| //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "HexagonFrameLowering.h" | 
 | #include "HexagonBlockRanges.h" | 
 | #include "HexagonInstrInfo.h" | 
 | #include "HexagonMachineFunctionInfo.h" | 
 | #include "HexagonRegisterInfo.h" | 
 | #include "HexagonSubtarget.h" | 
 | #include "HexagonTargetMachine.h" | 
 | #include "MCTargetDesc/HexagonBaseInfo.h" | 
 | #include "llvm/ADT/BitVector.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/PostOrderIterator.h" | 
 | #include "llvm/ADT/SetVector.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/CodeGen/LivePhysRegs.h" | 
 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
 | #include "llvm/CodeGen/MachineDominators.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineMemOperand.h" | 
 | #include "llvm/CodeGen/MachineModuleInfo.h" | 
 | #include "llvm/CodeGen/MachineOperand.h" | 
 | #include "llvm/CodeGen/MachinePostDominators.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/PseudoSourceValue.h" | 
 | #include "llvm/CodeGen/RegisterScavenging.h" | 
 | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
 | #include "llvm/IR/Attributes.h" | 
 | #include "llvm/IR/DebugLoc.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/MC/MCDwarf.h" | 
 | #include "llvm/MC/MCRegisterInfo.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/CodeGen.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/TargetOptions.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <cstdint> | 
 | #include <iterator> | 
 | #include <limits> | 
 | #include <map> | 
 | #include <optional> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | #define DEBUG_TYPE "hexagon-pei" | 
 |  | 
 | // Hexagon stack frame layout as defined by the ABI: | 
 | // | 
 | //                                                       Incoming arguments | 
 | //                                                       passed via stack | 
 | //                                                                      | | 
 | //                                                                      | | 
 | //        SP during function's                 FP during function's     | | 
 | //    +-- runtime (top of stack)               runtime (bottom) --+     | | 
 | //    |                                                           |     | | 
 | // --++---------------------+------------------+-----------------++-+------- | 
 | //   |  parameter area for  |  variable-size   |   fixed-size    |LR|  arg | 
 | //   |   called functions   |  local objects   |  local objects  |FP| | 
 | // --+----------------------+------------------+-----------------+--+------- | 
 | //    <-    size known    -> <- size unknown -> <- size known  -> | 
 | // | 
 | // Low address                                                 High address | 
 | // | 
 | // <--- stack growth | 
 | // | 
 | // | 
 | // - In any circumstances, the outgoing function arguments are always accessi- | 
 | //   ble using the SP, and the incoming arguments are accessible using the FP. | 
 | // - If the local objects are not aligned, they can always be accessed using | 
 | //   the FP. | 
 | // - If there are no variable-sized objects, the local objects can always be | 
 | //   accessed using the SP, regardless whether they are aligned or not. (The | 
 | //   alignment padding will be at the bottom of the stack (highest address), | 
 | //   and so the offset with respect to the SP will be known at the compile- | 
 | //   -time.) | 
 | // | 
 | // The only complication occurs if there are both, local aligned objects, and | 
 | // dynamically allocated (variable-sized) objects. The alignment pad will be | 
 | // placed between the FP and the local objects, thus preventing the use of the | 
 | // FP to access the local objects. At the same time, the variable-sized objects | 
 | // will be between the SP and the local objects, thus introducing an unknown | 
 | // distance from the SP to the locals. | 
 | // | 
 | // To avoid this problem, a new register is created that holds the aligned | 
 | // address of the bottom of the stack, referred in the sources as AP (aligned | 
 | // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad | 
 | // that aligns AP to the required boundary (a maximum of the alignments of | 
 | // all stack objects, fixed- and variable-sized). All local objects[1] will | 
 | // then use AP as the base pointer. | 
 | // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get | 
 | // their name from being allocated at fixed locations on the stack, relative | 
 | // to the FP. In the presence of dynamic allocation and local alignment, such | 
 | // objects can only be accessed through the FP. | 
 | // | 
 | // Illustration of the AP: | 
 | //                                                                FP --+ | 
 | //                                                                     | | 
 | // ---------------+---------------------+-----+-----------------------++-+-- | 
 | //   Rest of the  | Local stack objects | Pad |  Fixed stack objects  |LR| | 
 | //   stack frame  | (aligned)           |     |  (CSR, spills, etc.)  |FP| | 
 | // ---------------+---------------------+-----+-----------------+-----+--+-- | 
 | //                                      |<-- Multiple of the -->| | 
 | //                                           stack alignment    +-- AP | 
 | // | 
 | // The AP is set up at the beginning of the function. Since it is not a dedi- | 
 | // cated (reserved) register, it needs to be kept live throughout the function | 
 | // to be available as the base register for local object accesses. | 
 | // Normally, an address of a stack objects is obtained by a pseudo-instruction | 
 | // PS_fi. To access local objects with the AP register present, a different | 
 | // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra | 
 | // argument compared to PS_fi: the first input register is the AP register. | 
 | // This keeps the register live between its definition and its uses. | 
 |  | 
 | // The AP register is originally set up using pseudo-instruction PS_aligna: | 
 | //   AP = PS_aligna A | 
 | // where | 
 | //   A  - required stack alignment | 
 | // The alignment value must be the maximum of all alignments required by | 
 | // any stack object. | 
 |  | 
 | // The dynamic allocation uses a pseudo-instruction PS_alloca: | 
 | //   Rd = PS_alloca Rs, A | 
 | // where | 
 | //   Rd - address of the allocated space | 
 | //   Rs - minimum size (the actual allocated can be larger to accommodate | 
 | //        alignment) | 
 | //   A  - required alignment | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret", | 
 |     cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target")); | 
 |  | 
 | static cl::opt<unsigned> | 
 |     NumberScavengerSlots("number-scavenger-slots", cl::Hidden, | 
 |                          cl::desc("Set the number of scavenger slots"), | 
 |                          cl::init(2)); | 
 |  | 
 | static cl::opt<int> | 
 |     SpillFuncThreshold("spill-func-threshold", cl::Hidden, | 
 |                        cl::desc("Specify O2(not Os) spill func threshold"), | 
 |                        cl::init(6)); | 
 |  | 
 | static cl::opt<int> | 
 |     SpillFuncThresholdOs("spill-func-threshold-Os", cl::Hidden, | 
 |                          cl::desc("Specify Os spill func threshold"), | 
 |                          cl::init(1)); | 
 |  | 
 | static cl::opt<bool> EnableStackOVFSanitizer( | 
 |     "enable-stackovf-sanitizer", cl::Hidden, | 
 |     cl::desc("Enable runtime checks for stack overflow."), cl::init(false)); | 
 |  | 
 | static cl::opt<bool> | 
 |     EnableShrinkWrapping("hexagon-shrink-frame", cl::init(true), cl::Hidden, | 
 |                          cl::desc("Enable stack frame shrink wrapping")); | 
 |  | 
 | static cl::opt<unsigned> | 
 |     ShrinkLimit("shrink-frame-limit", | 
 |                 cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden, | 
 |                 cl::desc("Max count of stack frame shrink-wraps")); | 
 |  | 
 | static cl::opt<bool> | 
 |     EnableSaveRestoreLong("enable-save-restore-long", cl::Hidden, | 
 |                           cl::desc("Enable long calls for save-restore stubs."), | 
 |                           cl::init(false)); | 
 |  | 
 | static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true), | 
 |     cl::Hidden, cl::desc("Refrain from using FP whenever possible")); | 
 |  | 
 | static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden, | 
 |     cl::init(true), cl::desc("Optimize spill slots")); | 
 |  | 
 | #ifndef NDEBUG | 
 | static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden, | 
 |     cl::init(std::numeric_limits<unsigned>::max())); | 
 | static unsigned SpillOptCount = 0; | 
 | #endif | 
 |  | 
 | namespace { | 
 |  | 
 |   class HexagonCallFrameInformation : public MachineFunctionPass { | 
 |   public: | 
 |     static char ID; | 
 |  | 
 |     HexagonCallFrameInformation() : MachineFunctionPass(ID) {} | 
 |  | 
 |     bool runOnMachineFunction(MachineFunction &MF) override; | 
 |  | 
 |     MachineFunctionProperties getRequiredProperties() const override { | 
 |       return MachineFunctionProperties().setNoVRegs(); | 
 |     } | 
 |   }; | 
 |  | 
 |   char HexagonCallFrameInformation::ID = 0; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) { | 
 |   auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering(); | 
 |   bool NeedCFI = MF.needsFrameMoves(); | 
 |  | 
 |   if (!NeedCFI) | 
 |     return false; | 
 |   HFI.insertCFIInstructions(MF); | 
 |   return true; | 
 | } | 
 |  | 
 | INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi", | 
 |                 "Hexagon call frame information", false, false) | 
 |  | 
 | FunctionPass *llvm::createHexagonCallFrameInformation() { | 
 |   return new HexagonCallFrameInformation(); | 
 | } | 
 |  | 
 | /// Map a register pair Reg to the subregister that has the greater "number", | 
 | /// i.e. D3 (aka R7:6) will be mapped to R7, etc. | 
 | static Register getMax32BitSubRegister(Register Reg, | 
 |                                        const TargetRegisterInfo &TRI, | 
 |                                        bool hireg = true) { | 
 |     if (Reg < Hexagon::D0 || Reg > Hexagon::D15) | 
 |       return Reg; | 
 |  | 
 |     Register RegNo = 0; | 
 |     for (MCPhysReg SubReg : TRI.subregs(Reg)) { | 
 |       if (hireg) { | 
 |         if (SubReg > RegNo) | 
 |           RegNo = SubReg; | 
 |       } else { | 
 |         if (!RegNo || SubReg < RegNo) | 
 |           RegNo = SubReg; | 
 |       } | 
 |     } | 
 |     return RegNo; | 
 | } | 
 |  | 
 | /// Returns the callee saved register with the largest id in the vector. | 
 | static Register getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI, | 
 |                                      const TargetRegisterInfo &TRI) { | 
 |   static_assert(Hexagon::R1 > 0, | 
 |                 "Assume physical registers are encoded as positive integers"); | 
 |   if (CSI.empty()) | 
 |     return 0; | 
 |  | 
 |   Register Max = getMax32BitSubRegister(CSI[0].getReg(), TRI); | 
 |   for (unsigned I = 1, E = CSI.size(); I < E; ++I) { | 
 |     Register Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI); | 
 |     if (Reg > Max) | 
 |       Max = Reg; | 
 |   } | 
 |   return Max; | 
 | } | 
 |  | 
 | /// Checks if the basic block contains any instruction that needs a stack | 
 | /// frame to be already in place. | 
 | static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR, | 
 |                             const HexagonRegisterInfo &HRI) { | 
 |     for (const MachineInstr &MI : MBB) { | 
 |       if (MI.isCall()) | 
 |         return true; | 
 |       unsigned Opc = MI.getOpcode(); | 
 |       switch (Opc) { | 
 |         case Hexagon::PS_alloca: | 
 |         case Hexagon::PS_aligna: | 
 |           return true; | 
 |         default: | 
 |           break; | 
 |       } | 
 |       // Check individual operands. | 
 |       for (const MachineOperand &MO : MI.operands()) { | 
 |         // While the presence of a frame index does not prove that a stack | 
 |         // frame will be required, all frame indexes should be within alloc- | 
 |         // frame/deallocframe. Otherwise, the code that translates a frame | 
 |         // index into an offset would have to be aware of the placement of | 
 |         // the frame creation/destruction instructions. | 
 |         if (MO.isFI()) | 
 |           return true; | 
 |         if (MO.isReg()) { | 
 |           Register R = MO.getReg(); | 
 |           // Debug instructions may refer to $noreg. | 
 |           if (!R) | 
 |             continue; | 
 |           // Virtual registers will need scavenging, which then may require | 
 |           // a stack slot. | 
 |           if (R.isVirtual()) | 
 |             return true; | 
 |           for (MCPhysReg S : HRI.subregs_inclusive(R)) | 
 |             if (CSR[S]) | 
 |               return true; | 
 |           continue; | 
 |         } | 
 |         if (MO.isRegMask()) { | 
 |           // A regmask would normally have all callee-saved registers marked | 
 |           // as preserved, so this check would not be needed, but in case of | 
 |           // ever having other regmasks (for other calling conventions), | 
 |           // make sure they would be processed correctly. | 
 |           const uint32_t *BM = MO.getRegMask(); | 
 |           for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) { | 
 |             unsigned R = x; | 
 |             // If this regmask does not preserve a CSR, a frame will be needed. | 
 |             if (!(BM[R/32] & (1u << (R%32)))) | 
 |               return true; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |     return false; | 
 | } | 
 |  | 
 |   /// Returns true if MBB has a machine instructions that indicates a tail call | 
 |   /// in the block. | 
 | static bool hasTailCall(const MachineBasicBlock &MBB) { | 
 |     MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); | 
 |     if (I == MBB.end()) | 
 |       return false; | 
 |     unsigned RetOpc = I->getOpcode(); | 
 |     return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r; | 
 | } | 
 |  | 
 | /// Returns true if MBB contains an instruction that returns. | 
 | static bool hasReturn(const MachineBasicBlock &MBB) { | 
 |     for (const MachineInstr &MI : MBB.terminators()) | 
 |       if (MI.isReturn()) | 
 |         return true; | 
 |     return false; | 
 | } | 
 |  | 
 | /// Returns the "return" instruction from this block, or nullptr if there | 
 | /// isn't any. | 
 | static MachineInstr *getReturn(MachineBasicBlock &MBB) { | 
 |     for (auto &I : MBB) | 
 |       if (I.isReturn()) | 
 |         return &I; | 
 |     return nullptr; | 
 | } | 
 |  | 
 | static bool isRestoreCall(unsigned Opc) { | 
 |     switch (Opc) { | 
 |       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: | 
 |       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: | 
 |       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT: | 
 |       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC: | 
 |       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT: | 
 |       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC: | 
 |       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4: | 
 |       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC: | 
 |         return true; | 
 |     } | 
 |     return false; | 
 | } | 
 |  | 
 | static inline bool isOptNone(const MachineFunction &MF) { | 
 |     return MF.getFunction().hasOptNone() || | 
 |            MF.getTarget().getOptLevel() == CodeGenOptLevel::None; | 
 | } | 
 |  | 
 | static inline bool isOptSize(const MachineFunction &MF) { | 
 |     const Function &F = MF.getFunction(); | 
 |     return F.hasOptSize() && !F.hasMinSize(); | 
 | } | 
 |  | 
 | static inline bool isMinSize(const MachineFunction &MF) { | 
 |     return MF.getFunction().hasMinSize(); | 
 | } | 
 |  | 
 | /// Implements shrink-wrapping of the stack frame. By default, stack frame | 
 | /// is created in the function entry block, and is cleaned up in every block | 
 | /// that returns. This function finds alternate blocks: one for the frame | 
 | /// setup (prolog) and one for the cleanup (epilog). | 
 | void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF, | 
 |       MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const { | 
 |   static unsigned ShrinkCounter = 0; | 
 |  | 
 |   if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() && | 
 |       MF.getFunction().isVarArg()) | 
 |     return; | 
 |   if (ShrinkLimit.getPosition()) { | 
 |     if (ShrinkCounter >= ShrinkLimit) | 
 |       return; | 
 |     ShrinkCounter++; | 
 |   } | 
 |  | 
 |   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
 |  | 
 |   MachineDominatorTree MDT; | 
 |   MDT.recalculate(MF); | 
 |   MachinePostDominatorTree MPT; | 
 |   MPT.recalculate(MF); | 
 |  | 
 |   using UnsignedMap = DenseMap<unsigned, unsigned>; | 
 |   using RPOTType = ReversePostOrderTraversal<const MachineFunction *>; | 
 |  | 
 |   UnsignedMap RPO; | 
 |   RPOTType RPOT(&MF); | 
 |   unsigned RPON = 0; | 
 |   for (auto &I : RPOT) | 
 |     RPO[I->getNumber()] = RPON++; | 
 |  | 
 |   // Don't process functions that have loops, at least for now. Placement | 
 |   // of prolog and epilog must take loop structure into account. For simpli- | 
 |   // city don't do it right now. | 
 |   for (auto &I : MF) { | 
 |     unsigned BN = RPO[I.getNumber()]; | 
 |     for (MachineBasicBlock *Succ : I.successors()) | 
 |       // If found a back-edge, return. | 
 |       if (RPO[Succ->getNumber()] <= BN) | 
 |         return; | 
 |   } | 
 |  | 
 |   // Collect the set of blocks that need a stack frame to execute. Scan | 
 |   // each block for uses/defs of callee-saved registers, calls, etc. | 
 |   SmallVector<MachineBasicBlock*,16> SFBlocks; | 
 |   BitVector CSR(Hexagon::NUM_TARGET_REGS); | 
 |   for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P) | 
 |     for (MCPhysReg S : HRI.subregs_inclusive(*P)) | 
 |       CSR[S] = true; | 
 |  | 
 |   for (auto &I : MF) | 
 |     if (needsStackFrame(I, CSR, HRI)) | 
 |       SFBlocks.push_back(&I); | 
 |  | 
 |   LLVM_DEBUG({ | 
 |     dbgs() << "Blocks needing SF: {"; | 
 |     for (auto &B : SFBlocks) | 
 |       dbgs() << " " << printMBBReference(*B); | 
 |     dbgs() << " }\n"; | 
 |   }); | 
 |   // No frame needed? | 
 |   if (SFBlocks.empty()) | 
 |     return; | 
 |  | 
 |   // Pick a common dominator and a common post-dominator. | 
 |   MachineBasicBlock *DomB = SFBlocks[0]; | 
 |   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { | 
 |     DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]); | 
 |     if (!DomB) | 
 |       break; | 
 |   } | 
 |   MachineBasicBlock *PDomB = SFBlocks[0]; | 
 |   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { | 
 |     PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]); | 
 |     if (!PDomB) | 
 |       break; | 
 |   } | 
 |   LLVM_DEBUG({ | 
 |     dbgs() << "Computed dom block: "; | 
 |     if (DomB) | 
 |       dbgs() << printMBBReference(*DomB); | 
 |     else | 
 |       dbgs() << "<null>"; | 
 |     dbgs() << ", computed pdom block: "; | 
 |     if (PDomB) | 
 |       dbgs() << printMBBReference(*PDomB); | 
 |     else | 
 |       dbgs() << "<null>"; | 
 |     dbgs() << "\n"; | 
 |   }); | 
 |   if (!DomB || !PDomB) | 
 |     return; | 
 |  | 
 |   // Make sure that DomB dominates PDomB and PDomB post-dominates DomB. | 
 |   if (!MDT.dominates(DomB, PDomB)) { | 
 |     LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n"); | 
 |     return; | 
 |   } | 
 |   if (!MPT.dominates(PDomB, DomB)) { | 
 |     LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n"); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Finally, everything seems right. | 
 |   PrologB = DomB; | 
 |   EpilogB = PDomB; | 
 | } | 
 |  | 
 | /// Perform most of the PEI work here: | 
 | /// - saving/restoring of the callee-saved registers, | 
 | /// - stack frame creation and destruction. | 
 | /// Normally, this work is distributed among various functions, but doing it | 
 | /// in one place allows shrink-wrapping of the stack frame. | 
 | void HexagonFrameLowering::emitPrologue(MachineFunction &MF, | 
 |                                         MachineBasicBlock &MBB) const { | 
 |   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
 |  | 
 |   MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); | 
 |  | 
 |   MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr; | 
 |   if (EnableShrinkWrapping) | 
 |     findShrunkPrologEpilog(MF, PrologB, EpilogB); | 
 |  | 
 |   bool PrologueStubs = false; | 
 |   insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs); | 
 |   insertPrologueInBlock(*PrologB, PrologueStubs); | 
 |   updateEntryPaths(MF, *PrologB); | 
 |  | 
 |   if (EpilogB) { | 
 |     insertCSRRestoresInBlock(*EpilogB, CSI, HRI); | 
 |     insertEpilogueInBlock(*EpilogB); | 
 |   } else { | 
 |     for (auto &B : MF) | 
 |       if (B.isReturnBlock()) | 
 |         insertCSRRestoresInBlock(B, CSI, HRI); | 
 |  | 
 |     for (auto &B : MF) | 
 |       if (B.isReturnBlock()) | 
 |         insertEpilogueInBlock(B); | 
 |  | 
 |     for (auto &B : MF) { | 
 |       if (B.empty()) | 
 |         continue; | 
 |       MachineInstr *RetI = getReturn(B); | 
 |       if (!RetI || isRestoreCall(RetI->getOpcode())) | 
 |         continue; | 
 |       for (auto &R : CSI) | 
 |         RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); | 
 |     } | 
 |   } | 
 |  | 
 |   if (EpilogB) { | 
 |     // If there is an epilog block, it may not have a return instruction. | 
 |     // In such case, we need to add the callee-saved registers as live-ins | 
 |     // in all blocks on all paths from the epilog to any return block. | 
 |     unsigned MaxBN = MF.getNumBlockIDs(); | 
 |     BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1); | 
 |     updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path); | 
 |   } | 
 | } | 
 |  | 
 | /// Returns true if the target can safely skip saving callee-saved registers | 
 | /// for noreturn nounwind functions. | 
 | bool HexagonFrameLowering::enableCalleeSaveSkip( | 
 |     const MachineFunction &MF) const { | 
 |   const auto &F = MF.getFunction(); | 
 |   assert(F.hasFnAttribute(Attribute::NoReturn) && | 
 |          F.getFunction().hasFnAttribute(Attribute::NoUnwind) && | 
 |          !F.getFunction().hasFnAttribute(Attribute::UWTable)); | 
 |   (void)F; | 
 |  | 
 |   // No need to save callee saved registers if the function does not return. | 
 |   return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim(); | 
 | } | 
 |  | 
 | // Helper function used to determine when to eliminate the stack frame for | 
 | // functions marked as noreturn and when the noreturn-stack-elim options are | 
 | // specified. When both these conditions are true, then a FP may not be needed | 
 | // if the function makes a call. It is very similar to enableCalleeSaveSkip, | 
 | // but it used to check if the allocframe can be eliminated as well. | 
 | static bool enableAllocFrameElim(const MachineFunction &MF) { | 
 |   const auto &F = MF.getFunction(); | 
 |   const auto &MFI = MF.getFrameInfo(); | 
 |   const auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
 |   assert(!MFI.hasVarSizedObjects() && | 
 |          !HST.getRegisterInfo()->hasStackRealignment(MF)); | 
 |   return F.hasFnAttribute(Attribute::NoReturn) && | 
 |     F.hasFnAttribute(Attribute::NoUnwind) && | 
 |     !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() && | 
 |     MFI.getStackSize() == 0; | 
 | } | 
 |  | 
 | void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB, | 
 |       bool PrologueStubs) const { | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |   MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
 |   auto &HII = *HST.getInstrInfo(); | 
 |   auto &HRI = *HST.getRegisterInfo(); | 
 |  | 
 |   Align MaxAlign = std::max(MFI.getMaxAlign(), getStackAlign()); | 
 |  | 
 |   // Calculate the total stack frame size. | 
 |   // Get the number of bytes to allocate from the FrameInfo. | 
 |   unsigned FrameSize = MFI.getStackSize(); | 
 |   // Round up the max call frame size to the max alignment on the stack. | 
 |   unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign); | 
 |   MFI.setMaxCallFrameSize(MaxCFA); | 
 |  | 
 |   FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign); | 
 |   MFI.setStackSize(FrameSize); | 
 |  | 
 |   bool AlignStack = (MaxAlign > getStackAlign()); | 
 |  | 
 |   // Get the number of bytes to allocate from the FrameInfo. | 
 |   unsigned NumBytes = MFI.getStackSize(); | 
 |   Register SP = HRI.getStackRegister(); | 
 |   unsigned MaxCF = MFI.getMaxCallFrameSize(); | 
 |   MachineBasicBlock::iterator InsertPt = MBB.begin(); | 
 |  | 
 |   SmallVector<MachineInstr *, 4> AdjustRegs; | 
 |   for (auto &MBB : MF) | 
 |     for (auto &MI : MBB) | 
 |       if (MI.getOpcode() == Hexagon::PS_alloca) | 
 |         AdjustRegs.push_back(&MI); | 
 |  | 
 |   for (auto *MI : AdjustRegs) { | 
 |     assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca"); | 
 |     expandAlloca(MI, HII, SP, MaxCF); | 
 |     MI->eraseFromParent(); | 
 |   } | 
 |  | 
 |   DebugLoc dl = MBB.findDebugLoc(InsertPt); | 
 |  | 
 |   if (MF.getFunction().isVarArg() && | 
 |       MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) { | 
 |     // Calculate the size of register saved area. | 
 |     int NumVarArgRegs = 6 - FirstVarArgSavedReg; | 
 |     int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) | 
 |                                               ? NumVarArgRegs * 4 | 
 |                                               : NumVarArgRegs * 4 + 4; | 
 |     if (RegisterSavedAreaSizePlusPadding > 0) { | 
 |       // Decrement the stack pointer by size of register saved area plus | 
 |       // padding if any. | 
 |       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) | 
 |         .addReg(SP) | 
 |         .addImm(-RegisterSavedAreaSizePlusPadding) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |       int NumBytes = 0; | 
 |       // Copy all the named arguments below register saved area. | 
 |       auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); | 
 |       for (int i = HMFI.getFirstNamedArgFrameIndex(), | 
 |                e = HMFI.getLastNamedArgFrameIndex(); i >= e; --i) { | 
 |         uint64_t ObjSize = MFI.getObjectSize(i); | 
 |         Align ObjAlign = MFI.getObjectAlign(i); | 
 |  | 
 |         // Determine the kind of load/store that should be used. | 
 |         unsigned LDOpc, STOpc; | 
 |         uint64_t OpcodeChecker = ObjAlign.value(); | 
 |  | 
 |         // Handle cases where alignment of an object is > its size. | 
 |         if (ObjAlign > ObjSize) { | 
 |           if (ObjSize <= 1) | 
 |             OpcodeChecker = 1; | 
 |           else if (ObjSize <= 2) | 
 |             OpcodeChecker = 2; | 
 |           else if (ObjSize <= 4) | 
 |             OpcodeChecker = 4; | 
 |           else if (ObjSize > 4) | 
 |             OpcodeChecker = 8; | 
 |         } | 
 |  | 
 |         switch (OpcodeChecker) { | 
 |           case 1: | 
 |             LDOpc = Hexagon::L2_loadrb_io; | 
 |             STOpc = Hexagon::S2_storerb_io; | 
 |             break; | 
 |           case 2: | 
 |             LDOpc = Hexagon::L2_loadrh_io; | 
 |             STOpc = Hexagon::S2_storerh_io; | 
 |             break; | 
 |           case 4: | 
 |             LDOpc = Hexagon::L2_loadri_io; | 
 |             STOpc = Hexagon::S2_storeri_io; | 
 |             break; | 
 |           case 8: | 
 |           default: | 
 |             LDOpc = Hexagon::L2_loadrd_io; | 
 |             STOpc = Hexagon::S2_storerd_io; | 
 |             break; | 
 |         } | 
 |  | 
 |         Register RegUsed = LDOpc == Hexagon::L2_loadrd_io ? Hexagon::D3 | 
 |                                                           : Hexagon::R6; | 
 |         int LoadStoreCount = ObjSize / OpcodeChecker; | 
 |  | 
 |         if (ObjSize % OpcodeChecker) | 
 |           ++LoadStoreCount; | 
 |  | 
 |         // Get the start location of the load. NumBytes is basically the | 
 |         // offset from the stack pointer of previous function, which would be | 
 |         // the caller in this case, as this function has variable argument | 
 |         // list. | 
 |         if (NumBytes != 0) | 
 |           NumBytes = alignTo(NumBytes, ObjAlign); | 
 |  | 
 |         int Count = 0; | 
 |         while (Count < LoadStoreCount) { | 
 |           // Load the value of the named argument on stack. | 
 |           BuildMI(MBB, InsertPt, dl, HII.get(LDOpc), RegUsed) | 
 |               .addReg(SP) | 
 |               .addImm(RegisterSavedAreaSizePlusPadding + | 
 |                       ObjAlign.value() * Count + NumBytes) | 
 |               .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |           // Store it below the register saved area plus padding. | 
 |           BuildMI(MBB, InsertPt, dl, HII.get(STOpc)) | 
 |               .addReg(SP) | 
 |               .addImm(ObjAlign.value() * Count + NumBytes) | 
 |               .addReg(RegUsed) | 
 |               .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |           Count++; | 
 |         } | 
 |         NumBytes += MFI.getObjectSize(i); | 
 |       } | 
 |  | 
 |       // Make NumBytes 8 byte aligned | 
 |       NumBytes = alignTo(NumBytes, 8); | 
 |  | 
 |       // If the number of registers having variable arguments is odd, | 
 |       // leave 4 bytes of padding to get to the location where first | 
 |       // variable argument which was passed through register was copied. | 
 |       NumBytes = (NumVarArgRegs % 2 == 0) ? NumBytes : NumBytes + 4; | 
 |  | 
 |       for (int j = FirstVarArgSavedReg, i = 0; j < 6; ++j, ++i) { | 
 |         BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_storeri_io)) | 
 |           .addReg(SP) | 
 |           .addImm(NumBytes + 4 * i) | 
 |           .addReg(Hexagon::R0 + j) | 
 |           .setMIFlag(MachineInstr::FrameSetup); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (hasFP(MF)) { | 
 |     insertAllocframe(MBB, InsertPt, NumBytes); | 
 |     if (AlignStack) { | 
 |       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP) | 
 |           .addReg(SP) | 
 |           .addImm(-int64_t(MaxAlign.value())); | 
 |     } | 
 |     // If the stack-checking is enabled, and we spilled the callee-saved | 
 |     // registers inline (i.e. did not use a spill function), then call | 
 |     // the stack checker directly. | 
 |     if (EnableStackOVFSanitizer && !PrologueStubs) | 
 |       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk)) | 
 |              .addExternalSymbol("__runtime_stack_check"); | 
 |   } else if (NumBytes > 0) { | 
 |     assert(alignTo(NumBytes, 8) == NumBytes); | 
 |     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) | 
 |       .addReg(SP) | 
 |       .addImm(-int(NumBytes)); | 
 |   } | 
 | } | 
 |  | 
 | void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const { | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |   auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
 |   auto &HII = *HST.getInstrInfo(); | 
 |   auto &HRI = *HST.getRegisterInfo(); | 
 |   Register SP = HRI.getStackRegister(); | 
 |  | 
 |   MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator(); | 
 |   DebugLoc dl = MBB.findDebugLoc(InsertPt); | 
 |  | 
 |   if (!hasFP(MF)) { | 
 |     MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |     unsigned NumBytes = MFI.getStackSize(); | 
 |     if (MF.getFunction().isVarArg() && | 
 |         MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) { | 
 |       // On Hexagon Linux, deallocate the stack for the register saved area. | 
 |       int NumVarArgRegs = 6 - FirstVarArgSavedReg; | 
 |       int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ? | 
 |         (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4); | 
 |       NumBytes += RegisterSavedAreaSizePlusPadding; | 
 |     } | 
 |     if (NumBytes) { | 
 |       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) | 
 |         .addReg(SP) | 
 |         .addImm(NumBytes); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   MachineInstr *RetI = getReturn(MBB); | 
 |   unsigned RetOpc = RetI ? RetI->getOpcode() : 0; | 
 |  | 
 |   // Handle EH_RETURN. | 
 |   if (RetOpc == Hexagon::EH_RETURN_JMPR) { | 
 |     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) | 
 |         .addDef(Hexagon::D15) | 
 |         .addReg(Hexagon::R30); | 
 |     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP) | 
 |         .addReg(SP) | 
 |         .addReg(Hexagon::R28); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc- | 
 |   // frame instruction if we encounter it. | 
 |   if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 || | 
 |       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC || | 
 |       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT || | 
 |       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) { | 
 |     MachineBasicBlock::iterator It = RetI; | 
 |     ++It; | 
 |     // Delete all instructions after the RESTORE (except labels). | 
 |     while (It != MBB.end()) { | 
 |       if (!It->isLabel()) | 
 |         It = MBB.erase(It); | 
 |       else | 
 |         ++It; | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // It is possible that the restoring code is a call to a library function. | 
 |   // All of the restore* functions include "deallocframe", so we need to make | 
 |   // sure that we don't add an extra one. | 
 |   bool NeedsDeallocframe = true; | 
 |   if (!MBB.empty() && InsertPt != MBB.begin()) { | 
 |     MachineBasicBlock::iterator PrevIt = std::prev(InsertPt); | 
 |     unsigned COpc = PrevIt->getOpcode(); | 
 |     if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 || | 
 |         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC || | 
 |         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT || | 
 |         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC || | 
 |         COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr) | 
 |       NeedsDeallocframe = false; | 
 |   } | 
 |  | 
 |   if (!MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() || | 
 |       !MF.getFunction().isVarArg()) { | 
 |     if (!NeedsDeallocframe) | 
 |       return; | 
 |     // If the returning instruction is PS_jmpret, replace it with | 
 |     // dealloc_return, otherwise just add deallocframe. The function | 
 |     // could be returning via a tail call. | 
 |     if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) { | 
 |       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) | 
 |       .addDef(Hexagon::D15) | 
 |       .addReg(Hexagon::R30); | 
 |       return; | 
 |     } | 
 |     unsigned NewOpc = Hexagon::L4_return; | 
 |     MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc)) | 
 |       .addDef(Hexagon::D15) | 
 |       .addReg(Hexagon::R30); | 
 |     // Transfer the function live-out registers. | 
 |     NewI->copyImplicitOps(MF, *RetI); | 
 |     MBB.erase(RetI); | 
 |   } else { | 
 |     // L2_deallocframe instruction after it. | 
 |     // Calculate the size of register saved area. | 
 |     int NumVarArgRegs = 6 - FirstVarArgSavedReg; | 
 |     int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ? | 
 |       (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4); | 
 |  | 
 |     MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); | 
 |     MachineBasicBlock::iterator I = (Term == MBB.begin()) ? MBB.end() | 
 |                                                           : std::prev(Term); | 
 |     if (I == MBB.end() || | 
 |        (I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT && | 
 |         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC && | 
 |         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 && | 
 |         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC)) | 
 |       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) | 
 |         .addDef(Hexagon::D15) | 
 |         .addReg(Hexagon::R30); | 
 |     if (RegisterSavedAreaSizePlusPadding != 0) | 
 |       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) | 
 |         .addReg(SP) | 
 |         .addImm(RegisterSavedAreaSizePlusPadding); | 
 |   } | 
 | } | 
 |  | 
 | void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB, | 
 |       MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const { | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |   auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
 |   auto &HII = *HST.getInstrInfo(); | 
 |   auto &HRI = *HST.getRegisterInfo(); | 
 |  | 
 |   // Check for overflow. | 
 |   // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used? | 
 |   const unsigned int ALLOCFRAME_MAX = 16384; | 
 |  | 
 |   // Create a dummy memory operand to avoid allocframe from being treated as | 
 |   // a volatile memory reference. | 
 |   auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0), | 
 |                                       MachineMemOperand::MOStore, 4, Align(4)); | 
 |  | 
 |   DebugLoc dl = MBB.findDebugLoc(InsertPt); | 
 |   Register SP = HRI.getStackRegister(); | 
 |  | 
 |   if (NumBytes >= ALLOCFRAME_MAX) { | 
 |     // Emit allocframe(#0). | 
 |     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) | 
 |         .addDef(SP) | 
 |         .addReg(SP) | 
 |         .addImm(0) | 
 |         .addMemOperand(MMO) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |  | 
 |     // Subtract the size from the stack pointer. | 
 |     Register SP = HRI.getStackRegister(); | 
 |     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) | 
 |         .addReg(SP) | 
 |         .addImm(-int(NumBytes)) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |   } else { | 
 |     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) | 
 |         .addDef(SP) | 
 |         .addReg(SP) | 
 |         .addImm(NumBytes) | 
 |         .addMemOperand(MMO) | 
 |         .setMIFlag(MachineInstr::FrameSetup); | 
 |   } | 
 | } | 
 |  | 
 | void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF, | 
 |       MachineBasicBlock &SaveB) const { | 
 |   SetVector<unsigned> Worklist; | 
 |  | 
 |   MachineBasicBlock &EntryB = MF.front(); | 
 |   Worklist.insert(EntryB.getNumber()); | 
 |  | 
 |   unsigned SaveN = SaveB.getNumber(); | 
 |   auto &CSI = MF.getFrameInfo().getCalleeSavedInfo(); | 
 |  | 
 |   for (unsigned i = 0; i < Worklist.size(); ++i) { | 
 |     unsigned BN = Worklist[i]; | 
 |     MachineBasicBlock &MBB = *MF.getBlockNumbered(BN); | 
 |     for (auto &R : CSI) | 
 |       if (!MBB.isLiveIn(R.getReg())) | 
 |         MBB.addLiveIn(R.getReg()); | 
 |     if (BN != SaveN) | 
 |       for (auto &SB : MBB.successors()) | 
 |         Worklist.insert(SB->getNumber()); | 
 |   } | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB, | 
 |       MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF, | 
 |       BitVector &Path) const { | 
 |   assert(MBB.getNumber() >= 0); | 
 |   unsigned BN = MBB.getNumber(); | 
 |   if (Path[BN] || DoneF[BN]) | 
 |     return false; | 
 |   if (DoneT[BN]) | 
 |     return true; | 
 |  | 
 |   auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo(); | 
 |  | 
 |   Path[BN] = true; | 
 |   bool ReachedExit = false; | 
 |   for (auto &SB : MBB.successors()) | 
 |     ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path); | 
 |  | 
 |   if (!MBB.empty() && MBB.back().isReturn()) { | 
 |     // Add implicit uses of all callee-saved registers to the reached | 
 |     // return instructions. This is to prevent the anti-dependency breaker | 
 |     // from renaming these registers. | 
 |     MachineInstr &RetI = MBB.back(); | 
 |     if (!isRestoreCall(RetI.getOpcode())) | 
 |       for (auto &R : CSI) | 
 |         RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); | 
 |     ReachedExit = true; | 
 |   } | 
 |  | 
 |   // We don't want to add unnecessary live-ins to the restore block: since | 
 |   // the callee-saved registers are being defined in it, the entry of the | 
 |   // restore block cannot be on the path from the definitions to any exit. | 
 |   if (ReachedExit && &MBB != &RestoreB) { | 
 |     for (auto &R : CSI) | 
 |       if (!MBB.isLiveIn(R.getReg())) | 
 |         MBB.addLiveIn(R.getReg()); | 
 |     DoneT[BN] = true; | 
 |   } | 
 |   if (!ReachedExit) | 
 |     DoneF[BN] = true; | 
 |  | 
 |   Path[BN] = false; | 
 |   return ReachedExit; | 
 | } | 
 |  | 
 | static std::optional<MachineBasicBlock::iterator> | 
 | findCFILocation(MachineBasicBlock &B) { | 
 |     // The CFI instructions need to be inserted right after allocframe. | 
 |     // An exception to this is a situation where allocframe is bundled | 
 |     // with a call: then the CFI instructions need to be inserted before | 
 |     // the packet with the allocframe+call (in case the call throws an | 
 |     // exception). | 
 |     auto End = B.instr_end(); | 
 |  | 
 |     for (MachineInstr &I : B) { | 
 |       MachineBasicBlock::iterator It = I.getIterator(); | 
 |       if (!I.isBundle()) { | 
 |         if (I.getOpcode() == Hexagon::S2_allocframe) | 
 |           return std::next(It); | 
 |         continue; | 
 |       } | 
 |       // I is a bundle. | 
 |       bool HasCall = false, HasAllocFrame = false; | 
 |       auto T = It.getInstrIterator(); | 
 |       while (++T != End && T->isBundled()) { | 
 |         if (T->getOpcode() == Hexagon::S2_allocframe) | 
 |           HasAllocFrame = true; | 
 |         else if (T->isCall()) | 
 |           HasCall = true; | 
 |       } | 
 |       if (HasAllocFrame) | 
 |         return HasCall ? It : std::next(It); | 
 |     } | 
 |     return std::nullopt; | 
 | } | 
 |  | 
 | void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const { | 
 |     for (auto &B : MF) | 
 |       if (auto At = findCFILocation(B)) | 
 |         insertCFIInstructionsAt(B, *At); | 
 | } | 
 |  | 
 | void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB, | 
 |       MachineBasicBlock::iterator At) const { | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |   MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
 |   auto &HII = *HST.getInstrInfo(); | 
 |   auto &HRI = *HST.getRegisterInfo(); | 
 |  | 
 |   // If CFI instructions have debug information attached, something goes | 
 |   // wrong with the final assembly generation: the prolog_end is placed | 
 |   // in a wrong location. | 
 |   DebugLoc DL; | 
 |   const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION); | 
 |  | 
 |   MCSymbol *FrameLabel = MF.getContext().createTempSymbol(); | 
 |   bool HasFP = hasFP(MF); | 
 |  | 
 |   if (HasFP) { | 
 |     unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true); | 
 |     unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true); | 
 |  | 
 |     // Define CFA via an offset from the value of FP. | 
 |     // | 
 |     //  -8   -4    0 (SP) | 
 |     // --+----+----+--------------------- | 
 |     //   | FP | LR |          increasing addresses --> | 
 |     // --+----+----+--------------------- | 
 |     //   |         +-- Old SP (before allocframe) | 
 |     //   +-- New FP (after allocframe) | 
 |     // | 
 |     // MCCFIInstruction::cfiDefCfa adds the offset from the register. | 
 |     // MCCFIInstruction::createOffset takes the offset without sign change. | 
 |     auto DefCfa = MCCFIInstruction::cfiDefCfa(FrameLabel, DwFPReg, 8); | 
 |     BuildMI(MBB, At, DL, CFID) | 
 |         .addCFIIndex(MF.addFrameInst(DefCfa)); | 
 |     // R31 (return addr) = CFA - 4 | 
 |     auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4); | 
 |     BuildMI(MBB, At, DL, CFID) | 
 |         .addCFIIndex(MF.addFrameInst(OffR31)); | 
 |     // R30 (frame ptr) = CFA - 8 | 
 |     auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8); | 
 |     BuildMI(MBB, At, DL, CFID) | 
 |         .addCFIIndex(MF.addFrameInst(OffR30)); | 
 |   } | 
 |  | 
 |   static const MCPhysReg RegsToMove[] = { | 
 |     Hexagon::R1,  Hexagon::R0,  Hexagon::R3,  Hexagon::R2, | 
 |     Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18, | 
 |     Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22, | 
 |     Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26, | 
 |     Hexagon::D0,  Hexagon::D1,  Hexagon::D8,  Hexagon::D9, | 
 |     Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13 | 
 |   }; | 
 |  | 
 |   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); | 
 |  | 
 |   for (MCPhysReg Reg : RegsToMove) { | 
 |     auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool { | 
 |       return C.getReg() == Reg; | 
 |     }; | 
 |     auto F = find_if(CSI, IfR); | 
 |     if (F == CSI.end()) | 
 |       continue; | 
 |  | 
 |     int64_t Offset; | 
 |     if (HasFP) { | 
 |       // If the function has a frame pointer (i.e. has an allocframe), | 
 |       // then the CFA has been defined in terms of FP. Any offsets in | 
 |       // the following CFI instructions have to be defined relative | 
 |       // to FP, which points to the bottom of the stack frame. | 
 |       // The function getFrameIndexReference can still choose to use SP | 
 |       // for the offset calculation, so we cannot simply call it here. | 
 |       // Instead, get the offset (relative to the FP) directly. | 
 |       Offset = MFI.getObjectOffset(F->getFrameIdx()); | 
 |     } else { | 
 |       Register FrameReg; | 
 |       Offset = | 
 |           getFrameIndexReference(MF, F->getFrameIdx(), FrameReg).getFixed(); | 
 |     } | 
 |     // Subtract 8 to make room for R30 and R31, which are added above. | 
 |     Offset -= 8; | 
 |  | 
 |     if (Reg < Hexagon::D0 || Reg > Hexagon::D15) { | 
 |       unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true); | 
 |       auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg, | 
 |                                                    Offset); | 
 |       BuildMI(MBB, At, DL, CFID) | 
 |           .addCFIIndex(MF.addFrameInst(OffReg)); | 
 |     } else { | 
 |       // Split the double regs into subregs, and generate appropriate | 
 |       // cfi_offsets. | 
 |       // The only reason, we are split double regs is, llvm-mc does not | 
 |       // understand paired registers for cfi_offset. | 
 |       // Eg .cfi_offset r1:0, -64 | 
 |  | 
 |       Register HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi); | 
 |       Register LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo); | 
 |       unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true); | 
 |       unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true); | 
 |       auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg, | 
 |                                                   Offset+4); | 
 |       BuildMI(MBB, At, DL, CFID) | 
 |           .addCFIIndex(MF.addFrameInst(OffHi)); | 
 |       auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg, | 
 |                                                   Offset); | 
 |       BuildMI(MBB, At, DL, CFID) | 
 |           .addCFIIndex(MF.addFrameInst(OffLo)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::hasFPImpl(const MachineFunction &MF) const { | 
 |   auto &MFI = MF.getFrameInfo(); | 
 |   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
 |   bool HasExtraAlign = HRI.hasStackRealignment(MF); | 
 |   bool HasAlloca = MFI.hasVarSizedObjects(); | 
 |  | 
 |   // Insert ALLOCFRAME if we need to or at -O0 for the debugger.  Think | 
 |   // that this shouldn't be required, but doing so now because gcc does and | 
 |   // gdb can't break at the start of the function without it.  Will remove if | 
 |   // this turns out to be a gdb bug. | 
 |   // | 
 |   if (MF.getTarget().getOptLevel() == CodeGenOptLevel::None) | 
 |     return true; | 
 |  | 
 |   // By default we want to use SP (since it's always there). FP requires | 
 |   // some setup (i.e. ALLOCFRAME). | 
 |   // Both, alloca and stack alignment modify the stack pointer by an | 
 |   // undetermined value, so we need to save it at the entry to the function | 
 |   // (i.e. use allocframe). | 
 |   if (HasAlloca || HasExtraAlign) | 
 |     return true; | 
 |  | 
 |   if (MFI.getStackSize() > 0) { | 
 |     // If FP-elimination is disabled, we have to use FP at this point. | 
 |     const TargetMachine &TM = MF.getTarget(); | 
 |     if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer) | 
 |       return true; | 
 |     if (EnableStackOVFSanitizer) | 
 |       return true; | 
 |   } | 
 |  | 
 |   const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); | 
 |   if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR()) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | enum SpillKind { | 
 |   SK_ToMem, | 
 |   SK_FromMem, | 
 |   SK_FromMemTailcall | 
 | }; | 
 |  | 
 | static const char *getSpillFunctionFor(Register MaxReg, SpillKind SpillType, | 
 |       bool Stkchk = false) { | 
 |   const char * V4SpillToMemoryFunctions[] = { | 
 |     "__save_r16_through_r17", | 
 |     "__save_r16_through_r19", | 
 |     "__save_r16_through_r21", | 
 |     "__save_r16_through_r23", | 
 |     "__save_r16_through_r25", | 
 |     "__save_r16_through_r27" }; | 
 |  | 
 |   const char * V4SpillToMemoryStkchkFunctions[] = { | 
 |     "__save_r16_through_r17_stkchk", | 
 |     "__save_r16_through_r19_stkchk", | 
 |     "__save_r16_through_r21_stkchk", | 
 |     "__save_r16_through_r23_stkchk", | 
 |     "__save_r16_through_r25_stkchk", | 
 |     "__save_r16_through_r27_stkchk" }; | 
 |  | 
 |   const char * V4SpillFromMemoryFunctions[] = { | 
 |     "__restore_r16_through_r17_and_deallocframe", | 
 |     "__restore_r16_through_r19_and_deallocframe", | 
 |     "__restore_r16_through_r21_and_deallocframe", | 
 |     "__restore_r16_through_r23_and_deallocframe", | 
 |     "__restore_r16_through_r25_and_deallocframe", | 
 |     "__restore_r16_through_r27_and_deallocframe" }; | 
 |  | 
 |   const char * V4SpillFromMemoryTailcallFunctions[] = { | 
 |     "__restore_r16_through_r17_and_deallocframe_before_tailcall", | 
 |     "__restore_r16_through_r19_and_deallocframe_before_tailcall", | 
 |     "__restore_r16_through_r21_and_deallocframe_before_tailcall", | 
 |     "__restore_r16_through_r23_and_deallocframe_before_tailcall", | 
 |     "__restore_r16_through_r25_and_deallocframe_before_tailcall", | 
 |     "__restore_r16_through_r27_and_deallocframe_before_tailcall" | 
 |   }; | 
 |  | 
 |   const char **SpillFunc = nullptr; | 
 |  | 
 |   switch(SpillType) { | 
 |   case SK_ToMem: | 
 |     SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions | 
 |                        : V4SpillToMemoryFunctions; | 
 |     break; | 
 |   case SK_FromMem: | 
 |     SpillFunc = V4SpillFromMemoryFunctions; | 
 |     break; | 
 |   case SK_FromMemTailcall: | 
 |     SpillFunc = V4SpillFromMemoryTailcallFunctions; | 
 |     break; | 
 |   } | 
 |   assert(SpillFunc && "Unknown spill kind"); | 
 |  | 
 |   // Spill all callee-saved registers up to the highest register used. | 
 |   switch (MaxReg) { | 
 |   case Hexagon::R17: | 
 |     return SpillFunc[0]; | 
 |   case Hexagon::R19: | 
 |     return SpillFunc[1]; | 
 |   case Hexagon::R21: | 
 |     return SpillFunc[2]; | 
 |   case Hexagon::R23: | 
 |     return SpillFunc[3]; | 
 |   case Hexagon::R25: | 
 |     return SpillFunc[4]; | 
 |   case Hexagon::R27: | 
 |     return SpillFunc[5]; | 
 |   default: | 
 |     llvm_unreachable("Unhandled maximum callee save register"); | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | StackOffset | 
 | HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, | 
 |                                              Register &FrameReg) const { | 
 |   auto &MFI = MF.getFrameInfo(); | 
 |   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
 |  | 
 |   int Offset = MFI.getObjectOffset(FI); | 
 |   bool HasAlloca = MFI.hasVarSizedObjects(); | 
 |   bool HasExtraAlign = HRI.hasStackRealignment(MF); | 
 |   bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOptLevel::None; | 
 |  | 
 |   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); | 
 |   unsigned FrameSize = MFI.getStackSize(); | 
 |   Register SP = HRI.getStackRegister(); | 
 |   Register FP = HRI.getFrameRegister(); | 
 |   Register AP = HMFI.getStackAlignBaseReg(); | 
 |   // It may happen that AP will be absent even HasAlloca && HasExtraAlign | 
 |   // is true. HasExtraAlign may be set because of vector spills, without | 
 |   // aligned locals or aligned outgoing function arguments. Since vector | 
 |   // spills will ultimately be "unaligned", it is safe to use FP as the | 
 |   // base register. | 
 |   // In fact, in such a scenario the stack is actually not required to be | 
 |   // aligned, although it may end up being aligned anyway, since this | 
 |   // particular case is not easily detectable. The alignment will be | 
 |   // unnecessary, but not incorrect. | 
 |   // Unfortunately there is no quick way to verify that the above is | 
 |   // indeed the case (and that it's not a result of an error), so just | 
 |   // assume that missing AP will be replaced by FP. | 
 |   // (A better fix would be to rematerialize AP from FP and always align | 
 |   // vector spills.) | 
 |   bool UseFP = false, UseAP = false;  // Default: use SP (except at -O0). | 
 |   // Use FP at -O0, except when there are objects with extra alignment. | 
 |   // That additional alignment requirement may cause a pad to be inserted, | 
 |   // which will make it impossible to use FP to access objects located | 
 |   // past the pad. | 
 |   if (NoOpt && !HasExtraAlign) | 
 |     UseFP = true; | 
 |   if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) { | 
 |     // Fixed and preallocated objects will be located before any padding | 
 |     // so FP must be used to access them. | 
 |     UseFP |= (HasAlloca || HasExtraAlign); | 
 |   } else { | 
 |     if (HasAlloca) { | 
 |       if (HasExtraAlign) | 
 |         UseAP = true; | 
 |       else | 
 |         UseFP = true; | 
 |     } | 
 |   } | 
 |  | 
 |   // If FP was picked, then there had better be FP. | 
 |   bool HasFP = hasFP(MF); | 
 |   assert((HasFP || !UseFP) && "This function must have frame pointer"); | 
 |  | 
 |   // Having FP implies allocframe. Allocframe will store extra 8 bytes: | 
 |   // FP/LR. If the base register is used to access an object across these | 
 |   // 8 bytes, then the offset will need to be adjusted by 8. | 
 |   // | 
 |   // After allocframe: | 
 |   //                    HexagonISelLowering adds 8 to ---+ | 
 |   //                    the offsets of all stack-based   | | 
 |   //                    arguments (*)                    | | 
 |   //                                                     | | 
 |   //   getObjectOffset < 0   0     8  getObjectOffset >= 8 | 
 |   // ------------------------+-----+------------------------> increasing | 
 |   //     <local objects>     |FP/LR|    <input arguments>     addresses | 
 |   // -----------------+------+-----+------------------------> | 
 |   //                  |      | | 
 |   //    SP/AP point --+      +-- FP points here (**) | 
 |   //    somewhere on | 
 |   //    this side of FP/LR | 
 |   // | 
 |   // (*) See LowerFormalArguments. The FP/LR is assumed to be present. | 
 |   // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR. | 
 |  | 
 |   // The lowering assumes that FP/LR is present, and so the offsets of | 
 |   // the formal arguments start at 8. If FP/LR is not there we need to | 
 |   // reduce the offset by 8. | 
 |   if (Offset > 0 && !HasFP) | 
 |     Offset -= 8; | 
 |  | 
 |   if (UseFP) | 
 |     FrameReg = FP; | 
 |   else if (UseAP) | 
 |     FrameReg = AP; | 
 |   else | 
 |     FrameReg = SP; | 
 |  | 
 |   // Calculate the actual offset in the instruction. If there is no FP | 
 |   // (in other words, no allocframe), then SP will not be adjusted (i.e. | 
 |   // there will be no SP -= FrameSize), so the frame size should not be | 
 |   // added to the calculated offset. | 
 |   int RealOffset = Offset; | 
 |   if (!UseFP && !UseAP) | 
 |     RealOffset = FrameSize+Offset; | 
 |   return StackOffset::getFixed(RealOffset); | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB, | 
 |       const CSIVect &CSI, const HexagonRegisterInfo &HRI, | 
 |       bool &PrologueStubs) const { | 
 |   if (CSI.empty()) | 
 |     return true; | 
 |  | 
 |   MachineBasicBlock::iterator MI = MBB.begin(); | 
 |   PrologueStubs = false; | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |   auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
 |   auto &HII = *HST.getInstrInfo(); | 
 |  | 
 |   if (useSpillFunction(MF, CSI)) { | 
 |     PrologueStubs = true; | 
 |     Register MaxReg = getMaxCalleeSavedReg(CSI, HRI); | 
 |     bool StkOvrFlowEnabled = EnableStackOVFSanitizer; | 
 |     const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem, | 
 |                                                StkOvrFlowEnabled); | 
 |     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); | 
 |     bool IsPIC = HTM.isPositionIndependent(); | 
 |     bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; | 
 |  | 
 |     // Call spill function. | 
 |     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); | 
 |     unsigned SpillOpc; | 
 |     if (StkOvrFlowEnabled) { | 
 |       if (LongCalls) | 
 |         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC | 
 |                          : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT; | 
 |       else | 
 |         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC | 
 |                          : Hexagon::SAVE_REGISTERS_CALL_V4STK; | 
 |     } else { | 
 |       if (LongCalls) | 
 |         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC | 
 |                          : Hexagon::SAVE_REGISTERS_CALL_V4_EXT; | 
 |       else | 
 |         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC | 
 |                          : Hexagon::SAVE_REGISTERS_CALL_V4; | 
 |     } | 
 |  | 
 |     MachineInstr *SaveRegsCall = | 
 |         BuildMI(MBB, MI, DL, HII.get(SpillOpc)) | 
 |           .addExternalSymbol(SpillFun); | 
 |  | 
 |     // Add callee-saved registers as use. | 
 |     addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true); | 
 |     // Add live in registers. | 
 |     for (const CalleeSavedInfo &I : CSI) | 
 |       MBB.addLiveIn(I.getReg()); | 
 |     return true; | 
 |   } | 
 |  | 
 |   for (const CalleeSavedInfo &I : CSI) { | 
 |     MCRegister Reg = I.getReg(); | 
 |     // Add live in registers. We treat eh_return callee saved register r0 - r3 | 
 |     // specially. They are not really callee saved registers as they are not | 
 |     // supposed to be killed. | 
 |     bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg); | 
 |     int FI = I.getFrameIdx(); | 
 |     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); | 
 |     HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI, Register()); | 
 |     if (IsKill) | 
 |       MBB.addLiveIn(Reg); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB, | 
 |       const CSIVect &CSI, const HexagonRegisterInfo &HRI) const { | 
 |   if (CSI.empty()) | 
 |     return false; | 
 |  | 
 |   MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |   auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
 |   auto &HII = *HST.getInstrInfo(); | 
 |  | 
 |   if (useRestoreFunction(MF, CSI)) { | 
 |     bool HasTC = hasTailCall(MBB) || !hasReturn(MBB); | 
 |     Register MaxR = getMaxCalleeSavedReg(CSI, HRI); | 
 |     SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem; | 
 |     const char *RestoreFn = getSpillFunctionFor(MaxR, Kind); | 
 |     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); | 
 |     bool IsPIC = HTM.isPositionIndependent(); | 
 |     bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; | 
 |  | 
 |     // Call spill function. | 
 |     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() | 
 |                                   : MBB.findDebugLoc(MBB.end()); | 
 |     MachineInstr *DeallocCall = nullptr; | 
 |  | 
 |     if (HasTC) { | 
 |       unsigned RetOpc; | 
 |       if (LongCalls) | 
 |         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC | 
 |                        : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT; | 
 |       else | 
 |         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC | 
 |                        : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4; | 
 |       DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc)) | 
 |           .addExternalSymbol(RestoreFn); | 
 |     } else { | 
 |       // The block has a return. | 
 |       MachineBasicBlock::iterator It = MBB.getFirstTerminator(); | 
 |       assert(It->isReturn() && std::next(It) == MBB.end()); | 
 |       unsigned RetOpc; | 
 |       if (LongCalls) | 
 |         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC | 
 |                        : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT; | 
 |       else | 
 |         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC | 
 |                        : Hexagon::RESTORE_DEALLOC_RET_JMP_V4; | 
 |       DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc)) | 
 |           .addExternalSymbol(RestoreFn); | 
 |       // Transfer the function live-out registers. | 
 |       DeallocCall->copyImplicitOps(MF, *It); | 
 |     } | 
 |     addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false); | 
 |     return true; | 
 |   } | 
 |  | 
 |   for (const CalleeSavedInfo &I : CSI) { | 
 |     MCRegister Reg = I.getReg(); | 
 |     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); | 
 |     int FI = I.getFrameIdx(); | 
 |     HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI, Register()); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr( | 
 |     MachineFunction &MF, MachineBasicBlock &MBB, | 
 |     MachineBasicBlock::iterator I) const { | 
 |   MachineInstr &MI = *I; | 
 |   unsigned Opc = MI.getOpcode(); | 
 |   (void)Opc; // Silence compiler warning. | 
 |   assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) && | 
 |          "Cannot handle this call frame pseudo instruction"); | 
 |   return MBB.erase(I); | 
 | } | 
 |  | 
 | void HexagonFrameLowering::processFunctionBeforeFrameFinalized( | 
 |     MachineFunction &MF, RegScavenger *RS) const { | 
 |   // If this function has uses aligned stack and also has variable sized stack | 
 |   // objects, then we need to map all spill slots to fixed positions, so that | 
 |   // they can be accessed through FP. Otherwise they would have to be accessed | 
 |   // via AP, which may not be available at the particular place in the program. | 
 |   MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   bool HasAlloca = MFI.hasVarSizedObjects(); | 
 |   bool NeedsAlign = (MFI.getMaxAlign() > getStackAlign()); | 
 |  | 
 |   if (!HasAlloca || !NeedsAlign) | 
 |     return; | 
 |  | 
 |   // Set the physical aligned-stack base address register. | 
 |   MCRegister AP; | 
 |   if (const MachineInstr *AI = getAlignaInstr(MF)) | 
 |     AP = AI->getOperand(0).getReg(); | 
 |   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); | 
 |   assert(!AP.isValid() || AP.isPhysical()); | 
 |   HMFI.setStackAlignBaseReg(AP); | 
 | } | 
 |  | 
 | /// Returns true if there are no caller-saved registers available in class RC. | 
 | static bool needToReserveScavengingSpillSlots(MachineFunction &MF, | 
 |       const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) { | 
 |   MachineRegisterInfo &MRI = MF.getRegInfo(); | 
 |  | 
 |   auto IsUsed = [&HRI,&MRI] (Register Reg) -> bool { | 
 |     for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI) | 
 |       if (MRI.isPhysRegUsed(*AI)) | 
 |         return true; | 
 |     return false; | 
 |   }; | 
 |  | 
 |   // Check for an unused caller-saved register. Callee-saved registers | 
 |   // have become pristine by now. | 
 |   for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P) | 
 |     if (!IsUsed(*P)) | 
 |       return false; | 
 |  | 
 |   // All caller-saved registers are used. | 
 |   return true; | 
 | } | 
 |  | 
 | #ifndef NDEBUG | 
 | static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) { | 
 |   dbgs() << '{'; | 
 |   for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) { | 
 |     Register R = x; | 
 |     dbgs() << ' ' << printReg(R, &TRI); | 
 |   } | 
 |   dbgs() << " }"; | 
 | } | 
 | #endif | 
 |  | 
 | bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF, | 
 |       const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const { | 
 |   LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n'); | 
 |   MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   BitVector SRegs(Hexagon::NUM_TARGET_REGS); | 
 |  | 
 |   // Generate a set of unique, callee-saved registers (SRegs), where each | 
 |   // register in the set is maximal in terms of sub-/super-register relation, | 
 |   // i.e. for each R in SRegs, no proper super-register of R is also in SRegs. | 
 |  | 
 |   // (1) For each callee-saved register, add that register and all of its | 
 |   // sub-registers to SRegs. | 
 |   LLVM_DEBUG(dbgs() << "Initial CS registers: {"); | 
 |   for (const CalleeSavedInfo &I : CSI) { | 
 |     Register R = I.getReg(); | 
 |     LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI)); | 
 |     for (MCPhysReg SR : TRI->subregs_inclusive(R)) | 
 |       SRegs[SR] = true; | 
 |   } | 
 |   LLVM_DEBUG(dbgs() << " }\n"); | 
 |   LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); | 
 |              dbgs() << "\n"); | 
 |  | 
 |   // (2) For each reserved register, remove that register and all of its | 
 |   // sub- and super-registers from SRegs. | 
 |   BitVector Reserved = TRI->getReservedRegs(MF); | 
 |   // Unreserve the stack align register: it is reserved for this function | 
 |   // only, it still needs to be saved/restored. | 
 |   Register AP = | 
 |       MF.getInfo<HexagonMachineFunctionInfo>()->getStackAlignBaseReg(); | 
 |   if (AP.isValid()) { | 
 |     Reserved[AP] = false; | 
 |     // Unreserve super-regs if no other subregisters are reserved. | 
 |     for (MCPhysReg SP : TRI->superregs(AP)) { | 
 |       bool HasResSub = false; | 
 |       for (MCPhysReg SB : TRI->subregs(SP)) { | 
 |         if (!Reserved[SB]) | 
 |           continue; | 
 |         HasResSub = true; | 
 |         break; | 
 |       } | 
 |       if (!HasResSub) | 
 |         Reserved[SP] = false; | 
 |     } | 
 |   } | 
 |  | 
 |   for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) { | 
 |     Register R = x; | 
 |     for (MCPhysReg SR : TRI->superregs_inclusive(R)) | 
 |       SRegs[SR] = false; | 
 |   } | 
 |   LLVM_DEBUG(dbgs() << "Res:     "; dump_registers(Reserved, *TRI); | 
 |              dbgs() << "\n"); | 
 |   LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); | 
 |              dbgs() << "\n"); | 
 |  | 
 |   // (3) Collect all registers that have at least one sub-register in SRegs, | 
 |   // and also have no sub-registers that are reserved. These will be the can- | 
 |   // didates for saving as a whole instead of their individual sub-registers. | 
 |   // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.) | 
 |   BitVector TmpSup(Hexagon::NUM_TARGET_REGS); | 
 |   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { | 
 |     Register R = x; | 
 |     for (MCPhysReg SR : TRI->superregs(R)) | 
 |       TmpSup[SR] = true; | 
 |   } | 
 |   for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) { | 
 |     Register R = x; | 
 |     for (MCPhysReg SR : TRI->subregs_inclusive(R)) { | 
 |       if (!Reserved[SR]) | 
 |         continue; | 
 |       TmpSup[R] = false; | 
 |       break; | 
 |     } | 
 |   } | 
 |   LLVM_DEBUG(dbgs() << "TmpSup:  "; dump_registers(TmpSup, *TRI); | 
 |              dbgs() << "\n"); | 
 |  | 
 |   // (4) Include all super-registers found in (3) into SRegs. | 
 |   SRegs |= TmpSup; | 
 |   LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); | 
 |              dbgs() << "\n"); | 
 |  | 
 |   // (5) For each register R in SRegs, if any super-register of R is in SRegs, | 
 |   // remove R from SRegs. | 
 |   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { | 
 |     Register R = x; | 
 |     for (MCPhysReg SR : TRI->superregs(R)) { | 
 |       if (!SRegs[SR]) | 
 |         continue; | 
 |       SRegs[R] = false; | 
 |       break; | 
 |     } | 
 |   } | 
 |   LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); | 
 |              dbgs() << "\n"); | 
 |  | 
 |   // Now, for each register that has a fixed stack slot, create the stack | 
 |   // object for it. | 
 |   CSI.clear(); | 
 |  | 
 |   using SpillSlot = TargetFrameLowering::SpillSlot; | 
 |  | 
 |   unsigned NumFixed; | 
 |   int64_t MinOffset = 0; // CS offsets are negative. | 
 |   const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed); | 
 |   for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) { | 
 |     if (!SRegs[S->Reg]) | 
 |       continue; | 
 |     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg); | 
 |     int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset); | 
 |     MinOffset = std::min(MinOffset, S->Offset); | 
 |     CSI.push_back(CalleeSavedInfo(S->Reg, FI)); | 
 |     SRegs[S->Reg] = false; | 
 |   } | 
 |  | 
 |   // There can be some registers that don't have fixed slots. For example, | 
 |   // we need to store R0-R3 in functions with exception handling. For each | 
 |   // such register, create a non-fixed stack object. | 
 |   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { | 
 |     Register R = x; | 
 |     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R); | 
 |     unsigned Size = TRI->getSpillSize(*RC); | 
 |     int64_t Off = MinOffset - Size; | 
 |     Align Alignment = std::min(TRI->getSpillAlign(*RC), getStackAlign()); | 
 |     Off &= -Alignment.value(); | 
 |     int FI = MFI.CreateFixedSpillStackObject(Size, Off); | 
 |     MinOffset = std::min(MinOffset, Off); | 
 |     CSI.push_back(CalleeSavedInfo(R, FI)); | 
 |     SRegs[R] = false; | 
 |   } | 
 |  | 
 |   LLVM_DEBUG({ | 
 |     dbgs() << "CS information: {"; | 
 |     for (const CalleeSavedInfo &I : CSI) { | 
 |       int FI = I.getFrameIdx(); | 
 |       int Off = MFI.getObjectOffset(FI); | 
 |       dbgs() << ' ' << printReg(I.getReg(), TRI) << ":fi#" << FI << ":sp"; | 
 |       if (Off >= 0) | 
 |         dbgs() << '+'; | 
 |       dbgs() << Off; | 
 |     } | 
 |     dbgs() << " }\n"; | 
 |   }); | 
 |  | 
 | #ifndef NDEBUG | 
 |   // Verify that all registers were handled. | 
 |   bool MissedReg = false; | 
 |   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { | 
 |     Register R = x; | 
 |     dbgs() << printReg(R, TRI) << ' '; | 
 |     MissedReg = true; | 
 |   } | 
 |   if (MissedReg) | 
 |     llvm_unreachable("...there are unhandled callee-saved registers!"); | 
 | #endif | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B, | 
 |       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
 |       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { | 
 |   MachineInstr *MI = &*It; | 
 |   DebugLoc DL = MI->getDebugLoc(); | 
 |   Register DstR = MI->getOperand(0).getReg(); | 
 |   Register SrcR = MI->getOperand(1).getReg(); | 
 |   if (!Hexagon::ModRegsRegClass.contains(DstR) || | 
 |       !Hexagon::ModRegsRegClass.contains(SrcR)) | 
 |     return false; | 
 |  | 
 |   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
 |   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1)); | 
 |   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR) | 
 |     .addReg(TmpR, RegState::Kill); | 
 |  | 
 |   NewRegs.push_back(TmpR); | 
 |   B.erase(It); | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B, | 
 |       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
 |       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { | 
 |   MachineInstr *MI = &*It; | 
 |   if (!MI->getOperand(0).isFI()) | 
 |     return false; | 
 |  | 
 |   DebugLoc DL = MI->getDebugLoc(); | 
 |   unsigned Opc = MI->getOpcode(); | 
 |   Register SrcR = MI->getOperand(2).getReg(); | 
 |   bool IsKill = MI->getOperand(2).isKill(); | 
 |   int FI = MI->getOperand(0).getIndex(); | 
 |  | 
 |   // TmpR = C2_tfrpr SrcR   if SrcR is a predicate register | 
 |   // TmpR = A2_tfrcrr SrcR  if SrcR is a modifier register | 
 |   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
 |   unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr | 
 |                                                  : Hexagon::A2_tfrcrr; | 
 |   BuildMI(B, It, DL, HII.get(TfrOpc), TmpR) | 
 |     .addReg(SrcR, getKillRegState(IsKill)); | 
 |  | 
 |   // S2_storeri_io FI, 0, TmpR | 
 |   BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io)) | 
 |       .addFrameIndex(FI) | 
 |       .addImm(0) | 
 |       .addReg(TmpR, RegState::Kill) | 
 |       .cloneMemRefs(*MI); | 
 |  | 
 |   NewRegs.push_back(TmpR); | 
 |   B.erase(It); | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B, | 
 |       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
 |       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { | 
 |   MachineInstr *MI = &*It; | 
 |   if (!MI->getOperand(1).isFI()) | 
 |     return false; | 
 |  | 
 |   DebugLoc DL = MI->getDebugLoc(); | 
 |   unsigned Opc = MI->getOpcode(); | 
 |   Register DstR = MI->getOperand(0).getReg(); | 
 |   int FI = MI->getOperand(1).getIndex(); | 
 |  | 
 |   // TmpR = L2_loadri_io FI, 0 | 
 |   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
 |   BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR) | 
 |       .addFrameIndex(FI) | 
 |       .addImm(0) | 
 |       .cloneMemRefs(*MI); | 
 |  | 
 |   // DstR = C2_tfrrp TmpR   if DstR is a predicate register | 
 |   // DstR = A2_tfrrcr TmpR  if DstR is a modifier register | 
 |   unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp | 
 |                                                  : Hexagon::A2_tfrrcr; | 
 |   BuildMI(B, It, DL, HII.get(TfrOpc), DstR) | 
 |     .addReg(TmpR, RegState::Kill); | 
 |  | 
 |   NewRegs.push_back(TmpR); | 
 |   B.erase(It); | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B, | 
 |       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
 |       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { | 
 |   MachineInstr *MI = &*It; | 
 |   if (!MI->getOperand(0).isFI()) | 
 |     return false; | 
 |  | 
 |   DebugLoc DL = MI->getDebugLoc(); | 
 |   Register SrcR = MI->getOperand(2).getReg(); | 
 |   bool IsKill = MI->getOperand(2).isKill(); | 
 |   int FI = MI->getOperand(0).getIndex(); | 
 |   auto *RC = &Hexagon::HvxVRRegClass; | 
 |  | 
 |   // Insert transfer to general vector register. | 
 |   //   TmpR0 = A2_tfrsi 0x01010101 | 
 |   //   TmpR1 = V6_vandqrt Qx, TmpR0 | 
 |   //   store FI, 0, TmpR1 | 
 |   Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
 |   Register TmpR1 = MRI.createVirtualRegister(RC); | 
 |  | 
 |   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) | 
 |     .addImm(0x01010101); | 
 |  | 
 |   BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1) | 
 |     .addReg(SrcR, getKillRegState(IsKill)) | 
 |     .addReg(TmpR0, RegState::Kill); | 
 |  | 
 |   auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
 |   HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI, Register()); | 
 |   expandStoreVec(B, std::prev(It), MRI, HII, NewRegs); | 
 |  | 
 |   NewRegs.push_back(TmpR0); | 
 |   NewRegs.push_back(TmpR1); | 
 |   B.erase(It); | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B, | 
 |       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
 |       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { | 
 |   MachineInstr *MI = &*It; | 
 |   if (!MI->getOperand(1).isFI()) | 
 |     return false; | 
 |  | 
 |   DebugLoc DL = MI->getDebugLoc(); | 
 |   Register DstR = MI->getOperand(0).getReg(); | 
 |   int FI = MI->getOperand(1).getIndex(); | 
 |   auto *RC = &Hexagon::HvxVRRegClass; | 
 |  | 
 |   // TmpR0 = A2_tfrsi 0x01010101 | 
 |   // TmpR1 = load FI, 0 | 
 |   // DstR = V6_vandvrt TmpR1, TmpR0 | 
 |   Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
 |   Register TmpR1 = MRI.createVirtualRegister(RC); | 
 |  | 
 |   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) | 
 |     .addImm(0x01010101); | 
 |   MachineFunction &MF = *B.getParent(); | 
 |   auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
 |   HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI, Register()); | 
 |   expandLoadVec(B, std::prev(It), MRI, HII, NewRegs); | 
 |  | 
 |   BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR) | 
 |     .addReg(TmpR1, RegState::Kill) | 
 |     .addReg(TmpR0, RegState::Kill); | 
 |  | 
 |   NewRegs.push_back(TmpR0); | 
 |   NewRegs.push_back(TmpR1); | 
 |   B.erase(It); | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B, | 
 |       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
 |       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { | 
 |   MachineFunction &MF = *B.getParent(); | 
 |   auto &MFI = MF.getFrameInfo(); | 
 |   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
 |   MachineInstr *MI = &*It; | 
 |   if (!MI->getOperand(0).isFI()) | 
 |     return false; | 
 |  | 
 |   // It is possible that the double vector being stored is only partially | 
 |   // defined. From the point of view of the liveness tracking, it is ok to | 
 |   // store it as a whole, but if we break it up we may end up storing a | 
 |   // register that is entirely undefined. | 
 |   LivePhysRegs LPR(HRI); | 
 |   LPR.addLiveIns(B); | 
 |   SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers; | 
 |   for (auto R = B.begin(); R != It; ++R) { | 
 |     Clobbers.clear(); | 
 |     LPR.stepForward(*R, Clobbers); | 
 |   } | 
 |  | 
 |   DebugLoc DL = MI->getDebugLoc(); | 
 |   Register SrcR = MI->getOperand(2).getReg(); | 
 |   Register SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo); | 
 |   Register SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi); | 
 |   bool IsKill = MI->getOperand(2).isKill(); | 
 |   int FI = MI->getOperand(0).getIndex(); | 
 |  | 
 |   unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); | 
 |   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); | 
 |   Align HasAlign = MFI.getObjectAlign(FI); | 
 |   unsigned StoreOpc; | 
 |  | 
 |   // Store low part. | 
 |   if (LPR.contains(SrcLo)) { | 
 |     StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai | 
 |                                      : Hexagon::V6_vS32Ub_ai; | 
 |     BuildMI(B, It, DL, HII.get(StoreOpc)) | 
 |         .addFrameIndex(FI) | 
 |         .addImm(0) | 
 |         .addReg(SrcLo, getKillRegState(IsKill)) | 
 |         .cloneMemRefs(*MI); | 
 |   } | 
 |  | 
 |   // Store high part. | 
 |   if (LPR.contains(SrcHi)) { | 
 |     StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai | 
 |                                      : Hexagon::V6_vS32Ub_ai; | 
 |     BuildMI(B, It, DL, HII.get(StoreOpc)) | 
 |         .addFrameIndex(FI) | 
 |         .addImm(Size) | 
 |         .addReg(SrcHi, getKillRegState(IsKill)) | 
 |         .cloneMemRefs(*MI); | 
 |   } | 
 |  | 
 |   B.erase(It); | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B, | 
 |       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
 |       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { | 
 |   MachineFunction &MF = *B.getParent(); | 
 |   auto &MFI = MF.getFrameInfo(); | 
 |   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
 |   MachineInstr *MI = &*It; | 
 |   if (!MI->getOperand(1).isFI()) | 
 |     return false; | 
 |  | 
 |   DebugLoc DL = MI->getDebugLoc(); | 
 |   Register DstR = MI->getOperand(0).getReg(); | 
 |   Register DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi); | 
 |   Register DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo); | 
 |   int FI = MI->getOperand(1).getIndex(); | 
 |  | 
 |   unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); | 
 |   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); | 
 |   Align HasAlign = MFI.getObjectAlign(FI); | 
 |   unsigned LoadOpc; | 
 |  | 
 |   // Load low part. | 
 |   LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai | 
 |                                   : Hexagon::V6_vL32Ub_ai; | 
 |   BuildMI(B, It, DL, HII.get(LoadOpc), DstLo) | 
 |       .addFrameIndex(FI) | 
 |       .addImm(0) | 
 |       .cloneMemRefs(*MI); | 
 |  | 
 |   // Load high part. | 
 |   LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai | 
 |                                   : Hexagon::V6_vL32Ub_ai; | 
 |   BuildMI(B, It, DL, HII.get(LoadOpc), DstHi) | 
 |       .addFrameIndex(FI) | 
 |       .addImm(Size) | 
 |       .cloneMemRefs(*MI); | 
 |  | 
 |   B.erase(It); | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B, | 
 |       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
 |       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { | 
 |   MachineFunction &MF = *B.getParent(); | 
 |   auto &MFI = MF.getFrameInfo(); | 
 |   MachineInstr *MI = &*It; | 
 |   if (!MI->getOperand(0).isFI()) | 
 |     return false; | 
 |  | 
 |   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
 |   DebugLoc DL = MI->getDebugLoc(); | 
 |   Register SrcR = MI->getOperand(2).getReg(); | 
 |   bool IsKill = MI->getOperand(2).isKill(); | 
 |   int FI = MI->getOperand(0).getIndex(); | 
 |  | 
 |   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); | 
 |   Align HasAlign = MFI.getObjectAlign(FI); | 
 |   unsigned StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai | 
 |                                             : Hexagon::V6_vS32Ub_ai; | 
 |   BuildMI(B, It, DL, HII.get(StoreOpc)) | 
 |       .addFrameIndex(FI) | 
 |       .addImm(0) | 
 |       .addReg(SrcR, getKillRegState(IsKill)) | 
 |       .cloneMemRefs(*MI); | 
 |  | 
 |   B.erase(It); | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B, | 
 |       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
 |       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const { | 
 |   MachineFunction &MF = *B.getParent(); | 
 |   auto &MFI = MF.getFrameInfo(); | 
 |   MachineInstr *MI = &*It; | 
 |   if (!MI->getOperand(1).isFI()) | 
 |     return false; | 
 |  | 
 |   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
 |   DebugLoc DL = MI->getDebugLoc(); | 
 |   Register DstR = MI->getOperand(0).getReg(); | 
 |   int FI = MI->getOperand(1).getIndex(); | 
 |  | 
 |   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); | 
 |   Align HasAlign = MFI.getObjectAlign(FI); | 
 |   unsigned LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai | 
 |                                            : Hexagon::V6_vL32Ub_ai; | 
 |   BuildMI(B, It, DL, HII.get(LoadOpc), DstR) | 
 |       .addFrameIndex(FI) | 
 |       .addImm(0) | 
 |       .cloneMemRefs(*MI); | 
 |  | 
 |   B.erase(It); | 
 |   return true; | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF, | 
 |       SmallVectorImpl<Register> &NewRegs) const { | 
 |   auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); | 
 |   MachineRegisterInfo &MRI = MF.getRegInfo(); | 
 |   bool Changed = false; | 
 |  | 
 |   for (auto &B : MF) { | 
 |     // Traverse the basic block. | 
 |     MachineBasicBlock::iterator NextI; | 
 |     for (auto I = B.begin(), E = B.end(); I != E; I = NextI) { | 
 |       MachineInstr *MI = &*I; | 
 |       NextI = std::next(I); | 
 |       unsigned Opc = MI->getOpcode(); | 
 |  | 
 |       switch (Opc) { | 
 |         case TargetOpcode::COPY: | 
 |           Changed |= expandCopy(B, I, MRI, HII, NewRegs); | 
 |           break; | 
 |         case Hexagon::STriw_pred: | 
 |         case Hexagon::STriw_ctr: | 
 |           Changed |= expandStoreInt(B, I, MRI, HII, NewRegs); | 
 |           break; | 
 |         case Hexagon::LDriw_pred: | 
 |         case Hexagon::LDriw_ctr: | 
 |           Changed |= expandLoadInt(B, I, MRI, HII, NewRegs); | 
 |           break; | 
 |         case Hexagon::PS_vstorerq_ai: | 
 |           Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs); | 
 |           break; | 
 |         case Hexagon::PS_vloadrq_ai: | 
 |           Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs); | 
 |           break; | 
 |         case Hexagon::PS_vloadrw_ai: | 
 |           Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs); | 
 |           break; | 
 |         case Hexagon::PS_vstorerw_ai: | 
 |           Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs); | 
 |           break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return Changed; | 
 | } | 
 |  | 
 | void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF, | 
 |                                                 BitVector &SavedRegs, | 
 |                                                 RegScavenger *RS) const { | 
 |   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
 |  | 
 |   SavedRegs.resize(HRI.getNumRegs()); | 
 |  | 
 |   // If we have a function containing __builtin_eh_return we want to spill and | 
 |   // restore all callee saved registers. Pretend that they are used. | 
 |   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) | 
 |     for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R) | 
 |       SavedRegs.set(*R); | 
 |  | 
 |   // Replace predicate register pseudo spill code. | 
 |   SmallVector<Register,8> NewRegs; | 
 |   expandSpillMacros(MF, NewRegs); | 
 |   if (OptimizeSpillSlots && !isOptNone(MF)) | 
 |     optimizeSpillSlots(MF, NewRegs); | 
 |  | 
 |   // We need to reserve a spill slot if scavenging could potentially require | 
 |   // spilling a scavenged register. | 
 |   if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) { | 
 |     MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |     MachineRegisterInfo &MRI = MF.getRegInfo(); | 
 |     SetVector<const TargetRegisterClass*> SpillRCs; | 
 |     // Reserve an int register in any case, because it could be used to hold | 
 |     // the stack offset in case it does not fit into a spill instruction. | 
 |     SpillRCs.insert(&Hexagon::IntRegsRegClass); | 
 |  | 
 |     for (Register VR : NewRegs) | 
 |       SpillRCs.insert(MRI.getRegClass(VR)); | 
 |  | 
 |     for (const auto *RC : SpillRCs) { | 
 |       if (!needToReserveScavengingSpillSlots(MF, HRI, RC)) | 
 |         continue; | 
 |       unsigned Num = 1; | 
 |       switch (RC->getID()) { | 
 |         case Hexagon::IntRegsRegClassID: | 
 |           Num = NumberScavengerSlots; | 
 |           break; | 
 |         case Hexagon::HvxQRRegClassID: | 
 |           Num = 2; // Vector predicate spills also need a vector register. | 
 |           break; | 
 |       } | 
 |       unsigned S = HRI.getSpillSize(*RC); | 
 |       Align A = HRI.getSpillAlign(*RC); | 
 |       for (unsigned i = 0; i < Num; i++) { | 
 |         int NewFI = MFI.CreateSpillStackObject(S, A); | 
 |         RS->addScavengingFrameIndex(NewFI); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); | 
 | } | 
 |  | 
 | Register HexagonFrameLowering::findPhysReg(MachineFunction &MF, | 
 |       HexagonBlockRanges::IndexRange &FIR, | 
 |       HexagonBlockRanges::InstrIndexMap &IndexMap, | 
 |       HexagonBlockRanges::RegToRangeMap &DeadMap, | 
 |       const TargetRegisterClass *RC) const { | 
 |   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
 |   auto &MRI = MF.getRegInfo(); | 
 |  | 
 |   auto isDead = [&FIR,&DeadMap] (Register Reg) -> bool { | 
 |     auto F = DeadMap.find({Reg,0}); | 
 |     if (F == DeadMap.end()) | 
 |       return false; | 
 |     for (auto &DR : F->second) | 
 |       if (DR.contains(FIR)) | 
 |         return true; | 
 |     return false; | 
 |   }; | 
 |  | 
 |   for (Register Reg : RC->getRawAllocationOrder(MF)) { | 
 |     bool Dead = true; | 
 |     for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) { | 
 |       if (isDead(R.Reg)) | 
 |         continue; | 
 |       Dead = false; | 
 |       break; | 
 |     } | 
 |     if (Dead) | 
 |       return Reg; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF, | 
 |       SmallVectorImpl<Register> &VRegs) const { | 
 |   auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
 |   auto &HII = *HST.getInstrInfo(); | 
 |   auto &HRI = *HST.getRegisterInfo(); | 
 |   auto &MRI = MF.getRegInfo(); | 
 |   HexagonBlockRanges HBR(MF); | 
 |  | 
 |   using BlockIndexMap = | 
 |       std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>; | 
 |   using BlockRangeMap = | 
 |       std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>; | 
 |   using IndexType = HexagonBlockRanges::IndexType; | 
 |  | 
 |   struct SlotInfo { | 
 |     BlockRangeMap Map; | 
 |     unsigned Size = 0; | 
 |     const TargetRegisterClass *RC = nullptr; | 
 |  | 
 |     SlotInfo() = default; | 
 |   }; | 
 |  | 
 |   BlockIndexMap BlockIndexes; | 
 |   SmallSet<int,4> BadFIs; | 
 |   std::map<int,SlotInfo> FIRangeMap; | 
 |  | 
 |   // Accumulate register classes: get a common class for a pre-existing | 
 |   // class HaveRC and a new class NewRC. Return nullptr if a common class | 
 |   // cannot be found, otherwise return the resulting class. If HaveRC is | 
 |   // nullptr, assume that it is still unset. | 
 |   auto getCommonRC = | 
 |       [](const TargetRegisterClass *HaveRC, | 
 |          const TargetRegisterClass *NewRC) -> const TargetRegisterClass * { | 
 |     if (HaveRC == nullptr || HaveRC == NewRC) | 
 |       return NewRC; | 
 |     // Different classes, both non-null. Pick the more general one. | 
 |     if (HaveRC->hasSubClassEq(NewRC)) | 
 |       return HaveRC; | 
 |     if (NewRC->hasSubClassEq(HaveRC)) | 
 |       return NewRC; | 
 |     return nullptr; | 
 |   }; | 
 |  | 
 |   // Scan all blocks in the function. Check all occurrences of frame indexes, | 
 |   // and collect relevant information. | 
 |   for (auto &B : MF) { | 
 |     std::map<int,IndexType> LastStore, LastLoad; | 
 |     auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B)); | 
 |     auto &IndexMap = P.first->second; | 
 |     LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n" | 
 |                       << IndexMap << '\n'); | 
 |  | 
 |     for (auto &In : B) { | 
 |       int LFI, SFI; | 
 |       bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In); | 
 |       bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In); | 
 |       if (Load && Store) { | 
 |         // If it's both a load and a store, then we won't handle it. | 
 |         BadFIs.insert(LFI); | 
 |         BadFIs.insert(SFI); | 
 |         continue; | 
 |       } | 
 |       // Check for register classes of the register used as the source for | 
 |       // the store, and the register used as the destination for the load. | 
 |       // Also, only accept base+imm_offset addressing modes. Other addressing | 
 |       // modes can have side-effects (post-increments, etc.). For stack | 
 |       // slots they are very unlikely, so there is not much loss due to | 
 |       // this restriction. | 
 |       if (Load || Store) { | 
 |         int TFI = Load ? LFI : SFI; | 
 |         unsigned AM = HII.getAddrMode(In); | 
 |         SlotInfo &SI = FIRangeMap[TFI]; | 
 |         bool Bad = (AM != HexagonII::BaseImmOffset); | 
 |         if (!Bad) { | 
 |           // If the addressing mode is ok, check the register class. | 
 |           unsigned OpNum = Load ? 0 : 2; | 
 |           auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI); | 
 |           RC = getCommonRC(SI.RC, RC); | 
 |           if (RC == nullptr) | 
 |             Bad = true; | 
 |           else | 
 |             SI.RC = RC; | 
 |         } | 
 |         if (!Bad) { | 
 |           // Check sizes. | 
 |           unsigned S = HII.getMemAccessSize(In); | 
 |           if (SI.Size != 0 && SI.Size != S) | 
 |             Bad = true; | 
 |           else | 
 |             SI.Size = S; | 
 |         } | 
 |         if (!Bad) { | 
 |           for (auto *Mo : In.memoperands()) { | 
 |             if (!Mo->isVolatile() && !Mo->isAtomic()) | 
 |               continue; | 
 |             Bad = true; | 
 |             break; | 
 |           } | 
 |         } | 
 |         if (Bad) | 
 |           BadFIs.insert(TFI); | 
 |       } | 
 |  | 
 |       // Locate uses of frame indices. | 
 |       for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) { | 
 |         const MachineOperand &Op = In.getOperand(i); | 
 |         if (!Op.isFI()) | 
 |           continue; | 
 |         int FI = Op.getIndex(); | 
 |         // Make sure that the following operand is an immediate and that | 
 |         // it is 0. This is the offset in the stack object. | 
 |         if (i+1 >= n || !In.getOperand(i+1).isImm() || | 
 |             In.getOperand(i+1).getImm() != 0) | 
 |           BadFIs.insert(FI); | 
 |         if (BadFIs.count(FI)) | 
 |           continue; | 
 |  | 
 |         IndexType Index = IndexMap.getIndex(&In); | 
 |         auto &LS = LastStore[FI]; | 
 |         auto &LL = LastLoad[FI]; | 
 |         if (Load) { | 
 |           if (LS == IndexType::None) | 
 |             LS = IndexType::Entry; | 
 |           LL = Index; | 
 |         } else if (Store) { | 
 |           HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; | 
 |           if (LS != IndexType::None) | 
 |             RL.add(LS, LL, false, false); | 
 |           else if (LL != IndexType::None) | 
 |             RL.add(IndexType::Entry, LL, false, false); | 
 |           LL = IndexType::None; | 
 |           LS = Index; | 
 |         } else { | 
 |           BadFIs.insert(FI); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     for (auto &I : LastLoad) { | 
 |       IndexType LL = I.second; | 
 |       if (LL == IndexType::None) | 
 |         continue; | 
 |       auto &RL = FIRangeMap[I.first].Map[&B]; | 
 |       IndexType &LS = LastStore[I.first]; | 
 |       if (LS != IndexType::None) | 
 |         RL.add(LS, LL, false, false); | 
 |       else | 
 |         RL.add(IndexType::Entry, LL, false, false); | 
 |       LS = IndexType::None; | 
 |     } | 
 |     for (auto &I : LastStore) { | 
 |       IndexType LS = I.second; | 
 |       if (LS == IndexType::None) | 
 |         continue; | 
 |       auto &RL = FIRangeMap[I.first].Map[&B]; | 
 |       RL.add(LS, IndexType::None, false, false); | 
 |     } | 
 |   } | 
 |  | 
 |   LLVM_DEBUG({ | 
 |     for (auto &P : FIRangeMap) { | 
 |       dbgs() << "fi#" << P.first; | 
 |       if (BadFIs.count(P.first)) | 
 |         dbgs() << " (bad)"; | 
 |       dbgs() << "  RC: "; | 
 |       if (P.second.RC != nullptr) | 
 |         dbgs() << HRI.getRegClassName(P.second.RC) << '\n'; | 
 |       else | 
 |         dbgs() << "<null>\n"; | 
 |       for (auto &R : P.second.Map) | 
 |         dbgs() << "  " << printMBBReference(*R.first) << " { " << R.second | 
 |                << "}\n"; | 
 |     } | 
 |   }); | 
 |  | 
 |   // When a slot is loaded from in a block without being stored to in the | 
 |   // same block, it is live-on-entry to this block. To avoid CFG analysis, | 
 |   // consider this slot to be live-on-exit from all blocks. | 
 |   SmallSet<int,4> LoxFIs; | 
 |  | 
 |   std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap; | 
 |  | 
 |   for (auto &P : FIRangeMap) { | 
 |     // P = pair(FI, map: BB->RangeList) | 
 |     if (BadFIs.count(P.first)) | 
 |       continue; | 
 |     for (auto &B : MF) { | 
 |       auto F = P.second.Map.find(&B); | 
 |       // F = pair(BB, RangeList) | 
 |       if (F == P.second.Map.end() || F->second.empty()) | 
 |         continue; | 
 |       HexagonBlockRanges::IndexRange &IR = F->second.front(); | 
 |       if (IR.start() == IndexType::Entry) | 
 |         LoxFIs.insert(P.first); | 
 |       BlockFIMap[&B].push_back(P.first); | 
 |     } | 
 |   } | 
 |  | 
 |   LLVM_DEBUG({ | 
 |     dbgs() << "Block-to-FI map (* -- live-on-exit):\n"; | 
 |     for (auto &P : BlockFIMap) { | 
 |       auto &FIs = P.second; | 
 |       if (FIs.empty()) | 
 |         continue; | 
 |       dbgs() << "  " << printMBBReference(*P.first) << ": {"; | 
 |       for (auto I : FIs) { | 
 |         dbgs() << " fi#" << I; | 
 |         if (LoxFIs.count(I)) | 
 |           dbgs() << '*'; | 
 |       } | 
 |       dbgs() << " }\n"; | 
 |     } | 
 |   }); | 
 |  | 
 | #ifndef NDEBUG | 
 |   bool HasOptLimit = SpillOptMax.getPosition(); | 
 | #endif | 
 |  | 
 |   // eliminate loads, when all loads eliminated, eliminate all stores. | 
 |   for (auto &B : MF) { | 
 |     auto F = BlockIndexes.find(&B); | 
 |     assert(F != BlockIndexes.end()); | 
 |     HexagonBlockRanges::InstrIndexMap &IM = F->second; | 
 |     HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM); | 
 |     HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM); | 
 |     LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n" | 
 |                       << HexagonBlockRanges::PrintRangeMap(DM, HRI)); | 
 |  | 
 |     for (auto FI : BlockFIMap[&B]) { | 
 |       if (BadFIs.count(FI)) | 
 |         continue; | 
 |       LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n'); | 
 |       HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; | 
 |       for (auto &Range : RL) { | 
 |         LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n'); | 
 |         if (!IndexType::isInstr(Range.start()) || | 
 |             !IndexType::isInstr(Range.end())) | 
 |           continue; | 
 |         MachineInstr &SI = *IM.getInstr(Range.start()); | 
 |         MachineInstr &EI = *IM.getInstr(Range.end()); | 
 |         assert(SI.mayStore() && "Unexpected start instruction"); | 
 |         assert(EI.mayLoad() && "Unexpected end instruction"); | 
 |         MachineOperand &SrcOp = SI.getOperand(2); | 
 |  | 
 |         HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(), | 
 |                                                   SrcOp.getSubReg() }; | 
 |         auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI); | 
 |         // The this-> is needed to unconfuse MSVC. | 
 |         Register FoundR = this->findPhysReg(MF, Range, IM, DM, RC); | 
 |         LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI) | 
 |                           << '\n'); | 
 |         if (FoundR == 0) | 
 |           continue; | 
 | #ifndef NDEBUG | 
 |         if (HasOptLimit) { | 
 |           if (SpillOptCount >= SpillOptMax) | 
 |             return; | 
 |           SpillOptCount++; | 
 |         } | 
 | #endif | 
 |  | 
 |         // Generate the copy-in: "FoundR = COPY SrcR" at the store location. | 
 |         MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt; | 
 |         MachineInstr *CopyIn = nullptr; | 
 |         if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) { | 
 |           const DebugLoc &DL = SI.getDebugLoc(); | 
 |           CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR) | 
 |                        .add(SrcOp); | 
 |         } | 
 |  | 
 |         ++StartIt; | 
 |         // Check if this is a last store and the FI is live-on-exit. | 
 |         if (LoxFIs.count(FI) && (&Range == &RL.back())) { | 
 |           // Update store's source register. | 
 |           if (unsigned SR = SrcOp.getSubReg()) | 
 |             SrcOp.setReg(HRI.getSubReg(FoundR, SR)); | 
 |           else | 
 |             SrcOp.setReg(FoundR); | 
 |           SrcOp.setSubReg(0); | 
 |           // We are keeping this register live. | 
 |           SrcOp.setIsKill(false); | 
 |         } else { | 
 |           B.erase(&SI); | 
 |           IM.replaceInstr(&SI, CopyIn); | 
 |         } | 
 |  | 
 |         auto EndIt = std::next(EI.getIterator()); | 
 |         for (auto It = StartIt; It != EndIt; It = NextIt) { | 
 |           MachineInstr &MI = *It; | 
 |           NextIt = std::next(It); | 
 |           int TFI; | 
 |           if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI) | 
 |             continue; | 
 |           Register DstR = MI.getOperand(0).getReg(); | 
 |           assert(MI.getOperand(0).getSubReg() == 0); | 
 |           MachineInstr *CopyOut = nullptr; | 
 |           if (DstR != FoundR) { | 
 |             DebugLoc DL = MI.getDebugLoc(); | 
 |             unsigned MemSize = HII.getMemAccessSize(MI); | 
 |             assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset); | 
 |             unsigned CopyOpc = TargetOpcode::COPY; | 
 |             if (HII.isSignExtendingLoad(MI)) | 
 |               CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth; | 
 |             else if (HII.isZeroExtendingLoad(MI)) | 
 |               CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth; | 
 |             CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR) | 
 |                         .addReg(FoundR, getKillRegState(&MI == &EI)); | 
 |           } | 
 |           IM.replaceInstr(&MI, CopyOut); | 
 |           B.erase(It); | 
 |         } | 
 |  | 
 |         // Update the dead map. | 
 |         HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 }; | 
 |         for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI)) | 
 |           DM[RR].subtract(Range); | 
 |       } // for Range in range list | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void HexagonFrameLowering::expandAlloca(MachineInstr *AI, | 
 |       const HexagonInstrInfo &HII, Register SP, unsigned CF) const { | 
 |   MachineBasicBlock &MB = *AI->getParent(); | 
 |   DebugLoc DL = AI->getDebugLoc(); | 
 |   unsigned A = AI->getOperand(2).getImm(); | 
 |  | 
 |   // Have | 
 |   //    Rd  = alloca Rs, #A | 
 |   // | 
 |   // If Rs and Rd are different registers, use this sequence: | 
 |   //    Rd  = sub(r29, Rs) | 
 |   //    r29 = sub(r29, Rs) | 
 |   //    Rd  = and(Rd, #-A)    ; if necessary | 
 |   //    r29 = and(r29, #-A)   ; if necessary | 
 |   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A | 
 |   // otherwise, do | 
 |   //    Rd  = sub(r29, Rs) | 
 |   //    Rd  = and(Rd, #-A)    ; if necessary | 
 |   //    r29 = Rd | 
 |   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A | 
 |  | 
 |   MachineOperand &RdOp = AI->getOperand(0); | 
 |   MachineOperand &RsOp = AI->getOperand(1); | 
 |   Register Rd = RdOp.getReg(), Rs = RsOp.getReg(); | 
 |  | 
 |   // Rd = sub(r29, Rs) | 
 |   BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd) | 
 |       .addReg(SP) | 
 |       .addReg(Rs); | 
 |   if (Rs != Rd) { | 
 |     // r29 = sub(r29, Rs) | 
 |     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP) | 
 |         .addReg(SP) | 
 |         .addReg(Rs); | 
 |   } | 
 |   if (A > 8) { | 
 |     // Rd  = and(Rd, #-A) | 
 |     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd) | 
 |         .addReg(Rd) | 
 |         .addImm(-int64_t(A)); | 
 |     if (Rs != Rd) | 
 |       BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP) | 
 |           .addReg(SP) | 
 |           .addImm(-int64_t(A)); | 
 |   } | 
 |   if (Rs == Rd) { | 
 |     // r29 = Rd | 
 |     BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP) | 
 |         .addReg(Rd); | 
 |   } | 
 |   if (CF > 0) { | 
 |     // Rd = add(Rd, #CF) | 
 |     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd) | 
 |         .addReg(Rd) | 
 |         .addImm(CF); | 
 |   } | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const { | 
 |   const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   if (!MFI.hasVarSizedObjects()) | 
 |     return false; | 
 |   // Do not check for max stack object alignment here, because the stack | 
 |   // may not be complete yet. Assume that we will need PS_aligna if there | 
 |   // are variable-sized objects. | 
 |   return true; | 
 | } | 
 |  | 
 | const MachineInstr *HexagonFrameLowering::getAlignaInstr( | 
 |       const MachineFunction &MF) const { | 
 |   for (auto &B : MF) | 
 |     for (auto &I : B) | 
 |       if (I.getOpcode() == Hexagon::PS_aligna) | 
 |         return &I; | 
 |   return nullptr; | 
 | } | 
 |  | 
 | /// Adds all callee-saved registers as implicit uses or defs to the | 
 | /// instruction. | 
 | void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI, | 
 |       const CSIVect &CSI, bool IsDef, bool IsKill) const { | 
 |   // Add the callee-saved registers as implicit uses. | 
 |   for (auto &R : CSI) | 
 |     MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill)); | 
 | } | 
 |  | 
 | /// Determine whether the callee-saved register saves and restores should | 
 | /// be generated via inline code. If this function returns "true", inline | 
 | /// code will be generated. If this function returns "false", additional | 
 | /// checks are performed, which may still lead to the inline code. | 
 | bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF, | 
 |       const CSIVect &CSI) const { | 
 |   if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) | 
 |     return true; | 
 |   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) | 
 |     return true; | 
 |   if (!hasFP(MF)) | 
 |     return true; | 
 |   if (!isOptSize(MF) && !isMinSize(MF)) | 
 |     if (MF.getTarget().getOptLevel() > CodeGenOptLevel::Default) | 
 |       return true; | 
 |  | 
 |   // Check if CSI only has double registers, and if the registers form | 
 |   // a contiguous block starting from D8. | 
 |   BitVector Regs(Hexagon::NUM_TARGET_REGS); | 
 |   for (const CalleeSavedInfo &I : CSI) { | 
 |     MCRegister R = I.getReg(); | 
 |     if (!Hexagon::DoubleRegsRegClass.contains(R)) | 
 |       return true; | 
 |     Regs[R] = true; | 
 |   } | 
 |   int F = Regs.find_first(); | 
 |   if (F != Hexagon::D8) | 
 |     return true; | 
 |   while (F >= 0) { | 
 |     int N = Regs.find_next(F); | 
 |     if (N >= 0 && N != F+1) | 
 |       return true; | 
 |     F = N; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF, | 
 |       const CSIVect &CSI) const { | 
 |   if (shouldInlineCSR(MF, CSI)) | 
 |     return false; | 
 |   unsigned NumCSI = CSI.size(); | 
 |   if (NumCSI <= 1) | 
 |     return false; | 
 |  | 
 |   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs | 
 |                                      : SpillFuncThreshold; | 
 |   return Threshold < NumCSI; | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF, | 
 |       const CSIVect &CSI) const { | 
 |   if (shouldInlineCSR(MF, CSI)) | 
 |     return false; | 
 |   // The restore functions do a bit more than just restoring registers. | 
 |   // The non-returning versions will go back directly to the caller's | 
 |   // caller, others will clean up the stack frame in preparation for | 
 |   // a tail call. Using them can still save code size even if only one | 
 |   // register is getting restores. Make the decision based on -Oz: | 
 |   // using -Os will use inline restore for a single register. | 
 |   if (isMinSize(MF)) | 
 |     return true; | 
 |   unsigned NumCSI = CSI.size(); | 
 |   if (NumCSI <= 1) | 
 |     return false; | 
 |  | 
 |   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1 | 
 |                                      : SpillFuncThreshold; | 
 |   return Threshold < NumCSI; | 
 | } | 
 |  | 
 | bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const { | 
 |   unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF); | 
 |   auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
 |   // A fairly simplistic guess as to whether a potential load/store to a | 
 |   // stack location could require an extra register. | 
 |   if (HST.useHVXOps() && StackSize > 256) | 
 |     return true; | 
 |  | 
 |   // Check if the function has store-immediate instructions that access | 
 |   // the stack. Since the offset field is not extendable, if the stack | 
 |   // size exceeds the offset limit (6 bits, shifted), the stores will | 
 |   // require a new base register. | 
 |   bool HasImmStack = false; | 
 |   unsigned MinLS = ~0u;   // Log_2 of the memory access size. | 
 |  | 
 |   for (const MachineBasicBlock &B : MF) { | 
 |     for (const MachineInstr &MI : B) { | 
 |       unsigned LS = 0; | 
 |       switch (MI.getOpcode()) { | 
 |         case Hexagon::S4_storeirit_io: | 
 |         case Hexagon::S4_storeirif_io: | 
 |         case Hexagon::S4_storeiri_io: | 
 |           ++LS; | 
 |           [[fallthrough]]; | 
 |         case Hexagon::S4_storeirht_io: | 
 |         case Hexagon::S4_storeirhf_io: | 
 |         case Hexagon::S4_storeirh_io: | 
 |           ++LS; | 
 |           [[fallthrough]]; | 
 |         case Hexagon::S4_storeirbt_io: | 
 |         case Hexagon::S4_storeirbf_io: | 
 |         case Hexagon::S4_storeirb_io: | 
 |           if (MI.getOperand(0).isFI()) | 
 |             HasImmStack = true; | 
 |           MinLS = std::min(MinLS, LS); | 
 |           break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (HasImmStack) | 
 |     return !isUInt<6>(StackSize >> MinLS); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | namespace { | 
 | // Struct used by orderFrameObjects to help sort the stack objects. | 
 | struct HexagonFrameSortingObject { | 
 |   bool IsValid = false; | 
 |   unsigned Index = 0; // Index of Object into MFI list. | 
 |   unsigned Size = 0; | 
 |   Align ObjectAlignment = Align(1); // Alignment of Object in bytes. | 
 | }; | 
 |  | 
 | struct HexagonFrameSortingComparator { | 
 |   inline bool operator()(const HexagonFrameSortingObject &A, | 
 |                          const HexagonFrameSortingObject &B) const { | 
 |     return std::make_tuple(!A.IsValid, A.ObjectAlignment, A.Size) < | 
 |            std::make_tuple(!B.IsValid, B.ObjectAlignment, B.Size); | 
 |   } | 
 | }; | 
 | } // namespace | 
 |  | 
 | // Sort objects on the stack by alignment value and then by size to minimize | 
 | // padding. | 
 | void HexagonFrameLowering::orderFrameObjects( | 
 |     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { | 
 |  | 
 |   if (ObjectsToAllocate.empty()) | 
 |     return; | 
 |  | 
 |   const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   int NObjects = ObjectsToAllocate.size(); | 
 |  | 
 |   // Create an array of all MFI objects. | 
 |   SmallVector<HexagonFrameSortingObject> SortingObjects( | 
 |       MFI.getObjectIndexEnd()); | 
 |  | 
 |   for (int i = 0, j = 0, e = MFI.getObjectIndexEnd(); i < e && j != NObjects; | 
 |        ++i) { | 
 |     if (i != ObjectsToAllocate[j]) | 
 |       continue; | 
 |     j++; | 
 |  | 
 |     // A variable size object has size equal to 0. Since Hexagon sets | 
 |     // getUseLocalStackAllocationBlock() to true, a local block is allocated | 
 |     // earlier. This case is not handled here for now. | 
 |     int Size = MFI.getObjectSize(i); | 
 |     if (Size == 0) | 
 |       return; | 
 |  | 
 |     SortingObjects[i].IsValid = true; | 
 |     SortingObjects[i].Index = i; | 
 |     SortingObjects[i].Size = Size; | 
 |     SortingObjects[i].ObjectAlignment = MFI.getObjectAlign(i); | 
 |   } | 
 |  | 
 |   // Sort objects by alignment and then by size. | 
 |   llvm::stable_sort(SortingObjects, HexagonFrameSortingComparator()); | 
 |  | 
 |   // Modify the original list to represent the final order. | 
 |   int i = NObjects; | 
 |   for (auto &Obj : SortingObjects) { | 
 |     if (i == 0) | 
 |       break; | 
 |     ObjectsToAllocate[--i] = Obj.Index; | 
 |   } | 
 | } |