blob: c59bc3622fde5ee5206eda48cd1758cc62a5e6a8 [file] [log] [blame]
//===- Type.cpp - Implement the Type class --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Type class for the IR library.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Type.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/TypeSize.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <utility>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Type Class Implementation
//===----------------------------------------------------------------------===//
Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
switch (IDNumber) {
case VoidTyID : return getVoidTy(C);
case HalfTyID : return getHalfTy(C);
case BFloatTyID : return getBFloatTy(C);
case FloatTyID : return getFloatTy(C);
case DoubleTyID : return getDoubleTy(C);
case X86_FP80TyID : return getX86_FP80Ty(C);
case FP128TyID : return getFP128Ty(C);
case PPC_FP128TyID : return getPPC_FP128Ty(C);
case LabelTyID : return getLabelTy(C);
case MetadataTyID : return getMetadataTy(C);
case X86_MMXTyID : return getX86_MMXTy(C);
case X86_AMXTyID : return getX86_AMXTy(C);
case TokenTyID : return getTokenTy(C);
default:
return nullptr;
}
}
bool Type::isIntegerTy(unsigned Bitwidth) const {
return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
}
bool Type::isScalableTy() const {
if (const auto *ATy = dyn_cast<ArrayType>(this))
return ATy->getElementType()->isScalableTy();
if (const auto *STy = dyn_cast<StructType>(this)) {
SmallPtrSet<Type *, 4> Visited;
return STy->containsScalableVectorType(&Visited);
}
return getTypeID() == ScalableVectorTyID || isScalableTargetExtTy();
}
const fltSemantics &Type::getFltSemantics() const {
switch (getTypeID()) {
case HalfTyID: return APFloat::IEEEhalf();
case BFloatTyID: return APFloat::BFloat();
case FloatTyID: return APFloat::IEEEsingle();
case DoubleTyID: return APFloat::IEEEdouble();
case X86_FP80TyID: return APFloat::x87DoubleExtended();
case FP128TyID: return APFloat::IEEEquad();
case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
default: llvm_unreachable("Invalid floating type");
}
}
bool Type::isIEEE() const {
return APFloat::getZero(getFltSemantics()).isIEEE();
}
bool Type::isScalableTargetExtTy() const {
if (auto *TT = dyn_cast<TargetExtType>(this))
return isa<ScalableVectorType>(TT->getLayoutType());
return false;
}
Type *Type::getFloatingPointTy(LLVMContext &C, const fltSemantics &S) {
Type *Ty;
if (&S == &APFloat::IEEEhalf())
Ty = Type::getHalfTy(C);
else if (&S == &APFloat::BFloat())
Ty = Type::getBFloatTy(C);
else if (&S == &APFloat::IEEEsingle())
Ty = Type::getFloatTy(C);
else if (&S == &APFloat::IEEEdouble())
Ty = Type::getDoubleTy(C);
else if (&S == &APFloat::x87DoubleExtended())
Ty = Type::getX86_FP80Ty(C);
else if (&S == &APFloat::IEEEquad())
Ty = Type::getFP128Ty(C);
else {
assert(&S == &APFloat::PPCDoubleDouble() && "Unknown FP format");
Ty = Type::getPPC_FP128Ty(C);
}
return Ty;
}
bool Type::canLosslesslyBitCastTo(Type *Ty) const {
// Identity cast means no change so return true
if (this == Ty)
return true;
// They are not convertible unless they are at least first class types
if (!this->isFirstClassType() || !Ty->isFirstClassType())
return false;
// Vector -> Vector conversions are always lossless if the two vector types
// have the same size, otherwise not.
if (isa<VectorType>(this) && isa<VectorType>(Ty))
return getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits();
// 64-bit fixed width vector types can be losslessly converted to x86mmx.
if (((isa<FixedVectorType>(this)) && Ty->isX86_MMXTy()) &&
getPrimitiveSizeInBits().getFixedValue() == 64)
return true;
if ((isX86_MMXTy() && isa<FixedVectorType>(Ty)) &&
Ty->getPrimitiveSizeInBits().getFixedValue() == 64)
return true;
// 8192-bit fixed width vector types can be losslessly converted to x86amx.
if (((isa<FixedVectorType>(this)) && Ty->isX86_AMXTy()) &&
getPrimitiveSizeInBits().getFixedValue() == 8192)
return true;
if ((isX86_AMXTy() && isa<FixedVectorType>(Ty)) &&
Ty->getPrimitiveSizeInBits().getFixedValue() == 8192)
return true;
// Conservatively assume we can't losslessly convert between pointers with
// different address spaces.
return false;
}
bool Type::isEmptyTy() const {
if (auto *ATy = dyn_cast<ArrayType>(this)) {
unsigned NumElements = ATy->getNumElements();
return NumElements == 0 || ATy->getElementType()->isEmptyTy();
}
if (auto *STy = dyn_cast<StructType>(this)) {
unsigned NumElements = STy->getNumElements();
for (unsigned i = 0; i < NumElements; ++i)
if (!STy->getElementType(i)->isEmptyTy())
return false;
return true;
}
return false;
}
TypeSize Type::getPrimitiveSizeInBits() const {
switch (getTypeID()) {
case Type::HalfTyID:
return TypeSize::getFixed(16);
case Type::BFloatTyID:
return TypeSize::getFixed(16);
case Type::FloatTyID:
return TypeSize::getFixed(32);
case Type::DoubleTyID:
return TypeSize::getFixed(64);
case Type::X86_FP80TyID:
return TypeSize::getFixed(80);
case Type::FP128TyID:
return TypeSize::getFixed(128);
case Type::PPC_FP128TyID:
return TypeSize::getFixed(128);
case Type::X86_MMXTyID:
return TypeSize::getFixed(64);
case Type::X86_AMXTyID:
return TypeSize::getFixed(8192);
case Type::IntegerTyID:
return TypeSize::getFixed(cast<IntegerType>(this)->getBitWidth());
case Type::FixedVectorTyID:
case Type::ScalableVectorTyID: {
const VectorType *VTy = cast<VectorType>(this);
ElementCount EC = VTy->getElementCount();
TypeSize ETS = VTy->getElementType()->getPrimitiveSizeInBits();
assert(!ETS.isScalable() && "Vector type should have fixed-width elements");
return {ETS.getFixedValue() * EC.getKnownMinValue(), EC.isScalable()};
}
default:
return TypeSize::getFixed(0);
}
}
unsigned Type::getScalarSizeInBits() const {
// It is safe to assume that the scalar types have a fixed size.
return getScalarType()->getPrimitiveSizeInBits().getFixedValue();
}
int Type::getFPMantissaWidth() const {
if (auto *VTy = dyn_cast<VectorType>(this))
return VTy->getElementType()->getFPMantissaWidth();
assert(isFloatingPointTy() && "Not a floating point type!");
if (getTypeID() == HalfTyID) return 11;
if (getTypeID() == BFloatTyID) return 8;
if (getTypeID() == FloatTyID) return 24;
if (getTypeID() == DoubleTyID) return 53;
if (getTypeID() == X86_FP80TyID) return 64;
if (getTypeID() == FP128TyID) return 113;
assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
return -1;
}
bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
if (auto *ATy = dyn_cast<ArrayType>(this))
return ATy->getElementType()->isSized(Visited);
if (auto *VTy = dyn_cast<VectorType>(this))
return VTy->getElementType()->isSized(Visited);
if (auto *TTy = dyn_cast<TargetExtType>(this))
return TTy->getLayoutType()->isSized(Visited);
return cast<StructType>(this)->isSized(Visited);
}
//===----------------------------------------------------------------------===//
// Primitive 'Type' data
//===----------------------------------------------------------------------===//
Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
Type *Type::getBFloatTy(LLVMContext &C) { return &C.pImpl->BFloatTy; }
Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
Type *Type::getX86_AMXTy(LLVMContext &C) { return &C.pImpl->X86_AMXTy; }
IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
return IntegerType::get(C, N);
}
Type *Type::getWasm_ExternrefTy(LLVMContext &C) {
// opaque pointer in addrspace(10)
static PointerType *Ty = PointerType::get(C, 10);
return Ty;
}
Type *Type::getWasm_FuncrefTy(LLVMContext &C) {
// opaque pointer in addrspace(20)
static PointerType *Ty = PointerType::get(C, 20);
return Ty;
}
//===----------------------------------------------------------------------===//
// IntegerType Implementation
//===----------------------------------------------------------------------===//
IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
// Check for the built-in integer types
switch (NumBits) {
case 1: return cast<IntegerType>(Type::getInt1Ty(C));
case 8: return cast<IntegerType>(Type::getInt8Ty(C));
case 16: return cast<IntegerType>(Type::getInt16Ty(C));
case 32: return cast<IntegerType>(Type::getInt32Ty(C));
case 64: return cast<IntegerType>(Type::getInt64Ty(C));
case 128: return cast<IntegerType>(Type::getInt128Ty(C));
default:
break;
}
IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
if (!Entry)
Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits);
return Entry;
}
APInt IntegerType::getMask() const { return APInt::getAllOnes(getBitWidth()); }
//===----------------------------------------------------------------------===//
// FunctionType Implementation
//===----------------------------------------------------------------------===//
FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
bool IsVarArgs)
: Type(Result->getContext(), FunctionTyID) {
Type **SubTys = reinterpret_cast<Type**>(this+1);
assert(isValidReturnType(Result) && "invalid return type for function");
setSubclassData(IsVarArgs);
SubTys[0] = Result;
for (unsigned i = 0, e = Params.size(); i != e; ++i) {
assert(isValidArgumentType(Params[i]) &&
"Not a valid type for function argument!");
SubTys[i+1] = Params[i];
}
ContainedTys = SubTys;
NumContainedTys = Params.size() + 1; // + 1 for result type
}
// This is the factory function for the FunctionType class.
FunctionType *FunctionType::get(Type *ReturnType,
ArrayRef<Type*> Params, bool isVarArg) {
LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
FunctionType *FT;
// Since we only want to allocate a fresh function type in case none is found
// and we don't want to perform two lookups (one for checking if existent and
// one for inserting the newly allocated one), here we instead lookup based on
// Key and update the reference to the function type in-place to a newly
// allocated one if not found.
auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key);
if (Insertion.second) {
// The function type was not found. Allocate one and update FunctionTypes
// in-place.
FT = (FunctionType *)pImpl->Alloc.Allocate(
sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
alignof(FunctionType));
new (FT) FunctionType(ReturnType, Params, isVarArg);
*Insertion.first = FT;
} else {
// The function type was found. Just return it.
FT = *Insertion.first;
}
return FT;
}
FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
return get(Result, std::nullopt, isVarArg);
}
bool FunctionType::isValidReturnType(Type *RetTy) {
return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
!RetTy->isMetadataTy();
}
bool FunctionType::isValidArgumentType(Type *ArgTy) {
return ArgTy->isFirstClassType();
}
//===----------------------------------------------------------------------===//
// StructType Implementation
//===----------------------------------------------------------------------===//
// Primitive Constructors.
StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
bool isPacked) {
LLVMContextImpl *pImpl = Context.pImpl;
const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
StructType *ST;
// Since we only want to allocate a fresh struct type in case none is found
// and we don't want to perform two lookups (one for checking if existent and
// one for inserting the newly allocated one), here we instead lookup based on
// Key and update the reference to the struct type in-place to a newly
// allocated one if not found.
auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key);
if (Insertion.second) {
// The struct type was not found. Allocate one and update AnonStructTypes
// in-place.
ST = new (Context.pImpl->Alloc) StructType(Context);
ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
ST->setBody(ETypes, isPacked);
*Insertion.first = ST;
} else {
// The struct type was found. Just return it.
ST = *Insertion.first;
}
return ST;
}
bool StructType::containsScalableVectorType(
SmallPtrSetImpl<Type *> *Visited) const {
if ((getSubclassData() & SCDB_ContainsScalableVector) != 0)
return true;
if ((getSubclassData() & SCDB_NotContainsScalableVector) != 0)
return false;
if (Visited && !Visited->insert(const_cast<StructType *>(this)).second)
return false;
for (Type *Ty : elements()) {
if (isa<ScalableVectorType>(Ty)) {
const_cast<StructType *>(this)->setSubclassData(
getSubclassData() | SCDB_ContainsScalableVector);
return true;
}
if (auto *STy = dyn_cast<StructType>(Ty)) {
if (STy->containsScalableVectorType(Visited)) {
const_cast<StructType *>(this)->setSubclassData(
getSubclassData() | SCDB_ContainsScalableVector);
return true;
}
}
}
// For structures that are opaque, return false but do not set the
// SCDB_NotContainsScalableVector flag since it may gain scalable vector type
// when it becomes non-opaque.
if (!isOpaque())
const_cast<StructType *>(this)->setSubclassData(
getSubclassData() | SCDB_NotContainsScalableVector);
return false;
}
bool StructType::containsHomogeneousScalableVectorTypes() const {
Type *FirstTy = getNumElements() > 0 ? elements()[0] : nullptr;
if (!FirstTy || !isa<ScalableVectorType>(FirstTy))
return false;
for (Type *Ty : elements())
if (Ty != FirstTy)
return false;
return true;
}
void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
assert(isOpaque() && "Struct body already set!");
setSubclassData(getSubclassData() | SCDB_HasBody);
if (isPacked)
setSubclassData(getSubclassData() | SCDB_Packed);
NumContainedTys = Elements.size();
if (Elements.empty()) {
ContainedTys = nullptr;
return;
}
ContainedTys = Elements.copy(getContext().pImpl->Alloc).data();
}
void StructType::setName(StringRef Name) {
if (Name == getName()) return;
StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
using EntryTy = StringMap<StructType *>::MapEntryTy;
// If this struct already had a name, remove its symbol table entry. Don't
// delete the data yet because it may be part of the new name.
if (SymbolTableEntry)
SymbolTable.remove((EntryTy *)SymbolTableEntry);
// If this is just removing the name, we're done.
if (Name.empty()) {
if (SymbolTableEntry) {
// Delete the old string data.
((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
SymbolTableEntry = nullptr;
}
return;
}
// Look up the entry for the name.
auto IterBool =
getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
// While we have a name collision, try a random rename.
if (!IterBool.second) {
SmallString<64> TempStr(Name);
TempStr.push_back('.');
raw_svector_ostream TmpStream(TempStr);
unsigned NameSize = Name.size();
do {
TempStr.resize(NameSize + 1);
TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
IterBool = getContext().pImpl->NamedStructTypes.insert(
std::make_pair(TmpStream.str(), this));
} while (!IterBool.second);
}
// Delete the old string data.
if (SymbolTableEntry)
((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
SymbolTableEntry = &*IterBool.first;
}
//===----------------------------------------------------------------------===//
// StructType Helper functions.
StructType *StructType::create(LLVMContext &Context, StringRef Name) {
StructType *ST = new (Context.pImpl->Alloc) StructType(Context);
if (!Name.empty())
ST->setName(Name);
return ST;
}
StructType *StructType::get(LLVMContext &Context, bool isPacked) {
return get(Context, std::nullopt, isPacked);
}
StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
StringRef Name, bool isPacked) {
StructType *ST = create(Context, Name);
ST->setBody(Elements, isPacked);
return ST;
}
StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
return create(Context, Elements, StringRef());
}
StructType *StructType::create(LLVMContext &Context) {
return create(Context, StringRef());
}
StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
bool isPacked) {
assert(!Elements.empty() &&
"This method may not be invoked with an empty list");
return create(Elements[0]->getContext(), Elements, Name, isPacked);
}
StructType *StructType::create(ArrayRef<Type*> Elements) {
assert(!Elements.empty() &&
"This method may not be invoked with an empty list");
return create(Elements[0]->getContext(), Elements, StringRef());
}
bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
if ((getSubclassData() & SCDB_IsSized) != 0)
return true;
if (isOpaque())
return false;
if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
return false;
// Okay, our struct is sized if all of the elements are, but if one of the
// elements is opaque, the struct isn't sized *yet*, but may become sized in
// the future, so just bail out without caching.
// The ONLY special case inside a struct that is considered sized is when the
// elements are homogeneous of a scalable vector type.
if (containsHomogeneousScalableVectorTypes()) {
const_cast<StructType *>(this)->setSubclassData(getSubclassData() |
SCDB_IsSized);
return true;
}
for (Type *Ty : elements()) {
// If the struct contains a scalable vector type, don't consider it sized.
// This prevents it from being used in loads/stores/allocas/GEPs. The ONLY
// special case right now is a structure of homogenous scalable vector
// types and is handled by the if-statement before this for-loop.
if (Ty->isScalableTy())
return false;
if (!Ty->isSized(Visited))
return false;
}
// Here we cheat a bit and cast away const-ness. The goal is to memoize when
// we find a sized type, as types can only move from opaque to sized, not the
// other way.
const_cast<StructType*>(this)->setSubclassData(
getSubclassData() | SCDB_IsSized);
return true;
}
StringRef StructType::getName() const {
assert(!isLiteral() && "Literal structs never have names");
if (!SymbolTableEntry) return StringRef();
return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
}
bool StructType::isValidElementType(Type *ElemTy) {
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
!ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
!ElemTy->isTokenTy();
}
bool StructType::isLayoutIdentical(StructType *Other) const {
if (this == Other) return true;
if (isPacked() != Other->isPacked())
return false;
return elements() == Other->elements();
}
Type *StructType::getTypeAtIndex(const Value *V) const {
unsigned Idx = (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
assert(indexValid(Idx) && "Invalid structure index!");
return getElementType(Idx);
}
bool StructType::indexValid(const Value *V) const {
// Structure indexes require (vectors of) 32-bit integer constants. In the
// vector case all of the indices must be equal.
if (!V->getType()->isIntOrIntVectorTy(32))
return false;
if (isa<ScalableVectorType>(V->getType()))
return false;
const Constant *C = dyn_cast<Constant>(V);
if (C && V->getType()->isVectorTy())
C = C->getSplatValue();
const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
return CU && CU->getZExtValue() < getNumElements();
}
StructType *StructType::getTypeByName(LLVMContext &C, StringRef Name) {
return C.pImpl->NamedStructTypes.lookup(Name);
}
//===----------------------------------------------------------------------===//
// ArrayType Implementation
//===----------------------------------------------------------------------===//
ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
: Type(ElType->getContext(), ArrayTyID), ContainedType(ElType),
NumElements(NumEl) {
ContainedTys = &ContainedType;
NumContainedTys = 1;
}
ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
assert(isValidElementType(ElementType) && "Invalid type for array element!");
LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
ArrayType *&Entry =
pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
if (!Entry)
Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements);
return Entry;
}
bool ArrayType::isValidElementType(Type *ElemTy) {
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
!ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
!ElemTy->isTokenTy() && !ElemTy->isX86_AMXTy();
}
//===----------------------------------------------------------------------===//
// VectorType Implementation
//===----------------------------------------------------------------------===//
VectorType::VectorType(Type *ElType, unsigned EQ, Type::TypeID TID)
: Type(ElType->getContext(), TID), ContainedType(ElType),
ElementQuantity(EQ) {
ContainedTys = &ContainedType;
NumContainedTys = 1;
}
VectorType *VectorType::get(Type *ElementType, ElementCount EC) {
if (EC.isScalable())
return ScalableVectorType::get(ElementType, EC.getKnownMinValue());
else
return FixedVectorType::get(ElementType, EC.getKnownMinValue());
}
bool VectorType::isValidElementType(Type *ElemTy) {
return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
ElemTy->isPointerTy() || ElemTy->getTypeID() == TypedPointerTyID;
}
//===----------------------------------------------------------------------===//
// FixedVectorType Implementation
//===----------------------------------------------------------------------===//
FixedVectorType *FixedVectorType::get(Type *ElementType, unsigned NumElts) {
assert(NumElts > 0 && "#Elements of a VectorType must be greater than 0");
assert(isValidElementType(ElementType) && "Element type of a VectorType must "
"be an integer, floating point, or "
"pointer type.");
auto EC = ElementCount::getFixed(NumElts);
LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
VectorType *&Entry = ElementType->getContext()
.pImpl->VectorTypes[std::make_pair(ElementType, EC)];
if (!Entry)
Entry = new (pImpl->Alloc) FixedVectorType(ElementType, NumElts);
return cast<FixedVectorType>(Entry);
}
//===----------------------------------------------------------------------===//
// ScalableVectorType Implementation
//===----------------------------------------------------------------------===//
ScalableVectorType *ScalableVectorType::get(Type *ElementType,
unsigned MinNumElts) {
assert(MinNumElts > 0 && "#Elements of a VectorType must be greater than 0");
assert(isValidElementType(ElementType) && "Element type of a VectorType must "
"be an integer, floating point, or "
"pointer type.");
auto EC = ElementCount::getScalable(MinNumElts);
LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
VectorType *&Entry = ElementType->getContext()
.pImpl->VectorTypes[std::make_pair(ElementType, EC)];
if (!Entry)
Entry = new (pImpl->Alloc) ScalableVectorType(ElementType, MinNumElts);
return cast<ScalableVectorType>(Entry);
}
//===----------------------------------------------------------------------===//
// PointerType Implementation
//===----------------------------------------------------------------------===//
PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
assert(EltTy && "Can't get a pointer to <null> type!");
assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
// Automatically convert typed pointers to opaque pointers.
return get(EltTy->getContext(), AddressSpace);
}
PointerType *PointerType::get(LLVMContext &C, unsigned AddressSpace) {
LLVMContextImpl *CImpl = C.pImpl;
// Since AddressSpace #0 is the common case, we special case it.
PointerType *&Entry = AddressSpace == 0 ? CImpl->AS0PointerType
: CImpl->PointerTypes[AddressSpace];
if (!Entry)
Entry = new (CImpl->Alloc) PointerType(C, AddressSpace);
return Entry;
}
PointerType::PointerType(LLVMContext &C, unsigned AddrSpace)
: Type(C, PointerTyID) {
setSubclassData(AddrSpace);
}
PointerType *Type::getPointerTo(unsigned AddrSpace) const {
return PointerType::get(const_cast<Type*>(this), AddrSpace);
}
bool PointerType::isValidElementType(Type *ElemTy) {
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
!ElemTy->isMetadataTy() && !ElemTy->isTokenTy() &&
!ElemTy->isX86_AMXTy();
}
bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
}
//===----------------------------------------------------------------------===//
// TargetExtType Implementation
//===----------------------------------------------------------------------===//
TargetExtType::TargetExtType(LLVMContext &C, StringRef Name,
ArrayRef<Type *> Types, ArrayRef<unsigned> Ints)
: Type(C, TargetExtTyID), Name(C.pImpl->Saver.save(Name)) {
NumContainedTys = Types.size();
// Parameter storage immediately follows the class in allocation.
Type **Params = reinterpret_cast<Type **>(this + 1);
ContainedTys = Params;
for (Type *T : Types)
*Params++ = T;
setSubclassData(Ints.size());
unsigned *IntParamSpace = reinterpret_cast<unsigned *>(Params);
IntParams = IntParamSpace;
for (unsigned IntParam : Ints)
*IntParamSpace++ = IntParam;
}
TargetExtType *TargetExtType::get(LLVMContext &C, StringRef Name,
ArrayRef<Type *> Types,
ArrayRef<unsigned> Ints) {
const TargetExtTypeKeyInfo::KeyTy Key(Name, Types, Ints);
TargetExtType *TT;
// Since we only want to allocate a fresh target type in case none is found
// and we don't want to perform two lookups (one for checking if existent and
// one for inserting the newly allocated one), here we instead lookup based on
// Key and update the reference to the target type in-place to a newly
// allocated one if not found.
auto Insertion = C.pImpl->TargetExtTypes.insert_as(nullptr, Key);
if (Insertion.second) {
// The target type was not found. Allocate one and update TargetExtTypes
// in-place.
TT = (TargetExtType *)C.pImpl->Alloc.Allocate(
sizeof(TargetExtType) + sizeof(Type *) * Types.size() +
sizeof(unsigned) * Ints.size(),
alignof(TargetExtType));
new (TT) TargetExtType(C, Name, Types, Ints);
*Insertion.first = TT;
} else {
// The target type was found. Just return it.
TT = *Insertion.first;
}
return TT;
}
namespace {
struct TargetTypeInfo {
Type *LayoutType;
uint64_t Properties;
template <typename... ArgTys>
TargetTypeInfo(Type *LayoutType, ArgTys... Properties)
: LayoutType(LayoutType), Properties((0 | ... | Properties)) {}
};
} // anonymous namespace
static TargetTypeInfo getTargetTypeInfo(const TargetExtType *Ty) {
LLVMContext &C = Ty->getContext();
StringRef Name = Ty->getName();
if (Name.equals("spirv.Image"))
return TargetTypeInfo(PointerType::get(C, 0), TargetExtType::CanBeGlobal);
if (Name.starts_with("spirv."))
return TargetTypeInfo(PointerType::get(C, 0), TargetExtType::HasZeroInit,
TargetExtType::CanBeGlobal);
// Opaque types in the AArch64 name space.
if (Name == "aarch64.svcount")
return TargetTypeInfo(ScalableVectorType::get(Type::getInt1Ty(C), 16),
TargetExtType::HasZeroInit);
return TargetTypeInfo(Type::getVoidTy(C));
}
Type *TargetExtType::getLayoutType() const {
return getTargetTypeInfo(this).LayoutType;
}
bool TargetExtType::hasProperty(Property Prop) const {
uint64_t Properties = getTargetTypeInfo(this).Properties;
return (Properties & Prop) == Prop;
}