blob: 9495c9ffc47aac18806dbad65ac852e2144eb081 [file] [log] [blame]
//==-- AArch64ISelLowering.h - AArch64 DAG Lowering Interface ----*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that AArch64 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64ISELLOWERING_H
#define LLVM_LIB_TARGET_AARCH64_AARCH64ISELLOWERING_H
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Instruction.h"
namespace llvm {
class AArch64TargetMachine;
namespace AArch64 {
/// Possible values of current rounding mode, which is specified in bits
/// 23:22 of FPCR.
enum Rounding {
RN = 0, // Round to Nearest
RP = 1, // Round towards Plus infinity
RM = 2, // Round towards Minus infinity
RZ = 3, // Round towards Zero
rmMask = 3 // Bit mask selecting rounding mode
};
// Bit position of rounding mode bits in FPCR.
const unsigned RoundingBitsPos = 22;
// Reserved bits should be preserved when modifying FPCR.
const uint64_t ReservedFPControlBits = 0xfffffffff80040f8;
// Registers used to pass function arguments.
ArrayRef<MCPhysReg> getGPRArgRegs();
ArrayRef<MCPhysReg> getFPRArgRegs();
/// Maximum allowed number of unprobed bytes above SP at an ABI
/// boundary.
const unsigned StackProbeMaxUnprobedStack = 1024;
/// Maximum number of iterations to unroll for a constant size probing loop.
const unsigned StackProbeMaxLoopUnroll = 4;
} // namespace AArch64
namespace ARM64AS {
enum : unsigned { PTR32_SPTR = 270, PTR32_UPTR = 271, PTR64 = 272 };
}
class AArch64Subtarget;
class AArch64TargetLowering : public TargetLowering {
public:
explicit AArch64TargetLowering(const TargetMachine &TM,
const AArch64Subtarget &STI);
const AArch64TargetMachine &getTM() const;
/// Control the following reassociation of operands: (op (op x, c1), y) -> (op
/// (op x, y), c1) where N0 is (op x, c1) and N1 is y.
bool isReassocProfitable(SelectionDAG &DAG, SDValue N0,
SDValue N1) const override;
/// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg) const;
/// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFn *CCAssignFnForReturn(CallingConv::ID CC) const;
/// Determine which of the bits specified in Mask are known to be either zero
/// or one and return them in the KnownZero/KnownOne bitsets.
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth = 0) const override;
unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const override;
MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const override {
if ((AS == ARM64AS::PTR32_SPTR) || (AS == ARM64AS::PTR32_UPTR)) {
// These are 32-bit pointers created using the `__ptr32` extension or
// similar. They are handled by marking them as being in a different
// address space, and will be extended to 64-bits when used as the target
// of a load or store operation, or cast to a 64-bit pointer type.
return MVT::i32;
} else {
// Returning i64 unconditionally here (i.e. even for ILP32) means that the
// *DAG* representation of pointers will always be 64-bits. They will be
// truncated and extended when transferred to memory, but the 64-bit DAG
// allows us to use AArch64's addressing modes much more easily.
return MVT::i64;
}
}
unsigned getVectorIdxWidth(const DataLayout &DL) const override {
// The VectorIdx type is i64, with both normal and ilp32.
return 64;
}
bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
const APInt &DemandedElts,
TargetLoweringOpt &TLO) const override;
MVT getScalarShiftAmountTy(const DataLayout &DL, EVT) const override;
/// Returns true if the target allows unaligned memory accesses of the
/// specified type.
bool allowsMisalignedMemoryAccesses(
EVT VT, unsigned AddrSpace = 0, Align Alignment = Align(1),
MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
unsigned *Fast = nullptr) const override;
/// LLT variant.
bool allowsMisalignedMemoryAccesses(LLT Ty, unsigned AddrSpace,
Align Alignment,
MachineMemOperand::Flags Flags,
unsigned *Fast = nullptr) const override;
/// Provide custom lowering hooks for some operations.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
/// This method returns a target specific FastISel object, or null if the
/// target does not support "fast" ISel.
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const override;
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
bool isFPImmLegal(const APFloat &Imm, EVT VT,
bool ForCodeSize) const override;
/// Return true if the given shuffle mask can be codegen'd directly, or if it
/// should be stack expanded.
bool isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const override;
/// Similar to isShuffleMaskLegal. Return true is the given 'select with zero'
/// shuffle mask can be codegen'd directly.
bool isVectorClearMaskLegal(ArrayRef<int> M, EVT VT) const override;
/// Return the ISD::SETCC ValueType.
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
EVT VT) const override;
SDValue ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const;
MachineBasicBlock *EmitF128CSEL(MachineInstr &MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitDynamicProbedAlloc(MachineInstr &MI,
MachineBasicBlock *MBB) const;
MachineBasicBlock *EmitCheckMatchingVL(MachineInstr &MI,
MachineBasicBlock *MBB) const;
MachineBasicBlock *EmitTileLoad(unsigned Opc, unsigned BaseReg,
MachineInstr &MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitFill(MachineInstr &MI, MachineBasicBlock *BB) const;
MachineBasicBlock *EmitZAInstr(unsigned Opc, unsigned BaseReg,
MachineInstr &MI, MachineBasicBlock *BB) const;
MachineBasicBlock *EmitZTInstr(MachineInstr &MI, MachineBasicBlock *BB,
unsigned Opcode, bool Op0IsDef) const;
MachineBasicBlock *EmitZero(MachineInstr &MI, MachineBasicBlock *BB) const;
// Note: The following group of functions are only used as part of the old SME
// ABI lowering. They will be removed once -aarch64-new-sme-abi=true is the
// default.
MachineBasicBlock *EmitInitTPIDR2Object(MachineInstr &MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitAllocateZABuffer(MachineInstr &MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitAllocateSMESaveBuffer(MachineInstr &MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitGetSMESaveSize(MachineInstr &MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitEntryPStateSM(MachineInstr &MI,
MachineBasicBlock *BB) const;
/// Replace (0, vreg) discriminator components with the operands of blend
/// or with (immediate, NoRegister) when possible.
void fixupPtrauthDiscriminator(MachineInstr &MI, MachineBasicBlock *BB,
MachineOperand &IntDiscOp,
MachineOperand &AddrDiscOp,
const TargetRegisterClass *AddrDiscRC) const;
MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *MBB) const override;
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const override;
bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT,
std::optional<unsigned> ByteOffset) const override;
bool shouldRemoveRedundantExtend(SDValue Op) const override;
bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
bool isTruncateFree(EVT VT1, EVT VT2) const override;
bool isProfitableToHoist(Instruction *I) const override;
bool isZExtFree(Type *Ty1, Type *Ty2) const override;
bool isZExtFree(EVT VT1, EVT VT2) const override;
bool isZExtFree(SDValue Val, EVT VT2) const override;
bool optimizeExtendOrTruncateConversion(
Instruction *I, Loop *L, const TargetTransformInfo &TTI) const override;
bool hasPairedLoad(EVT LoadedType, Align &RequiredAlignment) const override;
unsigned getMaxSupportedInterleaveFactor() const override { return 4; }
bool lowerInterleavedLoad(Instruction *Load, Value *Mask,
ArrayRef<ShuffleVectorInst *> Shuffles,
ArrayRef<unsigned> Indices, unsigned Factor,
const APInt &GapMask) const override;
bool lowerInterleavedStore(Instruction *Store, Value *Mask,
ShuffleVectorInst *SVI, unsigned Factor,
const APInt &GapMask) const override;
bool lowerDeinterleaveIntrinsicToLoad(Instruction *Load, Value *Mask,
IntrinsicInst *DI) const override;
bool lowerInterleaveIntrinsicToStore(
Instruction *Store, Value *Mask,
ArrayRef<Value *> InterleaveValues) const override;
bool isLegalAddImmediate(int64_t) const override;
bool isLegalAddScalableImmediate(int64_t) const override;
bool isLegalICmpImmediate(int64_t) const override;
bool isMulAddWithConstProfitable(SDValue AddNode,
SDValue ConstNode) const override;
bool shouldConsiderGEPOffsetSplit() const override;
EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op,
const AttributeList &FuncAttributes) const override;
LLT getOptimalMemOpLLT(const MemOp &Op,
const AttributeList &FuncAttributes) const override;
/// Return true if the addressing mode represented by AM is legal for this
/// target, for a load/store of the specified type.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
unsigned AS,
Instruction *I = nullptr) const override;
int64_t getPreferredLargeGEPBaseOffset(int64_t MinOffset,
int64_t MaxOffset) const override;
/// Return true if an FMA operation is faster than a pair of fmul and fadd
/// instructions. fmuladd intrinsics will be expanded to FMAs when this method
/// returns true, otherwise fmuladd is expanded to fmul + fadd.
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
EVT VT) const override;
bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const override;
bool generateFMAsInMachineCombiner(EVT VT,
CodeGenOptLevel OptLevel) const override;
/// Return true if the target has native support for
/// the specified value type and it is 'desirable' to use the type for the
/// given node type.
bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
ArrayRef<MCPhysReg> getRoundingControlRegisters() const override;
/// Returns false if N is a bit extraction pattern of (X >> C) & Mask.
bool isDesirableToCommuteWithShift(const SDNode *N,
CombineLevel Level) const override;
bool isDesirableToPullExtFromShl(const MachineInstr &MI) const override {
return false;
}
/// Returns false if N is a bit extraction pattern of (X >> C) & Mask.
bool isDesirableToCommuteXorWithShift(const SDNode *N) const override;
/// Return true if it is profitable to fold a pair of shifts into a mask.
bool shouldFoldConstantShiftPairToMask(const SDNode *N) const override;
/// Return true if it is profitable to fold a pair of shifts into a mask.
bool shouldFoldMaskToVariableShiftPair(SDValue Y) const override {
EVT VT = Y.getValueType();
if (VT.isVector())
return false;
return VT.getScalarSizeInBits() <= 64;
}
bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode, EVT VT,
unsigned SelectOpcode, SDValue X,
SDValue Y) const override;
/// Returns true if it is beneficial to convert a load of a constant
/// to just the constant itself.
bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const override;
/// Return true if EXTRACT_SUBVECTOR is cheap for this result type
/// with this index.
bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
unsigned Index) const override;
bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
bool MathUsed) const override {
// Using overflow ops for overflow checks only should beneficial on
// AArch64.
return TargetLowering::shouldFormOverflowOp(Opcode, VT, true);
}
Value *emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, Value *Addr,
AtomicOrdering Ord) const override;
Value *emitStoreConditional(IRBuilderBase &Builder, Value *Val, Value *Addr,
AtomicOrdering Ord) const override;
void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const override;
bool isOpSuitableForLDPSTP(const Instruction *I) const;
bool isOpSuitableForLSE128(const Instruction *I) const;
bool isOpSuitableForRCPC3(const Instruction *I) const;
bool shouldInsertFencesForAtomic(const Instruction *I) const override;
bool
shouldInsertTrailingFenceForAtomicStore(const Instruction *I) const override;
TargetLoweringBase::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
TargetLoweringBase::AtomicExpansionKind
shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
TargetLoweringBase::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
TargetLoweringBase::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override;
bool useLoadStackGuardNode(const Module &M) const override;
TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT) const override;
/// If the target has a standard location for the stack protector cookie,
/// returns the address of that location. Otherwise, returns nullptr.
Value *getIRStackGuard(IRBuilderBase &IRB) const override;
void insertSSPDeclarations(Module &M) const override;
Function *getSSPStackGuardCheck(const Module &M) const override;
/// If the target has a standard location for the unsafe stack pointer,
/// returns the address of that location. Otherwise, returns nullptr.
Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const override;
/// If a physical register, this returns the register that receives the
/// exception address on entry to an EH pad.
Register
getExceptionPointerRegister(const Constant *PersonalityFn) const override;
/// If a physical register, this returns the register that receives the
/// exception typeid on entry to a landing pad.
Register
getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
bool isIntDivCheap(EVT VT, AttributeList Attr) const override;
bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
const MachineFunction &MF) const override;
bool isCheapToSpeculateCttz(Type *) const override {
return true;
}
bool isCheapToSpeculateCtlz(Type *) const override {
return true;
}
bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
bool hasAndNotCompare(SDValue V) const override {
// We can use bics for any scalar.
return V.getValueType().isScalarInteger();
}
bool hasAndNot(SDValue Y) const override {
EVT VT = Y.getValueType();
if (!VT.isVector())
return hasAndNotCompare(Y);
if (VT.isScalableVector())
return true;
return VT.getFixedSizeInBits() >= 64; // vector 'bic'
}
bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
unsigned OldShiftOpcode, unsigned NewShiftOpcode,
SelectionDAG &DAG) const override;
ShiftLegalizationStrategy
preferredShiftLegalizationStrategy(SelectionDAG &DAG, SDNode *N,
unsigned ExpansionFactor) const override;
bool shouldTransformSignedTruncationCheck(EVT XVT,
unsigned KeptBits) const override {
// For vectors, we don't have a preference..
if (XVT.isVector())
return false;
auto VTIsOk = [](EVT VT) -> bool {
return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
VT == MVT::i64;
};
// We are ok with KeptBitsVT being byte/word/dword, what SXT supports.
// XVT will be larger than KeptBitsVT.
MVT KeptBitsVT = MVT::getIntegerVT(KeptBits);
return VTIsOk(XVT) && VTIsOk(KeptBitsVT);
}
bool preferIncOfAddToSubOfNot(EVT VT) const override;
bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const override;
bool preferSelectsOverBooleanArithmetic(EVT VT) const override;
bool isComplexDeinterleavingSupported() const override;
bool isComplexDeinterleavingOperationSupported(
ComplexDeinterleavingOperation Operation, Type *Ty) const override;
Value *createComplexDeinterleavingIR(
IRBuilderBase &B, ComplexDeinterleavingOperation OperationType,
ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB,
Value *Accumulator = nullptr) const override;
bool supportSplitCSR(MachineFunction *MF) const override {
return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
}
void initializeSplitCSR(MachineBasicBlock *Entry) const override;
void insertCopiesSplitCSR(
MachineBasicBlock *Entry,
const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
bool supportSwiftError() const override {
return true;
}
bool supportPtrAuthBundles() const override { return true; }
bool supportKCFIBundles() const override { return true; }
MachineInstr *EmitKCFICheck(MachineBasicBlock &MBB,
MachineBasicBlock::instr_iterator &MBBI,
const TargetInstrInfo *TII) const override;
/// Enable aggressive FMA fusion on targets that want it.
bool enableAggressiveFMAFusion(EVT VT) const override;
bool aggressivelyPreferBuildVectorSources(EVT VecVT) const override {
return true;
}
/// Returns the size of the platform's va_list object.
unsigned getVaListSizeInBits(const DataLayout &DL) const override;
/// Returns true if \p VecTy is a legal interleaved access type. This
/// function checks the vector element type and the overall width of the
/// vector.
bool isLegalInterleavedAccessType(VectorType *VecTy, const DataLayout &DL,
bool &UseScalable) const;
/// Returns the number of interleaved accesses that will be generated when
/// lowering accesses of the given type.
unsigned getNumInterleavedAccesses(VectorType *VecTy, const DataLayout &DL,
bool UseScalable) const;
MachineMemOperand::Flags getTargetMMOFlags(
const Instruction &I) const override;
bool functionArgumentNeedsConsecutiveRegisters(
Type *Ty, CallingConv::ID CallConv, bool isVarArg,
const DataLayout &DL) const override;
/// Used for exception handling on Win64.
bool needsFixedCatchObjects() const override;
bool fallBackToDAGISel(const Instruction &Inst) const override;
/// SVE code generation for fixed length vectors does not custom lower
/// BUILD_VECTOR. This makes BUILD_VECTOR legalisation a source of stores to
/// merge. However, merging them creates a BUILD_VECTOR that is just as
/// illegal as the original, thus leading to an infinite legalisation loop.
/// NOTE: Once BUILD_VECTOR is legal or can be custom lowered for all legal
/// vector types this override can be removed.
bool mergeStoresAfterLegalization(EVT VT) const override;
// If the platform/function should have a redzone, return the size in bytes.
unsigned getRedZoneSize(const Function &F) const {
if (F.hasFnAttribute(Attribute::NoRedZone))
return 0;
return 128;
}
bool isAllActivePredicate(SelectionDAG &DAG, SDValue N) const;
EVT getPromotedVTForPredicate(EVT VT) const;
EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty,
bool AllowUnknown = false) const override;
bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const override;
bool shouldExpandCttzElements(EVT VT) const override;
bool shouldExpandVectorMatch(EVT VT, unsigned SearchSize) const override;
/// If a change in streaming mode is required on entry to/return from a
/// function call it emits and returns the corresponding SMSTART or SMSTOP
/// node. \p Condition should be one of the enum values from
/// AArch64SME::ToggleCondition.
SDValue changeStreamingMode(SelectionDAG &DAG, SDLoc DL, bool Enable,
SDValue Chain, SDValue InGlue, unsigned Condition,
bool InsertVectorLengthCheck = false) const;
bool isVScaleKnownToBeAPowerOfTwo() const override { return true; }
// Normally SVE is only used for byte size vectors that do not fit within a
// NEON vector. This changes when OverrideNEON is true, allowing SVE to be
// used for 64bit and 128bit vectors as well.
bool useSVEForFixedLengthVectorVT(EVT VT, bool OverrideNEON = false) const;
// Follow NEON ABI rules even when using SVE for fixed length vectors.
MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC,
EVT VT) const override;
unsigned getNumRegistersForCallingConv(LLVMContext &Context,
CallingConv::ID CC,
EVT VT) const override;
unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context,
CallingConv::ID CC, EVT VT,
EVT &IntermediateVT,
unsigned &NumIntermediates,
MVT &RegisterVT) const override;
/// True if stack clash protection is enabled for this functions.
bool hasInlineStackProbe(const MachineFunction &MF) const override;
/// In AArch64, true if FEAT_CPA is present. Allows pointer arithmetic
/// semantics to be preserved for instruction selection.
bool shouldPreservePtrArith(const Function &F, EVT PtrVT) const override;
private:
/// Keep a pointer to the AArch64Subtarget around so that we can
/// make the right decision when generating code for different targets.
const AArch64Subtarget *Subtarget;
bool isExtFreeImpl(const Instruction *Ext) const override;
void addTypeForNEON(MVT VT);
void addTypeForFixedLengthSVE(MVT VT);
void addDRType(MVT VT);
void addQRType(MVT VT);
bool shouldExpandBuildVectorWithShuffles(EVT, unsigned) const override;
SDValue lowerEHPadEntry(SDValue Chain, SDLoc const &DL,
SelectionDAG &DAG) const override;
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const override;
void AdjustInstrPostInstrSelection(MachineInstr &MI,
SDNode *Node) const override;
SDValue LowerCall(CallLoweringInfo & /*CLI*/,
SmallVectorImpl<SDValue> &InVals) const override;
SDValue LowerCallResult(SDValue Chain, SDValue InGlue,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<CCValAssign> &RVLocs,
const SDLoc &DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
SDValue ThisVal, bool RequiresSMChange) const;
SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerStore128(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerABS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerMGATHER(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerMSCATTER(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECTOR_COMPRESS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
bool
isEligibleForTailCallOptimization(const CallLoweringInfo &CLI) const;
/// Finds the incoming stack arguments which overlap the given fixed stack
/// object and incorporates their load into the current chain. This prevents
/// an upcoming store from clobbering the stack argument before it's used.
SDValue addTokenForArgument(SDValue Chain, SelectionDAG &DAG,
MachineFrameInfo &MFI, int ClobberedFI) const;
bool DoesCalleeRestoreStack(CallingConv::ID CallCC, bool TailCallOpt) const;
void saveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG, const SDLoc &DL,
SDValue &Chain) const;
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context, const Type *RetTy) const override;
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
SelectionDAG &DAG) const override;
SDValue getTargetNode(GlobalAddressSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
SDValue getTargetNode(JumpTableSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
SDValue getTargetNode(ConstantPoolSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
SDValue getTargetNode(BlockAddressSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
SDValue getTargetNode(ExternalSymbolSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
template <class NodeTy>
SDValue getGOT(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const;
template <class NodeTy>
SDValue getAddrLarge(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const;
template <class NodeTy>
SDValue getAddr(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const;
template <class NodeTy>
SDValue getAddrTiny(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const;
SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDarwinGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerELFGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerELFTLSLocalExec(const GlobalValue *GV, SDValue ThreadBase,
const SDLoc &DL, SelectionDAG &DAG) const;
SDValue LowerELFTLSDescCallSeq(SDValue SymAddr, const SDLoc &DL,
SelectionDAG &DAG) const;
SDValue LowerWindowsGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerPtrAuthGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSELECT_CC(ISD::CondCode CC, SDValue LHS, SDValue RHS,
SDValue TVal, SDValue FVal,
iterator_range<SDNode::user_iterator> Users,
SDNodeFlags Flags, const SDLoc &dl,
SelectionDAG &DAG) const;
SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBR_JT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBRIND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerAAPCS_VASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDarwin_VASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerWin64_VASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSPONENTRY(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGET_FPMODE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSET_FPMODE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerRESET_FPMODE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDUPQLane(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerToPredicatedOp(SDValue Op, SelectionDAG &DAG,
unsigned NewOp) const;
SDValue LowerToScalableOp(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECTOR_SPLICE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECTOR_DEINTERLEAVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECTOR_INTERLEAVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECTOR_HISTOGRAM(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerPARTIAL_REDUCE_MLA(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGET_ACTIVE_LANE_MASK(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDIV(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVectorSRA_SRL_SHL(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCTPOP_PARITY(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBitreverse(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerMinMax(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVectorFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVectorXRINT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVectorOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerLOOP_DEPENDENCE_MASK(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVSCALE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECREDUCE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECREDUCE_MUL(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerATOMIC_LOAD_AND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerWindowsDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerInlineDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerAVG(SDValue Op, SelectionDAG &DAG, unsigned NewOp) const;
SDValue LowerFixedLengthVectorIntDivideToSVE(SDValue Op,
SelectionDAG &DAG) const;
SDValue LowerFixedLengthVectorIntExtendToSVE(SDValue Op,
SelectionDAG &DAG) const;
SDValue LowerFixedLengthVectorLoadToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthVectorMLoadToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECREDUCE_SEQ_FADD(SDValue ScalarOp, SelectionDAG &DAG) const;
SDValue LowerPredReductionToSVE(SDValue ScalarOp, SelectionDAG &DAG) const;
SDValue LowerReductionToSVE(unsigned Opcode, SDValue ScalarOp,
SelectionDAG &DAG) const;
SDValue LowerFixedLengthVectorSelectToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthVectorSetccToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthVectorStoreToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthVectorMStoreToSVE(SDValue Op,
SelectionDAG &DAG) const;
SDValue LowerFixedLengthVectorTruncateToSVE(SDValue Op,
SelectionDAG &DAG) const;
SDValue LowerFixedLengthExtractVectorElt(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthInsertVectorElt(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthBitcastToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthConcatVectorsToSVE(SDValue Op,
SelectionDAG &DAG) const;
SDValue LowerFixedLengthFPExtendToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthFPRoundToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthIntToFPToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthFPToIntToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthVECTOR_SHUFFLEToSVE(SDValue Op,
SelectionDAG &DAG) const;
SDValue LowerFixedLengthBuildVectorToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) const override;
SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) const override;
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
int &ExtraSteps, bool &UseOneConst,
bool Reciprocal) const override;
SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
int &ExtraSteps) const override;
SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
const DenormalMode &Mode) const override;
SDValue getSqrtResultForDenormInput(SDValue Operand,
SelectionDAG &DAG) const override;
unsigned combineRepeatedFPDivisors() const override;
ConstraintType getConstraintType(StringRef Constraint) const override;
Register getRegisterByName(const char* RegName, LLT VT,
const MachineFunction &MF) const override;
/// Examine constraint string and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo &info,
const char *constraint) const override;
std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint, MVT VT) const override;
const char *LowerXConstraint(EVT ConstraintVT) const override;
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const override;
InlineAsm::ConstraintCode
getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
if (ConstraintCode == "Q")
return InlineAsm::ConstraintCode::Q;
// FIXME: clang has code for 'Ump', 'Utf', 'Usa', and 'Ush' but these are
// followed by llvm_unreachable so we'll leave them unimplemented in
// the backend for now.
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
}
/// Handle Lowering flag assembly outputs.
SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag,
const SDLoc &DL,
const AsmOperandInfo &Constraint,
SelectionDAG &DAG) const override;
bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const override;
bool shouldRemoveExtendFromGSIndex(SDValue Extend, EVT DataVT) const override;
bool isVectorLoadExtDesirable(SDValue ExtVal) const override;
bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
bool getIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base,
SDValue &Offset, SelectionDAG &DAG) const;
bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const override;
bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base,
SDValue &Offset, ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const override;
bool isIndexingLegal(MachineInstr &MI, Register Base, Register Offset,
bool IsPre, MachineRegisterInfo &MRI) const override;
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const override;
void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const;
void ReplaceExtractSubVectorResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const;
void ReplaceGetActiveLaneMaskResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const;
bool shouldNormalizeToSelectSequence(LLVMContext &, EVT) const override;
void finalizeLowering(MachineFunction &MF) const override;
bool shouldLocalize(const MachineInstr &MI,
const TargetTransformInfo *TTI) const override;
bool SimplifyDemandedBitsForTargetNode(SDValue Op,
const APInt &OriginalDemandedBits,
const APInt &OriginalDemandedElts,
KnownBits &Known,
TargetLoweringOpt &TLO,
unsigned Depth) const override;
bool canCreateUndefOrPoisonForTargetNode(SDValue Op,
const APInt &DemandedElts,
const SelectionDAG &DAG,
bool PoisonOnly, bool ConsiderFlags,
unsigned Depth) const override;
bool isTargetCanonicalConstantNode(SDValue Op) const override;
// With the exception of data-predicate transitions, no instructions are
// required to cast between legal scalable vector types. However:
// 1. Packed and unpacked types have different bit lengths, meaning BITCAST
// is not universally useable.
// 2. Most unpacked integer types are not legal and thus integer extends
// cannot be used to convert between unpacked and packed types.
// These can make "bitcasting" a multiphase process. REINTERPRET_CAST is used
// to transition between unpacked and packed types of the same element type,
// with BITCAST used otherwise.
// This function does not handle predicate bitcasts.
SDValue getSVESafeBitCast(EVT VT, SDValue Op, SelectionDAG &DAG) const;
// Returns the runtime value for PSTATE.SM by generating a call to
// __arm_sme_state.
SDValue getRuntimePStateSM(SelectionDAG &DAG, SDValue Chain, SDLoc DL,
EVT VT) const;
bool preferScalarizeSplat(SDNode *N) const override;
unsigned getMinimumJumpTableEntries() const override;
bool softPromoteHalfType() const override { return true; }
bool shouldScalarizeBinop(SDValue VecOp) const override {
return VecOp.getOpcode() == ISD::SETCC;
}
bool hasMultipleConditionRegisters(EVT VT) const override {
return VT.isScalableVector();
}
};
namespace AArch64 {
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo);
} // end namespace AArch64
} // end namespace llvm
#endif