blob: efec612957de33352ce64ee0d62559c2826254ad [file] [log] [blame]
//===- ELFObjectFile.cpp - ELF object file implementation -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Part of the ELFObjectFile class implementation.
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/ELF.h"
#include "llvm/Object/ELFTypes.h"
#include "llvm/Object/Error.h"
#include "llvm/Support/ARMAttributeParser.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/HexagonAttributeParser.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/RISCVAttributeParser.h"
#include "llvm/Support/RISCVAttributes.h"
#include "llvm/Support/RISCVISAInfo.h"
#include "llvm/TargetParser/SubtargetFeature.h"
#include "llvm/TargetParser/Triple.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <optional>
#include <string>
#include <utility>
using namespace llvm;
using namespace object;
const EnumEntry<unsigned> llvm::object::ElfSymbolTypes[NumElfSymbolTypes] = {
{"None", "NOTYPE", ELF::STT_NOTYPE},
{"Object", "OBJECT", ELF::STT_OBJECT},
{"Function", "FUNC", ELF::STT_FUNC},
{"Section", "SECTION", ELF::STT_SECTION},
{"File", "FILE", ELF::STT_FILE},
{"Common", "COMMON", ELF::STT_COMMON},
{"TLS", "TLS", ELF::STT_TLS},
{"Unknown", "<unknown>: 7", 7},
{"Unknown", "<unknown>: 8", 8},
{"Unknown", "<unknown>: 9", 9},
{"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC},
{"OS Specific", "<OS specific>: 11", 11},
{"OS Specific", "<OS specific>: 12", 12},
{"Proc Specific", "<processor specific>: 13", 13},
{"Proc Specific", "<processor specific>: 14", 14},
{"Proc Specific", "<processor specific>: 15", 15}
};
ELFObjectFileBase::ELFObjectFileBase(unsigned int Type, MemoryBufferRef Source)
: ObjectFile(Type, Source) {}
template <class ELFT>
static Expected<std::unique_ptr<ELFObjectFile<ELFT>>>
createPtr(MemoryBufferRef Object, bool InitContent) {
auto Ret = ELFObjectFile<ELFT>::create(Object, InitContent);
if (Error E = Ret.takeError())
return std::move(E);
return std::make_unique<ELFObjectFile<ELFT>>(std::move(*Ret));
}
Expected<std::unique_ptr<ObjectFile>>
ObjectFile::createELFObjectFile(MemoryBufferRef Obj, bool InitContent) {
std::pair<unsigned char, unsigned char> Ident =
getElfArchType(Obj.getBuffer());
std::size_t MaxAlignment =
1ULL << llvm::countr_zero(
reinterpret_cast<uintptr_t>(Obj.getBufferStart()));
if (MaxAlignment < 2)
return createError("Insufficient alignment");
if (Ident.first == ELF::ELFCLASS32) {
if (Ident.second == ELF::ELFDATA2LSB)
return createPtr<ELF32LE>(Obj, InitContent);
else if (Ident.second == ELF::ELFDATA2MSB)
return createPtr<ELF32BE>(Obj, InitContent);
else
return createError("Invalid ELF data");
} else if (Ident.first == ELF::ELFCLASS64) {
if (Ident.second == ELF::ELFDATA2LSB)
return createPtr<ELF64LE>(Obj, InitContent);
else if (Ident.second == ELF::ELFDATA2MSB)
return createPtr<ELF64BE>(Obj, InitContent);
else
return createError("Invalid ELF data");
}
return createError("Invalid ELF class");
}
SubtargetFeatures ELFObjectFileBase::getMIPSFeatures() const {
SubtargetFeatures Features;
unsigned PlatformFlags = getPlatformFlags();
switch (PlatformFlags & ELF::EF_MIPS_ARCH) {
case ELF::EF_MIPS_ARCH_1:
break;
case ELF::EF_MIPS_ARCH_2:
Features.AddFeature("mips2");
break;
case ELF::EF_MIPS_ARCH_3:
Features.AddFeature("mips3");
break;
case ELF::EF_MIPS_ARCH_4:
Features.AddFeature("mips4");
break;
case ELF::EF_MIPS_ARCH_5:
Features.AddFeature("mips5");
break;
case ELF::EF_MIPS_ARCH_32:
Features.AddFeature("mips32");
break;
case ELF::EF_MIPS_ARCH_64:
Features.AddFeature("mips64");
break;
case ELF::EF_MIPS_ARCH_32R2:
Features.AddFeature("mips32r2");
break;
case ELF::EF_MIPS_ARCH_64R2:
Features.AddFeature("mips64r2");
break;
case ELF::EF_MIPS_ARCH_32R6:
Features.AddFeature("mips32r6");
break;
case ELF::EF_MIPS_ARCH_64R6:
Features.AddFeature("mips64r6");
break;
default:
llvm_unreachable("Unknown EF_MIPS_ARCH value");
}
switch (PlatformFlags & ELF::EF_MIPS_MACH) {
case ELF::EF_MIPS_MACH_NONE:
// No feature associated with this value.
break;
case ELF::EF_MIPS_MACH_OCTEON:
Features.AddFeature("cnmips");
break;
default:
llvm_unreachable("Unknown EF_MIPS_ARCH value");
}
if (PlatformFlags & ELF::EF_MIPS_ARCH_ASE_M16)
Features.AddFeature("mips16");
if (PlatformFlags & ELF::EF_MIPS_MICROMIPS)
Features.AddFeature("micromips");
return Features;
}
SubtargetFeatures ELFObjectFileBase::getARMFeatures() const {
SubtargetFeatures Features;
ARMAttributeParser Attributes;
if (Error E = getBuildAttributes(Attributes)) {
consumeError(std::move(E));
return SubtargetFeatures();
}
// both ARMv7-M and R have to support thumb hardware div
bool isV7 = false;
std::optional<unsigned> Attr =
Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
if (Attr)
isV7 = *Attr == ARMBuildAttrs::v7;
Attr = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
if (Attr) {
switch (*Attr) {
case ARMBuildAttrs::ApplicationProfile:
Features.AddFeature("aclass");
break;
case ARMBuildAttrs::RealTimeProfile:
Features.AddFeature("rclass");
if (isV7)
Features.AddFeature("hwdiv");
break;
case ARMBuildAttrs::MicroControllerProfile:
Features.AddFeature("mclass");
if (isV7)
Features.AddFeature("hwdiv");
break;
}
}
Attr = Attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use);
if (Attr) {
switch (*Attr) {
default:
break;
case ARMBuildAttrs::Not_Allowed:
Features.AddFeature("thumb", false);
Features.AddFeature("thumb2", false);
break;
case ARMBuildAttrs::AllowThumb32:
Features.AddFeature("thumb2");
break;
}
}
Attr = Attributes.getAttributeValue(ARMBuildAttrs::FP_arch);
if (Attr) {
switch (*Attr) {
default:
break;
case ARMBuildAttrs::Not_Allowed:
Features.AddFeature("vfp2sp", false);
Features.AddFeature("vfp3d16sp", false);
Features.AddFeature("vfp4d16sp", false);
break;
case ARMBuildAttrs::AllowFPv2:
Features.AddFeature("vfp2");
break;
case ARMBuildAttrs::AllowFPv3A:
case ARMBuildAttrs::AllowFPv3B:
Features.AddFeature("vfp3");
break;
case ARMBuildAttrs::AllowFPv4A:
case ARMBuildAttrs::AllowFPv4B:
Features.AddFeature("vfp4");
break;
}
}
Attr = Attributes.getAttributeValue(ARMBuildAttrs::Advanced_SIMD_arch);
if (Attr) {
switch (*Attr) {
default:
break;
case ARMBuildAttrs::Not_Allowed:
Features.AddFeature("neon", false);
Features.AddFeature("fp16", false);
break;
case ARMBuildAttrs::AllowNeon:
Features.AddFeature("neon");
break;
case ARMBuildAttrs::AllowNeon2:
Features.AddFeature("neon");
Features.AddFeature("fp16");
break;
}
}
Attr = Attributes.getAttributeValue(ARMBuildAttrs::MVE_arch);
if (Attr) {
switch (*Attr) {
default:
break;
case ARMBuildAttrs::Not_Allowed:
Features.AddFeature("mve", false);
Features.AddFeature("mve.fp", false);
break;
case ARMBuildAttrs::AllowMVEInteger:
Features.AddFeature("mve.fp", false);
Features.AddFeature("mve");
break;
case ARMBuildAttrs::AllowMVEIntegerAndFloat:
Features.AddFeature("mve.fp");
break;
}
}
Attr = Attributes.getAttributeValue(ARMBuildAttrs::DIV_use);
if (Attr) {
switch (*Attr) {
default:
break;
case ARMBuildAttrs::DisallowDIV:
Features.AddFeature("hwdiv", false);
Features.AddFeature("hwdiv-arm", false);
break;
case ARMBuildAttrs::AllowDIVExt:
Features.AddFeature("hwdiv");
Features.AddFeature("hwdiv-arm");
break;
}
}
return Features;
}
static std::optional<std::string> hexagonAttrToFeatureString(unsigned Attr) {
switch (Attr) {
case 5:
return "v5";
case 55:
return "v55";
case 60:
return "v60";
case 62:
return "v62";
case 65:
return "v65";
case 67:
return "v67";
case 68:
return "v68";
case 69:
return "v69";
case 71:
return "v71";
case 73:
return "v73";
default:
return {};
}
}
SubtargetFeatures ELFObjectFileBase::getHexagonFeatures() const {
SubtargetFeatures Features;
HexagonAttributeParser Parser;
if (Error E = getBuildAttributes(Parser)) {
// Return no attributes if none can be read.
// This behavior is important for backwards compatibility.
consumeError(std::move(E));
return Features;
}
std::optional<unsigned> Attr;
if ((Attr = Parser.getAttributeValue(HexagonAttrs::ARCH))) {
if (std::optional<std::string> FeatureString =
hexagonAttrToFeatureString(*Attr))
Features.AddFeature(*FeatureString);
}
if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXARCH))) {
std::optional<std::string> FeatureString =
hexagonAttrToFeatureString(*Attr);
// There is no corresponding hvx arch for v5 and v55.
if (FeatureString && *Attr >= 60)
Features.AddFeature("hvx" + *FeatureString);
}
if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXIEEEFP)))
if (*Attr)
Features.AddFeature("hvx-ieee-fp");
if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXQFLOAT)))
if (*Attr)
Features.AddFeature("hvx-qfloat");
if ((Attr = Parser.getAttributeValue(HexagonAttrs::ZREG)))
if (*Attr)
Features.AddFeature("zreg");
if ((Attr = Parser.getAttributeValue(HexagonAttrs::AUDIO)))
if (*Attr)
Features.AddFeature("audio");
if ((Attr = Parser.getAttributeValue(HexagonAttrs::CABAC)))
if (*Attr)
Features.AddFeature("cabac");
return Features;
}
Expected<SubtargetFeatures> ELFObjectFileBase::getRISCVFeatures() const {
SubtargetFeatures Features;
unsigned PlatformFlags = getPlatformFlags();
if (PlatformFlags & ELF::EF_RISCV_RVC) {
Features.AddFeature("zca");
}
RISCVAttributeParser Attributes;
if (Error E = getBuildAttributes(Attributes)) {
return std::move(E);
}
std::optional<StringRef> Attr =
Attributes.getAttributeString(RISCVAttrs::ARCH);
if (Attr) {
auto ParseResult = RISCVISAInfo::parseNormalizedArchString(*Attr);
if (!ParseResult)
return ParseResult.takeError();
auto &ISAInfo = *ParseResult;
if (ISAInfo->getXLen() == 32)
Features.AddFeature("64bit", false);
else if (ISAInfo->getXLen() == 64)
Features.AddFeature("64bit");
else
llvm_unreachable("XLEN should be 32 or 64.");
Features.addFeaturesVector(ISAInfo->toFeatures());
}
return Features;
}
SubtargetFeatures ELFObjectFileBase::getLoongArchFeatures() const {
SubtargetFeatures Features;
switch (getPlatformFlags() & ELF::EF_LOONGARCH_ABI_MODIFIER_MASK) {
case ELF::EF_LOONGARCH_ABI_SOFT_FLOAT:
break;
case ELF::EF_LOONGARCH_ABI_DOUBLE_FLOAT:
Features.AddFeature("d");
// D implies F according to LoongArch ISA spec.
[[fallthrough]];
case ELF::EF_LOONGARCH_ABI_SINGLE_FLOAT:
Features.AddFeature("f");
break;
}
return Features;
}
Expected<SubtargetFeatures> ELFObjectFileBase::getFeatures() const {
switch (getEMachine()) {
case ELF::EM_MIPS:
return getMIPSFeatures();
case ELF::EM_ARM:
return getARMFeatures();
case ELF::EM_RISCV:
return getRISCVFeatures();
case ELF::EM_LOONGARCH:
return getLoongArchFeatures();
case ELF::EM_HEXAGON:
return getHexagonFeatures();
default:
return SubtargetFeatures();
}
}
std::optional<StringRef> ELFObjectFileBase::tryGetCPUName() const {
switch (getEMachine()) {
case ELF::EM_AMDGPU:
return getAMDGPUCPUName();
case ELF::EM_CUDA:
return getNVPTXCPUName();
case ELF::EM_PPC:
case ELF::EM_PPC64:
return StringRef("future");
default:
return std::nullopt;
}
}
StringRef ELFObjectFileBase::getAMDGPUCPUName() const {
assert(getEMachine() == ELF::EM_AMDGPU);
unsigned CPU = getPlatformFlags() & ELF::EF_AMDGPU_MACH;
switch (CPU) {
// Radeon HD 2000/3000 Series (R600).
case ELF::EF_AMDGPU_MACH_R600_R600:
return "r600";
case ELF::EF_AMDGPU_MACH_R600_R630:
return "r630";
case ELF::EF_AMDGPU_MACH_R600_RS880:
return "rs880";
case ELF::EF_AMDGPU_MACH_R600_RV670:
return "rv670";
// Radeon HD 4000 Series (R700).
case ELF::EF_AMDGPU_MACH_R600_RV710:
return "rv710";
case ELF::EF_AMDGPU_MACH_R600_RV730:
return "rv730";
case ELF::EF_AMDGPU_MACH_R600_RV770:
return "rv770";
// Radeon HD 5000 Series (Evergreen).
case ELF::EF_AMDGPU_MACH_R600_CEDAR:
return "cedar";
case ELF::EF_AMDGPU_MACH_R600_CYPRESS:
return "cypress";
case ELF::EF_AMDGPU_MACH_R600_JUNIPER:
return "juniper";
case ELF::EF_AMDGPU_MACH_R600_REDWOOD:
return "redwood";
case ELF::EF_AMDGPU_MACH_R600_SUMO:
return "sumo";
// Radeon HD 6000 Series (Northern Islands).
case ELF::EF_AMDGPU_MACH_R600_BARTS:
return "barts";
case ELF::EF_AMDGPU_MACH_R600_CAICOS:
return "caicos";
case ELF::EF_AMDGPU_MACH_R600_CAYMAN:
return "cayman";
case ELF::EF_AMDGPU_MACH_R600_TURKS:
return "turks";
// AMDGCN GFX6.
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX600:
return "gfx600";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX601:
return "gfx601";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX602:
return "gfx602";
// AMDGCN GFX7.
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX700:
return "gfx700";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX701:
return "gfx701";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX702:
return "gfx702";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX703:
return "gfx703";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX704:
return "gfx704";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX705:
return "gfx705";
// AMDGCN GFX8.
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX801:
return "gfx801";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX802:
return "gfx802";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX803:
return "gfx803";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX805:
return "gfx805";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX810:
return "gfx810";
// AMDGCN GFX9.
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX900:
return "gfx900";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX902:
return "gfx902";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX904:
return "gfx904";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX906:
return "gfx906";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX908:
return "gfx908";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX909:
return "gfx909";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A:
return "gfx90a";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C:
return "gfx90c";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX940:
return "gfx940";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX941:
return "gfx941";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX942:
return "gfx942";
// AMDGCN GFX10.
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010:
return "gfx1010";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011:
return "gfx1011";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012:
return "gfx1012";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013:
return "gfx1013";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030:
return "gfx1030";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031:
return "gfx1031";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032:
return "gfx1032";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033:
return "gfx1033";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034:
return "gfx1034";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035:
return "gfx1035";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036:
return "gfx1036";
// AMDGCN GFX11.
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1100:
return "gfx1100";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1101:
return "gfx1101";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1102:
return "gfx1102";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1103:
return "gfx1103";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1150:
return "gfx1150";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1151:
return "gfx1151";
// AMDGCN GFX12.
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1200:
return "gfx1200";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1201:
return "gfx1201";
// Generic AMDGCN targets
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX9_GENERIC:
return "gfx9-generic";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX10_1_GENERIC:
return "gfx10-1-generic";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX10_3_GENERIC:
return "gfx10-3-generic";
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX11_GENERIC:
return "gfx11-generic";
default:
llvm_unreachable("Unknown EF_AMDGPU_MACH value");
}
}
StringRef ELFObjectFileBase::getNVPTXCPUName() const {
assert(getEMachine() == ELF::EM_CUDA);
unsigned SM = getPlatformFlags() & ELF::EF_CUDA_SM;
switch (SM) {
// Fermi architecture.
case ELF::EF_CUDA_SM20:
return "sm_20";
case ELF::EF_CUDA_SM21:
return "sm_21";
// Kepler architecture.
case ELF::EF_CUDA_SM30:
return "sm_30";
case ELF::EF_CUDA_SM32:
return "sm_32";
case ELF::EF_CUDA_SM35:
return "sm_35";
case ELF::EF_CUDA_SM37:
return "sm_37";
// Maxwell architecture.
case ELF::EF_CUDA_SM50:
return "sm_50";
case ELF::EF_CUDA_SM52:
return "sm_52";
case ELF::EF_CUDA_SM53:
return "sm_53";
// Pascal architecture.
case ELF::EF_CUDA_SM60:
return "sm_60";
case ELF::EF_CUDA_SM61:
return "sm_61";
case ELF::EF_CUDA_SM62:
return "sm_62";
// Volta architecture.
case ELF::EF_CUDA_SM70:
return "sm_70";
case ELF::EF_CUDA_SM72:
return "sm_72";
// Turing architecture.
case ELF::EF_CUDA_SM75:
return "sm_75";
// Ampere architecture.
case ELF::EF_CUDA_SM80:
return "sm_80";
case ELF::EF_CUDA_SM86:
return "sm_86";
case ELF::EF_CUDA_SM87:
return "sm_87";
// Ada architecture.
case ELF::EF_CUDA_SM89:
return "sm_89";
// Hopper architecture.
case ELF::EF_CUDA_SM90:
return getPlatformFlags() & ELF::EF_CUDA_ACCELERATORS ? "sm_90a" : "sm_90";
default:
llvm_unreachable("Unknown EF_CUDA_SM value");
}
}
// FIXME Encode from a tablegen description or target parser.
void ELFObjectFileBase::setARMSubArch(Triple &TheTriple) const {
if (TheTriple.getSubArch() != Triple::NoSubArch)
return;
ARMAttributeParser Attributes;
if (Error E = getBuildAttributes(Attributes)) {
// TODO Propagate Error.
consumeError(std::move(E));
return;
}
std::string Triple;
// Default to ARM, but use the triple if it's been set.
if (TheTriple.isThumb())
Triple = "thumb";
else
Triple = "arm";
std::optional<unsigned> Attr =
Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
if (Attr) {
switch (*Attr) {
case ARMBuildAttrs::v4:
Triple += "v4";
break;
case ARMBuildAttrs::v4T:
Triple += "v4t";
break;
case ARMBuildAttrs::v5T:
Triple += "v5t";
break;
case ARMBuildAttrs::v5TE:
Triple += "v5te";
break;
case ARMBuildAttrs::v5TEJ:
Triple += "v5tej";
break;
case ARMBuildAttrs::v6:
Triple += "v6";
break;
case ARMBuildAttrs::v6KZ:
Triple += "v6kz";
break;
case ARMBuildAttrs::v6T2:
Triple += "v6t2";
break;
case ARMBuildAttrs::v6K:
Triple += "v6k";
break;
case ARMBuildAttrs::v7: {
std::optional<unsigned> ArchProfileAttr =
Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
if (ArchProfileAttr &&
*ArchProfileAttr == ARMBuildAttrs::MicroControllerProfile)
Triple += "v7m";
else
Triple += "v7";
break;
}
case ARMBuildAttrs::v6_M:
Triple += "v6m";
break;
case ARMBuildAttrs::v6S_M:
Triple += "v6sm";
break;
case ARMBuildAttrs::v7E_M:
Triple += "v7em";
break;
case ARMBuildAttrs::v8_A:
Triple += "v8a";
break;
case ARMBuildAttrs::v8_R:
Triple += "v8r";
break;
case ARMBuildAttrs::v8_M_Base:
Triple += "v8m.base";
break;
case ARMBuildAttrs::v8_M_Main:
Triple += "v8m.main";
break;
case ARMBuildAttrs::v8_1_M_Main:
Triple += "v8.1m.main";
break;
case ARMBuildAttrs::v9_A:
Triple += "v9a";
break;
}
}
if (!isLittleEndian())
Triple += "eb";
TheTriple.setArchName(Triple);
}
std::vector<ELFPltEntry> ELFObjectFileBase::getPltEntries() const {
std::string Err;
const auto Triple = makeTriple();
const auto *T = TargetRegistry::lookupTarget(Triple.str(), Err);
if (!T)
return {};
uint32_t JumpSlotReloc = 0, GlobDatReloc = 0;
switch (Triple.getArch()) {
case Triple::x86:
JumpSlotReloc = ELF::R_386_JUMP_SLOT;
GlobDatReloc = ELF::R_386_GLOB_DAT;
break;
case Triple::x86_64:
JumpSlotReloc = ELF::R_X86_64_JUMP_SLOT;
GlobDatReloc = ELF::R_X86_64_GLOB_DAT;
break;
case Triple::aarch64:
case Triple::aarch64_be:
JumpSlotReloc = ELF::R_AARCH64_JUMP_SLOT;
break;
default:
return {};
}
std::unique_ptr<const MCInstrInfo> MII(T->createMCInstrInfo());
std::unique_ptr<const MCInstrAnalysis> MIA(
T->createMCInstrAnalysis(MII.get()));
if (!MIA)
return {};
std::vector<std::pair<uint64_t, uint64_t>> PltEntries;
std::optional<SectionRef> RelaPlt, RelaDyn;
uint64_t GotBaseVA = 0;
for (const SectionRef &Section : sections()) {
Expected<StringRef> NameOrErr = Section.getName();
if (!NameOrErr) {
consumeError(NameOrErr.takeError());
continue;
}
StringRef Name = *NameOrErr;
if (Name == ".rela.plt" || Name == ".rel.plt") {
RelaPlt = Section;
} else if (Name == ".rela.dyn" || Name == ".rel.dyn") {
RelaDyn = Section;
} else if (Name == ".got.plt") {
GotBaseVA = Section.getAddress();
} else if (Name == ".plt" || Name == ".plt.got") {
Expected<StringRef> PltContents = Section.getContents();
if (!PltContents) {
consumeError(PltContents.takeError());
return {};
}
llvm::append_range(
PltEntries,
MIA->findPltEntries(Section.getAddress(),
arrayRefFromStringRef(*PltContents), Triple));
}
}
// Build a map from GOT entry virtual address to PLT entry virtual address.
DenseMap<uint64_t, uint64_t> GotToPlt;
for (auto [Plt, GotPlt] : PltEntries) {
uint64_t GotPltEntry = GotPlt;
// An x86-32 PIC PLT uses jmp DWORD PTR [ebx-offset]. Add
// _GLOBAL_OFFSET_TABLE_ (EBX) to get the .got.plt (or .got) entry address.
// See X86MCTargetDesc.cpp:findPltEntries for the 1 << 32 bit.
if (GotPltEntry & (uint64_t(1) << 32) && getEMachine() == ELF::EM_386)
GotPltEntry = static_cast<int32_t>(GotPltEntry) + GotBaseVA;
GotToPlt.insert(std::make_pair(GotPltEntry, Plt));
}
// Find the relocations in the dynamic relocation table that point to
// locations in the GOT for which we know the corresponding PLT entry.
std::vector<ELFPltEntry> Result;
auto handleRels = [&](iterator_range<relocation_iterator> Rels,
uint32_t RelType, StringRef PltSec) {
for (const auto &R : Rels) {
if (R.getType() != RelType)
continue;
auto PltEntryIter = GotToPlt.find(R.getOffset());
if (PltEntryIter != GotToPlt.end()) {
symbol_iterator Sym = R.getSymbol();
if (Sym == symbol_end())
Result.push_back(
ELFPltEntry{PltSec, std::nullopt, PltEntryIter->second});
else
Result.push_back(ELFPltEntry{PltSec, Sym->getRawDataRefImpl(),
PltEntryIter->second});
}
}
};
if (RelaPlt)
handleRels(RelaPlt->relocations(), JumpSlotReloc, ".plt");
// If a symbol needing a PLT entry also needs a GLOB_DAT relocation, GNU ld's
// x86 port places the PLT entry in the .plt.got section.
if (RelaDyn)
handleRels(RelaDyn->relocations(), GlobDatReloc, ".plt.got");
return Result;
}
template <class ELFT>
Expected<std::vector<BBAddrMap>> static readBBAddrMapImpl(
const ELFFile<ELFT> &EF, std::optional<unsigned> TextSectionIndex,
std::vector<PGOAnalysisMap> *PGOAnalyses) {
using Elf_Shdr = typename ELFT::Shdr;
bool IsRelocatable = EF.getHeader().e_type == ELF::ET_REL;
std::vector<BBAddrMap> BBAddrMaps;
if (PGOAnalyses)
PGOAnalyses->clear();
const auto &Sections = cantFail(EF.sections());
auto IsMatch = [&](const Elf_Shdr &Sec) -> Expected<bool> {
if (Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP &&
Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP_V0)
return false;
if (!TextSectionIndex)
return true;
Expected<const Elf_Shdr *> TextSecOrErr = EF.getSection(Sec.sh_link);
if (!TextSecOrErr)
return createError("unable to get the linked-to section for " +
describe(EF, Sec) + ": " +
toString(TextSecOrErr.takeError()));
assert(*TextSecOrErr >= Sections.begin() &&
"Text section pointer outside of bounds");
if (*TextSectionIndex !=
(unsigned)std::distance(Sections.begin(), *TextSecOrErr))
return false;
return true;
};
Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SectionRelocMapOrErr =
EF.getSectionAndRelocations(IsMatch);
if (!SectionRelocMapOrErr)
return SectionRelocMapOrErr.takeError();
for (auto const &[Sec, RelocSec] : *SectionRelocMapOrErr) {
if (IsRelocatable && !RelocSec)
return createError("unable to get relocation section for " +
describe(EF, *Sec));
Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
EF.decodeBBAddrMap(*Sec, RelocSec, PGOAnalyses);
if (!BBAddrMapOrErr) {
if (PGOAnalyses)
PGOAnalyses->clear();
return createError("unable to read " + describe(EF, *Sec) + ": " +
toString(BBAddrMapOrErr.takeError()));
}
std::move(BBAddrMapOrErr->begin(), BBAddrMapOrErr->end(),
std::back_inserter(BBAddrMaps));
}
if (PGOAnalyses)
assert(PGOAnalyses->size() == BBAddrMaps.size() &&
"The same number of BBAddrMaps and PGOAnalysisMaps should be "
"returned when PGO information is requested");
return BBAddrMaps;
}
template <class ELFT>
static Expected<std::vector<VersionEntry>>
readDynsymVersionsImpl(const ELFFile<ELFT> &EF,
ELFObjectFileBase::elf_symbol_iterator_range Symbols) {
using Elf_Shdr = typename ELFT::Shdr;
const Elf_Shdr *VerSec = nullptr;
const Elf_Shdr *VerNeedSec = nullptr;
const Elf_Shdr *VerDefSec = nullptr;
// The user should ensure sections() can't fail here.
for (const Elf_Shdr &Sec : cantFail(EF.sections())) {
if (Sec.sh_type == ELF::SHT_GNU_versym)
VerSec = &Sec;
else if (Sec.sh_type == ELF::SHT_GNU_verdef)
VerDefSec = &Sec;
else if (Sec.sh_type == ELF::SHT_GNU_verneed)
VerNeedSec = &Sec;
}
if (!VerSec)
return std::vector<VersionEntry>();
Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
EF.loadVersionMap(VerNeedSec, VerDefSec);
if (!MapOrErr)
return MapOrErr.takeError();
std::vector<VersionEntry> Ret;
size_t I = 0;
for (const ELFSymbolRef &Sym : Symbols) {
++I;
Expected<const typename ELFT::Versym *> VerEntryOrErr =
EF.template getEntry<typename ELFT::Versym>(*VerSec, I);
if (!VerEntryOrErr)
return createError("unable to read an entry with index " + Twine(I) +
" from " + describe(EF, *VerSec) + ": " +
toString(VerEntryOrErr.takeError()));
Expected<uint32_t> FlagsOrErr = Sym.getFlags();
if (!FlagsOrErr)
return createError("unable to read flags for symbol with index " +
Twine(I) + ": " + toString(FlagsOrErr.takeError()));
bool IsDefault;
Expected<StringRef> VerOrErr = EF.getSymbolVersionByIndex(
(*VerEntryOrErr)->vs_index, IsDefault, *MapOrErr,
(*FlagsOrErr) & SymbolRef::SF_Undefined);
if (!VerOrErr)
return createError("unable to get a version for entry " + Twine(I) +
" of " + describe(EF, *VerSec) + ": " +
toString(VerOrErr.takeError()));
Ret.push_back({(*VerOrErr).str(), IsDefault});
}
return Ret;
}
Expected<std::vector<VersionEntry>>
ELFObjectFileBase::readDynsymVersions() const {
elf_symbol_iterator_range Symbols = getDynamicSymbolIterators();
if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
return readDynsymVersionsImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
Symbols);
}
Expected<std::vector<BBAddrMap>> ELFObjectFileBase::readBBAddrMap(
std::optional<unsigned> TextSectionIndex,
std::vector<PGOAnalysisMap> *PGOAnalyses) const {
if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
return readBBAddrMapImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
TextSectionIndex, PGOAnalyses);
}