blob: 8c81bbe8e9c4ee177202c2a1988b83edd0c351cc [file] [log] [blame]
//===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for clang's and llvm's instrumentation based
// code coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/Coverage/CoverageMapping.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Object/BuildID.h"
#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <map>
#include <memory>
#include <optional>
#include <string>
#include <system_error>
#include <utility>
#include <vector>
using namespace llvm;
using namespace coverage;
#define DEBUG_TYPE "coverage-mapping"
Counter CounterExpressionBuilder::get(const CounterExpression &E) {
auto It = ExpressionIndices.find(E);
if (It != ExpressionIndices.end())
return Counter::getExpression(It->second);
unsigned I = Expressions.size();
Expressions.push_back(E);
ExpressionIndices[E] = I;
return Counter::getExpression(I);
}
void CounterExpressionBuilder::extractTerms(Counter C, int Factor,
SmallVectorImpl<Term> &Terms) {
switch (C.getKind()) {
case Counter::Zero:
break;
case Counter::CounterValueReference:
Terms.emplace_back(C.getCounterID(), Factor);
break;
case Counter::Expression:
const auto &E = Expressions[C.getExpressionID()];
extractTerms(E.LHS, Factor, Terms);
extractTerms(
E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms);
break;
}
}
Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
// Gather constant terms.
SmallVector<Term, 32> Terms;
extractTerms(ExpressionTree, +1, Terms);
// If there are no terms, this is just a zero. The algorithm below assumes at
// least one term.
if (Terms.size() == 0)
return Counter::getZero();
// Group the terms by counter ID.
llvm::sort(Terms, [](const Term &LHS, const Term &RHS) {
return LHS.CounterID < RHS.CounterID;
});
// Combine terms by counter ID to eliminate counters that sum to zero.
auto Prev = Terms.begin();
for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
if (I->CounterID == Prev->CounterID) {
Prev->Factor += I->Factor;
continue;
}
++Prev;
*Prev = *I;
}
Terms.erase(++Prev, Terms.end());
Counter C;
// Create additions. We do this before subtractions to avoid constructs like
// ((0 - X) + Y), as opposed to (Y - X).
for (auto T : Terms) {
if (T.Factor <= 0)
continue;
for (int I = 0; I < T.Factor; ++I)
if (C.isZero())
C = Counter::getCounter(T.CounterID);
else
C = get(CounterExpression(CounterExpression::Add, C,
Counter::getCounter(T.CounterID)));
}
// Create subtractions.
for (auto T : Terms) {
if (T.Factor >= 0)
continue;
for (int I = 0; I < -T.Factor; ++I)
C = get(CounterExpression(CounterExpression::Subtract, C,
Counter::getCounter(T.CounterID)));
}
return C;
}
Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) {
auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS));
return Simplify ? simplify(Cnt) : Cnt;
}
Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS,
bool Simplify) {
auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS));
return Simplify ? simplify(Cnt) : Cnt;
}
void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const {
switch (C.getKind()) {
case Counter::Zero:
OS << '0';
return;
case Counter::CounterValueReference:
OS << '#' << C.getCounterID();
break;
case Counter::Expression: {
if (C.getExpressionID() >= Expressions.size())
return;
const auto &E = Expressions[C.getExpressionID()];
OS << '(';
dump(E.LHS, OS);
OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
dump(E.RHS, OS);
OS << ')';
break;
}
}
if (CounterValues.empty())
return;
Expected<int64_t> Value = evaluate(C);
if (auto E = Value.takeError()) {
consumeError(std::move(E));
return;
}
OS << '[' << *Value << ']';
}
Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
struct StackElem {
Counter ICounter;
int64_t LHS = 0;
enum {
KNeverVisited = 0,
KVisitedOnce = 1,
KVisitedTwice = 2,
} VisitCount = KNeverVisited;
};
std::stack<StackElem> CounterStack;
CounterStack.push({C});
int64_t LastPoppedValue;
while (!CounterStack.empty()) {
StackElem &Current = CounterStack.top();
switch (Current.ICounter.getKind()) {
case Counter::Zero:
LastPoppedValue = 0;
CounterStack.pop();
break;
case Counter::CounterValueReference:
if (Current.ICounter.getCounterID() >= CounterValues.size())
return errorCodeToError(errc::argument_out_of_domain);
LastPoppedValue = CounterValues[Current.ICounter.getCounterID()];
CounterStack.pop();
break;
case Counter::Expression: {
if (Current.ICounter.getExpressionID() >= Expressions.size())
return errorCodeToError(errc::argument_out_of_domain);
const auto &E = Expressions[Current.ICounter.getExpressionID()];
if (Current.VisitCount == StackElem::KNeverVisited) {
CounterStack.push(StackElem{E.LHS});
Current.VisitCount = StackElem::KVisitedOnce;
} else if (Current.VisitCount == StackElem::KVisitedOnce) {
Current.LHS = LastPoppedValue;
CounterStack.push(StackElem{E.RHS});
Current.VisitCount = StackElem::KVisitedTwice;
} else {
int64_t LHS = Current.LHS;
int64_t RHS = LastPoppedValue;
LastPoppedValue =
E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS;
CounterStack.pop();
}
break;
}
}
}
return LastPoppedValue;
}
mcdc::TVIdxBuilder::TVIdxBuilder(const SmallVectorImpl<ConditionIDs> &NextIDs,
int Offset)
: Indices(NextIDs.size()) {
// Construct Nodes and set up each InCount
auto N = NextIDs.size();
SmallVector<MCDCNode> Nodes(N);
for (unsigned ID = 0; ID < N; ++ID) {
for (unsigned C = 0; C < 2; ++C) {
#ifndef NDEBUG
Indices[ID][C] = INT_MIN;
#endif
auto NextID = NextIDs[ID][C];
Nodes[ID].NextIDs[C] = NextID;
if (NextID >= 0)
++Nodes[NextID].InCount;
}
}
// Sort key ordered by <-Width, Ord>
SmallVector<std::tuple<int, /// -Width
unsigned, /// Ord
int, /// ID
unsigned /// Cond (0 or 1)
>>
Decisions;
// Traverse Nodes to assign Idx
SmallVector<int> Q;
assert(Nodes[0].InCount == 0);
Nodes[0].Width = 1;
Q.push_back(0);
unsigned Ord = 0;
while (!Q.empty()) {
auto IID = Q.begin();
int ID = *IID;
Q.erase(IID);
auto &Node = Nodes[ID];
assert(Node.Width > 0);
for (unsigned I = 0; I < 2; ++I) {
auto NextID = Node.NextIDs[I];
assert(NextID != 0 && "NextID should not point to the top");
if (NextID < 0) {
// Decision
Decisions.emplace_back(-Node.Width, Ord++, ID, I);
assert(Ord == Decisions.size());
continue;
}
// Inter Node
auto &NextNode = Nodes[NextID];
assert(NextNode.InCount > 0);
// Assign Idx
assert(Indices[ID][I] == INT_MIN);
Indices[ID][I] = NextNode.Width;
auto NextWidth = int64_t(NextNode.Width) + Node.Width;
if (NextWidth > HardMaxTVs) {
NumTestVectors = HardMaxTVs; // Overflow
return;
}
NextNode.Width = NextWidth;
// Ready if all incomings are processed.
// Or NextNode.Width hasn't been confirmed yet.
if (--NextNode.InCount == 0)
Q.push_back(NextID);
}
}
llvm::sort(Decisions);
// Assign TestVector Indices in Decision Nodes
int64_t CurIdx = 0;
for (auto [NegWidth, Ord, ID, C] : Decisions) {
int Width = -NegWidth;
assert(Nodes[ID].Width == Width);
assert(Nodes[ID].NextIDs[C] < 0);
assert(Indices[ID][C] == INT_MIN);
Indices[ID][C] = Offset + CurIdx;
CurIdx += Width;
if (CurIdx > HardMaxTVs) {
NumTestVectors = HardMaxTVs; // Overflow
return;
}
}
assert(CurIdx < HardMaxTVs);
NumTestVectors = CurIdx;
#ifndef NDEBUG
for (const auto &Idxs : Indices)
for (auto Idx : Idxs)
assert(Idx != INT_MIN);
SavedNodes = std::move(Nodes);
#endif
}
namespace {
/// Construct this->NextIDs with Branches for TVIdxBuilder to use it
/// before MCDCRecordProcessor().
class NextIDsBuilder {
protected:
SmallVector<mcdc::ConditionIDs> NextIDs;
public:
NextIDsBuilder(const ArrayRef<const CounterMappingRegion *> Branches)
: NextIDs(Branches.size()) {
#ifndef NDEBUG
DenseSet<mcdc::ConditionID> SeenIDs;
#endif
for (const auto *Branch : Branches) {
const auto &BranchParams = Branch->getBranchParams();
assert(SeenIDs.insert(BranchParams.ID).second && "Duplicate CondID");
NextIDs[BranchParams.ID] = BranchParams.Conds;
}
assert(SeenIDs.size() == Branches.size());
}
};
class MCDCRecordProcessor : NextIDsBuilder, mcdc::TVIdxBuilder {
/// A bitmap representing the executed test vectors for a boolean expression.
/// Each index of the bitmap corresponds to a possible test vector. An index
/// with a bit value of '1' indicates that the corresponding Test Vector
/// identified by that index was executed.
const BitVector &Bitmap;
/// Decision Region to which the ExecutedTestVectorBitmap applies.
const CounterMappingRegion &Region;
const mcdc::DecisionParameters &DecisionParams;
/// Array of branch regions corresponding each conditions in the boolean
/// expression.
ArrayRef<const CounterMappingRegion *> Branches;
/// Total number of conditions in the boolean expression.
unsigned NumConditions;
/// Vector used to track whether a condition is constant folded.
MCDCRecord::BoolVector Folded;
/// Mapping of calculated MC/DC Independence Pairs for each condition.
MCDCRecord::TVPairMap IndependencePairs;
/// Storage for ExecVectors
/// ExecVectors is the alias of its 0th element.
std::array<MCDCRecord::TestVectors, 2> ExecVectorsByCond;
/// Actual executed Test Vectors for the boolean expression, based on
/// ExecutedTestVectorBitmap.
MCDCRecord::TestVectors &ExecVectors;
/// Number of False items in ExecVectors
unsigned NumExecVectorsF;
#ifndef NDEBUG
DenseSet<unsigned> TVIdxs;
#endif
public:
MCDCRecordProcessor(const BitVector &Bitmap,
const CounterMappingRegion &Region,
ArrayRef<const CounterMappingRegion *> Branches)
: NextIDsBuilder(Branches), TVIdxBuilder(this->NextIDs), Bitmap(Bitmap),
Region(Region), DecisionParams(Region.getDecisionParams()),
Branches(Branches), NumConditions(DecisionParams.NumConditions),
Folded(NumConditions, false), IndependencePairs(NumConditions),
ExecVectors(ExecVectorsByCond[false]) {}
private:
// Walk the binary decision diagram and try assigning both false and true to
// each node. When a terminal node (ID == 0) is reached, fill in the value in
// the truth table.
void buildTestVector(MCDCRecord::TestVector &TV, mcdc::ConditionID ID,
int TVIdx) {
for (auto MCDCCond : {MCDCRecord::MCDC_False, MCDCRecord::MCDC_True}) {
static_assert(MCDCRecord::MCDC_False == 0);
static_assert(MCDCRecord::MCDC_True == 1);
TV.set(ID, MCDCCond);
auto NextID = NextIDs[ID][MCDCCond];
auto NextTVIdx = TVIdx + Indices[ID][MCDCCond];
assert(NextID == SavedNodes[ID].NextIDs[MCDCCond]);
if (NextID >= 0) {
buildTestVector(TV, NextID, NextTVIdx);
continue;
}
assert(TVIdx < SavedNodes[ID].Width);
assert(TVIdxs.insert(NextTVIdx).second && "Duplicate TVIdx");
if (!Bitmap[DecisionParams.BitmapIdx * CHAR_BIT + TV.getIndex()])
continue;
// Copy the completed test vector to the vector of testvectors.
// The final value (T,F) is equal to the last non-dontcare state on the
// path (in a short-circuiting system).
ExecVectorsByCond[MCDCCond].push_back({TV, MCDCCond});
}
// Reset back to DontCare.
TV.set(ID, MCDCRecord::MCDC_DontCare);
}
/// Walk the bits in the bitmap. A bit set to '1' indicates that the test
/// vector at the corresponding index was executed during a test run.
void findExecutedTestVectors() {
// Walk the binary decision diagram to enumerate all possible test vectors.
// We start at the root node (ID == 0) with all values being DontCare.
// `TVIdx` starts with 0 and is in the traversal.
// `Index` encodes the bitmask of true values and is initially 0.
MCDCRecord::TestVector TV(NumConditions);
buildTestVector(TV, 0, 0);
assert(TVIdxs.size() == unsigned(NumTestVectors) &&
"TVIdxs wasn't fulfilled");
// Fill ExecVectors order by False items and True items.
// ExecVectors is the alias of ExecVectorsByCond[false], so
// Append ExecVectorsByCond[true] on it.
NumExecVectorsF = ExecVectors.size();
auto &ExecVectorsT = ExecVectorsByCond[true];
ExecVectors.append(std::make_move_iterator(ExecVectorsT.begin()),
std::make_move_iterator(ExecVectorsT.end()));
}
// Find an independence pair for each condition:
// - The condition is true in one test and false in the other.
// - The decision outcome is true one test and false in the other.
// - All other conditions' values must be equal or marked as "don't care".
void findIndependencePairs() {
unsigned NumTVs = ExecVectors.size();
for (unsigned I = NumExecVectorsF; I < NumTVs; ++I) {
const auto &[A, ACond] = ExecVectors[I];
assert(ACond == MCDCRecord::MCDC_True);
for (unsigned J = 0; J < NumExecVectorsF; ++J) {
const auto &[B, BCond] = ExecVectors[J];
assert(BCond == MCDCRecord::MCDC_False);
// If the two vectors differ in exactly one condition, ignoring DontCare
// conditions, we have found an independence pair.
auto AB = A.getDifferences(B);
if (AB.count() == 1)
IndependencePairs.insert(
{AB.find_first(), std::make_pair(J + 1, I + 1)});
}
}
}
public:
/// Process the MC/DC Record in order to produce a result for a boolean
/// expression. This process includes tracking the conditions that comprise
/// the decision region, calculating the list of all possible test vectors,
/// marking the executed test vectors, and then finding an Independence Pair
/// out of the executed test vectors for each condition in the boolean
/// expression. A condition is tracked to ensure that its ID can be mapped to
/// its ordinal position in the boolean expression. The condition's source
/// location is also tracked, as well as whether it is constant folded (in
/// which case it is excuded from the metric).
MCDCRecord processMCDCRecord() {
unsigned I = 0;
MCDCRecord::CondIDMap PosToID;
MCDCRecord::LineColPairMap CondLoc;
// Walk the Record's BranchRegions (representing Conditions) in order to:
// - Hash the condition based on its corresponding ID. This will be used to
// calculate the test vectors.
// - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its
// actual ID. This will be used to visualize the conditions in the
// correct order.
// - Keep track of the condition source location. This will be used to
// visualize where the condition is.
// - Record whether the condition is constant folded so that we exclude it
// from being measured.
for (const auto *B : Branches) {
const auto &BranchParams = B->getBranchParams();
PosToID[I] = BranchParams.ID;
CondLoc[I] = B->startLoc();
Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero());
}
// Using Profile Bitmap from runtime, mark the executed test vectors.
findExecutedTestVectors();
// Compare executed test vectors against each other to find an independence
// pairs for each condition. This processing takes the most time.
findIndependencePairs();
// Record Test vectors, executed vectors, and independence pairs.
return MCDCRecord(Region, std::move(ExecVectors),
std::move(IndependencePairs), std::move(Folded),
std::move(PosToID), std::move(CondLoc));
}
};
} // namespace
Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion(
const CounterMappingRegion &Region,
ArrayRef<const CounterMappingRegion *> Branches) {
MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches);
return MCDCProcessor.processMCDCRecord();
}
unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const {
struct StackElem {
Counter ICounter;
int64_t LHS = 0;
enum {
KNeverVisited = 0,
KVisitedOnce = 1,
KVisitedTwice = 2,
} VisitCount = KNeverVisited;
};
std::stack<StackElem> CounterStack;
CounterStack.push({C});
int64_t LastPoppedValue;
while (!CounterStack.empty()) {
StackElem &Current = CounterStack.top();
switch (Current.ICounter.getKind()) {
case Counter::Zero:
LastPoppedValue = 0;
CounterStack.pop();
break;
case Counter::CounterValueReference:
LastPoppedValue = Current.ICounter.getCounterID();
CounterStack.pop();
break;
case Counter::Expression: {
if (Current.ICounter.getExpressionID() >= Expressions.size()) {
LastPoppedValue = 0;
CounterStack.pop();
} else {
const auto &E = Expressions[Current.ICounter.getExpressionID()];
if (Current.VisitCount == StackElem::KNeverVisited) {
CounterStack.push(StackElem{E.LHS});
Current.VisitCount = StackElem::KVisitedOnce;
} else if (Current.VisitCount == StackElem::KVisitedOnce) {
Current.LHS = LastPoppedValue;
CounterStack.push(StackElem{E.RHS});
Current.VisitCount = StackElem::KVisitedTwice;
} else {
int64_t LHS = Current.LHS;
int64_t RHS = LastPoppedValue;
LastPoppedValue = std::max(LHS, RHS);
CounterStack.pop();
}
}
break;
}
}
}
return LastPoppedValue;
}
void FunctionRecordIterator::skipOtherFiles() {
while (Current != Records.end() && !Filename.empty() &&
Filename != Current->Filenames[0])
++Current;
if (Current == Records.end())
*this = FunctionRecordIterator();
}
ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename(
StringRef Filename) const {
size_t FilenameHash = hash_value(Filename);
auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash);
if (RecordIt == FilenameHash2RecordIndices.end())
return {};
return RecordIt->second;
}
static unsigned getMaxCounterID(const CounterMappingContext &Ctx,
const CoverageMappingRecord &Record) {
unsigned MaxCounterID = 0;
for (const auto &Region : Record.MappingRegions) {
MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count));
}
return MaxCounterID;
}
/// Returns the bit count
static unsigned getMaxBitmapSize(const CounterMappingContext &Ctx,
const CoverageMappingRecord &Record) {
unsigned MaxBitmapIdx = 0;
unsigned NumConditions = 0;
// Scan max(BitmapIdx).
// Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid
// and `MaxBitmapIdx is `unsigned`. `BitmapIdx` is unique in the record.
for (const auto &Region : reverse(Record.MappingRegions)) {
if (Region.Kind != CounterMappingRegion::MCDCDecisionRegion)
continue;
const auto &DecisionParams = Region.getDecisionParams();
if (MaxBitmapIdx <= DecisionParams.BitmapIdx) {
MaxBitmapIdx = DecisionParams.BitmapIdx;
NumConditions = DecisionParams.NumConditions;
}
}
unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT);
return MaxBitmapIdx * CHAR_BIT + SizeInBits;
}
namespace {
/// Collect Decisions, Branchs, and Expansions and associate them.
class MCDCDecisionRecorder {
private:
/// This holds the DecisionRegion and MCDCBranches under it.
/// Also traverses Expansion(s).
/// The Decision has the number of MCDCBranches and will complete
/// when it is filled with unique ConditionID of MCDCBranches.
struct DecisionRecord {
const CounterMappingRegion *DecisionRegion;
/// They are reflected from DecisionRegion for convenience.
mcdc::DecisionParameters DecisionParams;
LineColPair DecisionStartLoc;
LineColPair DecisionEndLoc;
/// This is passed to `MCDCRecordProcessor`, so this should be compatible
/// to`ArrayRef<const CounterMappingRegion *>`.
SmallVector<const CounterMappingRegion *> MCDCBranches;
/// IDs that are stored in MCDCBranches
/// Complete when all IDs (1 to NumConditions) are met.
DenseSet<mcdc::ConditionID> ConditionIDs;
/// Set of IDs of Expansion(s) that are relevant to DecisionRegion
/// and its children (via expansions).
/// FileID pointed by ExpandedFileID is dedicated to the expansion, so
/// the location in the expansion doesn't matter.
DenseSet<unsigned> ExpandedFileIDs;
DecisionRecord(const CounterMappingRegion &Decision)
: DecisionRegion(&Decision),
DecisionParams(Decision.getDecisionParams()),
DecisionStartLoc(Decision.startLoc()),
DecisionEndLoc(Decision.endLoc()) {
assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion);
}
/// Determine whether DecisionRecord dominates `R`.
bool dominates(const CounterMappingRegion &R) const {
// Determine whether `R` is included in `DecisionRegion`.
if (R.FileID == DecisionRegion->FileID &&
R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc)
return true;
// Determine whether `R` is pointed by any of Expansions.
return ExpandedFileIDs.contains(R.FileID);
}
enum Result {
NotProcessed = 0, /// Irrelevant to this Decision
Processed, /// Added to this Decision
Completed, /// Added and filled this Decision
};
/// Add Branch into the Decision
/// \param Branch expects MCDCBranchRegion
/// \returns NotProcessed/Processed/Completed
Result addBranch(const CounterMappingRegion &Branch) {
assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion);
auto ConditionID = Branch.getBranchParams().ID;
if (ConditionIDs.contains(ConditionID) ||
ConditionID >= DecisionParams.NumConditions)
return NotProcessed;
if (!this->dominates(Branch))
return NotProcessed;
assert(MCDCBranches.size() < DecisionParams.NumConditions);
// Put `ID=0` in front of `MCDCBranches` for convenience
// even if `MCDCBranches` is not topological.
if (ConditionID == 0)
MCDCBranches.insert(MCDCBranches.begin(), &Branch);
else
MCDCBranches.push_back(&Branch);
// Mark `ID` as `assigned`.
ConditionIDs.insert(ConditionID);
// `Completed` when `MCDCBranches` is full
return (MCDCBranches.size() == DecisionParams.NumConditions ? Completed
: Processed);
}
/// Record Expansion if it is relevant to this Decision.
/// Each `Expansion` may nest.
/// \returns true if recorded.
bool recordExpansion(const CounterMappingRegion &Expansion) {
if (!this->dominates(Expansion))
return false;
ExpandedFileIDs.insert(Expansion.ExpandedFileID);
return true;
}
};
private:
/// Decisions in progress
/// DecisionRecord is added for each MCDCDecisionRegion.
/// DecisionRecord is removed when Decision is completed.
SmallVector<DecisionRecord> Decisions;
public:
~MCDCDecisionRecorder() {
assert(Decisions.empty() && "All Decisions have not been resolved");
}
/// Register Region and start recording.
void registerDecision(const CounterMappingRegion &Decision) {
Decisions.emplace_back(Decision);
}
void recordExpansion(const CounterMappingRegion &Expansion) {
any_of(Decisions, [&Expansion](auto &Decision) {
return Decision.recordExpansion(Expansion);
});
}
using DecisionAndBranches =
std::pair<const CounterMappingRegion *, /// Decision
SmallVector<const CounterMappingRegion *> /// Branches
>;
/// Add MCDCBranchRegion to DecisionRecord.
/// \param Branch to be processed
/// \returns DecisionsAndBranches if DecisionRecord completed.
/// Or returns nullopt.
std::optional<DecisionAndBranches>
processBranch(const CounterMappingRegion &Branch) {
// Seek each Decision and apply Region to it.
for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end();
DecisionIter != DecisionEnd; ++DecisionIter)
switch (DecisionIter->addBranch(Branch)) {
case DecisionRecord::NotProcessed:
continue;
case DecisionRecord::Processed:
return std::nullopt;
case DecisionRecord::Completed:
DecisionAndBranches Result =
std::make_pair(DecisionIter->DecisionRegion,
std::move(DecisionIter->MCDCBranches));
Decisions.erase(DecisionIter); // No longer used.
return Result;
}
llvm_unreachable("Branch not found in Decisions");
}
};
} // namespace
Error CoverageMapping::loadFunctionRecord(
const CoverageMappingRecord &Record,
IndexedInstrProfReader &ProfileReader) {
StringRef OrigFuncName = Record.FunctionName;
if (OrigFuncName.empty())
return make_error<CoverageMapError>(coveragemap_error::malformed,
"record function name is empty");
if (Record.Filenames.empty())
OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
else
OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);
CounterMappingContext Ctx(Record.Expressions);
std::vector<uint64_t> Counts;
if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName,
Record.FunctionHash, Counts)) {
instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E)));
if (IPE == instrprof_error::hash_mismatch) {
FuncHashMismatches.emplace_back(std::string(Record.FunctionName),
Record.FunctionHash);
return Error::success();
}
if (IPE != instrprof_error::unknown_function)
return make_error<InstrProfError>(IPE);
Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0);
}
Ctx.setCounts(Counts);
BitVector Bitmap;
if (Error E = ProfileReader.getFunctionBitmap(Record.FunctionName,
Record.FunctionHash, Bitmap)) {
instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E)));
if (IPE == instrprof_error::hash_mismatch) {
FuncHashMismatches.emplace_back(std::string(Record.FunctionName),
Record.FunctionHash);
return Error::success();
}
if (IPE != instrprof_error::unknown_function)
return make_error<InstrProfError>(IPE);
Bitmap = BitVector(getMaxBitmapSize(Ctx, Record));
}
Ctx.setBitmap(std::move(Bitmap));
assert(!Record.MappingRegions.empty() && "Function has no regions");
// This coverage record is a zero region for a function that's unused in
// some TU, but used in a different TU. Ignore it. The coverage maps from the
// the other TU will either be loaded (providing full region counts) or they
// won't (in which case we don't unintuitively report functions as uncovered
// when they have non-zero counts in the profile).
if (Record.MappingRegions.size() == 1 &&
Record.MappingRegions[0].Count.isZero() && Counts[0] > 0)
return Error::success();
MCDCDecisionRecorder MCDCDecisions;
FunctionRecord Function(OrigFuncName, Record.Filenames);
for (const auto &Region : Record.MappingRegions) {
// MCDCDecisionRegion should be handled first since it overlaps with
// others inside.
if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) {
MCDCDecisions.registerDecision(Region);
continue;
}
Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
if (auto E = ExecutionCount.takeError()) {
consumeError(std::move(E));
return Error::success();
}
Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount);
if (auto E = AltExecutionCount.takeError()) {
consumeError(std::move(E));
return Error::success();
}
Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount,
ProfileReader.hasSingleByteCoverage());
// Record ExpansionRegion.
if (Region.Kind == CounterMappingRegion::ExpansionRegion) {
MCDCDecisions.recordExpansion(Region);
continue;
}
// Do nothing unless MCDCBranchRegion.
if (Region.Kind != CounterMappingRegion::MCDCBranchRegion)
continue;
auto Result = MCDCDecisions.processBranch(Region);
if (!Result) // Any Decision doesn't complete.
continue;
auto MCDCDecision = Result->first;
auto &MCDCBranches = Result->second;
// Since the bitmap identifies the executed test vectors for an MC/DC
// DecisionRegion, all of the information is now available to process.
// This is where the bulk of the MC/DC progressing takes place.
Expected<MCDCRecord> Record =
Ctx.evaluateMCDCRegion(*MCDCDecision, MCDCBranches);
if (auto E = Record.takeError()) {
consumeError(std::move(E));
return Error::success();
}
// Save the MC/DC Record so that it can be visualized later.
Function.pushMCDCRecord(std::move(*Record));
}
// Don't create records for (filenames, function) pairs we've already seen.
auto FilenamesHash = hash_combine_range(Record.Filenames.begin(),
Record.Filenames.end());
if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second)
return Error::success();
Functions.push_back(std::move(Function));
// Performance optimization: keep track of the indices of the function records
// which correspond to each filename. This can be used to substantially speed
// up queries for coverage info in a file.
unsigned RecordIndex = Functions.size() - 1;
for (StringRef Filename : Record.Filenames) {
auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)];
// Note that there may be duplicates in the filename set for a function
// record, because of e.g. macro expansions in the function in which both
// the macro and the function are defined in the same file.
if (RecordIndices.empty() || RecordIndices.back() != RecordIndex)
RecordIndices.push_back(RecordIndex);
}
return Error::success();
}
// This function is for memory optimization by shortening the lifetimes
// of CoverageMappingReader instances.
Error CoverageMapping::loadFromReaders(
ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) {
for (const auto &CoverageReader : CoverageReaders) {
for (auto RecordOrErr : *CoverageReader) {
if (Error E = RecordOrErr.takeError())
return E;
const auto &Record = *RecordOrErr;
if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader))
return E;
}
}
return Error::success();
}
Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
IndexedInstrProfReader &ProfileReader) {
auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage))
return std::move(E);
return std::move(Coverage);
}
// If E is a no_data_found error, returns success. Otherwise returns E.
static Error handleMaybeNoDataFoundError(Error E) {
return handleErrors(
std::move(E), [](const CoverageMapError &CME) {
if (CME.get() == coveragemap_error::no_data_found)
return static_cast<Error>(Error::success());
return make_error<CoverageMapError>(CME.get(), CME.getMessage());
});
}
Error CoverageMapping::loadFromFile(
StringRef Filename, StringRef Arch, StringRef CompilationDir,
IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage,
bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) {
auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(
Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false);
if (std::error_code EC = CovMappingBufOrErr.getError())
return createFileError(Filename, errorCodeToError(EC));
MemoryBufferRef CovMappingBufRef =
CovMappingBufOrErr.get()->getMemBufferRef();
SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers;
SmallVector<object::BuildIDRef> BinaryIDs;
auto CoverageReadersOrErr = BinaryCoverageReader::create(
CovMappingBufRef, Arch, Buffers, CompilationDir,
FoundBinaryIDs ? &BinaryIDs : nullptr);
if (Error E = CoverageReadersOrErr.takeError()) {
E = handleMaybeNoDataFoundError(std::move(E));
if (E)
return createFileError(Filename, std::move(E));
return E;
}
SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers;
for (auto &Reader : CoverageReadersOrErr.get())
Readers.push_back(std::move(Reader));
if (FoundBinaryIDs && !Readers.empty()) {
llvm::append_range(*FoundBinaryIDs,
llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) {
return object::BuildID(BID);
}));
}
DataFound |= !Readers.empty();
if (Error E = loadFromReaders(Readers, ProfileReader, Coverage))
return createFileError(Filename, std::move(E));
return Error::success();
}
Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename,
vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir,
const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) {
auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS);
if (Error E = ProfileReaderOrErr.takeError())
return createFileError(ProfileFilename, std::move(E));
auto ProfileReader = std::move(ProfileReaderOrErr.get());
auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
bool DataFound = false;
auto GetArch = [&](size_t Idx) {
if (Arches.empty())
return StringRef();
if (Arches.size() == 1)
return Arches.front();
return Arches[Idx];
};
SmallVector<object::BuildID> FoundBinaryIDs;
for (const auto &File : llvm::enumerate(ObjectFilenames)) {
if (Error E =
loadFromFile(File.value(), GetArch(File.index()), CompilationDir,
*ProfileReader, *Coverage, DataFound, &FoundBinaryIDs))
return std::move(E);
}
if (BIDFetcher) {
std::vector<object::BuildID> ProfileBinaryIDs;
if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs))
return createFileError(ProfileFilename, std::move(E));
SmallVector<object::BuildIDRef> BinaryIDsToFetch;
if (!ProfileBinaryIDs.empty()) {
const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) {
return std::lexicographical_compare(A.begin(), A.end(), B.begin(),
B.end());
};
llvm::sort(FoundBinaryIDs, Compare);
std::set_difference(
ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(),
FoundBinaryIDs.begin(), FoundBinaryIDs.end(),
std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare);
}
for (object::BuildIDRef BinaryID : BinaryIDsToFetch) {
std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID);
if (PathOpt) {
std::string Path = std::move(*PathOpt);
StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef();
if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader,
*Coverage, DataFound))
return std::move(E);
} else if (CheckBinaryIDs) {
return createFileError(
ProfileFilename,
createStringError(errc::no_such_file_or_directory,
"Missing binary ID: " +
llvm::toHex(BinaryID, /*LowerCase=*/true)));
}
}
}
if (!DataFound)
return createFileError(
join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "),
make_error<CoverageMapError>(coveragemap_error::no_data_found));
return std::move(Coverage);
}
namespace {
/// Distributes functions into instantiation sets.
///
/// An instantiation set is a collection of functions that have the same source
/// code, ie, template functions specializations.
class FunctionInstantiationSetCollector {
using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>;
MapT InstantiatedFunctions;
public:
void insert(const FunctionRecord &Function, unsigned FileID) {
auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
while (I != E && I->FileID != FileID)
++I;
assert(I != E && "function does not cover the given file");
auto &Functions = InstantiatedFunctions[I->startLoc()];
Functions.push_back(&Function);
}
MapT::iterator begin() { return InstantiatedFunctions.begin(); }
MapT::iterator end() { return InstantiatedFunctions.end(); }
};
class SegmentBuilder {
std::vector<CoverageSegment> &Segments;
SmallVector<const CountedRegion *, 8> ActiveRegions;
SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {}
/// Emit a segment with the count from \p Region starting at \p StartLoc.
//
/// \p IsRegionEntry: The segment is at the start of a new non-gap region.
/// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
void startSegment(const CountedRegion &Region, LineColPair StartLoc,
bool IsRegionEntry, bool EmitSkippedRegion = false) {
bool HasCount = !EmitSkippedRegion &&
(Region.Kind != CounterMappingRegion::SkippedRegion);
// If the new segment wouldn't affect coverage rendering, skip it.
if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) {
const auto &Last = Segments.back();
if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount &&
!Last.IsRegionEntry)
return;
}
if (HasCount)
Segments.emplace_back(StartLoc.first, StartLoc.second,
Region.ExecutionCount, IsRegionEntry,
Region.Kind == CounterMappingRegion::GapRegion);
else
Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry);
LLVM_DEBUG({
const auto &Last = Segments.back();
dbgs() << "Segment at " << Last.Line << ":" << Last.Col
<< " (count = " << Last.Count << ")"
<< (Last.IsRegionEntry ? ", RegionEntry" : "")
<< (!Last.HasCount ? ", Skipped" : "")
<< (Last.IsGapRegion ? ", Gap" : "") << "\n";
});
}
/// Emit segments for active regions which end before \p Loc.
///
/// \p Loc: The start location of the next region. If std::nullopt, all active
/// regions are completed.
/// \p FirstCompletedRegion: Index of the first completed region.
void completeRegionsUntil(std::optional<LineColPair> Loc,
unsigned FirstCompletedRegion) {
// Sort the completed regions by end location. This makes it simple to
// emit closing segments in sorted order.
auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion;
std::stable_sort(CompletedRegionsIt, ActiveRegions.end(),
[](const CountedRegion *L, const CountedRegion *R) {
return L->endLoc() < R->endLoc();
});
// Emit segments for all completed regions.
for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E;
++I) {
const auto *CompletedRegion = ActiveRegions[I];
assert((!Loc || CompletedRegion->endLoc() <= *Loc) &&
"Completed region ends after start of new region");
const auto *PrevCompletedRegion = ActiveRegions[I - 1];
auto CompletedSegmentLoc = PrevCompletedRegion->endLoc();
// Don't emit any more segments if they start where the new region begins.
if (Loc && CompletedSegmentLoc == *Loc)
break;
// Don't emit a segment if the next completed region ends at the same
// location as this one.
if (CompletedSegmentLoc == CompletedRegion->endLoc())
continue;
// Use the count from the last completed region which ends at this loc.
for (unsigned J = I + 1; J < E; ++J)
if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc())
CompletedRegion = ActiveRegions[J];
startSegment(*CompletedRegion, CompletedSegmentLoc, false);
}
auto Last = ActiveRegions.back();
if (FirstCompletedRegion && Last->endLoc() != *Loc) {
// If there's a gap after the end of the last completed region and the
// start of the new region, use the last active region to fill the gap.
startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(),
false);
} else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) {
// Emit a skipped segment if there are no more active regions. This
// ensures that gaps between functions are marked correctly.
startSegment(*Last, Last->endLoc(), false, true);
}
// Pop the completed regions.
ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end());
}
void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) {
for (const auto &CR : enumerate(Regions)) {
auto CurStartLoc = CR.value().startLoc();
// Active regions which end before the current region need to be popped.
auto CompletedRegions =
std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(),
[&](const CountedRegion *Region) {
return !(Region->endLoc() <= CurStartLoc);
});
if (CompletedRegions != ActiveRegions.end()) {
unsigned FirstCompletedRegion =
std::distance(ActiveRegions.begin(), CompletedRegions);
completeRegionsUntil(CurStartLoc, FirstCompletedRegion);
}
bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion;
// Try to emit a segment for the current region.
if (CurStartLoc == CR.value().endLoc()) {
// Avoid making zero-length regions active. If it's the last region,
// emit a skipped segment. Otherwise use its predecessor's count.
const bool Skipped =
(CR.index() + 1) == Regions.size() ||
CR.value().Kind == CounterMappingRegion::SkippedRegion;
startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(),
CurStartLoc, !GapRegion, Skipped);
// If it is skipped segment, create a segment with last pushed
// regions's count at CurStartLoc.
if (Skipped && !ActiveRegions.empty())
startSegment(*ActiveRegions.back(), CurStartLoc, false);
continue;
}
if (CR.index() + 1 == Regions.size() ||
CurStartLoc != Regions[CR.index() + 1].startLoc()) {
// Emit a segment if the next region doesn't start at the same location
// as this one.
startSegment(CR.value(), CurStartLoc, !GapRegion);
}
// This region is active (i.e not completed).
ActiveRegions.push_back(&CR.value());
}
// Complete any remaining active regions.
if (!ActiveRegions.empty())
completeRegionsUntil(std::nullopt, 0);
}
/// Sort a nested sequence of regions from a single file.
static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) {
llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) {
if (LHS.startLoc() != RHS.startLoc())
return LHS.startLoc() < RHS.startLoc();
if (LHS.endLoc() != RHS.endLoc())
// When LHS completely contains RHS, we sort LHS first.
return RHS.endLoc() < LHS.endLoc();
// If LHS and RHS cover the same area, we need to sort them according
// to their kinds so that the most suitable region will become "active"
// in combineRegions(). Because we accumulate counter values only from
// regions of the same kind as the first region of the area, prefer
// CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
static_assert(CounterMappingRegion::CodeRegion <
CounterMappingRegion::ExpansionRegion &&
CounterMappingRegion::ExpansionRegion <
CounterMappingRegion::SkippedRegion,
"Unexpected order of region kind values");
return LHS.Kind < RHS.Kind;
});
}
/// Combine counts of regions which cover the same area.
static ArrayRef<CountedRegion>
combineRegions(MutableArrayRef<CountedRegion> Regions) {
if (Regions.empty())
return Regions;
auto Active = Regions.begin();
auto End = Regions.end();
for (auto I = Regions.begin() + 1; I != End; ++I) {
if (Active->startLoc() != I->startLoc() ||
Active->endLoc() != I->endLoc()) {
// Shift to the next region.
++Active;
if (Active != I)
*Active = *I;
continue;
}
// Merge duplicate region.
// If CodeRegions and ExpansionRegions cover the same area, it's probably
// a macro which is fully expanded to another macro. In that case, we need
// to accumulate counts only from CodeRegions, or else the area will be
// counted twice.
// On the other hand, a macro may have a nested macro in its body. If the
// outer macro is used several times, the ExpansionRegion for the nested
// macro will also be added several times. These ExpansionRegions cover
// the same source locations and have to be combined to reach the correct
// value for that area.
// We add counts of the regions of the same kind as the active region
// to handle the both situations.
if (I->Kind == Active->Kind) {
assert(I->HasSingleByteCoverage == Active->HasSingleByteCoverage &&
"Regions are generated in different coverage modes");
if (I->HasSingleByteCoverage)
Active->ExecutionCount = Active->ExecutionCount || I->ExecutionCount;
else
Active->ExecutionCount += I->ExecutionCount;
}
}
return Regions.drop_back(std::distance(++Active, End));
}
public:
/// Build a sorted list of CoverageSegments from a list of Regions.
static std::vector<CoverageSegment>
buildSegments(MutableArrayRef<CountedRegion> Regions) {
std::vector<CoverageSegment> Segments;
SegmentBuilder Builder(Segments);
sortNestedRegions(Regions);
ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions);
LLVM_DEBUG({
dbgs() << "Combined regions:\n";
for (const auto &CR : CombinedRegions)
dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> "
<< CR.LineEnd << ":" << CR.ColumnEnd
<< " (count=" << CR.ExecutionCount << ")\n";
});
Builder.buildSegmentsImpl(CombinedRegions);
#ifndef NDEBUG
for (unsigned I = 1, E = Segments.size(); I < E; ++I) {
const auto &L = Segments[I - 1];
const auto &R = Segments[I];
if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) {
if (L.Line == R.Line && L.Col == R.Col && !L.HasCount)
continue;
LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col
<< " followed by " << R.Line << ":" << R.Col << "\n");
assert(false && "Coverage segments not unique or sorted");
}
}
#endif
return Segments;
}
};
} // end anonymous namespace
std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
std::vector<StringRef> Filenames;
for (const auto &Function : getCoveredFunctions())
llvm::append_range(Filenames, Function.Filenames);
llvm::sort(Filenames);
auto Last = std::unique(Filenames.begin(), Filenames.end());
Filenames.erase(Last, Filenames.end());
return Filenames;
}
static SmallBitVector gatherFileIDs(StringRef SourceFile,
const FunctionRecord &Function) {
SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
if (SourceFile == Function.Filenames[I])
FilenameEquivalence[I] = true;
return FilenameEquivalence;
}
/// Return the ID of the file where the definition of the function is located.
static std::optional<unsigned>
findMainViewFileID(const FunctionRecord &Function) {
SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
for (const auto &CR : Function.CountedRegions)
if (CR.Kind == CounterMappingRegion::ExpansionRegion)
IsNotExpandedFile[CR.ExpandedFileID] = false;
int I = IsNotExpandedFile.find_first();
if (I == -1)
return std::nullopt;
return I;
}
/// Check if SourceFile is the file that contains the definition of
/// the Function. Return the ID of the file in that case or std::nullopt
/// otherwise.
static std::optional<unsigned>
findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) {
std::optional<unsigned> I = findMainViewFileID(Function);
if (I && SourceFile == Function.Filenames[*I])
return I;
return std::nullopt;
}
static bool isExpansion(const CountedRegion &R, unsigned FileID) {
return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
}
CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const {
CoverageData FileCoverage(Filename);
std::vector<CountedRegion> Regions;
// Look up the function records in the given file. Due to hash collisions on
// the filename, we may get back some records that are not in the file.
ArrayRef<unsigned> RecordIndices =
getImpreciseRecordIndicesForFilename(Filename);
for (unsigned RecordIndex : RecordIndices) {
const FunctionRecord &Function = Functions[RecordIndex];
auto MainFileID = findMainViewFileID(Filename, Function);
auto FileIDs = gatherFileIDs(Filename, Function);
for (const auto &CR : Function.CountedRegions)
if (FileIDs.test(CR.FileID)) {
Regions.push_back(CR);
if (MainFileID && isExpansion(CR, *MainFileID))
FileCoverage.Expansions.emplace_back(CR, Function);
}
// Capture branch regions specific to the function (excluding expansions).
for (const auto &CR : Function.CountedBranchRegions)
if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID))
FileCoverage.BranchRegions.push_back(CR);
// Capture MCDC records specific to the function.
for (const auto &MR : Function.MCDCRecords)
if (FileIDs.test(MR.getDecisionRegion().FileID))
FileCoverage.MCDCRecords.push_back(MR);
}
LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
FileCoverage.Segments = SegmentBuilder::buildSegments(Regions);
return FileCoverage;
}
std::vector<InstantiationGroup>
CoverageMapping::getInstantiationGroups(StringRef Filename) const {
FunctionInstantiationSetCollector InstantiationSetCollector;
// Look up the function records in the given file. Due to hash collisions on
// the filename, we may get back some records that are not in the file.
ArrayRef<unsigned> RecordIndices =
getImpreciseRecordIndicesForFilename(Filename);
for (unsigned RecordIndex : RecordIndices) {
const FunctionRecord &Function = Functions[RecordIndex];
auto MainFileID = findMainViewFileID(Filename, Function);
if (!MainFileID)
continue;
InstantiationSetCollector.insert(Function, *MainFileID);
}
std::vector<InstantiationGroup> Result;
for (auto &InstantiationSet : InstantiationSetCollector) {
InstantiationGroup IG{InstantiationSet.first.first,
InstantiationSet.first.second,
std::move(InstantiationSet.second)};
Result.emplace_back(std::move(IG));
}
return Result;
}
CoverageData
CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const {
auto MainFileID = findMainViewFileID(Function);
if (!MainFileID)
return CoverageData();
CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
std::vector<CountedRegion> Regions;
for (const auto &CR : Function.CountedRegions)
if (CR.FileID == *MainFileID) {
Regions.push_back(CR);
if (isExpansion(CR, *MainFileID))
FunctionCoverage.Expansions.emplace_back(CR, Function);
}
// Capture branch regions specific to the function (excluding expansions).
for (const auto &CR : Function.CountedBranchRegions)
if (CR.FileID == *MainFileID)
FunctionCoverage.BranchRegions.push_back(CR);
// Capture MCDC records specific to the function.
for (const auto &MR : Function.MCDCRecords)
if (MR.getDecisionRegion().FileID == *MainFileID)
FunctionCoverage.MCDCRecords.push_back(MR);
LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name
<< "\n");
FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
return FunctionCoverage;
}
CoverageData CoverageMapping::getCoverageForExpansion(
const ExpansionRecord &Expansion) const {
CoverageData ExpansionCoverage(
Expansion.Function.Filenames[Expansion.FileID]);
std::vector<CountedRegion> Regions;
for (const auto &CR : Expansion.Function.CountedRegions)
if (CR.FileID == Expansion.FileID) {
Regions.push_back(CR);
if (isExpansion(CR, Expansion.FileID))
ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
}
for (const auto &CR : Expansion.Function.CountedBranchRegions)
// Capture branch regions that only pertain to the corresponding expansion.
if (CR.FileID == Expansion.FileID)
ExpansionCoverage.BranchRegions.push_back(CR);
LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "
<< Expansion.FileID << "\n");
ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
return ExpansionCoverage;
}
LineCoverageStats::LineCoverageStats(
ArrayRef<const CoverageSegment *> LineSegments,
const CoverageSegment *WrappedSegment, unsigned Line)
: ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line),
LineSegments(LineSegments), WrappedSegment(WrappedSegment) {
// Find the minimum number of regions which start in this line.
unsigned MinRegionCount = 0;
auto isStartOfRegion = [](const CoverageSegment *S) {
return !S->IsGapRegion && S->HasCount && S->IsRegionEntry;
};
for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I)
if (isStartOfRegion(LineSegments[I]))
++MinRegionCount;
bool StartOfSkippedRegion = !LineSegments.empty() &&
!LineSegments.front()->HasCount &&
LineSegments.front()->IsRegionEntry;
HasMultipleRegions = MinRegionCount > 1;
Mapped =
!StartOfSkippedRegion &&
((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0));
// if there is any starting segment at this line with a counter, it must be
// mapped
Mapped |= std::any_of(
LineSegments.begin(), LineSegments.end(),
[](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; });
if (!Mapped) {
return;
}
// Pick the max count from the non-gap, region entry segments and the
// wrapped count.
if (WrappedSegment)
ExecutionCount = WrappedSegment->Count;
if (!MinRegionCount)
return;
for (const auto *LS : LineSegments)
if (isStartOfRegion(LS))
ExecutionCount = std::max(ExecutionCount, LS->Count);
}
LineCoverageIterator &LineCoverageIterator::operator++() {
if (Next == CD.end()) {
Stats = LineCoverageStats();
Ended = true;
return *this;
}
if (Segments.size())
WrappedSegment = Segments.back();
Segments.clear();
while (Next != CD.end() && Next->Line == Line)
Segments.push_back(&*Next++);
Stats = LineCoverageStats(Segments, WrappedSegment, Line);
++Line;
return *this;
}
static std::string getCoverageMapErrString(coveragemap_error Err,
const std::string &ErrMsg = "") {
std::string Msg;
raw_string_ostream OS(Msg);
switch (Err) {
case coveragemap_error::success:
OS << "success";
break;
case coveragemap_error::eof:
OS << "end of File";
break;
case coveragemap_error::no_data_found:
OS << "no coverage data found";
break;
case coveragemap_error::unsupported_version:
OS << "unsupported coverage format version";
break;
case coveragemap_error::truncated:
OS << "truncated coverage data";
break;
case coveragemap_error::malformed:
OS << "malformed coverage data";
break;
case coveragemap_error::decompression_failed:
OS << "failed to decompress coverage data (zlib)";
break;
case coveragemap_error::invalid_or_missing_arch_specifier:
OS << "`-arch` specifier is invalid or missing for universal binary";
break;
}
// If optional error message is not empty, append it to the message.
if (!ErrMsg.empty())
OS << ": " << ErrMsg;
return Msg;
}
namespace {
// FIXME: This class is only here to support the transition to llvm::Error. It
// will be removed once this transition is complete. Clients should prefer to
// deal with the Error value directly, rather than converting to error_code.
class CoverageMappingErrorCategoryType : public std::error_category {
const char *name() const noexcept override { return "llvm.coveragemap"; }
std::string message(int IE) const override {
return getCoverageMapErrString(static_cast<coveragemap_error>(IE));
}
};
} // end anonymous namespace
std::string CoverageMapError::message() const {
return getCoverageMapErrString(Err, Msg);
}
const std::error_category &llvm::coverage::coveragemap_category() {
static CoverageMappingErrorCategoryType ErrorCategory;
return ErrorCategory;
}
char CoverageMapError::ID = 0;