| //===----- TypePromotion.cpp ----------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This is an opcode based type promotion pass for small types that would |
| /// otherwise be promoted during legalisation. This works around the limitations |
| /// of selection dag for cyclic regions. The search begins from icmp |
| /// instructions operands where a tree, consisting of non-wrapping or safe |
| /// wrapping instructions, is built, checked and promoted if possible. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/TypePromotion.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Target/TargetMachine.h" |
| |
| #define DEBUG_TYPE "type-promotion" |
| #define PASS_NAME "Type Promotion" |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> DisablePromotion("disable-type-promotion", cl::Hidden, |
| cl::init(false), |
| cl::desc("Disable type promotion pass")); |
| |
| // The goal of this pass is to enable more efficient code generation for |
| // operations on narrow types (i.e. types with < 32-bits) and this is a |
| // motivating IR code example: |
| // |
| // define hidden i32 @cmp(i8 zeroext) { |
| // %2 = add i8 %0, -49 |
| // %3 = icmp ult i8 %2, 3 |
| // .. |
| // } |
| // |
| // The issue here is that i8 is type-legalized to i32 because i8 is not a |
| // legal type. Thus, arithmetic is done in integer-precision, but then the |
| // byte value is masked out as follows: |
| // |
| // t19: i32 = add t4, Constant:i32<-49> |
| // t24: i32 = and t19, Constant:i32<255> |
| // |
| // Consequently, we generate code like this: |
| // |
| // subs r0, #49 |
| // uxtb r1, r0 |
| // cmp r1, #3 |
| // |
| // This shows that masking out the byte value results in generation of |
| // the UXTB instruction. This is not optimal as r0 already contains the byte |
| // value we need, and so instead we can just generate: |
| // |
| // sub.w r1, r0, #49 |
| // cmp r1, #3 |
| // |
| // We achieve this by type promoting the IR to i32 like so for this example: |
| // |
| // define i32 @cmp(i8 zeroext %c) { |
| // %0 = zext i8 %c to i32 |
| // %c.off = add i32 %0, -49 |
| // %1 = icmp ult i32 %c.off, 3 |
| // .. |
| // } |
| // |
| // For this to be valid and legal, we need to prove that the i32 add is |
| // producing the same value as the i8 addition, and that e.g. no overflow |
| // happens. |
| // |
| // A brief sketch of the algorithm and some terminology. |
| // We pattern match interesting IR patterns: |
| // - which have "sources": instructions producing narrow values (i8, i16), and |
| // - they have "sinks": instructions consuming these narrow values. |
| // |
| // We collect all instruction connecting sources and sinks in a worklist, so |
| // that we can mutate these instruction and perform type promotion when it is |
| // legal to do so. |
| |
| namespace { |
| class IRPromoter { |
| LLVMContext &Ctx; |
| unsigned PromotedWidth = 0; |
| SetVector<Value *> &Visited; |
| SetVector<Value *> &Sources; |
| SetVector<Instruction *> &Sinks; |
| SmallPtrSetImpl<Instruction *> &SafeWrap; |
| SmallPtrSetImpl<Instruction *> &InstsToRemove; |
| IntegerType *ExtTy = nullptr; |
| SmallPtrSet<Value *, 8> NewInsts; |
| DenseMap<Value *, SmallVector<Type *, 4>> TruncTysMap; |
| SmallPtrSet<Value *, 8> Promoted; |
| |
| void ReplaceAllUsersOfWith(Value *From, Value *To); |
| void ExtendSources(); |
| void ConvertTruncs(); |
| void PromoteTree(); |
| void TruncateSinks(); |
| void Cleanup(); |
| |
| public: |
| IRPromoter(LLVMContext &C, unsigned Width, SetVector<Value *> &visited, |
| SetVector<Value *> &sources, SetVector<Instruction *> &sinks, |
| SmallPtrSetImpl<Instruction *> &wrap, |
| SmallPtrSetImpl<Instruction *> &instsToRemove) |
| : Ctx(C), PromotedWidth(Width), Visited(visited), Sources(sources), |
| Sinks(sinks), SafeWrap(wrap), InstsToRemove(instsToRemove) { |
| ExtTy = IntegerType::get(Ctx, PromotedWidth); |
| } |
| |
| void Mutate(); |
| }; |
| |
| class TypePromotionImpl { |
| unsigned TypeSize = 0; |
| const TargetLowering *TLI = nullptr; |
| LLVMContext *Ctx = nullptr; |
| unsigned RegisterBitWidth = 0; |
| SmallPtrSet<Value *, 16> AllVisited; |
| SmallPtrSet<Instruction *, 8> SafeToPromote; |
| SmallPtrSet<Instruction *, 4> SafeWrap; |
| SmallPtrSet<Instruction *, 4> InstsToRemove; |
| |
| // Does V have the same size result type as TypeSize. |
| bool EqualTypeSize(Value *V); |
| // Does V have the same size, or narrower, result type as TypeSize. |
| bool LessOrEqualTypeSize(Value *V); |
| // Does V have a result type that is wider than TypeSize. |
| bool GreaterThanTypeSize(Value *V); |
| // Does V have a result type that is narrower than TypeSize. |
| bool LessThanTypeSize(Value *V); |
| // Should V be a leaf in the promote tree? |
| bool isSource(Value *V); |
| // Should V be a root in the promotion tree? |
| bool isSink(Value *V); |
| // Should we change the result type of V? It will result in the users of V |
| // being visited. |
| bool shouldPromote(Value *V); |
| // Is I an add or a sub, which isn't marked as nuw, but where a wrapping |
| // result won't affect the computation? |
| bool isSafeWrap(Instruction *I); |
| // Can V have its integer type promoted, or can the type be ignored. |
| bool isSupportedType(Value *V); |
| // Is V an instruction with a supported opcode or another value that we can |
| // handle, such as constants and basic blocks. |
| bool isSupportedValue(Value *V); |
| // Is V an instruction thats result can trivially promoted, or has safe |
| // wrapping. |
| bool isLegalToPromote(Value *V); |
| bool TryToPromote(Value *V, unsigned PromotedWidth, const LoopInfo &LI); |
| |
| public: |
| bool run(Function &F, const TargetMachine *TM, |
| const TargetTransformInfo &TTI, const LoopInfo &LI); |
| }; |
| |
| class TypePromotionLegacy : public FunctionPass { |
| public: |
| static char ID; |
| |
| TypePromotionLegacy() : FunctionPass(ID) {} |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<LoopInfoWrapperPass>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| AU.addRequired<TargetPassConfig>(); |
| AU.setPreservesCFG(); |
| AU.addPreserved<LoopInfoWrapperPass>(); |
| } |
| |
| StringRef getPassName() const override { return PASS_NAME; } |
| |
| bool runOnFunction(Function &F) override; |
| }; |
| |
| } // namespace |
| |
| static bool GenerateSignBits(Instruction *I) { |
| unsigned Opc = I->getOpcode(); |
| return Opc == Instruction::AShr || Opc == Instruction::SDiv || |
| Opc == Instruction::SRem || Opc == Instruction::SExt; |
| } |
| |
| bool TypePromotionImpl::EqualTypeSize(Value *V) { |
| return V->getType()->getScalarSizeInBits() == TypeSize; |
| } |
| |
| bool TypePromotionImpl::LessOrEqualTypeSize(Value *V) { |
| return V->getType()->getScalarSizeInBits() <= TypeSize; |
| } |
| |
| bool TypePromotionImpl::GreaterThanTypeSize(Value *V) { |
| return V->getType()->getScalarSizeInBits() > TypeSize; |
| } |
| |
| bool TypePromotionImpl::LessThanTypeSize(Value *V) { |
| return V->getType()->getScalarSizeInBits() < TypeSize; |
| } |
| |
| /// Return true if the given value is a source in the use-def chain, producing |
| /// a narrow 'TypeSize' value. These values will be zext to start the promotion |
| /// of the tree to i32. We guarantee that these won't populate the upper bits |
| /// of the register. ZExt on the loads will be free, and the same for call |
| /// return values because we only accept ones that guarantee a zeroext ret val. |
| /// Many arguments will have the zeroext attribute too, so those would be free |
| /// too. |
| bool TypePromotionImpl::isSource(Value *V) { |
| if (!isa<IntegerType>(V->getType())) |
| return false; |
| |
| // TODO Allow zext to be sources. |
| if (isa<Argument>(V)) |
| return true; |
| else if (isa<LoadInst>(V)) |
| return true; |
| else if (auto *Call = dyn_cast<CallInst>(V)) |
| return Call->hasRetAttr(Attribute::AttrKind::ZExt); |
| else if (auto *Trunc = dyn_cast<TruncInst>(V)) |
| return EqualTypeSize(Trunc); |
| return false; |
| } |
| |
| /// Return true if V will require any promoted values to be truncated for the |
| /// the IR to remain valid. We can't mutate the value type of these |
| /// instructions. |
| bool TypePromotionImpl::isSink(Value *V) { |
| // TODO The truncate also isn't actually necessary because we would already |
| // proved that the data value is kept within the range of the original data |
| // type. We currently remove any truncs inserted for handling zext sinks. |
| |
| // Sinks are: |
| // - points where the value in the register is being observed, such as an |
| // icmp, switch or store. |
| // - points where value types have to match, such as calls and returns. |
| // - zext are included to ease the transformation and are generally removed |
| // later on. |
| if (auto *Store = dyn_cast<StoreInst>(V)) |
| return LessOrEqualTypeSize(Store->getValueOperand()); |
| if (auto *Return = dyn_cast<ReturnInst>(V)) |
| return LessOrEqualTypeSize(Return->getReturnValue()); |
| if (auto *ZExt = dyn_cast<ZExtInst>(V)) |
| return GreaterThanTypeSize(ZExt); |
| if (auto *Switch = dyn_cast<SwitchInst>(V)) |
| return LessThanTypeSize(Switch->getCondition()); |
| if (auto *ICmp = dyn_cast<ICmpInst>(V)) |
| return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0)); |
| |
| return isa<CallInst>(V); |
| } |
| |
| /// Return whether this instruction can safely wrap. |
| bool TypePromotionImpl::isSafeWrap(Instruction *I) { |
| // We can support a potentially wrapping Add/Sub instruction (I) if: |
| // - It is only used by an unsigned icmp. |
| // - The icmp uses a constant. |
| // - The wrapping instruction (I) also uses a constant. |
| // |
| // This a common pattern emitted to check if a value is within a range. |
| // |
| // For example: |
| // |
| // %sub = sub i8 %a, C1 |
| // %cmp = icmp ule i8 %sub, C2 |
| // |
| // or |
| // |
| // %add = add i8 %a, C1 |
| // %cmp = icmp ule i8 %add, C2. |
| // |
| // We will treat an add as though it were a subtract by -C1. To promote |
| // the Add/Sub we will zero extend the LHS and the subtracted amount. For Add, |
| // this means we need to negate the constant, zero extend to RegisterBitWidth, |
| // and negate in the larger type. |
| // |
| // This will produce a value in the range [-zext(C1), zext(X)-zext(C1)] where |
| // C1 is the subtracted amount. This is either a small unsigned number or a |
| // large unsigned number in the promoted type. |
| // |
| // Now we need to correct the compare constant C2. Values >= C1 in the |
| // original add result range have been remapped to large values in the |
| // promoted range. If the compare constant fell into this range we need to |
| // remap it as well. We can do this as -(zext(-C2)). |
| // |
| // For example: |
| // |
| // %sub = sub i8 %a, 2 |
| // %cmp = icmp ule i8 %sub, 254 |
| // |
| // becomes |
| // |
| // %zext = zext %a to i32 |
| // %sub = sub i32 %zext, 2 |
| // %cmp = icmp ule i32 %sub, 4294967294 |
| // |
| // Another example: |
| // |
| // %sub = sub i8 %a, 1 |
| // %cmp = icmp ule i8 %sub, 254 |
| // |
| // becomes |
| // |
| // %zext = zext %a to i32 |
| // %sub = sub i32 %zext, 1 |
| // %cmp = icmp ule i32 %sub, 254 |
| |
| unsigned Opc = I->getOpcode(); |
| if (Opc != Instruction::Add && Opc != Instruction::Sub) |
| return false; |
| |
| if (!I->hasOneUse() || !isa<ICmpInst>(*I->user_begin()) || |
| !isa<ConstantInt>(I->getOperand(1))) |
| return false; |
| |
| // Don't support an icmp that deals with sign bits. |
| auto *CI = cast<ICmpInst>(*I->user_begin()); |
| if (CI->isSigned() || CI->isEquality()) |
| return false; |
| |
| ConstantInt *ICmpConstant = nullptr; |
| if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0))) |
| ICmpConstant = Const; |
| else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1))) |
| ICmpConstant = Const; |
| else |
| return false; |
| |
| const APInt &ICmpConst = ICmpConstant->getValue(); |
| APInt OverflowConst = cast<ConstantInt>(I->getOperand(1))->getValue(); |
| if (Opc == Instruction::Sub) |
| OverflowConst = -OverflowConst; |
| |
| // If the constant is positive, we will end up filling the promoted bits with |
| // all 1s. Make sure that results in a cheap add constant. |
| if (!OverflowConst.isNonPositive()) { |
| // We don't have the true promoted width, just use 64 so we can create an |
| // int64_t for the isLegalAddImmediate call. |
| if (OverflowConst.getBitWidth() >= 64) |
| return false; |
| |
| APInt NewConst = -((-OverflowConst).zext(64)); |
| if (!TLI->isLegalAddImmediate(NewConst.getSExtValue())) |
| return false; |
| } |
| |
| SafeWrap.insert(I); |
| |
| if (OverflowConst == 0 || OverflowConst.ugt(ICmpConst)) { |
| LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for " |
| << "const of " << *I << "\n"); |
| return true; |
| } |
| |
| LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for " |
| << "const of " << *I << " and " << *CI << "\n"); |
| SafeWrap.insert(CI); |
| return true; |
| } |
| |
| bool TypePromotionImpl::shouldPromote(Value *V) { |
| if (!isa<IntegerType>(V->getType()) || isSink(V)) |
| return false; |
| |
| if (isSource(V)) |
| return true; |
| |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I) |
| return false; |
| |
| if (isa<ICmpInst>(I)) |
| return false; |
| |
| return true; |
| } |
| |
| /// Return whether we can safely mutate V's type to ExtTy without having to be |
| /// concerned with zero extending or truncation. |
| static bool isPromotedResultSafe(Instruction *I) { |
| if (GenerateSignBits(I)) |
| return false; |
| |
| if (!isa<OverflowingBinaryOperator>(I)) |
| return true; |
| |
| return I->hasNoUnsignedWrap(); |
| } |
| |
| void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) { |
| SmallVector<Instruction *, 4> Users; |
| Instruction *InstTo = dyn_cast<Instruction>(To); |
| bool ReplacedAll = true; |
| |
| LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To |
| << "\n"); |
| |
| for (Use &U : From->uses()) { |
| auto *User = cast<Instruction>(U.getUser()); |
| if (InstTo && User->isIdenticalTo(InstTo)) { |
| ReplacedAll = false; |
| continue; |
| } |
| Users.push_back(User); |
| } |
| |
| for (auto *U : Users) |
| U->replaceUsesOfWith(From, To); |
| |
| if (ReplacedAll) |
| if (auto *I = dyn_cast<Instruction>(From)) |
| InstsToRemove.insert(I); |
| } |
| |
| void IRPromoter::ExtendSources() { |
| IRBuilder<> Builder{Ctx}; |
| |
| auto InsertZExt = [&](Value *V, Instruction *InsertPt) { |
| assert(V->getType() != ExtTy && "zext already extends to i32"); |
| LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n"); |
| Builder.SetInsertPoint(InsertPt); |
| if (auto *I = dyn_cast<Instruction>(V)) |
| Builder.SetCurrentDebugLocation(I->getDebugLoc()); |
| |
| Value *ZExt = Builder.CreateZExt(V, ExtTy); |
| if (auto *I = dyn_cast<Instruction>(ZExt)) { |
| if (isa<Argument>(V)) |
| I->moveBefore(InsertPt); |
| else |
| I->moveAfter(InsertPt); |
| NewInsts.insert(I); |
| } |
| |
| ReplaceAllUsersOfWith(V, ZExt); |
| }; |
| |
| // Now, insert extending instructions between the sources and their users. |
| LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n"); |
| for (auto *V : Sources) { |
| LLVM_DEBUG(dbgs() << " - " << *V << "\n"); |
| if (auto *I = dyn_cast<Instruction>(V)) |
| InsertZExt(I, I); |
| else if (auto *Arg = dyn_cast<Argument>(V)) { |
| BasicBlock &BB = Arg->getParent()->front(); |
| InsertZExt(Arg, &*BB.getFirstInsertionPt()); |
| } else { |
| llvm_unreachable("unhandled source that needs extending"); |
| } |
| Promoted.insert(V); |
| } |
| } |
| |
| void IRPromoter::PromoteTree() { |
| LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n"); |
| |
| // Mutate the types of the instructions within the tree. Here we handle |
| // constant operands. |
| for (auto *V : Visited) { |
| if (Sources.count(V)) |
| continue; |
| |
| auto *I = cast<Instruction>(V); |
| if (Sinks.count(I)) |
| continue; |
| |
| for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) { |
| Value *Op = I->getOperand(i); |
| if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType())) |
| continue; |
| |
| if (auto *Const = dyn_cast<ConstantInt>(Op)) { |
| // For subtract, we only need to zext the constant. We only put it in |
| // SafeWrap because SafeWrap.size() is used elsewhere. |
| // For Add and ICmp we need to find how far the constant is from the |
| // top of its original unsigned range and place it the same distance |
| // from the top of its new unsigned range. We can do this by negating |
| // the constant, zero extending it, then negating in the new type. |
| APInt NewConst; |
| if (SafeWrap.contains(I)) { |
| if (I->getOpcode() == Instruction::ICmp) |
| NewConst = -((-Const->getValue()).zext(PromotedWidth)); |
| else if (I->getOpcode() == Instruction::Add && i == 1) |
| NewConst = -((-Const->getValue()).zext(PromotedWidth)); |
| else |
| NewConst = Const->getValue().zext(PromotedWidth); |
| } else |
| NewConst = Const->getValue().zext(PromotedWidth); |
| |
| I->setOperand(i, ConstantInt::get(Const->getContext(), NewConst)); |
| } else if (isa<UndefValue>(Op)) |
| I->setOperand(i, ConstantInt::get(ExtTy, 0)); |
| } |
| |
| // Mutate the result type, unless this is an icmp or switch. |
| if (!isa<ICmpInst>(I) && !isa<SwitchInst>(I)) { |
| I->mutateType(ExtTy); |
| Promoted.insert(I); |
| } |
| } |
| } |
| |
| void IRPromoter::TruncateSinks() { |
| LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n"); |
| |
| IRBuilder<> Builder{Ctx}; |
| |
| auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction * { |
| if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType())) |
| return nullptr; |
| |
| if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V)) |
| return nullptr; |
| |
| LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for " |
| << *V << "\n"); |
| Builder.SetInsertPoint(cast<Instruction>(V)); |
| auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy)); |
| if (Trunc) |
| NewInsts.insert(Trunc); |
| return Trunc; |
| }; |
| |
| // Fix up any stores or returns that use the results of the promoted |
| // chain. |
| for (auto *I : Sinks) { |
| LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n"); |
| |
| // Handle calls separately as we need to iterate over arg operands. |
| if (auto *Call = dyn_cast<CallInst>(I)) { |
| for (unsigned i = 0; i < Call->arg_size(); ++i) { |
| Value *Arg = Call->getArgOperand(i); |
| Type *Ty = TruncTysMap[Call][i]; |
| if (Instruction *Trunc = InsertTrunc(Arg, Ty)) { |
| Trunc->moveBefore(Call); |
| Call->setArgOperand(i, Trunc); |
| } |
| } |
| continue; |
| } |
| |
| // Special case switches because we need to truncate the condition. |
| if (auto *Switch = dyn_cast<SwitchInst>(I)) { |
| Type *Ty = TruncTysMap[Switch][0]; |
| if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) { |
| Trunc->moveBefore(Switch); |
| Switch->setCondition(Trunc); |
| } |
| continue; |
| } |
| |
| // Don't insert a trunc for a zext which can still legally promote. |
| // Nor insert a trunc when the input value to that trunc has the same width |
| // as the zext we are inserting it for. When this happens the input operand |
| // for the zext will be promoted to the same width as the zext's return type |
| // rendering that zext unnecessary. This zext gets removed before the end |
| // of the pass. |
| if (auto ZExt = dyn_cast<ZExtInst>(I)) |
| if (ZExt->getType()->getScalarSizeInBits() >= PromotedWidth) |
| continue; |
| |
| // Now handle the others. |
| for (unsigned i = 0; i < I->getNumOperands(); ++i) { |
| Type *Ty = TruncTysMap[I][i]; |
| if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) { |
| Trunc->moveBefore(I); |
| I->setOperand(i, Trunc); |
| } |
| } |
| } |
| } |
| |
| void IRPromoter::Cleanup() { |
| LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n"); |
| // Some zexts will now have become redundant, along with their trunc |
| // operands, so remove them. |
| for (auto *V : Visited) { |
| if (!isa<ZExtInst>(V)) |
| continue; |
| |
| auto ZExt = cast<ZExtInst>(V); |
| if (ZExt->getDestTy() != ExtTy) |
| continue; |
| |
| Value *Src = ZExt->getOperand(0); |
| if (ZExt->getSrcTy() == ZExt->getDestTy()) { |
| LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt |
| << "\n"); |
| ReplaceAllUsersOfWith(ZExt, Src); |
| continue; |
| } |
| |
| // We've inserted a trunc for a zext sink, but we already know that the |
| // input is in range, negating the need for the trunc. |
| if (NewInsts.count(Src) && isa<TruncInst>(Src)) { |
| auto *Trunc = cast<TruncInst>(Src); |
| assert(Trunc->getOperand(0)->getType() == ExtTy && |
| "expected inserted trunc to be operating on i32"); |
| ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0)); |
| } |
| } |
| |
| for (auto *I : InstsToRemove) { |
| LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n"); |
| I->dropAllReferences(); |
| } |
| } |
| |
| void IRPromoter::ConvertTruncs() { |
| LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n"); |
| IRBuilder<> Builder{Ctx}; |
| |
| for (auto *V : Visited) { |
| if (!isa<TruncInst>(V) || Sources.count(V)) |
| continue; |
| |
| auto *Trunc = cast<TruncInst>(V); |
| Builder.SetInsertPoint(Trunc); |
| IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType()); |
| IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]); |
| |
| unsigned NumBits = DestTy->getScalarSizeInBits(); |
| ConstantInt *Mask = |
| ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue()); |
| Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask); |
| if (SrcTy->getBitWidth() > ExtTy->getBitWidth()) |
| Masked = Builder.CreateTrunc(Masked, ExtTy); |
| |
| if (auto *I = dyn_cast<Instruction>(Masked)) |
| NewInsts.insert(I); |
| |
| ReplaceAllUsersOfWith(Trunc, Masked); |
| } |
| } |
| |
| void IRPromoter::Mutate() { |
| LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains to " |
| << PromotedWidth << "-bits\n"); |
| |
| // Cache original types of the values that will likely need truncating |
| for (auto *I : Sinks) { |
| if (auto *Call = dyn_cast<CallInst>(I)) { |
| for (Value *Arg : Call->args()) |
| TruncTysMap[Call].push_back(Arg->getType()); |
| } else if (auto *Switch = dyn_cast<SwitchInst>(I)) |
| TruncTysMap[I].push_back(Switch->getCondition()->getType()); |
| else { |
| for (const Value *Op : I->operands()) |
| TruncTysMap[I].push_back(Op->getType()); |
| } |
| } |
| for (auto *V : Visited) { |
| if (!isa<TruncInst>(V) || Sources.count(V)) |
| continue; |
| auto *Trunc = cast<TruncInst>(V); |
| TruncTysMap[Trunc].push_back(Trunc->getDestTy()); |
| } |
| |
| // Insert zext instructions between sources and their users. |
| ExtendSources(); |
| |
| // Promote visited instructions, mutating their types in place. |
| PromoteTree(); |
| |
| // Convert any truncs, that aren't sources, into AND masks. |
| ConvertTruncs(); |
| |
| // Insert trunc instructions for use by calls, stores etc... |
| TruncateSinks(); |
| |
| // Finally, remove unecessary zexts and truncs, delete old instructions and |
| // clear the data structures. |
| Cleanup(); |
| |
| LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n"); |
| } |
| |
| /// We disallow booleans to make life easier when dealing with icmps but allow |
| /// any other integer that fits in a scalar register. Void types are accepted |
| /// so we can handle switches. |
| bool TypePromotionImpl::isSupportedType(Value *V) { |
| Type *Ty = V->getType(); |
| |
| // Allow voids and pointers, these won't be promoted. |
| if (Ty->isVoidTy() || Ty->isPointerTy()) |
| return true; |
| |
| if (!isa<IntegerType>(Ty) || cast<IntegerType>(Ty)->getBitWidth() == 1 || |
| cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth) |
| return false; |
| |
| return LessOrEqualTypeSize(V); |
| } |
| |
| /// We accept most instructions, as well as Arguments and ConstantInsts. We |
| /// Disallow casts other than zext and truncs and only allow calls if their |
| /// return value is zeroext. We don't allow opcodes that can introduce sign |
| /// bits. |
| bool TypePromotionImpl::isSupportedValue(Value *V) { |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| switch (I->getOpcode()) { |
| default: |
| return isa<BinaryOperator>(I) && isSupportedType(I) && |
| !GenerateSignBits(I); |
| case Instruction::GetElementPtr: |
| case Instruction::Store: |
| case Instruction::Br: |
| case Instruction::Switch: |
| return true; |
| case Instruction::PHI: |
| case Instruction::Select: |
| case Instruction::Ret: |
| case Instruction::Load: |
| case Instruction::Trunc: |
| return isSupportedType(I); |
| case Instruction::BitCast: |
| return I->getOperand(0)->getType() == I->getType(); |
| case Instruction::ZExt: |
| return isSupportedType(I->getOperand(0)); |
| case Instruction::ICmp: |
| // Now that we allow small types than TypeSize, only allow icmp of |
| // TypeSize because they will require a trunc to be legalised. |
| // TODO: Allow icmp of smaller types, and calculate at the end |
| // whether the transform would be beneficial. |
| if (isa<PointerType>(I->getOperand(0)->getType())) |
| return true; |
| return EqualTypeSize(I->getOperand(0)); |
| case Instruction::Call: { |
| // Special cases for calls as we need to check for zeroext |
| // TODO We should accept calls even if they don't have zeroext, as they |
| // can still be sinks. |
| auto *Call = cast<CallInst>(I); |
| return isSupportedType(Call) && |
| Call->hasRetAttr(Attribute::AttrKind::ZExt); |
| } |
| } |
| } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) { |
| return isSupportedType(V); |
| } else if (isa<Argument>(V)) |
| return isSupportedType(V); |
| |
| return isa<BasicBlock>(V); |
| } |
| |
| /// Check that the type of V would be promoted and that the original type is |
| /// smaller than the targeted promoted type. Check that we're not trying to |
| /// promote something larger than our base 'TypeSize' type. |
| bool TypePromotionImpl::isLegalToPromote(Value *V) { |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I) |
| return true; |
| |
| if (SafeToPromote.count(I)) |
| return true; |
| |
| if (isPromotedResultSafe(I) || isSafeWrap(I)) { |
| SafeToPromote.insert(I); |
| return true; |
| } |
| return false; |
| } |
| |
| bool TypePromotionImpl::TryToPromote(Value *V, unsigned PromotedWidth, |
| const LoopInfo &LI) { |
| Type *OrigTy = V->getType(); |
| TypeSize = OrigTy->getPrimitiveSizeInBits().getFixedValue(); |
| SafeToPromote.clear(); |
| SafeWrap.clear(); |
| |
| if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from " |
| << TypeSize << " bits to " << PromotedWidth << "\n"); |
| |
| SetVector<Value *> WorkList; |
| SetVector<Value *> Sources; |
| SetVector<Instruction *> Sinks; |
| SetVector<Value *> CurrentVisited; |
| WorkList.insert(V); |
| |
| // Return true if V was added to the worklist as a supported instruction, |
| // if it was already visited, or if we don't need to explore it (e.g. |
| // pointer values and GEPs), and false otherwise. |
| auto AddLegalInst = [&](Value *V) { |
| if (CurrentVisited.count(V)) |
| return true; |
| |
| // Ignore GEPs because they don't need promoting and the constant indices |
| // will prevent the transformation. |
| if (isa<GetElementPtrInst>(V)) |
| return true; |
| |
| if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) { |
| LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n"); |
| return false; |
| } |
| |
| WorkList.insert(V); |
| return true; |
| }; |
| |
| // Iterate through, and add to, a tree of operands and users in the use-def. |
| while (!WorkList.empty()) { |
| Value *V = WorkList.pop_back_val(); |
| if (CurrentVisited.count(V)) |
| continue; |
| |
| // Ignore non-instructions, other than arguments. |
| if (!isa<Instruction>(V) && !isSource(V)) |
| continue; |
| |
| // If we've already visited this value from somewhere, bail now because |
| // the tree has already been explored. |
| // TODO: This could limit the transform, ie if we try to promote something |
| // from an i8 and fail first, before trying an i16. |
| if (!AllVisited.insert(V).second) |
| return false; |
| |
| CurrentVisited.insert(V); |
| |
| // Calls can be both sources and sinks. |
| if (isSink(V)) |
| Sinks.insert(cast<Instruction>(V)); |
| |
| if (isSource(V)) |
| Sources.insert(V); |
| |
| if (!isSink(V) && !isSource(V)) { |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| // Visit operands of any instruction visited. |
| for (auto &U : I->operands()) { |
| if (!AddLegalInst(U)) |
| return false; |
| } |
| } |
| } |
| |
| // Don't visit users of a node which isn't going to be mutated unless its a |
| // source. |
| if (isSource(V) || shouldPromote(V)) { |
| for (Use &U : V->uses()) { |
| if (!AddLegalInst(U.getUser())) |
| return false; |
| } |
| } |
| } |
| |
| LLVM_DEBUG({ |
| dbgs() << "IR Promotion: Visited nodes:\n"; |
| for (auto *I : CurrentVisited) |
| I->dump(); |
| }); |
| |
| unsigned ToPromote = 0; |
| unsigned NonFreeArgs = 0; |
| unsigned NonLoopSources = 0, LoopSinks = 0; |
| SmallPtrSet<BasicBlock *, 4> Blocks; |
| for (auto *CV : CurrentVisited) { |
| if (auto *I = dyn_cast<Instruction>(CV)) |
| Blocks.insert(I->getParent()); |
| |
| if (Sources.count(CV)) { |
| if (auto *Arg = dyn_cast<Argument>(CV)) |
| if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr()) |
| ++NonFreeArgs; |
| if (!isa<Instruction>(CV) || |
| !LI.getLoopFor(cast<Instruction>(CV)->getParent())) |
| ++NonLoopSources; |
| continue; |
| } |
| |
| if (isa<PHINode>(CV)) |
| continue; |
| if (LI.getLoopFor(cast<Instruction>(CV)->getParent())) |
| ++LoopSinks; |
| if (Sinks.count(cast<Instruction>(CV))) |
| continue; |
| ++ToPromote; |
| } |
| |
| // DAG optimizations should be able to handle these cases better, especially |
| // for function arguments. |
| if (!isa<PHINode>(V) && !(LoopSinks && NonLoopSources) && |
| (ToPromote < 2 || (Blocks.size() == 1 && NonFreeArgs > SafeWrap.size()))) |
| return false; |
| |
| IRPromoter Promoter(*Ctx, PromotedWidth, CurrentVisited, Sources, Sinks, |
| SafeWrap, InstsToRemove); |
| Promoter.Mutate(); |
| return true; |
| } |
| |
| bool TypePromotionImpl::run(Function &F, const TargetMachine *TM, |
| const TargetTransformInfo &TTI, |
| const LoopInfo &LI) { |
| if (DisablePromotion) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n"); |
| |
| AllVisited.clear(); |
| SafeToPromote.clear(); |
| SafeWrap.clear(); |
| bool MadeChange = false; |
| const DataLayout &DL = F.getDataLayout(); |
| const TargetSubtargetInfo *SubtargetInfo = TM->getSubtargetImpl(F); |
| TLI = SubtargetInfo->getTargetLowering(); |
| RegisterBitWidth = |
| TTI.getRegisterBitWidth(TargetTransformInfo::RGK_Scalar).getFixedValue(); |
| Ctx = &F.getContext(); |
| |
| // Return the preferred integer width of the instruction, or zero if we |
| // shouldn't try. |
| auto GetPromoteWidth = [&](Instruction *I) -> uint32_t { |
| if (!isa<IntegerType>(I->getType())) |
| return 0; |
| |
| EVT SrcVT = TLI->getValueType(DL, I->getType()); |
| if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT())) |
| return 0; |
| |
| if (TLI->getTypeAction(*Ctx, SrcVT) != TargetLowering::TypePromoteInteger) |
| return 0; |
| |
| EVT PromotedVT = TLI->getTypeToTransformTo(*Ctx, SrcVT); |
| if (TLI->isSExtCheaperThanZExt(SrcVT, PromotedVT)) |
| return 0; |
| if (RegisterBitWidth < PromotedVT.getFixedSizeInBits()) { |
| LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register " |
| << "for promoted type\n"); |
| return 0; |
| } |
| |
| // TODO: Should we prefer to use RegisterBitWidth instead? |
| return PromotedVT.getFixedSizeInBits(); |
| }; |
| |
| auto BBIsInLoop = [&](BasicBlock *BB) -> bool { |
| for (auto *L : LI) |
| if (L->contains(BB)) |
| return true; |
| return false; |
| }; |
| |
| for (BasicBlock &BB : F) { |
| for (Instruction &I : BB) { |
| if (AllVisited.count(&I)) |
| continue; |
| |
| if (isa<ZExtInst>(&I) && isa<PHINode>(I.getOperand(0)) && |
| isa<IntegerType>(I.getType()) && BBIsInLoop(&BB)) { |
| LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " |
| << *I.getOperand(0) << "\n"); |
| EVT ZExtVT = TLI->getValueType(DL, I.getType()); |
| Instruction *Phi = static_cast<Instruction *>(I.getOperand(0)); |
| auto PromoteWidth = ZExtVT.getFixedSizeInBits(); |
| if (RegisterBitWidth < PromoteWidth) { |
| LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target " |
| << "register for ZExt type\n"); |
| continue; |
| } |
| MadeChange |= TryToPromote(Phi, PromoteWidth, LI); |
| } else if (auto *ICmp = dyn_cast<ICmpInst>(&I)) { |
| // Search up from icmps to try to promote their operands. |
| // Skip signed or pointer compares |
| if (ICmp->isSigned()) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n"); |
| |
| for (auto &Op : ICmp->operands()) { |
| if (auto *OpI = dyn_cast<Instruction>(Op)) { |
| if (auto PromotedWidth = GetPromoteWidth(OpI)) { |
| MadeChange |= TryToPromote(OpI, PromotedWidth, LI); |
| break; |
| } |
| } |
| } |
| } |
| } |
| if (!InstsToRemove.empty()) { |
| for (auto *I : InstsToRemove) |
| I->eraseFromParent(); |
| InstsToRemove.clear(); |
| } |
| } |
| |
| AllVisited.clear(); |
| SafeToPromote.clear(); |
| SafeWrap.clear(); |
| |
| return MadeChange; |
| } |
| |
| INITIALIZE_PASS_BEGIN(TypePromotionLegacy, DEBUG_TYPE, PASS_NAME, false, false) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_END(TypePromotionLegacy, DEBUG_TYPE, PASS_NAME, false, false) |
| |
| char TypePromotionLegacy::ID = 0; |
| |
| bool TypePromotionLegacy::runOnFunction(Function &F) { |
| if (skipFunction(F)) |
| return false; |
| |
| auto &TPC = getAnalysis<TargetPassConfig>(); |
| auto *TM = &TPC.getTM<TargetMachine>(); |
| auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| |
| TypePromotionImpl TP; |
| return TP.run(F, TM, TTI, LI); |
| } |
| |
| FunctionPass *llvm::createTypePromotionLegacyPass() { |
| return new TypePromotionLegacy(); |
| } |
| |
| PreservedAnalyses TypePromotionPass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| auto &TTI = AM.getResult<TargetIRAnalysis>(F); |
| auto &LI = AM.getResult<LoopAnalysis>(F); |
| TypePromotionImpl TP; |
| |
| bool Changed = TP.run(F, TM, TTI, LI); |
| if (!Changed) |
| return PreservedAnalyses::all(); |
| |
| PreservedAnalyses PA; |
| PA.preserveSet<CFGAnalyses>(); |
| PA.preserve<LoopAnalysis>(); |
| return PA; |
| } |