV_GOT_HI20: |
| case ELF::R_RISCV_TLS_GOT_HI20: |
| case ELF::R_RISCV_TLS_GD_HI20: |
| case ELF::R_RISCV_TLSDESC_HI20: |
| *DFOut = DF; |
| return &F; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| std::optional<bool> RISCVAsmBackend::evaluateFixup(const MCFragment &, |
| MCFixup &Fixup, |
| MCValue &Target, |
| uint64_t &Value) { |
| const MCFixup *AUIPCFixup; |
| const MCFragment *AUIPCDF; |
| MCValue AUIPCTarget; |
| switch (Fixup.getKind()) { |
| default: |
| // Use default handling for `Value` and `IsResolved`. |
| return {}; |
| case RISCV::fixup_riscv_pcrel_lo12_i: |
| case RISCV::fixup_riscv_pcrel_lo12_s: { |
| AUIPCFixup = |
| getPCRelHiFixup(cast<MCSpecifierExpr>(*Fixup.getValue()), &AUIPCDF); |
| if (!AUIPCFixup) { |
| getContext().reportError(Fixup.getLoc(), |
| "could not find corresponding %pcrel_hi"); |
| return true; |
| } |
| |
| // MCAssembler::evaluateFixup will emit an error for this case when it sees |
| // the %pcrel_hi, so don't duplicate it when also seeing the %pcrel_lo. |
| const MCExpr *AUIPCExpr = AUIPCFixup->getValue(); |
| if (!AUIPCExpr->evaluateAsRelocatable(AUIPCTarget, Asm)) |
| return true; |
| break; |
| } |
| } |
| |
| if (!AUIPCTarget.getAddSym()) |
| return false; |
| |
| auto &SA = static_cast<const MCSymbolELF &>(*AUIPCTarget.getAddSym()); |
| if (SA.isUndefined()) |
| return false; |
| |
| bool IsResolved = &SA.getSection() == AUIPCDF->getParent() && |
| SA.getBinding() == ELF::STB_LOCAL && |
| SA.getType() != ELF::STT_GNU_IFUNC; |
| if (!IsResolved) |
| return false; |
| |
| Value = Asm->getSymbolOffset(SA) + AUIPCTarget.getConstant(); |
| Value -= Asm->getFragmentOffset(*AUIPCDF) + AUIPCFixup->getOffset(); |
| |
| return AUIPCFixup->getKind() == RISCV::fixup_riscv_pcrel_hi20 && |
| isPCRelFixupResolved(AUIPCTarget.getAddSym(), *AUIPCDF); |
| } |
| |
| void RISCVAsmBackend::maybeAddVendorReloc(const MCFragment &F, |
| const MCFixup &Fixup) { |
| StringRef VendorIdentifier; |
| switch (Fixup.getKind()) { |
| default: |
| // No Vendor Relocation Required. |
| return; |
| case RISCV::fixup_riscv_qc_e_branch: |
| case RISCV::fixup_riscv_qc_abs20_u: |
| case RISCV::fixup_riscv_qc_e_32: |
| case RISCV::fixup_riscv_qc_e_call_plt: |
| VendorIdentifier = "QUALCOMM"; |
| break; |
| case RISCV::fixup_riscv_nds_branch_10: |
| VendorIdentifier = "ANDES"; |
| break; |
| } |
| |
| // Create a local symbol for the vendor relocation to reference. It's fine if |
| // the symbol has the same name as an existing symbol. |
| MCContext &Ctx = Asm->getContext(); |
| MCSymbol *VendorSymbol = Ctx.createLocalSymbol(VendorIdentifier); |
| auto [It, Inserted] = |
| VendorSymbols.try_emplace(VendorIdentifier, VendorSymbol); |
| |
| if (Inserted) { |
| // Setup the just-created symbol |
| VendorSymbol->setVariableValue(MCConstantExpr::create(0, Ctx)); |
| Asm->registerSymbol(*VendorSymbol); |
| } else { |
| // Fetch the existing symbol |
| VendorSymbol = It->getValue(); |
| } |
| |
| MCFixup VendorFixup = |
| MCFixup::create(Fixup.getOffset(), nullptr, ELF::R_RISCV_VENDOR); |
| // Explicitly create MCValue rather than using an MCExpr and evaluating it so |
| // that the absolute vendor symbol is not evaluated to constant 0. |
| MCValue VendorTarget = MCValue::get(VendorSymbol); |
| uint64_t VendorValue; |
| Asm->getWriter().recordRelocation(F, VendorFixup, VendorTarget, VendorValue); |
| } |
| |
| static bool relaxableFixupNeedsRelocation(const MCFixupKind Kind) { |
| // Some Fixups are marked as LinkerRelaxable by |
| // `RISCVMCCodeEmitter::getImmOpValue` only because they may be |
| // (assembly-)relaxed into a linker-relaxable instruction. This function |
| // should return `false` for those fixups so they do not get a `R_RISCV_RELAX` |
| // relocation emitted in addition to the relocation. |
| switch (Kind) { |
| default: |
| break; |
| case RISCV::fixup_riscv_rvc_jump: |
| case RISCV::fixup_riscv_rvc_branch: |
| case RISCV::fixup_riscv_rvc_imm: |
| case RISCV::fixup_riscv_jal: |
| return false; |
| } |
| return true; |
| } |
| |
| bool RISCVAsmBackend::addReloc(const MCFragment &F, const MCFixup &Fixup, |
| const MCValue &Target, uint64_t &FixedValue, |
| bool IsResolved) { |
| uint64_t FixedValueA, FixedValueB; |
| if (Target.getSubSym()) { |
| assert(Target.getSpecifier() == 0 && |
| "relocatable SymA-SymB cannot have relocation specifier"); |
| unsigned TA = 0, TB = 0; |
| switch (Fixup.getKind()) { |
| case llvm::FK_Data_1: |
| TA = ELF::R_RISCV_ADD8; |
| TB = ELF::R_RISCV_SUB8; |
| break; |
| case llvm::FK_Data_2: |
| TA = ELF::R_RISCV_ADD16; |
| TB = ELF::R_RISCV_SUB16; |
| break; |
| case llvm::FK_Data_4: |
| TA = ELF::R_RISCV_ADD32; |
| TB = ELF::R_RISCV_SUB32; |
| break; |
| case llvm::FK_Data_8: |
| TA = ELF::R_RISCV_ADD64; |
| TB = ELF::R_RISCV_SUB64; |
| break; |
| case llvm::FK_Data_leb128: |
| TA = ELF::R_RISCV_SET_ULEB128; |
| TB = ELF::R_RISCV_SUB_ULEB128; |
| break; |
| default: |
| llvm_unreachable("unsupported fixup size"); |
| } |
| MCValue A = MCValue::get(Target.getAddSym(), nullptr, Target.getConstant()); |
| MCValue B = MCValue::get(Target.getSubSym()); |
| auto FA = MCFixup::create(Fixup.getOffset(), nullptr, TA); |
| auto FB = MCFixup::create(Fixup.getOffset(), nullptr, TB); |
| Asm->getWriter().recordRelocation(F, FA, A, FixedValueA); |
| Asm->getWriter().recordRelocation(F, FB, B, FixedValueB); |
| FixedValue = FixedValueA - FixedValueB; |
| return false; |
| } |
| |
| // If linker relaxation is enabled and supported by the current fixup, then we |
| // always want to generate a relocation. |
| bool NeedsRelax = Fixup.isLinkerRelaxable() && |
| relaxableFixupNeedsRelocation(Fixup.getKind()); |
| if (NeedsRelax) |
| IsResolved = false; |
| |
| if (IsResolved && Fixup.isPCRel()) |
| IsResolved = isPCRelFixupResolved(Target.getAddSym(), F); |
| |
| if (!IsResolved) { |
| // Some Fixups require a VENDOR relocation, record it (directly) before we |
| // add the relocation. |
| maybeAddVendorReloc(F, Fixup); |
| |
| Asm->getWriter().recordRelocation(F, Fixup, Target, FixedValue); |
| |
| if (NeedsRelax) { |
| // Some Fixups get a RELAX relocation, record it (directly) after we add |
| // the relocation. |
| MCFixup RelaxFixup = |
| MCFixup::create(Fixup.getOffset(), nullptr, ELF::R_RISCV_RELAX); |
| MCValue RelaxTarget = MCValue::get(nullptr); |
| uint64_t RelaxValue; |
| Asm->getWriter().recordRelocation(F, RelaxFixup, RelaxTarget, RelaxValue); |
| } |
| } |
| |
| return false; |
| } |
| |
| // Data fixups should be swapped for big endian cores. |
| // Instruction fixups should not be swapped as RISC-V instructions |
| // are always little-endian. |
| static bool isDataFixup(unsigned Kind) { |
| switch (Kind) { |
| default: |
| return false; |
| |
| case FK_Data_1: |
| case FK_Data_2: |
| case FK_Data_4: |
| case FK_Data_8: |
| return true; |
| } |
| } |
| |
| void RISCVAsmBackend::applyFixup(const MCFragment &F, const MCFixup &Fixup, |
| const MCValue &Target, uint8_t *Data, |
| uint64_t Value, bool IsResolved) { |
| IsResolved = addReloc(F, Fixup, Target, Value, IsResolved); |
| MCFixupKind Kind = Fixup.getKind(); |
| if (mc::isRelocation(Kind)) |
| return; |
| MCContext &Ctx = getContext(); |
| MCFixupKindInfo Info = getFixupKindInfo(Kind); |
| if (!Value) |
| return; // Doesn't change encoding. |
| // Apply any target-specific value adjustments. |
| Value = adjustFixupValue(Fixup, Value, Ctx); |
| |
| // Shift the value into position. |
| Value <<= Info.TargetOffset; |
| |
| unsigned NumBytes = alignTo(Info.TargetSize + Info.TargetOffset, 8) / 8; |
| assert(Fixup.getOffset() + NumBytes <= F.getSize() && |
| "Invalid fixup offset!"); |
| |
| // For each byte of the fragment that the fixup touches, mask in the |
| // bits from the fixup value. |
| // For big endian cores, data fixup should be swapped. |
| bool SwapValue = Endian == llvm::endianness::big && isDataFixup(Kind); |
| for (unsigned i = 0; i != NumBytes; ++i) { |
| unsigned Idx = SwapValue ? (NumBytes - 1 - i) : i; |
| Data[Idx] |= uint8_t((Value >> (i * 8)) & 0xff); |
| } |
| } |
| |
| std::unique_ptr<MCObjectTargetWriter> |
| RISCVAsmBackend::createObjectTargetWriter() const { |
| return createRISCVELFObjectWriter(OSABI, Is64Bit); |
| } |
| |
| MCAsmBackend *llvm::createRISCVAsmBackend(const Target &T, |
| const MCSubtargetInfo &STI, |
| const MCRegisterInfo &MRI, |
| const MCTargetOptions &Options) { |
| const Triple &TT = STI.getTargetTriple(); |
| uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS()); |
| return new RISCVAsmBackend(STI, OSABI, TT.isArch64Bit(), TT.isLittleEndian(), |
| Options); |
| } |