blob: 678edc58ad848dfe15367acf72c31b955b1e1f5f [file] [log] [blame]
//===-- Instruction.cpp - Implement the Instruction class -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Instruction class for the IR library.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Instruction.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/IR/AttributeMask.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MemoryModelRelaxationAnnotations.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/IR/Type.h"
using namespace llvm;
Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
InstListType::iterator InsertBefore)
: User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
// When called with an iterator, there must be a block to insert into.
BasicBlock *BB = InsertBefore->getParent();
assert(BB && "Instruction to insert before is not in a basic block!");
insertInto(BB, InsertBefore);
}
Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
Instruction *InsertBefore)
: User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
// If requested, insert this instruction into a basic block...
if (InsertBefore) {
BasicBlock *BB = InsertBefore->getParent();
assert(BB && "Instruction to insert before is not in a basic block!");
insertInto(BB, InsertBefore->getIterator());
}
}
Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
BasicBlock *InsertAtEnd)
: User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
// If requested, append this instruction into the basic block.
if (InsertAtEnd)
insertInto(InsertAtEnd, InsertAtEnd->end());
}
Instruction::~Instruction() {
assert(!Parent && "Instruction still linked in the program!");
// Replace any extant metadata uses of this instruction with undef to
// preserve debug info accuracy. Some alternatives include:
// - Treat Instruction like any other Value, and point its extant metadata
// uses to an empty ValueAsMetadata node. This makes extant dbg.value uses
// trivially dead (i.e. fair game for deletion in many passes), leading to
// stale dbg.values being in effect for too long.
// - Call salvageDebugInfoOrMarkUndef. Not needed to make instruction removal
// correct. OTOH results in wasted work in some common cases (e.g. when all
// instructions in a BasicBlock are deleted).
if (isUsedByMetadata())
ValueAsMetadata::handleRAUW(this, UndefValue::get(getType()));
// Explicitly remove DIAssignID metadata to clear up ID -> Instruction(s)
// mapping in LLVMContext.
setMetadata(LLVMContext::MD_DIAssignID, nullptr);
}
void Instruction::setParent(BasicBlock *P) {
Parent = P;
}
const Module *Instruction::getModule() const {
return getParent()->getModule();
}
const Function *Instruction::getFunction() const {
return getParent()->getParent();
}
void Instruction::removeFromParent() {
// Perform any debug-info maintenence required.
handleMarkerRemoval();
getParent()->getInstList().remove(getIterator());
}
void Instruction::handleMarkerRemoval() {
if (!Parent->IsNewDbgInfoFormat || !DebugMarker)
return;
DebugMarker->removeMarker();
}
BasicBlock::iterator Instruction::eraseFromParent() {
handleMarkerRemoval();
return getParent()->getInstList().erase(getIterator());
}
void Instruction::insertBefore(Instruction *InsertPos) {
insertBefore(InsertPos->getIterator());
}
/// Insert an unlinked instruction into a basic block immediately before the
/// specified instruction.
void Instruction::insertBefore(BasicBlock::iterator InsertPos) {
insertBefore(*InsertPos->getParent(), InsertPos);
}
/// Insert an unlinked instruction into a basic block immediately after the
/// specified instruction.
void Instruction::insertAfter(Instruction *InsertPos) {
BasicBlock *DestParent = InsertPos->getParent();
DestParent->getInstList().insertAfter(InsertPos->getIterator(), this);
}
BasicBlock::iterator Instruction::insertInto(BasicBlock *ParentBB,
BasicBlock::iterator It) {
assert(getParent() == nullptr && "Expected detached instruction");
assert((It == ParentBB->end() || It->getParent() == ParentBB) &&
"It not in ParentBB");
insertBefore(*ParentBB, It);
return getIterator();
}
extern cl::opt<bool> UseNewDbgInfoFormat;
void Instruction::insertBefore(BasicBlock &BB,
InstListType::iterator InsertPos) {
assert(!DebugMarker);
BB.getInstList().insert(InsertPos, this);
if (!BB.IsNewDbgInfoFormat)
return;
// We've inserted "this": if InsertAtHead is set then it comes before any
// DbgVariableRecords attached to InsertPos. But if it's not set, then any
// DbgRecords should now come before "this".
bool InsertAtHead = InsertPos.getHeadBit();
if (!InsertAtHead) {
DbgMarker *SrcMarker = BB.getMarker(InsertPos);
if (SrcMarker && !SrcMarker->empty()) {
// If this assertion fires, the calling code is about to insert a PHI
// after debug-records, which would form a sequence like:
// %0 = PHI
// #dbg_value
// %1 = PHI
// Which is de-normalised and undesired -- hence the assertion. To avoid
// this, you must insert at that position using an iterator, and it must
// be aquired by calling getFirstNonPHIIt / begin or similar methods on
// the block. This will signal to this behind-the-scenes debug-info
// maintenence code that you intend the PHI to be ahead of everything,
// including any debug-info.
assert(!isa<PHINode>(this) && "Inserting PHI after debug-records!");
adoptDbgRecords(&BB, InsertPos, false);
}
}
// If we're inserting a terminator, check if we need to flush out
// TrailingDbgRecords. Inserting instructions at the end of an incomplete
// block is handled by the code block above.
if (isTerminator())
getParent()->flushTerminatorDbgRecords();
}
/// Unlink this instruction from its current basic block and insert it into the
/// basic block that MovePos lives in, right before MovePos.
void Instruction::moveBefore(Instruction *MovePos) {
moveBeforeImpl(*MovePos->getParent(), MovePos->getIterator(), false);
}
void Instruction::moveBeforePreserving(Instruction *MovePos) {
moveBeforeImpl(*MovePos->getParent(), MovePos->getIterator(), true);
}
void Instruction::moveAfter(Instruction *MovePos) {
auto NextIt = std::next(MovePos->getIterator());
// We want this instruction to be moved to before NextIt in the instruction
// list, but before NextIt's debug value range.
NextIt.setHeadBit(true);
moveBeforeImpl(*MovePos->getParent(), NextIt, false);
}
void Instruction::moveAfterPreserving(Instruction *MovePos) {
auto NextIt = std::next(MovePos->getIterator());
// We want this instruction and its debug range to be moved to before NextIt
// in the instruction list, but before NextIt's debug value range.
NextIt.setHeadBit(true);
moveBeforeImpl(*MovePos->getParent(), NextIt, true);
}
void Instruction::moveBefore(BasicBlock &BB, InstListType::iterator I) {
moveBeforeImpl(BB, I, false);
}
void Instruction::moveBeforePreserving(BasicBlock &BB,
InstListType::iterator I) {
moveBeforeImpl(BB, I, true);
}
void Instruction::moveBeforeImpl(BasicBlock &BB, InstListType::iterator I,
bool Preserve) {
assert(I == BB.end() || I->getParent() == &BB);
bool InsertAtHead = I.getHeadBit();
// If we've been given the "Preserve" flag, then just move the DbgRecords with
// the instruction, no more special handling needed.
if (BB.IsNewDbgInfoFormat && DebugMarker && !Preserve) {
if (I != this->getIterator() || InsertAtHead) {
// "this" is definitely moving in the list, or it's moving ahead of its
// attached DbgVariableRecords. Detach any existing DbgRecords.
handleMarkerRemoval();
}
}
// Move this single instruction. Use the list splice method directly, not
// the block splicer, which will do more debug-info things.
BB.getInstList().splice(I, getParent()->getInstList(), getIterator());
if (BB.IsNewDbgInfoFormat && !Preserve) {
DbgMarker *NextMarker = getParent()->getNextMarker(this);
// If we're inserting at point I, and not in front of the DbgRecords
// attached there, then we should absorb the DbgRecords attached to I.
if (!InsertAtHead && NextMarker && !NextMarker->empty()) {
adoptDbgRecords(&BB, I, false);
}
}
if (isTerminator())
getParent()->flushTerminatorDbgRecords();
}
iterator_range<DbgRecord::self_iterator> Instruction::cloneDebugInfoFrom(
const Instruction *From, std::optional<DbgRecord::self_iterator> FromHere,
bool InsertAtHead) {
if (!From->DebugMarker)
return DbgMarker::getEmptyDbgRecordRange();
assert(getParent()->IsNewDbgInfoFormat);
assert(getParent()->IsNewDbgInfoFormat ==
From->getParent()->IsNewDbgInfoFormat);
if (!DebugMarker)
getParent()->createMarker(this);
return DebugMarker->cloneDebugInfoFrom(From->DebugMarker, FromHere,
InsertAtHead);
}
std::optional<DbgRecord::self_iterator>
Instruction::getDbgReinsertionPosition() {
// Is there a marker on the next instruction?
DbgMarker *NextMarker = getParent()->getNextMarker(this);
if (!NextMarker)
return std::nullopt;
// Are there any DbgRecords in the next marker?
if (NextMarker->StoredDbgRecords.empty())
return std::nullopt;
return NextMarker->StoredDbgRecords.begin();
}
bool Instruction::hasDbgRecords() const { return !getDbgRecordRange().empty(); }
void Instruction::adoptDbgRecords(BasicBlock *BB, BasicBlock::iterator It,
bool InsertAtHead) {
DbgMarker *SrcMarker = BB->getMarker(It);
auto ReleaseTrailingDbgRecords = [BB, It, SrcMarker]() {
if (BB->end() == It) {
SrcMarker->eraseFromParent();
BB->deleteTrailingDbgRecords();
}
};
if (!SrcMarker || SrcMarker->StoredDbgRecords.empty()) {
ReleaseTrailingDbgRecords();
return;
}
// If we have DbgMarkers attached to this instruction, we have to honour the
// ordering of DbgRecords between this and the other marker. Fall back to just
// absorbing from the source.
if (DebugMarker || It == BB->end()) {
// Ensure we _do_ have a marker.
getParent()->createMarker(this);
DebugMarker->absorbDebugValues(*SrcMarker, InsertAtHead);
// Having transferred everything out of SrcMarker, we _could_ clean it up
// and free the marker now. However, that's a lot of heap-accounting for a
// small amount of memory with a good chance of re-use. Leave it for the
// moment. It will be released when the Instruction is freed in the worst
// case.
// However: if we transferred from a trailing marker off the end of the
// block, it's important to not leave the empty marker trailing. It will
// give a misleading impression that some debug records have been left
// trailing.
ReleaseTrailingDbgRecords();
} else {
// Optimisation: we're transferring all the DbgRecords from the source
// marker onto this empty location: just adopt the other instructions
// marker.
DebugMarker = SrcMarker;
DebugMarker->MarkedInstr = this;
It->DebugMarker = nullptr;
}
}
void Instruction::dropDbgRecords() {
if (DebugMarker)
DebugMarker->dropDbgRecords();
}
void Instruction::dropOneDbgRecord(DbgRecord *DVR) {
DebugMarker->dropOneDbgRecord(DVR);
}
bool Instruction::comesBefore(const Instruction *Other) const {
assert(Parent && Other->Parent &&
"instructions without BB parents have no order");
assert(Parent == Other->Parent && "cross-BB instruction order comparison");
if (!Parent->isInstrOrderValid())
Parent->renumberInstructions();
return Order < Other->Order;
}
std::optional<BasicBlock::iterator> Instruction::getInsertionPointAfterDef() {
assert(!getType()->isVoidTy() && "Instruction must define result");
BasicBlock *InsertBB;
BasicBlock::iterator InsertPt;
if (auto *PN = dyn_cast<PHINode>(this)) {
InsertBB = PN->getParent();
InsertPt = InsertBB->getFirstInsertionPt();
} else if (auto *II = dyn_cast<InvokeInst>(this)) {
InsertBB = II->getNormalDest();
InsertPt = InsertBB->getFirstInsertionPt();
} else if (isa<CallBrInst>(this)) {
// Def is available in multiple successors, there's no single dominating
// insertion point.
return std::nullopt;
} else {
assert(!isTerminator() && "Only invoke/callbr terminators return value");
InsertBB = getParent();
InsertPt = std::next(getIterator());
// Any instruction inserted immediately after "this" will come before any
// debug-info records take effect -- thus, set the head bit indicating that
// to debug-info-transfer code.
InsertPt.setHeadBit(true);
}
// catchswitch blocks don't have any legal insertion point (because they
// are both an exception pad and a terminator).
if (InsertPt == InsertBB->end())
return std::nullopt;
return InsertPt;
}
bool Instruction::isOnlyUserOfAnyOperand() {
return any_of(operands(), [](Value *V) { return V->hasOneUser(); });
}
void Instruction::setHasNoUnsignedWrap(bool b) {
if (auto *Inst = dyn_cast<OverflowingBinaryOperator>(this))
Inst->setHasNoUnsignedWrap(b);
else
cast<TruncInst>(this)->setHasNoUnsignedWrap(b);
}
void Instruction::setHasNoSignedWrap(bool b) {
if (auto *Inst = dyn_cast<OverflowingBinaryOperator>(this))
Inst->setHasNoSignedWrap(b);
else
cast<TruncInst>(this)->setHasNoSignedWrap(b);
}
void Instruction::setIsExact(bool b) {
cast<PossiblyExactOperator>(this)->setIsExact(b);
}
void Instruction::setNonNeg(bool b) {
assert(isa<PossiblyNonNegInst>(this) && "Must be zext/uitofp");
SubclassOptionalData = (SubclassOptionalData & ~PossiblyNonNegInst::NonNeg) |
(b * PossiblyNonNegInst::NonNeg);
}
bool Instruction::hasNoUnsignedWrap() const {
if (auto *Inst = dyn_cast<OverflowingBinaryOperator>(this))
return Inst->hasNoUnsignedWrap();
return cast<TruncInst>(this)->hasNoUnsignedWrap();
}
bool Instruction::hasNoSignedWrap() const {
if (auto *Inst = dyn_cast<OverflowingBinaryOperator>(this))
return Inst->hasNoSignedWrap();
return cast<TruncInst>(this)->hasNoSignedWrap();
}
bool Instruction::hasNonNeg() const {
assert(isa<PossiblyNonNegInst>(this) && "Must be zext/uitofp");
return (SubclassOptionalData & PossiblyNonNegInst::NonNeg) != 0;
}
bool Instruction::hasPoisonGeneratingFlags() const {
return cast<Operator>(this)->hasPoisonGeneratingFlags();
}
void Instruction::dropPoisonGeneratingFlags() {
switch (getOpcode()) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::Shl:
cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(false);
cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(false);
break;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::AShr:
case Instruction::LShr:
cast<PossiblyExactOperator>(this)->setIsExact(false);
break;
case Instruction::Or:
cast<PossiblyDisjointInst>(this)->setIsDisjoint(false);
break;
case Instruction::GetElementPtr:
cast<GetElementPtrInst>(this)->setIsInBounds(false);
break;
case Instruction::UIToFP:
case Instruction::ZExt:
setNonNeg(false);
break;
case Instruction::Trunc:
cast<TruncInst>(this)->setHasNoUnsignedWrap(false);
cast<TruncInst>(this)->setHasNoSignedWrap(false);
break;
}
if (isa<FPMathOperator>(this)) {
setHasNoNaNs(false);
setHasNoInfs(false);
}
assert(!hasPoisonGeneratingFlags() && "must be kept in sync");
}
bool Instruction::hasPoisonGeneratingMetadata() const {
return hasMetadata(LLVMContext::MD_range) ||
hasMetadata(LLVMContext::MD_nonnull) ||
hasMetadata(LLVMContext::MD_align);
}
void Instruction::dropPoisonGeneratingMetadata() {
eraseMetadata(LLVMContext::MD_range);
eraseMetadata(LLVMContext::MD_nonnull);
eraseMetadata(LLVMContext::MD_align);
}
bool Instruction::hasPoisonGeneratingReturnAttributes() const {
if (const auto *CB = dyn_cast<CallBase>(this)) {
AttributeSet RetAttrs = CB->getAttributes().getRetAttrs();
return RetAttrs.hasAttribute(Attribute::Range) ||
RetAttrs.hasAttribute(Attribute::Alignment) ||
RetAttrs.hasAttribute(Attribute::NonNull);
}
return false;
}
void Instruction::dropPoisonGeneratingReturnAttributes() {
if (auto *CB = dyn_cast<CallBase>(this)) {
AttributeMask AM;
AM.addAttribute(Attribute::Range);
AM.addAttribute(Attribute::Alignment);
AM.addAttribute(Attribute::NonNull);
CB->removeRetAttrs(AM);
}
assert(!hasPoisonGeneratingReturnAttributes() && "must be kept in sync");
}
void Instruction::dropUBImplyingAttrsAndUnknownMetadata(
ArrayRef<unsigned> KnownIDs) {
dropUnknownNonDebugMetadata(KnownIDs);
auto *CB = dyn_cast<CallBase>(this);
if (!CB)
return;
// For call instructions, we also need to drop parameter and return attributes
// that are can cause UB if the call is moved to a location where the
// attribute is not valid.
AttributeList AL = CB->getAttributes();
if (AL.isEmpty())
return;
AttributeMask UBImplyingAttributes =
AttributeFuncs::getUBImplyingAttributes();
for (unsigned ArgNo = 0; ArgNo < CB->arg_size(); ArgNo++)
CB->removeParamAttrs(ArgNo, UBImplyingAttributes);
CB->removeRetAttrs(UBImplyingAttributes);
}
void Instruction::dropUBImplyingAttrsAndMetadata() {
// !annotation metadata does not impact semantics.
// !range, !nonnull and !align produce poison, so they are safe to speculate.
// !noundef and various AA metadata must be dropped, as it generally produces
// immediate undefined behavior.
unsigned KnownIDs[] = {LLVMContext::MD_annotation, LLVMContext::MD_range,
LLVMContext::MD_nonnull, LLVMContext::MD_align};
dropUBImplyingAttrsAndUnknownMetadata(KnownIDs);
}
bool Instruction::isExact() const {
return cast<PossiblyExactOperator>(this)->isExact();
}
void Instruction::setFast(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setFast(B);
}
void Instruction::setHasAllowReassoc(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasAllowReassoc(B);
}
void Instruction::setHasNoNaNs(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasNoNaNs(B);
}
void Instruction::setHasNoInfs(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasNoInfs(B);
}
void Instruction::setHasNoSignedZeros(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
}
void Instruction::setHasAllowReciprocal(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
}
void Instruction::setHasAllowContract(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasAllowContract(B);
}
void Instruction::setHasApproxFunc(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasApproxFunc(B);
}
void Instruction::setFastMathFlags(FastMathFlags FMF) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setFastMathFlags(FMF);
}
void Instruction::copyFastMathFlags(FastMathFlags FMF) {
assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op");
cast<FPMathOperator>(this)->copyFastMathFlags(FMF);
}
bool Instruction::isFast() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->isFast();
}
bool Instruction::hasAllowReassoc() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasAllowReassoc();
}
bool Instruction::hasNoNaNs() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasNoNaNs();
}
bool Instruction::hasNoInfs() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasNoInfs();
}
bool Instruction::hasNoSignedZeros() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasNoSignedZeros();
}
bool Instruction::hasAllowReciprocal() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasAllowReciprocal();
}
bool Instruction::hasAllowContract() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasAllowContract();
}
bool Instruction::hasApproxFunc() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasApproxFunc();
}
FastMathFlags Instruction::getFastMathFlags() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->getFastMathFlags();
}
void Instruction::copyFastMathFlags(const Instruction *I) {
copyFastMathFlags(I->getFastMathFlags());
}
void Instruction::copyIRFlags(const Value *V, bool IncludeWrapFlags) {
// Copy the wrapping flags.
if (IncludeWrapFlags && isa<OverflowingBinaryOperator>(this)) {
if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
setHasNoSignedWrap(OB->hasNoSignedWrap());
setHasNoUnsignedWrap(OB->hasNoUnsignedWrap());
}
}
if (auto *TI = dyn_cast<TruncInst>(V)) {
if (isa<TruncInst>(this)) {
setHasNoSignedWrap(TI->hasNoSignedWrap());
setHasNoUnsignedWrap(TI->hasNoUnsignedWrap());
}
}
// Copy the exact flag.
if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
if (isa<PossiblyExactOperator>(this))
setIsExact(PE->isExact());
if (auto *SrcPD = dyn_cast<PossiblyDisjointInst>(V))
if (auto *DestPD = dyn_cast<PossiblyDisjointInst>(this))
DestPD->setIsDisjoint(SrcPD->isDisjoint());
// Copy the fast-math flags.
if (auto *FP = dyn_cast<FPMathOperator>(V))
if (isa<FPMathOperator>(this))
copyFastMathFlags(FP->getFastMathFlags());
if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
DestGEP->setIsInBounds(SrcGEP->isInBounds() || DestGEP->isInBounds());
if (auto *NNI = dyn_cast<PossiblyNonNegInst>(V))
if (isa<PossiblyNonNegInst>(this))
setNonNeg(NNI->hasNonNeg());
}
void Instruction::andIRFlags(const Value *V) {
if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
if (isa<OverflowingBinaryOperator>(this)) {
setHasNoSignedWrap(hasNoSignedWrap() && OB->hasNoSignedWrap());
setHasNoUnsignedWrap(hasNoUnsignedWrap() && OB->hasNoUnsignedWrap());
}
}
if (auto *TI = dyn_cast<TruncInst>(V)) {
if (isa<TruncInst>(this)) {
setHasNoSignedWrap(hasNoSignedWrap() && TI->hasNoSignedWrap());
setHasNoUnsignedWrap(hasNoUnsignedWrap() && TI->hasNoUnsignedWrap());
}
}
if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
if (isa<PossiblyExactOperator>(this))
setIsExact(isExact() && PE->isExact());
if (auto *SrcPD = dyn_cast<PossiblyDisjointInst>(V))
if (auto *DestPD = dyn_cast<PossiblyDisjointInst>(this))
DestPD->setIsDisjoint(DestPD->isDisjoint() && SrcPD->isDisjoint());
if (auto *FP = dyn_cast<FPMathOperator>(V)) {
if (isa<FPMathOperator>(this)) {
FastMathFlags FM = getFastMathFlags();
FM &= FP->getFastMathFlags();
copyFastMathFlags(FM);
}
}
if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
DestGEP->setIsInBounds(SrcGEP->isInBounds() && DestGEP->isInBounds());
if (auto *NNI = dyn_cast<PossiblyNonNegInst>(V))
if (isa<PossiblyNonNegInst>(this))
setNonNeg(hasNonNeg() && NNI->hasNonNeg());
}
const char *Instruction::getOpcodeName(unsigned OpCode) {
switch (OpCode) {
// Terminators
case Ret: return "ret";
case Br: return "br";
case Switch: return "switch";
case IndirectBr: return "indirectbr";
case Invoke: return "invoke";
case Resume: return "resume";
case Unreachable: return "unreachable";
case CleanupRet: return "cleanupret";
case CatchRet: return "catchret";
case CatchPad: return "catchpad";
case CatchSwitch: return "catchswitch";
case CallBr: return "callbr";
// Standard unary operators...
case FNeg: return "fneg";
// Standard binary operators...
case Add: return "add";
case FAdd: return "fadd";
case Sub: return "sub";
case FSub: return "fsub";
case Mul: return "mul";
case FMul: return "fmul";
case UDiv: return "udiv";
case SDiv: return "sdiv";
case FDiv: return "fdiv";
case URem: return "urem";
case SRem: return "srem";
case FRem: return "frem";
// Logical operators...
case And: return "and";
case Or : return "or";
case Xor: return "xor";
// Memory instructions...
case Alloca: return "alloca";
case Load: return "load";
case Store: return "store";
case AtomicCmpXchg: return "cmpxchg";
case AtomicRMW: return "atomicrmw";
case Fence: return "fence";
case GetElementPtr: return "getelementptr";
// Convert instructions...
case Trunc: return "trunc";
case ZExt: return "zext";
case SExt: return "sext";
case FPTrunc: return "fptrunc";
case FPExt: return "fpext";
case FPToUI: return "fptoui";
case FPToSI: return "fptosi";
case UIToFP: return "uitofp";
case SIToFP: return "sitofp";
case IntToPtr: return "inttoptr";
case PtrToInt: return "ptrtoint";
case BitCast: return "bitcast";
case AddrSpaceCast: return "addrspacecast";
// Other instructions...
case ICmp: return "icmp";
case FCmp: return "fcmp";
case PHI: return "phi";
case Select: return "select";
case Call: return "call";
case Shl: return "shl";
case LShr: return "lshr";
case AShr: return "ashr";
case VAArg: return "va_arg";
case ExtractElement: return "extractelement";
case InsertElement: return "insertelement";
case ShuffleVector: return "shufflevector";
case ExtractValue: return "extractvalue";
case InsertValue: return "insertvalue";
case LandingPad: return "landingpad";
case CleanupPad: return "cleanuppad";
case Freeze: return "freeze";
default: return "<Invalid operator> ";
}
}
/// This must be kept in sync with FunctionComparator::cmpOperations in
/// lib/Transforms/IPO/MergeFunctions.cpp.
bool Instruction::hasSameSpecialState(const Instruction *I2,
bool IgnoreAlignment) const {
auto I1 = this;
assert(I1->getOpcode() == I2->getOpcode() &&
"Can not compare special state of different instructions");
if (const AllocaInst *AI = dyn_cast<AllocaInst>(I1))
return AI->getAllocatedType() == cast<AllocaInst>(I2)->getAllocatedType() &&
(AI->getAlign() == cast<AllocaInst>(I2)->getAlign() ||
IgnoreAlignment);
if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
(LI->getAlign() == cast<LoadInst>(I2)->getAlign() ||
IgnoreAlignment) &&
LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
LI->getSyncScopeID() == cast<LoadInst>(I2)->getSyncScopeID();
if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
(SI->getAlign() == cast<StoreInst>(I2)->getAlign() ||
IgnoreAlignment) &&
SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
SI->getSyncScopeID() == cast<StoreInst>(I2)->getSyncScopeID();
if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
if (const CallInst *CI = dyn_cast<CallInst>(I1))
return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
CI->getAttributes() == cast<CallInst>(I2)->getAttributes() &&
CI->hasIdenticalOperandBundleSchema(*cast<CallInst>(I2));
if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes() &&
CI->hasIdenticalOperandBundleSchema(*cast<InvokeInst>(I2));
if (const CallBrInst *CI = dyn_cast<CallBrInst>(I1))
return CI->getCallingConv() == cast<CallBrInst>(I2)->getCallingConv() &&
CI->getAttributes() == cast<CallBrInst>(I2)->getAttributes() &&
CI->hasIdenticalOperandBundleSchema(*cast<CallBrInst>(I2));
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
FI->getSyncScopeID() == cast<FenceInst>(I2)->getSyncScopeID();
if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() &&
CXI->getSuccessOrdering() ==
cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() &&
CXI->getFailureOrdering() ==
cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() &&
CXI->getSyncScopeID() ==
cast<AtomicCmpXchgInst>(I2)->getSyncScopeID();
if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
RMWI->getSyncScopeID() == cast<AtomicRMWInst>(I2)->getSyncScopeID();
if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I1))
return SVI->getShuffleMask() ==
cast<ShuffleVectorInst>(I2)->getShuffleMask();
if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I1))
return GEP->getSourceElementType() ==
cast<GetElementPtrInst>(I2)->getSourceElementType();
return true;
}
bool Instruction::isIdenticalTo(const Instruction *I) const {
return isIdenticalToWhenDefined(I) &&
SubclassOptionalData == I->SubclassOptionalData;
}
bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
if (getOpcode() != I->getOpcode() ||
getNumOperands() != I->getNumOperands() ||
getType() != I->getType())
return false;
// If both instructions have no operands, they are identical.
if (getNumOperands() == 0 && I->getNumOperands() == 0)
return this->hasSameSpecialState(I);
// We have two instructions of identical opcode and #operands. Check to see
// if all operands are the same.
if (!std::equal(op_begin(), op_end(), I->op_begin()))
return false;
// WARNING: this logic must be kept in sync with EliminateDuplicatePHINodes()!
if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
const PHINode *otherPHI = cast<PHINode>(I);
return std::equal(thisPHI->block_begin(), thisPHI->block_end(),
otherPHI->block_begin());
}
return this->hasSameSpecialState(I);
}
// Keep this in sync with FunctionComparator::cmpOperations in
// lib/Transforms/IPO/MergeFunctions.cpp.
bool Instruction::isSameOperationAs(const Instruction *I,
unsigned flags) const {
bool IgnoreAlignment = flags & CompareIgnoringAlignment;
bool UseScalarTypes = flags & CompareUsingScalarTypes;
if (getOpcode() != I->getOpcode() ||
getNumOperands() != I->getNumOperands() ||
(UseScalarTypes ?
getType()->getScalarType() != I->getType()->getScalarType() :
getType() != I->getType()))
return false;
// We have two instructions of identical opcode and #operands. Check to see
// if all operands are the same type
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (UseScalarTypes ?
getOperand(i)->getType()->getScalarType() !=
I->getOperand(i)->getType()->getScalarType() :
getOperand(i)->getType() != I->getOperand(i)->getType())
return false;
return this->hasSameSpecialState(I, IgnoreAlignment);
}
bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
for (const Use &U : uses()) {
// PHI nodes uses values in the corresponding predecessor block. For other
// instructions, just check to see whether the parent of the use matches up.
const Instruction *I = cast<Instruction>(U.getUser());
const PHINode *PN = dyn_cast<PHINode>(I);
if (!PN) {
if (I->getParent() != BB)
return true;
continue;
}
if (PN->getIncomingBlock(U) != BB)
return true;
}
return false;
}
bool Instruction::mayReadFromMemory() const {
switch (getOpcode()) {
default: return false;
case Instruction::VAArg:
case Instruction::Load:
case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::CatchPad:
case Instruction::CatchRet:
return true;
case Instruction::Call:
case Instruction::Invoke:
case Instruction::CallBr:
return !cast<CallBase>(this)->onlyWritesMemory();
case Instruction::Store:
return !cast<StoreInst>(this)->isUnordered();
}
}
bool Instruction::mayWriteToMemory() const {
switch (getOpcode()) {
default: return false;
case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
case Instruction::Store:
case Instruction::VAArg:
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::CatchPad:
case Instruction::CatchRet:
return true;
case Instruction::Call:
case Instruction::Invoke:
case Instruction::CallBr:
return !cast<CallBase>(this)->onlyReadsMemory();
case Instruction::Load:
return !cast<LoadInst>(this)->isUnordered();
}
}
bool Instruction::isAtomic() const {
switch (getOpcode()) {
default:
return false;
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::Fence:
return true;
case Instruction::Load:
return cast<LoadInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
case Instruction::Store:
return cast<StoreInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
}
}
bool Instruction::hasAtomicLoad() const {
assert(isAtomic());
switch (getOpcode()) {
default:
return false;
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::Load:
return true;
}
}
bool Instruction::hasAtomicStore() const {
assert(isAtomic());
switch (getOpcode()) {
default:
return false;
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::Store:
return true;
}
}
bool Instruction::isVolatile() const {
switch (getOpcode()) {
default:
return false;
case Instruction::AtomicRMW:
return cast<AtomicRMWInst>(this)->isVolatile();
case Instruction::Store:
return cast<StoreInst>(this)->isVolatile();
case Instruction::Load:
return cast<LoadInst>(this)->isVolatile();
case Instruction::AtomicCmpXchg:
return cast<AtomicCmpXchgInst>(this)->isVolatile();
case Instruction::Call:
case Instruction::Invoke:
// There are a very limited number of intrinsics with volatile flags.
if (auto *II = dyn_cast<IntrinsicInst>(this)) {
if (auto *MI = dyn_cast<MemIntrinsic>(II))
return MI->isVolatile();
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::matrix_column_major_load:
return cast<ConstantInt>(II->getArgOperand(2))->isOne();
case Intrinsic::matrix_column_major_store:
return cast<ConstantInt>(II->getArgOperand(3))->isOne();
}
}
return false;
}
}
Type *Instruction::getAccessType() const {
switch (getOpcode()) {
case Instruction::Store:
return cast<StoreInst>(this)->getValueOperand()->getType();
case Instruction::Load:
case Instruction::AtomicRMW:
return getType();
case Instruction::AtomicCmpXchg:
return cast<AtomicCmpXchgInst>(this)->getNewValOperand()->getType();
case Instruction::Call:
case Instruction::Invoke:
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(this)) {
switch (II->getIntrinsicID()) {
case Intrinsic::masked_load:
case Intrinsic::masked_gather:
case Intrinsic::masked_expandload:
case Intrinsic::vp_load:
case Intrinsic::vp_gather:
case Intrinsic::experimental_vp_strided_load:
return II->getType();
case Intrinsic::masked_store:
case Intrinsic::masked_scatter:
case Intrinsic::masked_compressstore:
case Intrinsic::vp_store:
case Intrinsic::vp_scatter:
case Intrinsic::experimental_vp_strided_store:
return II->getOperand(0)->getType();
default:
break;
}
}
}
return nullptr;
}
static bool canUnwindPastLandingPad(const LandingPadInst *LP,
bool IncludePhaseOneUnwind) {
// Because phase one unwinding skips cleanup landingpads, we effectively
// unwind past this frame, and callers need to have valid unwind info.
if (LP->isCleanup())
return IncludePhaseOneUnwind;
for (unsigned I = 0; I < LP->getNumClauses(); ++I) {
Constant *Clause = LP->getClause(I);
// catch ptr null catches all exceptions.
if (LP->isCatch(I) && isa<ConstantPointerNull>(Clause))
return false;
// filter [0 x ptr] catches all exceptions.
if (LP->isFilter(I) && Clause->getType()->getArrayNumElements() == 0)
return false;
}
// May catch only some subset of exceptions, in which case other exceptions
// will continue unwinding.
return true;
}
bool Instruction::mayThrow(bool IncludePhaseOneUnwind) const {
switch (getOpcode()) {
case Instruction::Call:
return !cast<CallInst>(this)->doesNotThrow();
case Instruction::CleanupRet:
return cast<CleanupReturnInst>(this)->unwindsToCaller();
case Instruction::CatchSwitch:
return cast<CatchSwitchInst>(this)->unwindsToCaller();
case Instruction::Resume:
return true;
case Instruction::Invoke: {
// Landingpads themselves don't unwind -- however, an invoke of a skipped
// landingpad may continue unwinding.
BasicBlock *UnwindDest = cast<InvokeInst>(this)->getUnwindDest();
Instruction *Pad = UnwindDest->getFirstNonPHI();
if (auto *LP = dyn_cast<LandingPadInst>(Pad))
return canUnwindPastLandingPad(LP, IncludePhaseOneUnwind);
return false;
}
case Instruction::CleanupPad:
// Treat the same as cleanup landingpad.
return IncludePhaseOneUnwind;
default:
return false;
}
}
bool Instruction::mayHaveSideEffects() const {
return mayWriteToMemory() || mayThrow() || !willReturn();
}
bool Instruction::isSafeToRemove() const {
return (!isa<CallInst>(this) || !this->mayHaveSideEffects()) &&
!this->isTerminator() && !this->isEHPad();
}
bool Instruction::willReturn() const {
// Volatile store isn't guaranteed to return; see LangRef.
if (auto *SI = dyn_cast<StoreInst>(this))
return !SI->isVolatile();
if (const auto *CB = dyn_cast<CallBase>(this))
return CB->hasFnAttr(Attribute::WillReturn);
return true;
}
bool Instruction::isLifetimeStartOrEnd() const {
auto *II = dyn_cast<IntrinsicInst>(this);
if (!II)
return false;
Intrinsic::ID ID = II->getIntrinsicID();
return ID == Intrinsic::lifetime_start || ID == Intrinsic::lifetime_end;
}
bool Instruction::isLaunderOrStripInvariantGroup() const {
auto *II = dyn_cast<IntrinsicInst>(this);
if (!II)
return false;
Intrinsic::ID ID = II->getIntrinsicID();
return ID == Intrinsic::launder_invariant_group ||
ID == Intrinsic::strip_invariant_group;
}
bool Instruction::isDebugOrPseudoInst() const {
return isa<DbgInfoIntrinsic>(this) || isa<PseudoProbeInst>(this);
}
const Instruction *
Instruction::getNextNonDebugInstruction(bool SkipPseudoOp) const {
for (const Instruction *I = getNextNode(); I; I = I->getNextNode())
if (!isa<DbgInfoIntrinsic>(I) && !(SkipPseudoOp && isa<PseudoProbeInst>(I)))
return I;
return nullptr;
}
const Instruction *
Instruction::getPrevNonDebugInstruction(bool SkipPseudoOp) const {
for (const Instruction *I = getPrevNode(); I; I = I->getPrevNode())
if (!isa<DbgInfoIntrinsic>(I) && !(SkipPseudoOp && isa<PseudoProbeInst>(I)))
return I;
return nullptr;
}
const DebugLoc &Instruction::getStableDebugLoc() const {
if (isa<DbgInfoIntrinsic>(this))
if (const Instruction *Next = getNextNonDebugInstruction())
return Next->getDebugLoc();
return getDebugLoc();
}
bool Instruction::isAssociative() const {
if (auto *II = dyn_cast<IntrinsicInst>(this))
return II->isAssociative();
unsigned Opcode = getOpcode();
if (isAssociative(Opcode))
return true;
switch (Opcode) {
case FMul:
case FAdd:
return cast<FPMathOperator>(this)->hasAllowReassoc() &&
cast<FPMathOperator>(this)->hasNoSignedZeros();
default:
return false;
}
}
bool Instruction::isCommutative() const {
if (auto *II = dyn_cast<IntrinsicInst>(this))
return II->isCommutative();
// TODO: Should allow icmp/fcmp?
return isCommutative(getOpcode());
}
unsigned Instruction::getNumSuccessors() const {
switch (getOpcode()) {
#define HANDLE_TERM_INST(N, OPC, CLASS) \
case Instruction::OPC: \
return static_cast<const CLASS *>(this)->getNumSuccessors();
#include "llvm/IR/Instruction.def"
default:
break;
}
llvm_unreachable("not a terminator");
}
BasicBlock *Instruction::getSuccessor(unsigned idx) const {
switch (getOpcode()) {
#define HANDLE_TERM_INST(N, OPC, CLASS) \
case Instruction::OPC: \
return static_cast<const CLASS *>(this)->getSuccessor(idx);
#include "llvm/IR/Instruction.def"
default:
break;
}
llvm_unreachable("not a terminator");
}
void Instruction::setSuccessor(unsigned idx, BasicBlock *B) {
switch (getOpcode()) {
#define HANDLE_TERM_INST(N, OPC, CLASS) \
case Instruction::OPC: \
return static_cast<CLASS *>(this)->setSuccessor(idx, B);
#include "llvm/IR/Instruction.def"
default:
break;
}
llvm_unreachable("not a terminator");
}
void Instruction::replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB) {
for (unsigned Idx = 0, NumSuccessors = Instruction::getNumSuccessors();
Idx != NumSuccessors; ++Idx)
if (getSuccessor(Idx) == OldBB)
setSuccessor(Idx, NewBB);
}
Instruction *Instruction::cloneImpl() const {
llvm_unreachable("Subclass of Instruction failed to implement cloneImpl");
}
void Instruction::swapProfMetadata() {
MDNode *ProfileData = getBranchWeightMDNode(*this);
if (!ProfileData || ProfileData->getNumOperands() != 3)
return;
// The first operand is the name. Fetch them backwards and build a new one.
Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2),
ProfileData->getOperand(1)};
setMetadata(LLVMContext::MD_prof,
MDNode::get(ProfileData->getContext(), Ops));
}
void Instruction::copyMetadata(const Instruction &SrcInst,
ArrayRef<unsigned> WL) {
if (!SrcInst.hasMetadata())
return;
SmallDenseSet<unsigned, 4> WLS(WL.begin(), WL.end());
// Otherwise, enumerate and copy over metadata from the old instruction to the
// new one.
SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs;
SrcInst.getAllMetadataOtherThanDebugLoc(TheMDs);
for (const auto &MD : TheMDs) {
if (WL.empty() || WLS.count(MD.first))
setMetadata(MD.first, MD.second);
}
if (WL.empty() || WLS.count(LLVMContext::MD_dbg))
setDebugLoc(SrcInst.getDebugLoc());
}
Instruction *Instruction::clone() const {
Instruction *New = nullptr;
switch (getOpcode()) {
default:
llvm_unreachable("Unhandled Opcode.");
#define HANDLE_INST(num, opc, clas) \
case Instruction::opc: \
New = cast<clas>(this)->cloneImpl(); \
break;
#include "llvm/IR/Instruction.def"
#undef HANDLE_INST
}
New->SubclassOptionalData = SubclassOptionalData;
New->copyMetadata(*this);
return New;
}