blob: 570515505607fb7c9bb4e17d63d442120df4f888 [file] [log] [blame]
//===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the debug info Metadata classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/DebugInfoMetadata.h"
#include "LLVMContextImpl.h"
#include "MetadataImpl.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/IR/DebugProgramInstruction.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include <numeric>
#include <optional>
using namespace llvm;
namespace llvm {
// Use FS-AFDO discriminator.
cl::opt<bool> EnableFSDiscriminator(
"enable-fs-discriminator", cl::Hidden,
cl::desc("Enable adding flow sensitive discriminators"));
} // namespace llvm
uint32_t DIType::getAlignInBits() const {
return (getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ? 0 : SubclassData32);
}
const DIExpression::FragmentInfo DebugVariable::DefaultFragment = {
std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::min()};
DebugVariable::DebugVariable(const DbgVariableIntrinsic *DII)
: Variable(DII->getVariable()),
Fragment(DII->getExpression()->getFragmentInfo()),
InlinedAt(DII->getDebugLoc().getInlinedAt()) {}
DebugVariable::DebugVariable(const DbgVariableRecord *DVR)
: Variable(DVR->getVariable()),
Fragment(DVR->getExpression()->getFragmentInfo()),
InlinedAt(DVR->getDebugLoc().getInlinedAt()) {}
DebugVariableAggregate::DebugVariableAggregate(const DbgVariableIntrinsic *DVI)
: DebugVariable(DVI->getVariable(), std::nullopt,
DVI->getDebugLoc()->getInlinedAt()) {}
DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line,
unsigned Column, ArrayRef<Metadata *> MDs,
bool ImplicitCode)
: MDNode(C, DILocationKind, Storage, MDs) {
assert((MDs.size() == 1 || MDs.size() == 2) &&
"Expected a scope and optional inlined-at");
// Set line and column.
assert(Column < (1u << 16) && "Expected 16-bit column");
SubclassData32 = Line;
SubclassData16 = Column;
setImplicitCode(ImplicitCode);
}
static void adjustColumn(unsigned &Column) {
// Set to unknown on overflow. We only have 16 bits to play with here.
if (Column >= (1u << 16))
Column = 0;
}
DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line,
unsigned Column, Metadata *Scope,
Metadata *InlinedAt, bool ImplicitCode,
StorageType Storage, bool ShouldCreate) {
// Fixup column.
adjustColumn(Column);
if (Storage == Uniqued) {
if (auto *N = getUniqued(Context.pImpl->DILocations,
DILocationInfo::KeyTy(Line, Column, Scope,
InlinedAt, ImplicitCode)))
return N;
if (!ShouldCreate)
return nullptr;
} else {
assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
}
SmallVector<Metadata *, 2> Ops;
Ops.push_back(Scope);
if (InlinedAt)
Ops.push_back(InlinedAt);
return storeImpl(new (Ops.size(), Storage) DILocation(
Context, Storage, Line, Column, Ops, ImplicitCode),
Storage, Context.pImpl->DILocations);
}
DILocation *DILocation::getMergedLocations(ArrayRef<DILocation *> Locs) {
if (Locs.empty())
return nullptr;
if (Locs.size() == 1)
return Locs[0];
auto *Merged = Locs[0];
for (DILocation *L : llvm::drop_begin(Locs)) {
Merged = getMergedLocation(Merged, L);
if (Merged == nullptr)
break;
}
return Merged;
}
DILocation *DILocation::getMergedLocation(DILocation *LocA, DILocation *LocB) {
if (!LocA || !LocB)
return nullptr;
if (LocA == LocB)
return LocA;
LLVMContext &C = LocA->getContext();
using LocVec = SmallVector<const DILocation *>;
LocVec ALocs;
LocVec BLocs;
SmallDenseMap<std::pair<const DISubprogram *, const DILocation *>, unsigned,
4>
ALookup;
// Walk through LocA and its inlined-at locations, populate them in ALocs and
// save the index for the subprogram and inlined-at pair, which we use to find
// a matching starting location in LocB's chain.
for (auto [L, I] = std::make_pair(LocA, 0U); L; L = L->getInlinedAt(), I++) {
ALocs.push_back(L);
auto Res = ALookup.try_emplace(
{L->getScope()->getSubprogram(), L->getInlinedAt()}, I);
assert(Res.second && "Multiple <SP, InlinedAt> pairs in a location chain?");
(void)Res;
}
LocVec::reverse_iterator ARIt = ALocs.rend();
LocVec::reverse_iterator BRIt = BLocs.rend();
// Populate BLocs and look for a matching starting location, the first
// location with the same subprogram and inlined-at location as in LocA's
// chain. Since the two locations have the same inlined-at location we do
// not need to look at those parts of the chains.
for (auto [L, I] = std::make_pair(LocB, 0U); L; L = L->getInlinedAt(), I++) {
BLocs.push_back(L);
if (ARIt != ALocs.rend())
// We have already found a matching starting location.
continue;
auto IT = ALookup.find({L->getScope()->getSubprogram(), L->getInlinedAt()});
if (IT == ALookup.end())
continue;
// The + 1 is to account for the &*rev_it = &(it - 1) relationship.
ARIt = LocVec::reverse_iterator(ALocs.begin() + IT->second + 1);
BRIt = LocVec::reverse_iterator(BLocs.begin() + I + 1);
// If we have found a matching starting location we do not need to add more
// locations to BLocs, since we will only look at location pairs preceding
// the matching starting location, and adding more elements to BLocs could
// invalidate the iterator that we initialized here.
break;
}
// Merge the two locations if possible, using the supplied
// inlined-at location for the created location.
auto MergeLocPair = [&C](const DILocation *L1, const DILocation *L2,
DILocation *InlinedAt) -> DILocation * {
if (L1 == L2)
return DILocation::get(C, L1->getLine(), L1->getColumn(), L1->getScope(),
InlinedAt);
// If the locations originate from different subprograms we can't produce
// a common location.
if (L1->getScope()->getSubprogram() != L2->getScope()->getSubprogram())
return nullptr;
// Return the nearest common scope inside a subprogram.
auto GetNearestCommonScope = [](DIScope *S1, DIScope *S2) -> DIScope * {
SmallPtrSet<DIScope *, 8> Scopes;
for (; S1; S1 = S1->getScope()) {
Scopes.insert(S1);
if (isa<DISubprogram>(S1))
break;
}
for (; S2; S2 = S2->getScope()) {
if (Scopes.count(S2))
return S2;
if (isa<DISubprogram>(S2))
break;
}
return nullptr;
};
auto Scope = GetNearestCommonScope(L1->getScope(), L2->getScope());
assert(Scope && "No common scope in the same subprogram?");
bool SameLine = L1->getLine() == L2->getLine();
bool SameCol = L1->getColumn() == L2->getColumn();
unsigned Line = SameLine ? L1->getLine() : 0;
unsigned Col = SameLine && SameCol ? L1->getColumn() : 0;
return DILocation::get(C, Line, Col, Scope, InlinedAt);
};
DILocation *Result = ARIt != ALocs.rend() ? (*ARIt)->getInlinedAt() : nullptr;
// If we have found a common starting location, walk up the inlined-at chains
// and try to produce common locations.
for (; ARIt != ALocs.rend() && BRIt != BLocs.rend(); ++ARIt, ++BRIt) {
DILocation *Tmp = MergeLocPair(*ARIt, *BRIt, Result);
if (!Tmp)
// We have walked up to a point in the chains where the two locations
// are irreconsilable. At this point Result contains the nearest common
// location in the inlined-at chains of LocA and LocB, so we break here.
break;
Result = Tmp;
}
if (Result)
return Result;
// We ended up with LocA and LocB as irreconsilable locations. Produce a
// location at 0:0 with one of the locations' scope. The function has
// historically picked A's scope, and a nullptr inlined-at location, so that
// behavior is mimicked here but I am not sure if this is always the correct
// way to handle this.
return DILocation::get(C, 0, 0, LocA->getScope(), nullptr);
}
std::optional<unsigned>
DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) {
std::array<unsigned, 3> Components = {BD, DF, CI};
uint64_t RemainingWork = 0U;
// We use RemainingWork to figure out if we have no remaining components to
// encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to
// encode anything for the latter 2.
// Since any of the input components is at most 32 bits, their sum will be
// less than 34 bits, and thus RemainingWork won't overflow.
RemainingWork =
std::accumulate(Components.begin(), Components.end(), RemainingWork);
int I = 0;
unsigned Ret = 0;
unsigned NextBitInsertionIndex = 0;
while (RemainingWork > 0) {
unsigned C = Components[I++];
RemainingWork -= C;
unsigned EC = encodeComponent(C);
Ret |= (EC << NextBitInsertionIndex);
NextBitInsertionIndex += encodingBits(C);
}
// Encoding may be unsuccessful because of overflow. We determine success by
// checking equivalence of components before & after encoding. Alternatively,
// we could determine Success during encoding, but the current alternative is
// simpler.
unsigned TBD, TDF, TCI = 0;
decodeDiscriminator(Ret, TBD, TDF, TCI);
if (TBD == BD && TDF == DF && TCI == CI)
return Ret;
return std::nullopt;
}
void DILocation::decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF,
unsigned &CI) {
BD = getUnsignedFromPrefixEncoding(D);
DF = getUnsignedFromPrefixEncoding(getNextComponentInDiscriminator(D));
CI = getUnsignedFromPrefixEncoding(
getNextComponentInDiscriminator(getNextComponentInDiscriminator(D)));
}
dwarf::Tag DINode::getTag() const { return (dwarf::Tag)SubclassData16; }
DINode::DIFlags DINode::getFlag(StringRef Flag) {
return StringSwitch<DIFlags>(Flag)
#define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME)
#include "llvm/IR/DebugInfoFlags.def"
.Default(DINode::FlagZero);
}
StringRef DINode::getFlagString(DIFlags Flag) {
switch (Flag) {
#define HANDLE_DI_FLAG(ID, NAME) \
case Flag##NAME: \
return "DIFlag" #NAME;
#include "llvm/IR/DebugInfoFlags.def"
}
return "";
}
DINode::DIFlags DINode::splitFlags(DIFlags Flags,
SmallVectorImpl<DIFlags> &SplitFlags) {
// Flags that are packed together need to be specially handled, so
// that, for example, we emit "DIFlagPublic" and not
// "DIFlagPrivate | DIFlagProtected".
if (DIFlags A = Flags & FlagAccessibility) {
if (A == FlagPrivate)
SplitFlags.push_back(FlagPrivate);
else if (A == FlagProtected)
SplitFlags.push_back(FlagProtected);
else
SplitFlags.push_back(FlagPublic);
Flags &= ~A;
}
if (DIFlags R = Flags & FlagPtrToMemberRep) {
if (R == FlagSingleInheritance)
SplitFlags.push_back(FlagSingleInheritance);
else if (R == FlagMultipleInheritance)
SplitFlags.push_back(FlagMultipleInheritance);
else
SplitFlags.push_back(FlagVirtualInheritance);
Flags &= ~R;
}
if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) {
Flags &= ~FlagIndirectVirtualBase;
SplitFlags.push_back(FlagIndirectVirtualBase);
}
#define HANDLE_DI_FLAG(ID, NAME) \
if (DIFlags Bit = Flags & Flag##NAME) { \
SplitFlags.push_back(Bit); \
Flags &= ~Bit; \
}
#include "llvm/IR/DebugInfoFlags.def"
return Flags;
}
DIScope *DIScope::getScope() const {
if (auto *T = dyn_cast<DIType>(this))
return T->getScope();
if (auto *SP = dyn_cast<DISubprogram>(this))
return SP->getScope();
if (auto *LB = dyn_cast<DILexicalBlockBase>(this))
return LB->getScope();
if (auto *NS = dyn_cast<DINamespace>(this))
return NS->getScope();
if (auto *CB = dyn_cast<DICommonBlock>(this))
return CB->getScope();
if (auto *M = dyn_cast<DIModule>(this))
return M->getScope();
assert((isa<DIFile>(this) || isa<DICompileUnit>(this)) &&
"Unhandled type of scope.");
return nullptr;
}
StringRef DIScope::getName() const {
if (auto *T = dyn_cast<DIType>(this))
return T->getName();
if (auto *SP = dyn_cast<DISubprogram>(this))
return SP->getName();
if (auto *NS = dyn_cast<DINamespace>(this))
return NS->getName();
if (auto *CB = dyn_cast<DICommonBlock>(this))
return CB->getName();
if (auto *M = dyn_cast<DIModule>(this))
return M->getName();
assert((isa<DILexicalBlockBase>(this) || isa<DIFile>(this) ||
isa<DICompileUnit>(this)) &&
"Unhandled type of scope.");
return "";
}
#ifndef NDEBUG
static bool isCanonical(const MDString *S) {
return !S || !S->getString().empty();
}
#endif
dwarf::Tag GenericDINode::getTag() const { return (dwarf::Tag)SubclassData16; }
GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag,
MDString *Header,
ArrayRef<Metadata *> DwarfOps,
StorageType Storage, bool ShouldCreate) {
unsigned Hash = 0;
if (Storage == Uniqued) {
GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps);
if (auto *N = getUniqued(Context.pImpl->GenericDINodes, Key))
return N;
if (!ShouldCreate)
return nullptr;
Hash = Key.getHash();
} else {
assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
}
// Use a nullptr for empty headers.
assert(isCanonical(Header) && "Expected canonical MDString");
Metadata *PreOps[] = {Header};
return storeImpl(new (DwarfOps.size() + 1, Storage) GenericDINode(
Context, Storage, Hash, Tag, PreOps, DwarfOps),
Storage, Context.pImpl->GenericDINodes);
}
void GenericDINode::recalculateHash() {
setHash(GenericDINodeInfo::KeyTy::calculateHash(this));
}
#define UNWRAP_ARGS_IMPL(...) __VA_ARGS__
#define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS
#define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS) \
do { \
if (Storage == Uniqued) { \
if (auto *N = getUniqued(Context.pImpl->CLASS##s, \
CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS)))) \
return N; \
if (!ShouldCreate) \
return nullptr; \
} else { \
assert(ShouldCreate && \
"Expected non-uniqued nodes to always be created"); \
} \
} while (false)
#define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS) \
return storeImpl(new (std::size(OPS), Storage) \
CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
Storage, Context.pImpl->CLASS##s)
#define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS) \
return storeImpl(new (0u, Storage) \
CLASS(Context, Storage, UNWRAP_ARGS(ARGS)), \
Storage, Context.pImpl->CLASS##s)
#define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS) \
return storeImpl(new (std::size(OPS), Storage) CLASS(Context, Storage, OPS), \
Storage, Context.pImpl->CLASS##s)
#define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS) \
return storeImpl(new (NUM_OPS, Storage) \
CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
Storage, Context.pImpl->CLASS##s)
DISubrange::DISubrange(LLVMContext &C, StorageType Storage,
ArrayRef<Metadata *> Ops)
: DINode(C, DISubrangeKind, Storage, dwarf::DW_TAG_subrange_type, Ops) {}
DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo,
StorageType Storage, bool ShouldCreate) {
auto *CountNode = ConstantAsMetadata::get(
ConstantInt::getSigned(Type::getInt64Ty(Context), Count));
auto *LB = ConstantAsMetadata::get(
ConstantInt::getSigned(Type::getInt64Ty(Context), Lo));
return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
ShouldCreate);
}
DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
int64_t Lo, StorageType Storage,
bool ShouldCreate) {
auto *LB = ConstantAsMetadata::get(
ConstantInt::getSigned(Type::getInt64Ty(Context), Lo));
return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
ShouldCreate);
}
DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
Metadata *LB, Metadata *UB, Metadata *Stride,
StorageType Storage, bool ShouldCreate) {
DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride));
Metadata *Ops[] = {CountNode, LB, UB, Stride};
DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DISubrange, Ops);
}
DISubrange::BoundType DISubrange::getCount() const {
Metadata *CB = getRawCountNode();
if (!CB)
return BoundType();
assert((isa<ConstantAsMetadata>(CB) || isa<DIVariable>(CB) ||
isa<DIExpression>(CB)) &&
"Count must be signed constant or DIVariable or DIExpression");
if (auto *MD = dyn_cast<ConstantAsMetadata>(CB))
return BoundType(cast<ConstantInt>(MD->getValue()));
if (auto *MD = dyn_cast<DIVariable>(CB))
return BoundType(MD);
if (auto *MD = dyn_cast<DIExpression>(CB))
return BoundType(MD);
return BoundType();
}
DISubrange::BoundType DISubrange::getLowerBound() const {
Metadata *LB = getRawLowerBound();
if (!LB)
return BoundType();
assert((isa<ConstantAsMetadata>(LB) || isa<DIVariable>(LB) ||
isa<DIExpression>(LB)) &&
"LowerBound must be signed constant or DIVariable or DIExpression");
if (auto *MD = dyn_cast<ConstantAsMetadata>(LB))
return BoundType(cast<ConstantInt>(MD->getValue()));
if (auto *MD = dyn_cast<DIVariable>(LB))
return BoundType(MD);
if (auto *MD = dyn_cast<DIExpression>(LB))
return BoundType(MD);
return BoundType();
}
DISubrange::BoundType DISubrange::getUpperBound() const {
Metadata *UB = getRawUpperBound();
if (!UB)
return BoundType();
assert((isa<ConstantAsMetadata>(UB) || isa<DIVariable>(UB) ||
isa<DIExpression>(UB)) &&
"UpperBound must be signed constant or DIVariable or DIExpression");
if (auto *MD = dyn_cast<ConstantAsMetadata>(UB))
return BoundType(cast<ConstantInt>(MD->getValue()));
if (auto *MD = dyn_cast<DIVariable>(UB))
return BoundType(MD);
if (auto *MD = dyn_cast<DIExpression>(UB))
return BoundType(MD);
return BoundType();
}
DISubrange::BoundType DISubrange::getStride() const {
Metadata *ST = getRawStride();
if (!ST)
return BoundType();
assert((isa<ConstantAsMetadata>(ST) || isa<DIVariable>(ST) ||
isa<DIExpression>(ST)) &&
"Stride must be signed constant or DIVariable or DIExpression");
if (auto *MD = dyn_cast<ConstantAsMetadata>(ST))
return BoundType(cast<ConstantInt>(MD->getValue()));
if (auto *MD = dyn_cast<DIVariable>(ST))
return BoundType(MD);
if (auto *MD = dyn_cast<DIExpression>(ST))
return BoundType(MD);
return BoundType();
}
DIGenericSubrange::DIGenericSubrange(LLVMContext &C, StorageType Storage,
ArrayRef<Metadata *> Ops)
: DINode(C, DIGenericSubrangeKind, Storage, dwarf::DW_TAG_generic_subrange,
Ops) {}
DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context,
Metadata *CountNode, Metadata *LB,
Metadata *UB, Metadata *Stride,
StorageType Storage,
bool ShouldCreate) {
DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride));
Metadata *Ops[] = {CountNode, LB, UB, Stride};
DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGenericSubrange, Ops);
}
DIGenericSubrange::BoundType DIGenericSubrange::getCount() const {
Metadata *CB = getRawCountNode();
if (!CB)
return BoundType();
assert((isa<DIVariable>(CB) || isa<DIExpression>(CB)) &&
"Count must be signed constant or DIVariable or DIExpression");
if (auto *MD = dyn_cast<DIVariable>(CB))
return BoundType(MD);
if (auto *MD = dyn_cast<DIExpression>(CB))
return BoundType(MD);
return BoundType();
}
DIGenericSubrange::BoundType DIGenericSubrange::getLowerBound() const {
Metadata *LB = getRawLowerBound();
if (!LB)
return BoundType();
assert((isa<DIVariable>(LB) || isa<DIExpression>(LB)) &&
"LowerBound must be signed constant or DIVariable or DIExpression");
if (auto *MD = dyn_cast<DIVariable>(LB))
return BoundType(MD);
if (auto *MD = dyn_cast<DIExpression>(LB))
return BoundType(MD);
return BoundType();
}
DIGenericSubrange::BoundType DIGenericSubrange::getUpperBound() const {
Metadata *UB = getRawUpperBound();
if (!UB)
return BoundType();
assert((isa<DIVariable>(UB) || isa<DIExpression>(UB)) &&
"UpperBound must be signed constant or DIVariable or DIExpression");
if (auto *MD = dyn_cast<DIVariable>(UB))
return BoundType(MD);
if (auto *MD = dyn_cast<DIExpression>(UB))
return BoundType(MD);
return BoundType();
}
DIGenericSubrange::BoundType DIGenericSubrange::getStride() const {
Metadata *ST = getRawStride();
if (!ST)
return BoundType();
assert((isa<DIVariable>(ST) || isa<DIExpression>(ST)) &&
"Stride must be signed constant or DIVariable or DIExpression");
if (auto *MD = dyn_cast<DIVariable>(ST))
return BoundType(MD);
if (auto *MD = dyn_cast<DIExpression>(ST))
return BoundType(MD);
return BoundType();
}
DIEnumerator::DIEnumerator(LLVMContext &C, StorageType Storage,
const APInt &Value, bool IsUnsigned,
ArrayRef<Metadata *> Ops)
: DINode(C, DIEnumeratorKind, Storage, dwarf::DW_TAG_enumerator, Ops),
Value(Value) {
SubclassData32 = IsUnsigned;
}
DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value,
bool IsUnsigned, MDString *Name,
StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name));
Metadata *Ops[] = {Name};
DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops);
}
DIBasicType *DIBasicType::getImpl(LLVMContext &Context, unsigned Tag,
MDString *Name, uint64_t SizeInBits,
uint32_t AlignInBits, unsigned Encoding,
DIFlags Flags, StorageType Storage,
bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIBasicType,
(Tag, Name, SizeInBits, AlignInBits, Encoding, Flags));
Metadata *Ops[] = {nullptr, nullptr, Name};
DEFINE_GETIMPL_STORE(DIBasicType,
(Tag, SizeInBits, AlignInBits, Encoding, Flags), Ops);
}
std::optional<DIBasicType::Signedness> DIBasicType::getSignedness() const {
switch (getEncoding()) {
case dwarf::DW_ATE_signed:
case dwarf::DW_ATE_signed_char:
return Signedness::Signed;
case dwarf::DW_ATE_unsigned:
case dwarf::DW_ATE_unsigned_char:
return Signedness::Unsigned;
default:
return std::nullopt;
}
}
DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag,
MDString *Name, Metadata *StringLength,
Metadata *StringLengthExp,
Metadata *StringLocationExp,
uint64_t SizeInBits, uint32_t AlignInBits,
unsigned Encoding, StorageType Storage,
bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIStringType,
(Tag, Name, StringLength, StringLengthExp,
StringLocationExp, SizeInBits, AlignInBits, Encoding));
Metadata *Ops[] = {nullptr, nullptr, Name,
StringLength, StringLengthExp, StringLocationExp};
DEFINE_GETIMPL_STORE(DIStringType, (Tag, SizeInBits, AlignInBits, Encoding),
Ops);
}
DIType *DIDerivedType::getClassType() const {
assert(getTag() == dwarf::DW_TAG_ptr_to_member_type);
return cast_or_null<DIType>(getExtraData());
}
uint32_t DIDerivedType::getVBPtrOffset() const {
assert(getTag() == dwarf::DW_TAG_inheritance);
if (auto *CM = cast_or_null<ConstantAsMetadata>(getExtraData()))
if (auto *CI = dyn_cast_or_null<ConstantInt>(CM->getValue()))
return static_cast<uint32_t>(CI->getZExtValue());
return 0;
}
Constant *DIDerivedType::getStorageOffsetInBits() const {
assert(getTag() == dwarf::DW_TAG_member && isBitField());
if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
return C->getValue();
return nullptr;
}
Constant *DIDerivedType::getConstant() const {
assert((getTag() == dwarf::DW_TAG_member ||
getTag() == dwarf::DW_TAG_variable) &&
isStaticMember());
if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
return C->getValue();
return nullptr;
}
Constant *DIDerivedType::getDiscriminantValue() const {
assert(getTag() == dwarf::DW_TAG_member && !isStaticMember());
if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
return C->getValue();
return nullptr;
}
DIDerivedType *DIDerivedType::getImpl(
LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
uint32_t AlignInBits, uint64_t OffsetInBits,
std::optional<unsigned> DWARFAddressSpace,
std::optional<PtrAuthData> PtrAuthData, DIFlags Flags, Metadata *ExtraData,
Metadata *Annotations, StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIDerivedType,
(Tag, Name, File, Line, Scope, BaseType, SizeInBits,
AlignInBits, OffsetInBits, DWARFAddressSpace,
PtrAuthData, Flags, ExtraData, Annotations));
Metadata *Ops[] = {File, Scope, Name, BaseType, ExtraData, Annotations};
DEFINE_GETIMPL_STORE(DIDerivedType,
(Tag, Line, SizeInBits, AlignInBits, OffsetInBits,
DWARFAddressSpace, PtrAuthData, Flags),
Ops);
}
std::optional<DIDerivedType::PtrAuthData>
DIDerivedType::getPtrAuthData() const {
return getTag() == dwarf::DW_TAG_LLVM_ptrauth_type
? std::optional<PtrAuthData>(PtrAuthData(SubclassData32))
: std::nullopt;
}
DICompositeType *DICompositeType::getImpl(
LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags,
Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder,
Metadata *TemplateParams, MDString *Identifier, Metadata *Discriminator,
Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
Metadata *Rank, Metadata *Annotations, StorageType Storage,
bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
// Keep this in sync with buildODRType.
DEFINE_GETIMPL_LOOKUP(DICompositeType,
(Tag, Name, File, Line, Scope, BaseType, SizeInBits,
AlignInBits, OffsetInBits, Flags, Elements,
RuntimeLang, VTableHolder, TemplateParams, Identifier,
Discriminator, DataLocation, Associated, Allocated,
Rank, Annotations));
Metadata *Ops[] = {File, Scope, Name, BaseType,
Elements, VTableHolder, TemplateParams, Identifier,
Discriminator, DataLocation, Associated, Allocated,
Rank, Annotations};
DEFINE_GETIMPL_STORE(
DICompositeType,
(Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits, Flags),
Ops);
}
DICompositeType *DICompositeType::buildODRType(
LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
DIFlags Flags, Metadata *Elements, unsigned RuntimeLang,
Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
Metadata *Rank, Metadata *Annotations) {
assert(!Identifier.getString().empty() && "Expected valid identifier");
if (!Context.isODRUniquingDebugTypes())
return nullptr;
auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
if (!CT)
return CT = DICompositeType::getDistinct(
Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
VTableHolder, TemplateParams, &Identifier, Discriminator,
DataLocation, Associated, Allocated, Rank, Annotations);
if (CT->getTag() != Tag)
return nullptr;
// Only mutate CT if it's a forward declaration and the new operands aren't.
assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?");
if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl))
return CT;
// Mutate CT in place. Keep this in sync with getImpl.
CT->mutate(Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits,
Flags);
Metadata *Ops[] = {File, Scope, Name, BaseType,
Elements, VTableHolder, TemplateParams, &Identifier,
Discriminator, DataLocation, Associated, Allocated,
Rank, Annotations};
assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() &&
"Mismatched number of operands");
for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I)
if (Ops[I] != CT->getOperand(I))
CT->setOperand(I, Ops[I]);
return CT;
}
DICompositeType *DICompositeType::getODRType(
LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
DIFlags Flags, Metadata *Elements, unsigned RuntimeLang,
Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
Metadata *Rank, Metadata *Annotations) {
assert(!Identifier.getString().empty() && "Expected valid identifier");
if (!Context.isODRUniquingDebugTypes())
return nullptr;
auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
if (!CT) {
CT = DICompositeType::getDistinct(
Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder,
TemplateParams, &Identifier, Discriminator, DataLocation, Associated,
Allocated, Rank, Annotations);
} else {
if (CT->getTag() != Tag)
return nullptr;
}
return CT;
}
DICompositeType *DICompositeType::getODRTypeIfExists(LLVMContext &Context,
MDString &Identifier) {
assert(!Identifier.getString().empty() && "Expected valid identifier");
if (!Context.isODRUniquingDebugTypes())
return nullptr;
return Context.pImpl->DITypeMap->lookup(&Identifier);
}
DISubroutineType::DISubroutineType(LLVMContext &C, StorageType Storage,
DIFlags Flags, uint8_t CC,
ArrayRef<Metadata *> Ops)
: DIType(C, DISubroutineTypeKind, Storage, dwarf::DW_TAG_subroutine_type, 0,
0, 0, 0, Flags, Ops),
CC(CC) {}
DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags,
uint8_t CC, Metadata *TypeArray,
StorageType Storage,
bool ShouldCreate) {
DEFINE_GETIMPL_LOOKUP(DISubroutineType, (Flags, CC, TypeArray));
Metadata *Ops[] = {nullptr, nullptr, nullptr, TypeArray};
DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops);
}
DIFile::DIFile(LLVMContext &C, StorageType Storage,
std::optional<ChecksumInfo<MDString *>> CS, MDString *Src,
ArrayRef<Metadata *> Ops)
: DIScope(C, DIFileKind, Storage, dwarf::DW_TAG_file_type, Ops),
Checksum(CS), Source(Src) {}
// FIXME: Implement this string-enum correspondence with a .def file and macros,
// so that the association is explicit rather than implied.
static const char *ChecksumKindName[DIFile::CSK_Last] = {
"CSK_MD5",
"CSK_SHA1",
"CSK_SHA256",
};
StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) {
assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind");
// The first space was originally the CSK_None variant, which is now
// obsolete, but the space is still reserved in ChecksumKind, so we account
// for it here.
return ChecksumKindName[CSKind - 1];
}
std::optional<DIFile::ChecksumKind>
DIFile::getChecksumKind(StringRef CSKindStr) {
return StringSwitch<std::optional<DIFile::ChecksumKind>>(CSKindStr)
.Case("CSK_MD5", DIFile::CSK_MD5)
.Case("CSK_SHA1", DIFile::CSK_SHA1)
.Case("CSK_SHA256", DIFile::CSK_SHA256)
.Default(std::nullopt);
}
DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename,
MDString *Directory,
std::optional<DIFile::ChecksumInfo<MDString *>> CS,
MDString *Source, StorageType Storage,
bool ShouldCreate) {
assert(isCanonical(Filename) && "Expected canonical MDString");
assert(isCanonical(Directory) && "Expected canonical MDString");
assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString");
// We do *NOT* expect Source to be a canonical MDString because nullptr
// means none, so we need something to represent the empty file.
DEFINE_GETIMPL_LOOKUP(DIFile, (Filename, Directory, CS, Source));
Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source};
DEFINE_GETIMPL_STORE(DIFile, (CS, Source), Ops);
}
DICompileUnit::DICompileUnit(LLVMContext &C, StorageType Storage,
unsigned SourceLanguage, bool IsOptimized,
unsigned RuntimeVersion, unsigned EmissionKind,
uint64_t DWOId, bool SplitDebugInlining,
bool DebugInfoForProfiling, unsigned NameTableKind,
bool RangesBaseAddress, ArrayRef<Metadata *> Ops)
: DIScope(C, DICompileUnitKind, Storage, dwarf::DW_TAG_compile_unit, Ops),
SourceLanguage(SourceLanguage), RuntimeVersion(RuntimeVersion),
DWOId(DWOId), EmissionKind(EmissionKind), NameTableKind(NameTableKind),
IsOptimized(IsOptimized), SplitDebugInlining(SplitDebugInlining),
DebugInfoForProfiling(DebugInfoForProfiling),
RangesBaseAddress(RangesBaseAddress) {
assert(Storage != Uniqued);
}
DICompileUnit *DICompileUnit::getImpl(
LLVMContext &Context, unsigned SourceLanguage, Metadata *File,
MDString *Producer, bool IsOptimized, MDString *Flags,
unsigned RuntimeVersion, MDString *SplitDebugFilename,
unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes,
Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros,
uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling,
unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot,
MDString *SDK, StorageType Storage, bool ShouldCreate) {
assert(Storage != Uniqued && "Cannot unique DICompileUnit");
assert(isCanonical(Producer) && "Expected canonical MDString");
assert(isCanonical(Flags) && "Expected canonical MDString");
assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString");
Metadata *Ops[] = {File,
Producer,
Flags,
SplitDebugFilename,
EnumTypes,
RetainedTypes,
GlobalVariables,
ImportedEntities,
Macros,
SysRoot,
SDK};
return storeImpl(new (std::size(Ops), Storage) DICompileUnit(
Context, Storage, SourceLanguage, IsOptimized,
RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining,
DebugInfoForProfiling, NameTableKind, RangesBaseAddress,
Ops),
Storage);
}
std::optional<DICompileUnit::DebugEmissionKind>
DICompileUnit::getEmissionKind(StringRef Str) {
return StringSwitch<std::optional<DebugEmissionKind>>(Str)
.Case("NoDebug", NoDebug)
.Case("FullDebug", FullDebug)
.Case("LineTablesOnly", LineTablesOnly)
.Case("DebugDirectivesOnly", DebugDirectivesOnly)
.Default(std::nullopt);
}
std::optional<DICompileUnit::DebugNameTableKind>
DICompileUnit::getNameTableKind(StringRef Str) {
return StringSwitch<std::optional<DebugNameTableKind>>(Str)
.Case("Default", DebugNameTableKind::Default)
.Case("GNU", DebugNameTableKind::GNU)
.Case("Apple", DebugNameTableKind::Apple)
.Case("None", DebugNameTableKind::None)
.Default(std::nullopt);
}
const char *DICompileUnit::emissionKindString(DebugEmissionKind EK) {
switch (EK) {
case NoDebug:
return "NoDebug";
case FullDebug:
return "FullDebug";
case LineTablesOnly:
return "LineTablesOnly";
case DebugDirectivesOnly:
return "DebugDirectivesOnly";
}
return nullptr;
}
const char *DICompileUnit::nameTableKindString(DebugNameTableKind NTK) {
switch (NTK) {
case DebugNameTableKind::Default:
return nullptr;
case DebugNameTableKind::GNU:
return "GNU";
case DebugNameTableKind::Apple:
return "Apple";
case DebugNameTableKind::None:
return "None";
}
return nullptr;
}
DISubprogram::DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line,
unsigned ScopeLine, unsigned VirtualIndex,
int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags,
ArrayRef<Metadata *> Ops)
: DILocalScope(C, DISubprogramKind, Storage, dwarf::DW_TAG_subprogram, Ops),
Line(Line), ScopeLine(ScopeLine), VirtualIndex(VirtualIndex),
ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags) {
static_assert(dwarf::DW_VIRTUALITY_max < 4, "Virtuality out of range");
}
DISubprogram::DISPFlags
DISubprogram::toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized,
unsigned Virtuality, bool IsMainSubprogram) {
// We're assuming virtuality is the low-order field.
static_assert(int(SPFlagVirtual) == int(dwarf::DW_VIRTUALITY_virtual) &&
int(SPFlagPureVirtual) ==
int(dwarf::DW_VIRTUALITY_pure_virtual),
"Virtuality constant mismatch");
return static_cast<DISPFlags>(
(Virtuality & SPFlagVirtuality) |
(IsLocalToUnit ? SPFlagLocalToUnit : SPFlagZero) |
(IsDefinition ? SPFlagDefinition : SPFlagZero) |
(IsOptimized ? SPFlagOptimized : SPFlagZero) |
(IsMainSubprogram ? SPFlagMainSubprogram : SPFlagZero));
}
DISubprogram *DILocalScope::getSubprogram() const {
if (auto *Block = dyn_cast<DILexicalBlockBase>(this))
return Block->getScope()->getSubprogram();
return const_cast<DISubprogram *>(cast<DISubprogram>(this));
}
DILocalScope *DILocalScope::getNonLexicalBlockFileScope() const {
if (auto *File = dyn_cast<DILexicalBlockFile>(this))
return File->getScope()->getNonLexicalBlockFileScope();
return const_cast<DILocalScope *>(this);
}
DILocalScope *DILocalScope::cloneScopeForSubprogram(
DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx,
DenseMap<const MDNode *, MDNode *> &Cache) {
SmallVector<DIScope *> ScopeChain;
DIScope *CachedResult = nullptr;
for (DIScope *Scope = &RootScope; !isa<DISubprogram>(Scope);
Scope = Scope->getScope()) {
if (auto It = Cache.find(Scope); It != Cache.end()) {
CachedResult = cast<DIScope>(It->second);
break;
}
ScopeChain.push_back(Scope);
}
// Recreate the scope chain, bottom-up, starting at the new subprogram (or a
// cached result).
DIScope *UpdatedScope = CachedResult ? CachedResult : &NewSP;
for (DIScope *ScopeToUpdate : reverse(ScopeChain)) {
TempMDNode ClonedScope = ScopeToUpdate->clone();
cast<DILexicalBlockBase>(*ClonedScope).replaceScope(UpdatedScope);
UpdatedScope =
cast<DIScope>(MDNode::replaceWithUniqued(std::move(ClonedScope)));
Cache[ScopeToUpdate] = UpdatedScope;
}
return cast<DILocalScope>(UpdatedScope);
}
DISubprogram::DISPFlags DISubprogram::getFlag(StringRef Flag) {
return StringSwitch<DISPFlags>(Flag)
#define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME)
#include "llvm/IR/DebugInfoFlags.def"
.Default(SPFlagZero);
}
StringRef DISubprogram::getFlagString(DISPFlags Flag) {
switch (Flag) {
// Appease a warning.
case SPFlagVirtuality:
return "";
#define HANDLE_DISP_FLAG(ID, NAME) \
case SPFlag##NAME: \
return "DISPFlag" #NAME;
#include "llvm/IR/DebugInfoFlags.def"
}
return "";
}
DISubprogram::DISPFlags
DISubprogram::splitFlags(DISPFlags Flags,
SmallVectorImpl<DISPFlags> &SplitFlags) {
// Multi-bit fields can require special handling. In our case, however, the
// only multi-bit field is virtuality, and all its values happen to be
// single-bit values, so the right behavior just falls out.
#define HANDLE_DISP_FLAG(ID, NAME) \
if (DISPFlags Bit = Flags & SPFlag##NAME) { \
SplitFlags.push_back(Bit); \
Flags &= ~Bit; \
}
#include "llvm/IR/DebugInfoFlags.def"
return Flags;
}
DISubprogram *DISubprogram::getImpl(
LLVMContext &Context, Metadata *Scope, MDString *Name,
MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type,
unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex,
int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit,
Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes,
Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName,
StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
assert(isCanonical(LinkageName) && "Expected canonical MDString");
assert(isCanonical(TargetFuncName) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DISubprogram,
(Scope, Name, LinkageName, File, Line, Type, ScopeLine,
ContainingType, VirtualIndex, ThisAdjustment, Flags,
SPFlags, Unit, TemplateParams, Declaration,
RetainedNodes, ThrownTypes, Annotations,
TargetFuncName));
SmallVector<Metadata *, 13> Ops = {
File, Scope, Name, LinkageName,
Type, Unit, Declaration, RetainedNodes,
ContainingType, TemplateParams, ThrownTypes, Annotations,
TargetFuncName};
if (!TargetFuncName) {
Ops.pop_back();
if (!Annotations) {
Ops.pop_back();
if (!ThrownTypes) {
Ops.pop_back();
if (!TemplateParams) {
Ops.pop_back();
if (!ContainingType)
Ops.pop_back();
}
}
}
}
DEFINE_GETIMPL_STORE_N(
DISubprogram,
(Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags, SPFlags), Ops,
Ops.size());
}
bool DISubprogram::describes(const Function *F) const {
assert(F && "Invalid function");
return F->getSubprogram() == this;
}
DILexicalBlockBase::DILexicalBlockBase(LLVMContext &C, unsigned ID,
StorageType Storage,
ArrayRef<Metadata *> Ops)
: DILocalScope(C, ID, Storage, dwarf::DW_TAG_lexical_block, Ops) {}
DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope,
Metadata *File, unsigned Line,
unsigned Column, StorageType Storage,
bool ShouldCreate) {
// Fixup column.
adjustColumn(Column);
assert(Scope && "Expected scope");
DEFINE_GETIMPL_LOOKUP(DILexicalBlock, (Scope, File, Line, Column));
Metadata *Ops[] = {File, Scope};
DEFINE_GETIMPL_STORE(DILexicalBlock, (Line, Column), Ops);
}
DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context,
Metadata *Scope, Metadata *File,
unsigned Discriminator,
StorageType Storage,
bool ShouldCreate) {
assert(Scope && "Expected scope");
DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator));
Metadata *Ops[] = {File, Scope};
DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops);
}
DINamespace::DINamespace(LLVMContext &Context, StorageType Storage,
bool ExportSymbols, ArrayRef<Metadata *> Ops)
: DIScope(Context, DINamespaceKind, Storage, dwarf::DW_TAG_namespace, Ops) {
SubclassData1 = ExportSymbols;
}
DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope,
MDString *Name, bool ExportSymbols,
StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DINamespace, (Scope, Name, ExportSymbols));
// The nullptr is for DIScope's File operand. This should be refactored.
Metadata *Ops[] = {nullptr, Scope, Name};
DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops);
}
DICommonBlock::DICommonBlock(LLVMContext &Context, StorageType Storage,
unsigned LineNo, ArrayRef<Metadata *> Ops)
: DIScope(Context, DICommonBlockKind, Storage, dwarf::DW_TAG_common_block,
Ops) {
SubclassData32 = LineNo;
}
DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope,
Metadata *Decl, MDString *Name,
Metadata *File, unsigned LineNo,
StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DICommonBlock, (Scope, Decl, Name, File, LineNo));
// The nullptr is for DIScope's File operand. This should be refactored.
Metadata *Ops[] = {Scope, Decl, Name, File};
DEFINE_GETIMPL_STORE(DICommonBlock, (LineNo), Ops);
}
DIModule::DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo,
bool IsDecl, ArrayRef<Metadata *> Ops)
: DIScope(Context, DIModuleKind, Storage, dwarf::DW_TAG_module, Ops) {
SubclassData1 = IsDecl;
SubclassData32 = LineNo;
}
DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File,
Metadata *Scope, MDString *Name,
MDString *ConfigurationMacros,
MDString *IncludePath, MDString *APINotesFile,
unsigned LineNo, bool IsDecl, StorageType Storage,
bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIModule, (File, Scope, Name, ConfigurationMacros,
IncludePath, APINotesFile, LineNo, IsDecl));
Metadata *Ops[] = {File, Scope, Name, ConfigurationMacros,
IncludePath, APINotesFile};
DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops);
}
DITemplateTypeParameter::DITemplateTypeParameter(LLVMContext &Context,
StorageType Storage,
bool IsDefault,
ArrayRef<Metadata *> Ops)
: DITemplateParameter(Context, DITemplateTypeParameterKind, Storage,
dwarf::DW_TAG_template_type_parameter, IsDefault,
Ops) {}
DITemplateTypeParameter *
DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name,
Metadata *Type, bool isDefault,
StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type, isDefault));
Metadata *Ops[] = {Name, Type};
DEFINE_GETIMPL_STORE(DITemplateTypeParameter, (isDefault), Ops);
}
DITemplateValueParameter *DITemplateValueParameter::getImpl(
LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type,
bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter,
(Tag, Name, Type, isDefault, Value));
Metadata *Ops[] = {Name, Type, Value};
DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag, isDefault), Ops);
}
DIGlobalVariable *
DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
MDString *LinkageName, Metadata *File, unsigned Line,
Metadata *Type, bool IsLocalToUnit, bool IsDefinition,
Metadata *StaticDataMemberDeclaration,
Metadata *TemplateParams, uint32_t AlignInBits,
Metadata *Annotations, StorageType Storage,
bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
assert(isCanonical(LinkageName) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(
DIGlobalVariable,
(Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition,
StaticDataMemberDeclaration, TemplateParams, AlignInBits, Annotations));
Metadata *Ops[] = {Scope,
Name,
File,
Type,
Name,
LinkageName,
StaticDataMemberDeclaration,
TemplateParams,
Annotations};
DEFINE_GETIMPL_STORE(DIGlobalVariable,
(Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops);
}
DILocalVariable *
DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
Metadata *File, unsigned Line, Metadata *Type,
unsigned Arg, DIFlags Flags, uint32_t AlignInBits,
Metadata *Annotations, StorageType Storage,
bool ShouldCreate) {
// 64K ought to be enough for any frontend.
assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits");
assert(Scope && "Expected scope");
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DILocalVariable, (Scope, Name, File, Line, Type, Arg,
Flags, AlignInBits, Annotations));
Metadata *Ops[] = {Scope, Name, File, Type, Annotations};
DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops);
}
DIVariable::DIVariable(LLVMContext &C, unsigned ID, StorageType Storage,
signed Line, ArrayRef<Metadata *> Ops,
uint32_t AlignInBits)
: DINode(C, ID, Storage, dwarf::DW_TAG_variable, Ops), Line(Line) {
SubclassData32 = AlignInBits;
}
std::optional<uint64_t> DIVariable::getSizeInBits() const {
// This is used by the Verifier so be mindful of broken types.
const Metadata *RawType = getRawType();
while (RawType) {
// Try to get the size directly.
if (auto *T = dyn_cast<DIType>(RawType))
if (uint64_t Size = T->getSizeInBits())
return Size;
if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
// Look at the base type.
RawType = DT->getRawBaseType();
continue;
}
// Missing type or size.
break;
}
// Fail gracefully.
return std::nullopt;
}
DILabel::DILabel(LLVMContext &C, StorageType Storage, unsigned Line,
ArrayRef<Metadata *> Ops)
: DINode(C, DILabelKind, Storage, dwarf::DW_TAG_label, Ops) {
SubclassData32 = Line;
}
DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
Metadata *File, unsigned Line, StorageType Storage,
bool ShouldCreate) {
assert(Scope && "Expected scope");
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DILabel, (Scope, Name, File, Line));
Metadata *Ops[] = {Scope, Name, File};
DEFINE_GETIMPL_STORE(DILabel, (Line), Ops);
}
DIExpression *DIExpression::getImpl(LLVMContext &Context,
ArrayRef<uint64_t> Elements,
StorageType Storage, bool ShouldCreate) {
DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements));
DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements));
}
bool DIExpression::isEntryValue() const {
if (auto singleLocElts = getSingleLocationExpressionElements()) {
return singleLocElts->size() > 0 &&
(*singleLocElts)[0] == dwarf::DW_OP_LLVM_entry_value;
}
return false;
}
bool DIExpression::startsWithDeref() const {
if (auto singleLocElts = getSingleLocationExpressionElements())
return singleLocElts->size() > 0 &&
(*singleLocElts)[0] == dwarf::DW_OP_deref;
return false;
}
bool DIExpression::isDeref() const {
if (auto singleLocElts = getSingleLocationExpressionElements())
return singleLocElts->size() == 1 &&
(*singleLocElts)[0] == dwarf::DW_OP_deref;
return false;
}
DIAssignID *DIAssignID::getImpl(LLVMContext &Context, StorageType Storage,
bool ShouldCreate) {
// Uniqued DIAssignID are not supported as the instance address *is* the ID.
assert(Storage != StorageType::Uniqued && "uniqued DIAssignID unsupported");
return storeImpl(new (0u, Storage) DIAssignID(Context, Storage), Storage);
}
unsigned DIExpression::ExprOperand::getSize() const {
uint64_t Op = getOp();
if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)
return 2;
switch (Op) {
case dwarf::DW_OP_LLVM_convert:
case dwarf::DW_OP_LLVM_fragment:
case dwarf::DW_OP_bregx:
return 3;
case dwarf::DW_OP_constu:
case dwarf::DW_OP_consts:
case dwarf::DW_OP_deref_size:
case dwarf::DW_OP_plus_uconst:
case dwarf::DW_OP_LLVM_tag_offset:
case dwarf::DW_OP_LLVM_entry_value:
case dwarf::DW_OP_LLVM_arg:
case dwarf::DW_OP_regx:
return 2;
default:
return 1;
}
}
bool DIExpression::isValid() const {
for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) {
// Check that there's space for the operand.
if (I->get() + I->getSize() > E->get())
return false;
uint64_t Op = I->getOp();
if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) ||
(Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31))
return true;
// Check that the operand is valid.
switch (Op) {
default:
return false;
case dwarf::DW_OP_LLVM_fragment:
// A fragment operator must appear at the end.
return I->get() + I->getSize() == E->get();
case dwarf::DW_OP_stack_value: {
// Must be the last one or followed by a DW_OP_LLVM_fragment.
if (I->get() + I->getSize() == E->get())
break;
auto J = I;
if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment)
return false;
break;
}
case dwarf::DW_OP_swap: {
// Must be more than one implicit element on the stack.
// FIXME: A better way to implement this would be to add a local variable
// that keeps track of the stack depth and introduce something like a
// DW_LLVM_OP_implicit_location as a placeholder for the location this
// DIExpression is attached to, or else pass the number of implicit stack
// elements into isValid.
if (getNumElements() == 1)
return false;
break;
}
case dwarf::DW_OP_LLVM_entry_value: {
// An entry value operator must appear at the beginning or immediately
// following `DW_OP_LLVM_arg 0`, and the number of operations it cover can
// currently only be 1, because we support only entry values of a simple
// register location. One reason for this is that we currently can't
// calculate the size of the resulting DWARF block for other expressions.
auto FirstOp = expr_op_begin();
if (FirstOp->getOp() == dwarf::DW_OP_LLVM_arg && FirstOp->getArg(0) == 0)
++FirstOp;
return I->get() == FirstOp->get() && I->getArg(0) == 1;
}
case dwarf::DW_OP_LLVM_implicit_pointer:
case dwarf::DW_OP_LLVM_convert:
case dwarf::DW_OP_LLVM_arg:
case dwarf::DW_OP_LLVM_tag_offset:
case dwarf::DW_OP_constu:
case dwarf::DW_OP_plus_uconst:
case dwarf::DW_OP_plus:
case dwarf::DW_OP_minus:
case dwarf::DW_OP_mul:
case dwarf::DW_OP_div:
case dwarf::DW_OP_mod:
case dwarf::DW_OP_or:
case dwarf::DW_OP_and:
case dwarf::DW_OP_xor:
case dwarf::DW_OP_shl:
case dwarf::DW_OP_shr:
case dwarf::DW_OP_shra:
case dwarf::DW_OP_deref:
case dwarf::DW_OP_deref_size:
case dwarf::DW_OP_xderef:
case dwarf::DW_OP_lit0:
case dwarf::DW_OP_not:
case dwarf::DW_OP_dup:
case dwarf::DW_OP_regx:
case dwarf::DW_OP_bregx:
case dwarf::DW_OP_push_object_address:
case dwarf::DW_OP_over:
case dwarf::DW_OP_consts:
case dwarf::DW_OP_eq:
case dwarf::DW_OP_ne:
case dwarf::DW_OP_gt:
case dwarf::DW_OP_ge:
case dwarf::DW_OP_lt:
case dwarf::DW_OP_le:
break;
}
}
return true;
}
bool DIExpression::isImplicit() const {
if (!isValid())
return false;
if (getNumElements() == 0)
return false;
for (const auto &It : expr_ops()) {
switch (It.getOp()) {
default:
break;
case dwarf::DW_OP_stack_value:
return true;
}
}
return false;
}
bool DIExpression::isComplex() const {
if (!isValid())
return false;
if (getNumElements() == 0)
return false;
// If there are any elements other than fragment or tag_offset, then some
// kind of complex computation occurs.
for (const auto &It : expr_ops()) {
switch (It.getOp()) {
case dwarf::DW_OP_LLVM_tag_offset:
case dwarf::DW_OP_LLVM_fragment:
case dwarf::DW_OP_LLVM_arg:
continue;
default:
return true;
}
}
return false;
}
bool DIExpression::isSingleLocationExpression() const {
if (!isValid())
return false;
if (getNumElements() == 0)
return true;
auto ExprOpBegin = expr_ops().begin();
auto ExprOpEnd = expr_ops().end();
if (ExprOpBegin->getOp() == dwarf::DW_OP_LLVM_arg) {
if (ExprOpBegin->getArg(0) != 0)
return false;
++ExprOpBegin;
}
return !std::any_of(ExprOpBegin, ExprOpEnd, [](auto Op) {
return Op.getOp() == dwarf::DW_OP_LLVM_arg;
});
}
std::optional<ArrayRef<uint64_t>>
DIExpression::getSingleLocationExpressionElements() const {
// Check for `isValid` covered by `isSingleLocationExpression`.
if (!isSingleLocationExpression())
return std::nullopt;
// An empty expression is already non-variadic.
if (!getNumElements())
return ArrayRef<uint64_t>();
// If Expr does not have a leading DW_OP_LLVM_arg then we don't need to do
// anything.
if (getElements()[0] == dwarf::DW_OP_LLVM_arg)
return getElements().drop_front(2);
return getElements();
}
const DIExpression *
DIExpression::convertToUndefExpression(const DIExpression *Expr) {
SmallVector<uint64_t, 3> UndefOps;
if (auto FragmentInfo = Expr->getFragmentInfo()) {
UndefOps.append({dwarf::DW_OP_LLVM_fragment, FragmentInfo->OffsetInBits,
FragmentInfo->SizeInBits});
}
return DIExpression::get(Expr->getContext(), UndefOps);
}
const DIExpression *
DIExpression::convertToVariadicExpression(const DIExpression *Expr) {
if (any_of(Expr->expr_ops(), [](auto ExprOp) {
return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
}))
return Expr;
SmallVector<uint64_t> NewOps;
NewOps.reserve(Expr->getNumElements() + 2);
NewOps.append({dwarf::DW_OP_LLVM_arg, 0});
NewOps.append(Expr->elements_begin(), Expr->elements_end());
return DIExpression::get(Expr->getContext(), NewOps);
}
std::optional<const DIExpression *>
DIExpression::convertToNonVariadicExpression(const DIExpression *Expr) {
if (!Expr)
return std::nullopt;
if (auto Elts = Expr->getSingleLocationExpressionElements())
return DIExpression::get(Expr->getContext(), *Elts);
return std::nullopt;
}
void DIExpression::canonicalizeExpressionOps(SmallVectorImpl<uint64_t> &Ops,
const DIExpression *Expr,
bool IsIndirect) {
// If Expr is not already variadic, insert the implied `DW_OP_LLVM_arg 0`
// to the existing expression ops.
if (none_of(Expr->expr_ops(), [](auto ExprOp) {
return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
}))
Ops.append({dwarf::DW_OP_LLVM_arg, 0});
// If Expr is not indirect, we only need to insert the expression elements and
// we're done.
if (!IsIndirect) {
Ops.append(Expr->elements_begin(), Expr->elements_end());
return;
}
// If Expr is indirect, insert the implied DW_OP_deref at the end of the
// expression but before DW_OP_{stack_value, LLVM_fragment} if they are
// present.
for (auto Op : Expr->expr_ops()) {
if (Op.getOp() == dwarf::DW_OP_stack_value ||
Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
Ops.push_back(dwarf::DW_OP_deref);
IsIndirect = false;
}
Op.appendToVector(Ops);
}
if (IsIndirect)
Ops.push_back(dwarf::DW_OP_deref);
}
bool DIExpression::isEqualExpression(const DIExpression *FirstExpr,
bool FirstIndirect,
const DIExpression *SecondExpr,
bool SecondIndirect) {
SmallVector<uint64_t> FirstOps;
DIExpression::canonicalizeExpressionOps(FirstOps, FirstExpr, FirstIndirect);
SmallVector<uint64_t> SecondOps;
DIExpression::canonicalizeExpressionOps(SecondOps, SecondExpr,
SecondIndirect);
return FirstOps == SecondOps;
}
std::optional<DIExpression::FragmentInfo>
DIExpression::getFragmentInfo(expr_op_iterator Start, expr_op_iterator End) {
for (auto I = Start; I != End; ++I)
if (I->getOp() == dwarf::DW_OP_LLVM_fragment) {
DIExpression::FragmentInfo Info = {I->getArg(1), I->getArg(0)};
return Info;
}
return std::nullopt;
}
void DIExpression::appendOffset(SmallVectorImpl<uint64_t> &Ops,
int64_t Offset) {
if (Offset > 0) {
Ops.push_back(dwarf::DW_OP_plus_uconst);
Ops.push_back(Offset);
} else if (Offset < 0) {
Ops.push_back(dwarf::DW_OP_constu);
// Avoid UB when encountering LLONG_MIN, because in 2's complement
// abs(LLONG_MIN) is LLONG_MAX+1.
uint64_t AbsMinusOne = -(Offset+1);
Ops.push_back(AbsMinusOne + 1);
Ops.push_back(dwarf::DW_OP_minus);
}
}
bool DIExpression::extractIfOffset(int64_t &Offset) const {
auto SingleLocEltsOpt = getSingleLocationExpressionElements();
if (!SingleLocEltsOpt)
return false;
auto SingleLocElts = *SingleLocEltsOpt;
if (SingleLocElts.size() == 0) {
Offset = 0;
return true;
}
if (SingleLocElts.size() == 2 &&
SingleLocElts[0] == dwarf::DW_OP_plus_uconst) {
Offset = SingleLocElts[1];
return true;
}
if (SingleLocElts.size() == 3 && SingleLocElts[0] == dwarf::DW_OP_constu) {
if (SingleLocElts[2] == dwarf::DW_OP_plus) {
Offset = SingleLocElts[1];
return true;
}
if (SingleLocElts[2] == dwarf::DW_OP_minus) {
Offset = -SingleLocElts[1];
return true;
}
}
return false;
}
bool DIExpression::hasAllLocationOps(unsigned N) const {
SmallDenseSet<uint64_t, 4> SeenOps;
for (auto ExprOp : expr_ops())
if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
SeenOps.insert(ExprOp.getArg(0));
for (uint64_t Idx = 0; Idx < N; ++Idx)
if (!SeenOps.contains(Idx))
return false;
return true;
}
const DIExpression *DIExpression::extractAddressClass(const DIExpression *Expr,
unsigned &AddrClass) {
// FIXME: This seems fragile. Nothing that verifies that these elements
// actually map to ops and not operands.
auto SingleLocEltsOpt = Expr->getSingleLocationExpressionElements();
if (!SingleLocEltsOpt)
return nullptr;
auto SingleLocElts = *SingleLocEltsOpt;
const unsigned PatternSize = 4;
if (SingleLocElts.size() >= PatternSize &&
SingleLocElts[PatternSize - 4] == dwarf::DW_OP_constu &&
SingleLocElts[PatternSize - 2] == dwarf::DW_OP_swap &&
SingleLocElts[PatternSize - 1] == dwarf::DW_OP_xderef) {
AddrClass = SingleLocElts[PatternSize - 3];
if (SingleLocElts.size() == PatternSize)
return nullptr;
return DIExpression::get(
Expr->getContext(),
ArrayRef(&*SingleLocElts.begin(), SingleLocElts.size() - PatternSize));
}
return Expr;
}
DIExpression *DIExpression::prepend(const DIExpression *Expr, uint8_t Flags,
int64_t Offset) {
SmallVector<uint64_t, 8> Ops;
if (Flags & DIExpression::DerefBefore)
Ops.push_back(dwarf::DW_OP_deref);
appendOffset(Ops, Offset);
if (Flags & DIExpression::DerefAfter)
Ops.push_back(dwarf::DW_OP_deref);
bool StackValue = Flags & DIExpression::StackValue;
bool EntryValue = Flags & DIExpression::EntryValue;
return prependOpcodes(Expr, Ops, StackValue, EntryValue);
}
DIExpression *DIExpression::appendOpsToArg(const DIExpression *Expr,
ArrayRef<uint64_t> Ops,
unsigned ArgNo, bool StackValue) {
assert(Expr && "Can't add ops to this expression");
// Handle non-variadic intrinsics by prepending the opcodes.
if (!any_of(Expr->expr_ops(),
[](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; })) {
assert(ArgNo == 0 &&
"Location Index must be 0 for a non-variadic expression.");
SmallVector<uint64_t, 8> NewOps(Ops.begin(), Ops.end());
return DIExpression::prependOpcodes(Expr, NewOps, StackValue);
}
SmallVector<uint64_t, 8> NewOps;
for (auto Op : Expr->expr_ops()) {
// A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
if (StackValue) {
if (Op.getOp() == dwarf::DW_OP_stack_value)
StackValue = false;
else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
NewOps.push_back(dwarf::DW_OP_stack_value);
StackValue = false;
}
}
Op.appendToVector(NewOps);
if (Op.getOp() == dwarf::DW_OP_LLVM_arg && Op.getArg(0) == ArgNo)
NewOps.insert(NewOps.end(), Ops.begin(), Ops.end());
}
if (StackValue)
NewOps.push_back(dwarf::DW_OP_stack_value);
return DIExpression::get(Expr->getContext(), NewOps);
}
DIExpression *DIExpression::replaceArg(const DIExpression *Expr,
uint64_t OldArg, uint64_t NewArg) {
assert(Expr && "Can't replace args in this expression");
SmallVector<uint64_t, 8> NewOps;
for (auto Op : Expr->expr_ops()) {
if (Op.getOp() != dwarf::DW_OP_LLVM_arg || Op.getArg(0) < OldArg) {
Op.appendToVector(NewOps);
continue;
}
NewOps.push_back(dwarf::DW_OP_LLVM_arg);
uint64_t Arg = Op.getArg(0) == OldArg ? NewArg : Op.getArg(0);
// OldArg has been deleted from the Op list, so decrement all indices
// greater than it.
if (Arg > OldArg)
--Arg;
NewOps.push_back(Arg);
}
return DIExpression::get(Expr->getContext(), NewOps);
}
DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr,
SmallVectorImpl<uint64_t> &Ops,
bool StackValue, bool EntryValue) {
assert(Expr && "Can't prepend ops to this expression");
if (EntryValue) {
Ops.push_back(dwarf::DW_OP_LLVM_entry_value);
// Use a block size of 1 for the target register operand. The
// DWARF backend currently cannot emit entry values with a block
// size > 1.
Ops.push_back(1);
}
// If there are no ops to prepend, do not even add the DW_OP_stack_value.
if (Ops.empty())
StackValue = false;
for (auto Op : Expr->expr_ops()) {
// A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
if (StackValue) {
if (Op.getOp() == dwarf::DW_OP_stack_value)
StackValue = false;
else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
Ops.push_back(dwarf::DW_OP_stack_value);
StackValue = false;
}
}
Op.appendToVector(Ops);
}
if (StackValue)
Ops.push_back(dwarf::DW_OP_stack_value);
return DIExpression::get(Expr->getContext(), Ops);
}
DIExpression *DIExpression::append(const DIExpression *Expr,
ArrayRef<uint64_t> Ops) {
assert(Expr && !Ops.empty() && "Can't append ops to this expression");
// Copy Expr's current op list.
SmallVector<uint64_t, 16> NewOps;
for (auto Op : Expr->expr_ops()) {
// Append new opcodes before DW_OP_{stack_value, LLVM_fragment}.
if (Op.getOp() == dwarf::DW_OP_stack_value ||
Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
NewOps.append(Ops.begin(), Ops.end());
// Ensure that the new opcodes are only appended once.
Ops = std::nullopt;
}
Op.appendToVector(NewOps);
}
NewOps.append(Ops.begin(), Ops.end());
auto *result = DIExpression::get(Expr->getContext(), NewOps);
assert(result->isValid() && "concatenated expression is not valid");
return result;
}
DIExpression *DIExpression::appendToStack(const DIExpression *Expr,
ArrayRef<uint64_t> Ops) {
assert(Expr && !Ops.empty() && "Can't append ops to this expression");
assert(std::none_of(expr_op_iterator(Ops.begin()),
expr_op_iterator(Ops.end()),
[](auto Op) {
return Op.getOp() == dwarf::DW_OP_stack_value ||
Op.getOp() == dwarf::DW_OP_LLVM_fragment;
}) &&
"Can't append this op");
// Append a DW_OP_deref after Expr's current op list if it's non-empty and
// has no DW_OP_stack_value.
//
// Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?.
std::optional<FragmentInfo> FI = Expr->getFragmentInfo();
unsigned DropUntilStackValue = FI ? 3 : 0;
ArrayRef<uint64_t> ExprOpsBeforeFragment =
Expr->getElements().drop_back(DropUntilStackValue);
bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) &&
(ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value);
bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty();
// Append a DW_OP_deref after Expr's current op list if needed, then append
// the new ops, and finally ensure that a single DW_OP_stack_value is present.
SmallVector<uint64_t, 16> NewOps;
if (NeedsDeref)
NewOps.push_back(dwarf::DW_OP_deref);
NewOps.append(Ops.begin(), Ops.end());
if (NeedsStackValue)
NewOps.push_back(dwarf::DW_OP_stack_value);
return DIExpression::append(Expr, NewOps);
}
std::optional<DIExpression *> DIExpression::createFragmentExpression(
const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) {
SmallVector<uint64_t, 8> Ops;
// Track whether it's safe to split the value at the top of the DWARF stack,
// assuming that it'll be used as an implicit location value.
bool CanSplitValue = true;
// Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment.
if (Expr) {
for (auto Op : Expr->expr_ops()) {
switch (Op.getOp()) {
default:
break;
case dwarf::DW_OP_shr:
case dwarf::DW_OP_shra:
case dwarf::DW_OP_shl:
case dwarf::DW_OP_plus:
case dwarf::DW_OP_plus_uconst:
case dwarf::DW_OP_minus:
// We can't safely split arithmetic or shift operations into multiple
// fragments because we can't express carry-over between fragments.
//
// FIXME: We *could* preserve the lowest fragment of a constant offset
// operation if the offset fits into SizeInBits.
CanSplitValue = false;
break;
case dwarf::DW_OP_deref:
case dwarf::DW_OP_deref_size:
case dwarf::DW_OP_deref_type:
case dwarf::DW_OP_xderef:
case dwarf::DW_OP_xderef_size:
case dwarf::DW_OP_xderef_type:
// Preceeding arithmetic operations have been applied to compute an
// address. It's okay to split the value loaded from that address.
CanSplitValue = true;
break;
case dwarf::DW_OP_stack_value:
// Bail if this expression computes a value that cannot be split.
if (!CanSplitValue)
return std::nullopt;
break;
case dwarf::DW_OP_LLVM_fragment: {
// Make the new offset point into the existing fragment.
uint64_t FragmentOffsetInBits = Op.getArg(0);
uint64_t FragmentSizeInBits = Op.getArg(1);
(void)FragmentSizeInBits;
assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) &&
"new fragment outside of original fragment");
OffsetInBits += FragmentOffsetInBits;
continue;
}
}
Op.appendToVector(Ops);
}
}
assert((!Expr->isImplicit() || CanSplitValue) && "Expr can't be split");
assert(Expr && "Unknown DIExpression");
Ops.push_back(dwarf::DW_OP_LLVM_fragment);
Ops.push_back(OffsetInBits);
Ops.push_back(SizeInBits);
return DIExpression::get(Expr->getContext(), Ops);
}
std::pair<DIExpression *, const ConstantInt *>
DIExpression::constantFold(const ConstantInt *CI) {
// Copy the APInt so we can modify it.
APInt NewInt = CI->getValue();
SmallVector<uint64_t, 8> Ops;
// Fold operators only at the beginning of the expression.
bool First = true;
bool Changed = false;
for (auto Op : expr_ops()) {
switch (Op.getOp()) {
default:
// We fold only the leading part of the expression; if we get to a part
// that we're going to copy unchanged, and haven't done any folding,
// then the entire expression is unchanged and we can return early.
if (!Changed)
return {this, CI};
First = false;
break;
case dwarf::DW_OP_LLVM_convert:
if (!First)
break;
Changed = true;
if (Op.getArg(1) == dwarf::DW_ATE_signed)
NewInt = NewInt.sextOrTrunc(Op.getArg(0));
else {
assert(Op.getArg(1) == dwarf::DW_ATE_unsigned && "Unexpected operand");
NewInt = NewInt.zextOrTrunc(Op.getArg(0));
}
continue;
}
Op.appendToVector(Ops);
}
if (!Changed)
return {this, CI};
return {DIExpression::get(getContext(), Ops),
ConstantInt::get(getContext(), NewInt)};
}
uint64_t DIExpression::getNumLocationOperands() const {
uint64_t Result = 0;
for (auto ExprOp : expr_ops())
if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
Result = std::max(Result, ExprOp.getArg(0) + 1);
assert(hasAllLocationOps(Result) &&
"Expression is missing one or more location operands.");
return Result;
}
std::optional<DIExpression::SignedOrUnsignedConstant>
DIExpression::isConstant() const {
// Recognize signed and unsigned constants.
// An signed constants can be represented as DW_OP_consts C DW_OP_stack_value
// (DW_OP_LLVM_fragment of Len).
// An unsigned constant can be represented as
// DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment of Len).
if ((getNumElements() != 2 && getNumElements() != 3 &&
getNumElements() != 6) ||
(getElement(0) != dwarf::DW_OP_consts &&
getElement(0) != dwarf::DW_OP_constu))
return std::nullopt;
if (getNumElements() == 2 && getElement(0) == dwarf::DW_OP_consts)
return SignedOrUnsignedConstant::SignedConstant;
if ((getNumElements() == 3 && getElement(2) != dwarf::DW_OP_stack_value) ||
(getNumElements() == 6 && (getElement(2) != dwarf::DW_OP_stack_value ||
getElement(3) != dwarf::DW_OP_LLVM_fragment)))
return std::nullopt;
return getElement(0) == dwarf::DW_OP_constu
? SignedOrUnsignedConstant::UnsignedConstant
: SignedOrUnsignedConstant::SignedConstant;
}
DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize,
bool Signed) {
dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned;
DIExpression::ExtOps Ops{{dwarf::DW_OP_LLVM_convert, FromSize, TK,
dwarf::DW_OP_LLVM_convert, ToSize, TK}};
return Ops;
}
DIExpression *DIExpression::appendExt(const DIExpression *Expr,
unsigned FromSize, unsigned ToSize,
bool Signed) {
return appendToStack(Expr, getExtOps(FromSize, ToSize, Signed));
}
DIGlobalVariableExpression *
DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable,
Metadata *Expression, StorageType Storage,
bool ShouldCreate) {
DEFINE_GETIMPL_LOOKUP(DIGlobalVariableExpression, (Variable, Expression));
Metadata *Ops[] = {Variable, Expression};
DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGlobalVariableExpression, Ops);
}
DIObjCProperty::DIObjCProperty(LLVMContext &C, StorageType Storage,
unsigned Line, unsigned Attributes,
ArrayRef<Metadata *> Ops)
: DINode(C, DIObjCPropertyKind, Storage, dwarf::DW_TAG_APPLE_property, Ops),
Line(Line), Attributes(Attributes) {}
DIObjCProperty *DIObjCProperty::getImpl(
LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line,
MDString *GetterName, MDString *SetterName, unsigned Attributes,
Metadata *Type, StorageType Storage, bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
assert(isCanonical(GetterName) && "Expected canonical MDString");
assert(isCanonical(SetterName) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName,
SetterName, Attributes, Type));
Metadata *Ops[] = {Name, File, GetterName, SetterName, Type};
DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops);
}
DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag,
Metadata *Scope, Metadata *Entity,
Metadata *File, unsigned Line,
MDString *Name, Metadata *Elements,
StorageType Storage,
bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIImportedEntity,
(Tag, Scope, Entity, File, Line, Name, Elements));
Metadata *Ops[] = {Scope, Entity, Name, File, Elements};
DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops);
}
DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line,
MDString *Name, MDString *Value, StorageType Storage,
bool ShouldCreate) {
assert(isCanonical(Name) && "Expected canonical MDString");
DEFINE_GETIMPL_LOOKUP(DIMacro, (MIType, Line, Name, Value));
Metadata *Ops[] = {Name, Value};
DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops);
}
DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType,
unsigned Line, Metadata *File,
Metadata *Elements, StorageType Storage,
bool ShouldCreate) {
DEFINE_GETIMPL_LOOKUP(DIMacroFile, (MIType, Line, File, Elements));
Metadata *Ops[] = {File, Elements};
DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops);
}
DIArgList *DIArgList::get(LLVMContext &Context,
ArrayRef<ValueAsMetadata *> Args) {
auto ExistingIt = Context.pImpl->DIArgLists.find_as(DIArgListKeyInfo(Args));
if (ExistingIt != Context.pImpl->DIArgLists.end())
return *ExistingIt;
DIArgList *NewArgList = new DIArgList(Context, Args);
Context.pImpl->DIArgLists.insert(NewArgList);
return NewArgList;
}
void DIArgList::handleChangedOperand(void *Ref, Metadata *New) {
ValueAsMetadata **OldVMPtr = static_cast<ValueAsMetadata **>(Ref);
assert((!New || isa<ValueAsMetadata>(New)) &&
"DIArgList must be passed a ValueAsMetadata");
untrack();
// We need to update the set storage once the Args are updated since they
// form the key to the DIArgLists store.
getContext().pImpl->DIArgLists.erase(this);
ValueAsMetadata *NewVM = cast_or_null<ValueAsMetadata>(New);
for (ValueAsMetadata *&VM : Args) {
if (&VM == OldVMPtr) {
if (NewVM)
VM = NewVM;
else
VM = ValueAsMetadata::get(PoisonValue::get(VM->getValue()->getType()));
}
}
// We've changed the contents of this DIArgList, and the set storage may
// already contain a DIArgList with our new set of args; if it does, then we
// must RAUW this with the existing DIArgList, otherwise we simply insert this
// back into the set storage.
DIArgList *ExistingArgList = getUniqued(getContext().pImpl->DIArgLists, this);
if (ExistingArgList) {
replaceAllUsesWith(ExistingArgList);
// Clear this here so we don't try to untrack in the destructor.
Args.clear();
delete this;
return;
}
getContext().pImpl->DIArgLists.insert(this);
track();
}
void DIArgList::track() {
for (ValueAsMetadata *&VAM : Args)
if (VAM)
MetadataTracking::track(&VAM, *VAM, *this);
}
void DIArgList::untrack() {
for (ValueAsMetadata *&VAM : Args)
if (VAM)
MetadataTracking::untrack(&VAM, *VAM);
}
void DIArgList::dropAllReferences(bool Untrack) {
if (Untrack)
untrack();
Args.clear();
ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
}