blob: e01e7b3888915b72b26d00444d5c11980cd52b98 [file] [log] [blame]
//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/MachineCombinerPattern.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/MachineTraceMetrics.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
static cl::opt<bool> DisableHazardRecognizer(
"disable-sched-hazard", cl::Hidden, cl::init(false),
cl::desc("Disable hazard detection during preRA scheduling"));
TargetInstrInfo::~TargetInstrInfo() = default;
const TargetRegisterClass*
TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
const TargetRegisterInfo *TRI,
const MachineFunction &MF) const {
if (OpNum >= MCID.getNumOperands())
return nullptr;
short RegClass = MCID.operands()[OpNum].RegClass;
if (MCID.operands()[OpNum].isLookupPtrRegClass())
return TRI->getPointerRegClass(MF, RegClass);
// Instructions like INSERT_SUBREG do not have fixed register classes.
if (RegClass < 0)
return nullptr;
// Otherwise just look it up normally.
return TRI->getRegClass(RegClass);
}
/// insertNoop - Insert a noop into the instruction stream at the specified
/// point.
void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
llvm_unreachable("Target didn't implement insertNoop!");
}
/// insertNoops - Insert noops into the instruction stream at the specified
/// point.
void TargetInstrInfo::insertNoops(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned Quantity) const {
for (unsigned i = 0; i < Quantity; ++i)
insertNoop(MBB, MI);
}
static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
return strncmp(Str, MAI.getCommentString().data(),
MAI.getCommentString().size()) == 0;
}
/// Measure the specified inline asm to determine an approximation of its
/// length.
/// Comments (which run till the next SeparatorString or newline) do not
/// count as an instruction.
/// Any other non-whitespace text is considered an instruction, with
/// multiple instructions separated by SeparatorString or newlines.
/// Variable-length instructions are not handled here; this function
/// may be overloaded in the target code to do that.
/// We implement a special case of the .space directive which takes only a
/// single integer argument in base 10 that is the size in bytes. This is a
/// restricted form of the GAS directive in that we only interpret
/// simple--i.e. not a logical or arithmetic expression--size values without
/// the optional fill value. This is primarily used for creating arbitrary
/// sized inline asm blocks for testing purposes.
unsigned TargetInstrInfo::getInlineAsmLength(
const char *Str,
const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const {
// Count the number of instructions in the asm.
bool AtInsnStart = true;
unsigned Length = 0;
const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
for (; *Str; ++Str) {
if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
strlen(MAI.getSeparatorString())) == 0) {
AtInsnStart = true;
} else if (isAsmComment(Str, MAI)) {
// Stop counting as an instruction after a comment until the next
// separator.
AtInsnStart = false;
}
if (AtInsnStart && !isSpace(static_cast<unsigned char>(*Str))) {
unsigned AddLength = MaxInstLength;
if (strncmp(Str, ".space", 6) == 0) {
char *EStr;
int SpaceSize;
SpaceSize = strtol(Str + 6, &EStr, 10);
SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
while (*EStr != '\n' && isSpace(static_cast<unsigned char>(*EStr)))
++EStr;
if (*EStr == '\0' || *EStr == '\n' ||
isAsmComment(EStr, MAI)) // Successfully parsed .space argument
AddLength = SpaceSize;
}
Length += AddLength;
AtInsnStart = false;
}
}
return Length;
}
/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
/// after it, replacing it with an unconditional branch to NewDest.
void
TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
MachineBasicBlock *NewDest) const {
MachineBasicBlock *MBB = Tail->getParent();
// Remove all the old successors of MBB from the CFG.
while (!MBB->succ_empty())
MBB->removeSuccessor(MBB->succ_begin());
// Save off the debug loc before erasing the instruction.
DebugLoc DL = Tail->getDebugLoc();
// Update call site info and remove all the dead instructions
// from the end of MBB.
while (Tail != MBB->end()) {
auto MI = Tail++;
if (MI->shouldUpdateCallSiteInfo())
MBB->getParent()->eraseCallSiteInfo(&*MI);
MBB->erase(MI);
}
// If MBB isn't immediately before MBB, insert a branch to it.
if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
MBB->addSuccessor(NewDest);
}
MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
bool NewMI, unsigned Idx1,
unsigned Idx2) const {
const MCInstrDesc &MCID = MI.getDesc();
bool HasDef = MCID.getNumDefs();
if (HasDef && !MI.getOperand(0).isReg())
// No idea how to commute this instruction. Target should implement its own.
return nullptr;
unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
"TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
"This only knows how to commute register operands so far");
Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
Register Reg1 = MI.getOperand(Idx1).getReg();
Register Reg2 = MI.getOperand(Idx2).getReg();
unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
bool Reg1IsKill = MI.getOperand(Idx1).isKill();
bool Reg2IsKill = MI.getOperand(Idx2).isKill();
bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
// Avoid calling isRenamable for virtual registers since we assert that
// renamable property is only queried/set for physical registers.
bool Reg1IsRenamable =
Reg1.isPhysical() ? MI.getOperand(Idx1).isRenamable() : false;
bool Reg2IsRenamable =
Reg2.isPhysical() ? MI.getOperand(Idx2).isRenamable() : false;
// If destination is tied to either of the commuted source register, then
// it must be updated.
if (HasDef && Reg0 == Reg1 &&
MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
Reg2IsKill = false;
Reg0 = Reg2;
SubReg0 = SubReg2;
} else if (HasDef && Reg0 == Reg2 &&
MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
Reg1IsKill = false;
Reg0 = Reg1;
SubReg0 = SubReg1;
}
MachineInstr *CommutedMI = nullptr;
if (NewMI) {
// Create a new instruction.
MachineFunction &MF = *MI.getMF();
CommutedMI = MF.CloneMachineInstr(&MI);
} else {
CommutedMI = &MI;
}
if (HasDef) {
CommutedMI->getOperand(0).setReg(Reg0);
CommutedMI->getOperand(0).setSubReg(SubReg0);
}
CommutedMI->getOperand(Idx2).setReg(Reg1);
CommutedMI->getOperand(Idx1).setReg(Reg2);
CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
// Avoid calling setIsRenamable for virtual registers since we assert that
// renamable property is only queried/set for physical registers.
if (Reg1.isPhysical())
CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
if (Reg2.isPhysical())
CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
return CommutedMI;
}
MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
unsigned OpIdx1,
unsigned OpIdx2) const {
// If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
// any commutable operand, which is done in findCommutedOpIndices() method
// called below.
if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
!findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
assert(MI.isCommutable() &&
"Precondition violation: MI must be commutable.");
return nullptr;
}
return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
}
bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
unsigned &ResultIdx2,
unsigned CommutableOpIdx1,
unsigned CommutableOpIdx2) {
if (ResultIdx1 == CommuteAnyOperandIndex &&
ResultIdx2 == CommuteAnyOperandIndex) {
ResultIdx1 = CommutableOpIdx1;
ResultIdx2 = CommutableOpIdx2;
} else if (ResultIdx1 == CommuteAnyOperandIndex) {
if (ResultIdx2 == CommutableOpIdx1)
ResultIdx1 = CommutableOpIdx2;
else if (ResultIdx2 == CommutableOpIdx2)
ResultIdx1 = CommutableOpIdx1;
else
return false;
} else if (ResultIdx2 == CommuteAnyOperandIndex) {
if (ResultIdx1 == CommutableOpIdx1)
ResultIdx2 = CommutableOpIdx2;
else if (ResultIdx1 == CommutableOpIdx2)
ResultIdx2 = CommutableOpIdx1;
else
return false;
} else
// Check that the result operand indices match the given commutable
// operand indices.
return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
(ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
return true;
}
bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2) const {
assert(!MI.isBundle() &&
"TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
const MCInstrDesc &MCID = MI.getDesc();
if (!MCID.isCommutable())
return false;
// This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
// is not true, then the target must implement this.
unsigned CommutableOpIdx1 = MCID.getNumDefs();
unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
CommutableOpIdx1, CommutableOpIdx2))
return false;
if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
// No idea.
return false;
return true;
}
bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
if (!MI.isTerminator()) return false;
// Conditional branch is a special case.
if (MI.isBranch() && !MI.isBarrier())
return true;
if (!MI.isPredicable())
return true;
return !isPredicated(MI);
}
bool TargetInstrInfo::PredicateInstruction(
MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
bool MadeChange = false;
assert(!MI.isBundle() &&
"TargetInstrInfo::PredicateInstruction() can't handle bundles");
const MCInstrDesc &MCID = MI.getDesc();
if (!MI.isPredicable())
return false;
for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
if (MCID.operands()[i].isPredicate()) {
MachineOperand &MO = MI.getOperand(i);
if (MO.isReg()) {
MO.setReg(Pred[j].getReg());
MadeChange = true;
} else if (MO.isImm()) {
MO.setImm(Pred[j].getImm());
MadeChange = true;
} else if (MO.isMBB()) {
MO.setMBB(Pred[j].getMBB());
MadeChange = true;
}
++j;
}
}
return MadeChange;
}
bool TargetInstrInfo::hasLoadFromStackSlot(
const MachineInstr &MI,
SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
size_t StartSize = Accesses.size();
for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
oe = MI.memoperands_end();
o != oe; ++o) {
if ((*o)->isLoad() &&
isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
Accesses.push_back(*o);
}
return Accesses.size() != StartSize;
}
bool TargetInstrInfo::hasStoreToStackSlot(
const MachineInstr &MI,
SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
size_t StartSize = Accesses.size();
for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
oe = MI.memoperands_end();
o != oe; ++o) {
if ((*o)->isStore() &&
isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
Accesses.push_back(*o);
}
return Accesses.size() != StartSize;
}
bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
unsigned SubIdx, unsigned &Size,
unsigned &Offset,
const MachineFunction &MF) const {
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (!SubIdx) {
Size = TRI->getSpillSize(*RC);
Offset = 0;
return true;
}
unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
// Convert bit size to byte size.
if (BitSize % 8)
return false;
int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
if (BitOffset < 0 || BitOffset % 8)
return false;
Size = BitSize / 8;
Offset = (unsigned)BitOffset / 8;
assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
if (!MF.getDataLayout().isLittleEndian()) {
Offset = TRI->getSpillSize(*RC) - (Offset + Size);
}
return true;
}
void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
Register DestReg, unsigned SubIdx,
const MachineInstr &Orig,
const TargetRegisterInfo &TRI) const {
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
MBB.insert(I, MI);
}
bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
const MachineInstr &MI1,
const MachineRegisterInfo *MRI) const {
return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
}
MachineInstr &
TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator InsertBefore,
const MachineInstr &Orig) const {
MachineFunction &MF = *MBB.getParent();
// CFI instructions are marked as non-duplicable, because Darwin compact
// unwind info emission can't handle multiple prologue setups.
assert((!Orig.isNotDuplicable() ||
(!MF.getTarget().getTargetTriple().isOSDarwin() &&
Orig.isCFIInstruction())) &&
"Instruction cannot be duplicated");
return MF.cloneMachineInstrBundle(MBB, InsertBefore, Orig);
}
// If the COPY instruction in MI can be folded to a stack operation, return
// the register class to use.
static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
const TargetInstrInfo &TII,
unsigned FoldIdx) {
assert(TII.isCopyInstr(MI) && "MI must be a COPY instruction");
if (MI.getNumOperands() != 2)
return nullptr;
assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
if (FoldOp.getSubReg() || LiveOp.getSubReg())
return nullptr;
Register FoldReg = FoldOp.getReg();
Register LiveReg = LiveOp.getReg();
assert(FoldReg.isVirtual() && "Cannot fold physregs");
const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
if (LiveOp.getReg().isPhysical())
return RC->contains(LiveOp.getReg()) ? RC : nullptr;
if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
return RC;
// FIXME: Allow folding when register classes are memory compatible.
return nullptr;
}
MCInst TargetInstrInfo::getNop() const { llvm_unreachable("Not implemented"); }
std::pair<unsigned, unsigned>
TargetInstrInfo::getPatchpointUnfoldableRange(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
case TargetOpcode::STACKMAP:
// StackMapLiveValues are foldable
return std::make_pair(0, StackMapOpers(&MI).getVarIdx());
case TargetOpcode::PATCHPOINT:
// For PatchPoint, the call args are not foldable (even if reported in the
// stackmap e.g. via anyregcc).
return std::make_pair(0, PatchPointOpers(&MI).getVarIdx());
case TargetOpcode::STATEPOINT:
// For statepoints, fold deopt and gc arguments, but not call arguments.
return std::make_pair(MI.getNumDefs(), StatepointOpers(&MI).getVarIdx());
default:
llvm_unreachable("unexpected stackmap opcode");
}
}
static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
ArrayRef<unsigned> Ops, int FrameIndex,
const TargetInstrInfo &TII) {
unsigned StartIdx = 0;
unsigned NumDefs = 0;
// getPatchpointUnfoldableRange throws guarantee if MI is not a patchpoint.
std::tie(NumDefs, StartIdx) = TII.getPatchpointUnfoldableRange(MI);
unsigned DefToFoldIdx = MI.getNumOperands();
// Return false if any operands requested for folding are not foldable (not
// part of the stackmap's live values).
for (unsigned Op : Ops) {
if (Op < NumDefs) {
assert(DefToFoldIdx == MI.getNumOperands() && "Folding multiple defs");
DefToFoldIdx = Op;
} else if (Op < StartIdx) {
return nullptr;
}
if (MI.getOperand(Op).isTied())
return nullptr;
}
MachineInstr *NewMI =
MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
MachineInstrBuilder MIB(MF, NewMI);
// No need to fold return, the meta data, and function arguments
for (unsigned i = 0; i < StartIdx; ++i)
if (i != DefToFoldIdx)
MIB.add(MI.getOperand(i));
for (unsigned i = StartIdx, e = MI.getNumOperands(); i < e; ++i) {
MachineOperand &MO = MI.getOperand(i);
unsigned TiedTo = e;
(void)MI.isRegTiedToDefOperand(i, &TiedTo);
if (is_contained(Ops, i)) {
assert(TiedTo == e && "Cannot fold tied operands");
unsigned SpillSize;
unsigned SpillOffset;
// Compute the spill slot size and offset.
const TargetRegisterClass *RC =
MF.getRegInfo().getRegClass(MO.getReg());
bool Valid =
TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
if (!Valid)
report_fatal_error("cannot spill patchpoint subregister operand");
MIB.addImm(StackMaps::IndirectMemRefOp);
MIB.addImm(SpillSize);
MIB.addFrameIndex(FrameIndex);
MIB.addImm(SpillOffset);
} else {
MIB.add(MO);
if (TiedTo < e) {
assert(TiedTo < NumDefs && "Bad tied operand");
if (TiedTo > DefToFoldIdx)
--TiedTo;
NewMI->tieOperands(TiedTo, NewMI->getNumOperands() - 1);
}
}
}
return NewMI;
}
static void foldInlineAsmMemOperand(MachineInstr *MI, unsigned OpNo, int FI,
const TargetInstrInfo &TII) {
// If the machine operand is tied, untie it first.
if (MI->getOperand(OpNo).isTied()) {
unsigned TiedTo = MI->findTiedOperandIdx(OpNo);
MI->untieRegOperand(OpNo);
// Intentional recursion!
foldInlineAsmMemOperand(MI, TiedTo, FI, TII);
}
SmallVector<MachineOperand, 5> NewOps;
TII.getFrameIndexOperands(NewOps, FI);
assert(!NewOps.empty() && "getFrameIndexOperands didn't create any operands");
MI->removeOperand(OpNo);
MI->insert(MI->operands_begin() + OpNo, NewOps);
// Change the previous operand to a MemKind InlineAsm::Flag. The second param
// is the per-target number of operands that represent the memory operand
// excluding this one (MD). This includes MO.
InlineAsm::Flag F(InlineAsm::Kind::Mem, NewOps.size());
F.setMemConstraint(InlineAsm::ConstraintCode::m);
MachineOperand &MD = MI->getOperand(OpNo - 1);
MD.setImm(F);
}
// Returns nullptr if not possible to fold.
static MachineInstr *foldInlineAsmMemOperand(MachineInstr &MI,
ArrayRef<unsigned> Ops, int FI,
const TargetInstrInfo &TII) {
assert(MI.isInlineAsm() && "wrong opcode");
if (Ops.size() > 1)
return nullptr;
unsigned Op = Ops[0];
assert(Op && "should never be first operand");
assert(MI.getOperand(Op).isReg() && "shouldn't be folding non-reg operands");
if (!MI.mayFoldInlineAsmRegOp(Op))
return nullptr;
MachineInstr &NewMI = TII.duplicate(*MI.getParent(), MI.getIterator(), MI);
foldInlineAsmMemOperand(&NewMI, Op, FI, TII);
// Update mayload/maystore metadata, and memoperands.
const VirtRegInfo &RI =
AnalyzeVirtRegInBundle(MI, MI.getOperand(Op).getReg());
MachineOperand &ExtraMO = NewMI.getOperand(InlineAsm::MIOp_ExtraInfo);
MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
if (RI.Reads) {
ExtraMO.setImm(ExtraMO.getImm() | InlineAsm::Extra_MayLoad);
Flags |= MachineMemOperand::MOLoad;
}
if (RI.Writes) {
ExtraMO.setImm(ExtraMO.getImm() | InlineAsm::Extra_MayStore);
Flags |= MachineMemOperand::MOStore;
}
MachineFunction *MF = NewMI.getMF();
const MachineFrameInfo &MFI = MF->getFrameInfo();
MachineMemOperand *MMO = MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(*MF, FI), Flags, MFI.getObjectSize(FI),
MFI.getObjectAlign(FI));
NewMI.addMemOperand(*MF, MMO);
return &NewMI;
}
MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
ArrayRef<unsigned> Ops, int FI,
LiveIntervals *LIS,
VirtRegMap *VRM) const {
auto Flags = MachineMemOperand::MONone;
for (unsigned OpIdx : Ops)
Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
: MachineMemOperand::MOLoad;
MachineBasicBlock *MBB = MI.getParent();
assert(MBB && "foldMemoryOperand needs an inserted instruction");
MachineFunction &MF = *MBB->getParent();
// If we're not folding a load into a subreg, the size of the load is the
// size of the spill slot. But if we are, we need to figure out what the
// actual load size is.
int64_t MemSize = 0;
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (Flags & MachineMemOperand::MOStore) {
MemSize = MFI.getObjectSize(FI);
} else {
for (unsigned OpIdx : Ops) {
int64_t OpSize = MFI.getObjectSize(FI);
if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
if (SubRegSize > 0 && !(SubRegSize % 8))
OpSize = SubRegSize / 8;
}
MemSize = std::max(MemSize, OpSize);
}
}
assert(MemSize && "Did not expect a zero-sized stack slot");
MachineInstr *NewMI = nullptr;
if (MI.getOpcode() == TargetOpcode::STACKMAP ||
MI.getOpcode() == TargetOpcode::PATCHPOINT ||
MI.getOpcode() == TargetOpcode::STATEPOINT) {
// Fold stackmap/patchpoint.
NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
if (NewMI)
MBB->insert(MI, NewMI);
} else if (MI.isInlineAsm()) {
return foldInlineAsmMemOperand(MI, Ops, FI, *this);
} else {
// Ask the target to do the actual folding.
NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM);
}
if (NewMI) {
NewMI->setMemRefs(MF, MI.memoperands());
// Add a memory operand, foldMemoryOperandImpl doesn't do that.
assert((!(Flags & MachineMemOperand::MOStore) ||
NewMI->mayStore()) &&
"Folded a def to a non-store!");
assert((!(Flags & MachineMemOperand::MOLoad) ||
NewMI->mayLoad()) &&
"Folded a use to a non-load!");
assert(MFI.getObjectOffset(FI) != -1);
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
Flags, MemSize, MFI.getObjectAlign(FI));
NewMI->addMemOperand(MF, MMO);
// The pass "x86 speculative load hardening" always attaches symbols to
// call instructions. We need copy it form old instruction.
NewMI->cloneInstrSymbols(MF, MI);
return NewMI;
}
// Straight COPY may fold as load/store.
if (!isCopyInstr(MI) || Ops.size() != 1)
return nullptr;
const TargetRegisterClass *RC = canFoldCopy(MI, *this, Ops[0]);
if (!RC)
return nullptr;
const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
MachineBasicBlock::iterator Pos = MI;
if (Flags == MachineMemOperand::MOStore)
storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI,
Register());
else
loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI, Register());
return &*--Pos;
}
MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
ArrayRef<unsigned> Ops,
MachineInstr &LoadMI,
LiveIntervals *LIS) const {
assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
#ifndef NDEBUG
for (unsigned OpIdx : Ops)
assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
#endif
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
// Ask the target to do the actual folding.
MachineInstr *NewMI = nullptr;
int FrameIndex = 0;
if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
MI.getOpcode() == TargetOpcode::PATCHPOINT ||
MI.getOpcode() == TargetOpcode::STATEPOINT) &&
isLoadFromStackSlot(LoadMI, FrameIndex)) {
// Fold stackmap/patchpoint.
NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
if (NewMI)
NewMI = &*MBB.insert(MI, NewMI);
} else if (MI.isInlineAsm() && isLoadFromStackSlot(LoadMI, FrameIndex)) {
return foldInlineAsmMemOperand(MI, Ops, FrameIndex, *this);
} else {
// Ask the target to do the actual folding.
NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
}
if (!NewMI)
return nullptr;
// Copy the memoperands from the load to the folded instruction.
if (MI.memoperands_empty()) {
NewMI->setMemRefs(MF, LoadMI.memoperands());
} else {
// Handle the rare case of folding multiple loads.
NewMI->setMemRefs(MF, MI.memoperands());
for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
E = LoadMI.memoperands_end();
I != E; ++I) {
NewMI->addMemOperand(MF, *I);
}
}
return NewMI;
}
/// transferImplicitOperands - MI is a pseudo-instruction, and the lowered
/// replacement instructions immediately precede it. Copy any implicit
/// operands from MI to the replacement instruction.
static void transferImplicitOperands(MachineInstr *MI,
const TargetRegisterInfo *TRI) {
MachineBasicBlock::iterator CopyMI = MI;
--CopyMI;
Register DstReg = MI->getOperand(0).getReg();
for (const MachineOperand &MO : MI->implicit_operands()) {
CopyMI->addOperand(MO);
// Be conservative about preserving kills when subregister defs are
// involved. If there was implicit kill of a super-register overlapping the
// copy result, we would kill the subregisters previous copies defined.
if (MO.isKill() && TRI->regsOverlap(DstReg, MO.getReg()))
CopyMI->getOperand(CopyMI->getNumOperands() - 1).setIsKill(false);
}
}
void TargetInstrInfo::lowerCopy(MachineInstr *MI,
const TargetRegisterInfo *TRI) const {
if (MI->allDefsAreDead()) {
MI->setDesc(get(TargetOpcode::KILL));
return;
}
MachineOperand &DstMO = MI->getOperand(0);
MachineOperand &SrcMO = MI->getOperand(1);
bool IdentityCopy = (SrcMO.getReg() == DstMO.getReg());
if (IdentityCopy || SrcMO.isUndef()) {
// No need to insert an identity copy instruction, but replace with a KILL
// if liveness is changed.
if (SrcMO.isUndef() || MI->getNumOperands() > 2) {
// We must make sure the super-register gets killed. Replace the
// instruction with KILL.
MI->setDesc(get(TargetOpcode::KILL));
return;
}
// Vanilla identity copy.
MI->eraseFromParent();
return;
}
copyPhysReg(*MI->getParent(), MI, MI->getDebugLoc(), DstMO.getReg(),
SrcMO.getReg(), SrcMO.isKill());
if (MI->getNumOperands() > 2)
transferImplicitOperands(MI, TRI);
MI->eraseFromParent();
}
bool TargetInstrInfo::hasReassociableOperands(
const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
const MachineOperand &Op1 = Inst.getOperand(1);
const MachineOperand &Op2 = Inst.getOperand(2);
const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
// We need virtual register definitions for the operands that we will
// reassociate.
MachineInstr *MI1 = nullptr;
MachineInstr *MI2 = nullptr;
if (Op1.isReg() && Op1.getReg().isVirtual())
MI1 = MRI.getUniqueVRegDef(Op1.getReg());
if (Op2.isReg() && Op2.getReg().isVirtual())
MI2 = MRI.getUniqueVRegDef(Op2.getReg());
// And at least one operand must be defined in MBB.
return MI1 && MI2 && (MI1->getParent() == MBB || MI2->getParent() == MBB);
}
bool TargetInstrInfo::areOpcodesEqualOrInverse(unsigned Opcode1,
unsigned Opcode2) const {
return Opcode1 == Opcode2 || getInverseOpcode(Opcode1) == Opcode2;
}
bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
bool &Commuted) const {
const MachineBasicBlock *MBB = Inst.getParent();
const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
unsigned Opcode = Inst.getOpcode();
// If only one operand has the same or inverse opcode and it's the second
// source operand, the operands must be commuted.
Commuted = !areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) &&
areOpcodesEqualOrInverse(Opcode, MI2->getOpcode());
if (Commuted)
std::swap(MI1, MI2);
// 1. The previous instruction must be the same type as Inst.
// 2. The previous instruction must also be associative/commutative or be the
// inverse of such an operation (this can be different even for
// instructions with the same opcode if traits like fast-math-flags are
// included).
// 3. The previous instruction must have virtual register definitions for its
// operands in the same basic block as Inst.
// 4. The previous instruction's result must only be used by Inst.
return areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) &&
(isAssociativeAndCommutative(*MI1) ||
isAssociativeAndCommutative(*MI1, /* Invert */ true)) &&
hasReassociableOperands(*MI1, MBB) &&
MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
}
// 1. The operation must be associative and commutative or be the inverse of
// such an operation.
// 2. The instruction must have virtual register definitions for its
// operands in the same basic block.
// 3. The instruction must have a reassociable sibling.
bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
bool &Commuted) const {
return (isAssociativeAndCommutative(Inst) ||
isAssociativeAndCommutative(Inst, /* Invert */ true)) &&
hasReassociableOperands(Inst, Inst.getParent()) &&
hasReassociableSibling(Inst, Commuted);
}
// The concept of the reassociation pass is that these operations can benefit
// from this kind of transformation:
//
// A = ? op ?
// B = A op X (Prev)
// C = B op Y (Root)
// -->
// A = ? op ?
// B = X op Y
// C = A op B
//
// breaking the dependency between A and B, allowing them to be executed in
// parallel (or back-to-back in a pipeline) instead of depending on each other.
// FIXME: This has the potential to be expensive (compile time) while not
// improving the code at all. Some ways to limit the overhead:
// 1. Track successful transforms; bail out if hit rate gets too low.
// 2. Only enable at -O3 or some other non-default optimization level.
// 3. Pre-screen pattern candidates here: if an operand of the previous
// instruction is known to not increase the critical path, then don't match
// that pattern.
bool TargetInstrInfo::getMachineCombinerPatterns(
MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns,
bool DoRegPressureReduce) const {
bool Commute;
if (isReassociationCandidate(Root, Commute)) {
// We found a sequence of instructions that may be suitable for a
// reassociation of operands to increase ILP. Specify each commutation
// possibility for the Prev instruction in the sequence and let the
// machine combiner decide if changing the operands is worthwhile.
if (Commute) {
Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
} else {
Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
}
return true;
}
return false;
}
/// Return true when a code sequence can improve loop throughput.
bool TargetInstrInfo::isThroughputPattern(unsigned Pattern) const {
return false;
}
CombinerObjective
TargetInstrInfo::getCombinerObjective(unsigned Pattern) const {
return CombinerObjective::Default;
}
std::pair<unsigned, unsigned>
TargetInstrInfo::getReassociationOpcodes(unsigned Pattern,
const MachineInstr &Root,
const MachineInstr &Prev) const {
bool AssocCommutRoot = isAssociativeAndCommutative(Root);
bool AssocCommutPrev = isAssociativeAndCommutative(Prev);
// Early exit if both opcodes are associative and commutative. It's a trivial
// reassociation when we only change operands order. In this case opcodes are
// not required to have inverse versions.
if (AssocCommutRoot && AssocCommutPrev) {
assert(Root.getOpcode() == Prev.getOpcode() && "Expected to be equal");
return std::make_pair(Root.getOpcode(), Root.getOpcode());
}
// At least one instruction is not associative or commutative.
// Since we have matched one of the reassociation patterns, we expect that the
// instructions' opcodes are equal or one of them is the inversion of the
// other.
assert(areOpcodesEqualOrInverse(Root.getOpcode(), Prev.getOpcode()) &&
"Incorrectly matched pattern");
unsigned AssocCommutOpcode = Root.getOpcode();
unsigned InverseOpcode = *getInverseOpcode(Root.getOpcode());
if (!AssocCommutRoot)
std::swap(AssocCommutOpcode, InverseOpcode);
// The transformation rule (`+` is any associative and commutative binary
// operation, `-` is the inverse):
// REASSOC_AX_BY:
// (A + X) + Y => A + (X + Y)
// (A + X) - Y => A + (X - Y)
// (A - X) + Y => A - (X - Y)
// (A - X) - Y => A - (X + Y)
// REASSOC_XA_BY:
// (X + A) + Y => (X + Y) + A
// (X + A) - Y => (X - Y) + A
// (X - A) + Y => (X + Y) - A
// (X - A) - Y => (X - Y) - A
// REASSOC_AX_YB:
// Y + (A + X) => (Y + X) + A
// Y - (A + X) => (Y - X) - A
// Y + (A - X) => (Y - X) + A
// Y - (A - X) => (Y + X) - A
// REASSOC_XA_YB:
// Y + (X + A) => (Y + X) + A
// Y - (X + A) => (Y - X) - A
// Y + (X - A) => (Y + X) - A
// Y - (X - A) => (Y - X) + A
switch (Pattern) {
default:
llvm_unreachable("Unexpected pattern");
case MachineCombinerPattern::REASSOC_AX_BY:
if (!AssocCommutRoot && AssocCommutPrev)
return {AssocCommutOpcode, InverseOpcode};
if (AssocCommutRoot && !AssocCommutPrev)
return {InverseOpcode, InverseOpcode};
if (!AssocCommutRoot && !AssocCommutPrev)
return {InverseOpcode, AssocCommutOpcode};
break;
case MachineCombinerPattern::REASSOC_XA_BY:
if (!AssocCommutRoot && AssocCommutPrev)
return {AssocCommutOpcode, InverseOpcode};
if (AssocCommutRoot && !AssocCommutPrev)
return {InverseOpcode, AssocCommutOpcode};
if (!AssocCommutRoot && !AssocCommutPrev)
return {InverseOpcode, InverseOpcode};
break;
case MachineCombinerPattern::REASSOC_AX_YB:
if (!AssocCommutRoot && AssocCommutPrev)
return {InverseOpcode, InverseOpcode};
if (AssocCommutRoot && !AssocCommutPrev)
return {AssocCommutOpcode, InverseOpcode};
if (!AssocCommutRoot && !AssocCommutPrev)
return {InverseOpcode, AssocCommutOpcode};
break;
case MachineCombinerPattern::REASSOC_XA_YB:
if (!AssocCommutRoot && AssocCommutPrev)
return {InverseOpcode, InverseOpcode};
if (AssocCommutRoot && !AssocCommutPrev)
return {InverseOpcode, AssocCommutOpcode};
if (!AssocCommutRoot && !AssocCommutPrev)
return {AssocCommutOpcode, InverseOpcode};
break;
}
llvm_unreachable("Unhandled combination");
}
// Return a pair of boolean flags showing if the new root and new prev operands
// must be swapped. See visual example of the rule in
// TargetInstrInfo::getReassociationOpcodes.
static std::pair<bool, bool> mustSwapOperands(unsigned Pattern) {
switch (Pattern) {
default:
llvm_unreachable("Unexpected pattern");
case MachineCombinerPattern::REASSOC_AX_BY:
return {false, false};
case MachineCombinerPattern::REASSOC_XA_BY:
return {true, false};
case MachineCombinerPattern::REASSOC_AX_YB:
return {true, true};
case MachineCombinerPattern::REASSOC_XA_YB:
return {true, true};
}
}
void TargetInstrInfo::getReassociateOperandIndices(
const MachineInstr &Root, unsigned Pattern,
std::array<unsigned, 5> &OperandIndices) const {
switch (Pattern) {
case MachineCombinerPattern::REASSOC_AX_BY:
OperandIndices = {1, 1, 1, 2, 2};
break;
case MachineCombinerPattern::REASSOC_AX_YB:
OperandIndices = {2, 1, 2, 2, 1};
break;
case MachineCombinerPattern::REASSOC_XA_BY:
OperandIndices = {1, 2, 1, 1, 2};
break;
case MachineCombinerPattern::REASSOC_XA_YB:
OperandIndices = {2, 2, 2, 1, 1};
break;
default:
llvm_unreachable("unexpected MachineCombinerPattern");
}
}
/// Attempt the reassociation transformation to reduce critical path length.
/// See the above comments before getMachineCombinerPatterns().
void TargetInstrInfo::reassociateOps(
MachineInstr &Root, MachineInstr &Prev, unsigned Pattern,
SmallVectorImpl<MachineInstr *> &InsInstrs,
SmallVectorImpl<MachineInstr *> &DelInstrs,
ArrayRef<unsigned> OperandIndices,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
MachineFunction *MF = Root.getMF();
MachineRegisterInfo &MRI = MF->getRegInfo();
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
MachineOperand &OpA = Prev.getOperand(OperandIndices[1]);
MachineOperand &OpB = Root.getOperand(OperandIndices[2]);
MachineOperand &OpX = Prev.getOperand(OperandIndices[3]);
MachineOperand &OpY = Root.getOperand(OperandIndices[4]);
MachineOperand &OpC = Root.getOperand(0);
Register RegA = OpA.getReg();
Register RegB = OpB.getReg();
Register RegX = OpX.getReg();
Register RegY = OpY.getReg();
Register RegC = OpC.getReg();
if (RegA.isVirtual())
MRI.constrainRegClass(RegA, RC);
if (RegB.isVirtual())
MRI.constrainRegClass(RegB, RC);
if (RegX.isVirtual())
MRI.constrainRegClass(RegX, RC);
if (RegY.isVirtual())
MRI.constrainRegClass(RegY, RC);
if (RegC.isVirtual())
MRI.constrainRegClass(RegC, RC);
// Create a new virtual register for the result of (X op Y) instead of
// recycling RegB because the MachineCombiner's computation of the critical
// path requires a new register definition rather than an existing one.
Register NewVR = MRI.createVirtualRegister(RC);
InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
auto [NewRootOpc, NewPrevOpc] = getReassociationOpcodes(Pattern, Root, Prev);
bool KillA = OpA.isKill();
bool KillX = OpX.isKill();
bool KillY = OpY.isKill();
bool KillNewVR = true;
auto [SwapRootOperands, SwapPrevOperands] = mustSwapOperands(Pattern);
if (SwapPrevOperands) {
std::swap(RegX, RegY);
std::swap(KillX, KillY);
}
unsigned PrevFirstOpIdx, PrevSecondOpIdx;
unsigned RootFirstOpIdx, RootSecondOpIdx;
switch (Pattern) {
case MachineCombinerPattern::REASSOC_AX_BY:
PrevFirstOpIdx = OperandIndices[1];
PrevSecondOpIdx = OperandIndices[3];
RootFirstOpIdx = OperandIndices[2];
RootSecondOpIdx = OperandIndices[4];
break;
case MachineCombinerPattern::REASSOC_AX_YB:
PrevFirstOpIdx = OperandIndices[1];
PrevSecondOpIdx = OperandIndices[3];
RootFirstOpIdx = OperandIndices[4];
RootSecondOpIdx = OperandIndices[2];
break;
case MachineCombinerPattern::REASSOC_XA_BY:
PrevFirstOpIdx = OperandIndices[3];
PrevSecondOpIdx = OperandIndices[1];
RootFirstOpIdx = OperandIndices[2];
RootSecondOpIdx = OperandIndices[4];
break;
case MachineCombinerPattern::REASSOC_XA_YB:
PrevFirstOpIdx = OperandIndices[3];
PrevSecondOpIdx = OperandIndices[1];
RootFirstOpIdx = OperandIndices[4];
RootSecondOpIdx = OperandIndices[2];
break;
default:
llvm_unreachable("unexpected MachineCombinerPattern");
}
// Basically BuildMI but doesn't add implicit operands by default.
auto buildMINoImplicit = [](MachineFunction &MF, const MIMetadata &MIMD,
const MCInstrDesc &MCID, Register DestReg) {
return MachineInstrBuilder(
MF, MF.CreateMachineInstr(MCID, MIMD.getDL(), /*NoImpl=*/true))
.setPCSections(MIMD.getPCSections())
.addReg(DestReg, RegState::Define);
};
// Create new instructions for insertion.
MachineInstrBuilder MIB1 =
buildMINoImplicit(*MF, MIMetadata(Prev), TII->get(NewPrevOpc), NewVR);
for (const auto &MO : Prev.explicit_operands()) {
unsigned Idx = MO.getOperandNo();
// Skip the result operand we'd already added.
if (Idx == 0)
continue;
if (Idx == PrevFirstOpIdx)
MIB1.addReg(RegX, getKillRegState(KillX));
else if (Idx == PrevSecondOpIdx)
MIB1.addReg(RegY, getKillRegState(KillY));
else
MIB1.add(MO);
}
MIB1.copyImplicitOps(Prev);
if (SwapRootOperands) {
std::swap(RegA, NewVR);
std::swap(KillA, KillNewVR);
}
MachineInstrBuilder MIB2 =
buildMINoImplicit(*MF, MIMetadata(Root), TII->get(NewRootOpc), RegC);
for (const auto &MO : Root.explicit_operands()) {
unsigned Idx = MO.getOperandNo();
// Skip the result operand.
if (Idx == 0)
continue;
if (Idx == RootFirstOpIdx)
MIB2 = MIB2.addReg(RegA, getKillRegState(KillA));
else if (Idx == RootSecondOpIdx)
MIB2 = MIB2.addReg(NewVR, getKillRegState(KillNewVR));
else
MIB2 = MIB2.add(MO);
}
MIB2.copyImplicitOps(Root);
// Propagate FP flags from the original instructions.
// But clear poison-generating flags because those may not be valid now.
// TODO: There should be a helper function for copying only fast-math-flags.
uint32_t IntersectedFlags = Root.getFlags() & Prev.getFlags();
MIB1->setFlags(IntersectedFlags);
MIB1->clearFlag(MachineInstr::MIFlag::NoSWrap);
MIB1->clearFlag(MachineInstr::MIFlag::NoUWrap);
MIB1->clearFlag(MachineInstr::MIFlag::IsExact);
MIB2->setFlags(IntersectedFlags);
MIB2->clearFlag(MachineInstr::MIFlag::NoSWrap);
MIB2->clearFlag(MachineInstr::MIFlag::NoUWrap);
MIB2->clearFlag(MachineInstr::MIFlag::IsExact);
setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
// Record new instructions for insertion and old instructions for deletion.
InsInstrs.push_back(MIB1);
InsInstrs.push_back(MIB2);
DelInstrs.push_back(&Prev);
DelInstrs.push_back(&Root);
// We transformed:
// B = A op X (Prev)
// C = B op Y (Root)
// Into:
// B = X op Y (MIB1)
// C = A op B (MIB2)
// C has the same value as before, B doesn't; as such, keep the debug number
// of C but not of B.
if (unsigned OldRootNum = Root.peekDebugInstrNum())
MIB2.getInstr()->setDebugInstrNum(OldRootNum);
}
void TargetInstrInfo::genAlternativeCodeSequence(
MachineInstr &Root, unsigned Pattern,
SmallVectorImpl<MachineInstr *> &InsInstrs,
SmallVectorImpl<MachineInstr *> &DelInstrs,
DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
// Select the previous instruction in the sequence based on the input pattern.
std::array<unsigned, 5> OperandIndices;
getReassociateOperandIndices(Root, Pattern, OperandIndices);
MachineInstr *Prev =
MRI.getUniqueVRegDef(Root.getOperand(OperandIndices[0]).getReg());
// Don't reassociate if Prev and Root are in different blocks.
if (Prev->getParent() != Root.getParent())
return;
reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, OperandIndices,
InstIdxForVirtReg);
}
MachineTraceStrategy TargetInstrInfo::getMachineCombinerTraceStrategy() const {
return MachineTraceStrategy::TS_MinInstrCount;
}
bool TargetInstrInfo::isReallyTriviallyReMaterializable(
const MachineInstr &MI) const {
const MachineFunction &MF = *MI.getMF();
const MachineRegisterInfo &MRI = MF.getRegInfo();
// Remat clients assume operand 0 is the defined register.
if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
return false;
Register DefReg = MI.getOperand(0).getReg();
// A sub-register definition can only be rematerialized if the instruction
// doesn't read the other parts of the register. Otherwise it is really a
// read-modify-write operation on the full virtual register which cannot be
// moved safely.
if (DefReg.isVirtual() && MI.getOperand(0).getSubReg() &&
MI.readsVirtualRegister(DefReg))
return false;
// A load from a fixed stack slot can be rematerialized. This may be
// redundant with subsequent checks, but it's target-independent,
// simple, and a common case.
int FrameIdx = 0;
if (isLoadFromStackSlot(MI, FrameIdx) &&
MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
return true;
// Avoid instructions obviously unsafe for remat.
if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() ||
MI.hasUnmodeledSideEffects())
return false;
// Don't remat inline asm. We have no idea how expensive it is
// even if it's side effect free.
if (MI.isInlineAsm())
return false;
// Avoid instructions which load from potentially varying memory.
if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad())
return false;
// If any of the registers accessed are non-constant, conservatively assume
// the instruction is not rematerializable.
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg()) continue;
Register Reg = MO.getReg();
if (Reg == 0)
continue;
// Check for a well-behaved physical register.
if (Reg.isPhysical()) {
if (MO.isUse()) {
// If the physreg has no defs anywhere, it's just an ambient register
// and we can freely move its uses. Alternatively, if it's allocatable,
// it could get allocated to something with a def during allocation.
if (!MRI.isConstantPhysReg(Reg))
return false;
} else {
// A physreg def. We can't remat it.
return false;
}
continue;
}
// Only allow one virtual-register def. There may be multiple defs of the
// same virtual register, though.
if (MO.isDef() && Reg != DefReg)
return false;
// Don't allow any virtual-register uses. Rematting an instruction with
// virtual register uses would length the live ranges of the uses, which
// is not necessarily a good idea, certainly not "trivial".
if (MO.isUse())
return false;
}
// Everything checked out.
return true;
}
int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
const MachineFunction *MF = MI.getMF();
const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
bool StackGrowsDown =
TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
if (!isFrameInstr(MI))
return 0;
int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
(StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
SPAdj = -SPAdj;
return SPAdj;
}
/// isSchedulingBoundary - Test if the given instruction should be
/// considered a scheduling boundary. This primarily includes labels
/// and terminators.
bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
const MachineBasicBlock *MBB,
const MachineFunction &MF) const {
// Terminators and labels can't be scheduled around.
if (MI.isTerminator() || MI.isPosition())
return true;
// INLINEASM_BR can jump to another block
if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
return true;
// Don't attempt to schedule around any instruction that defines
// a stack-oriented pointer, as it's unlikely to be profitable. This
// saves compile time, because it doesn't require every single
// stack slot reference to depend on the instruction that does the
// modification.
const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
}
// Provide a global flag for disabling the PreRA hazard recognizer that targets
// may choose to honor.
bool TargetInstrInfo::usePreRAHazardRecognizer() const {
return !DisableHazardRecognizer;
}
// Default implementation of CreateTargetRAHazardRecognizer.
ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
const ScheduleDAG *DAG) const {
// Dummy hazard recognizer allows all instructions to issue.
return new ScheduleHazardRecognizer();
}
// Default implementation of CreateTargetMIHazardRecognizer.
ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer(
const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler");
}
// Default implementation of CreateTargetPostRAHazardRecognizer.
ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
const ScheduleDAG *DAG) const {
return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
}
// Default implementation of getMemOperandWithOffset.
bool TargetInstrInfo::getMemOperandWithOffset(
const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset,
bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const {
SmallVector<const MachineOperand *, 4> BaseOps;
LocationSize Width = 0;
if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable,
Width, TRI) ||
BaseOps.size() != 1)
return false;
BaseOp = BaseOps.front();
return true;
}
//===----------------------------------------------------------------------===//
// SelectionDAG latency interface.
//===----------------------------------------------------------------------===//
std::optional<unsigned>
TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
SDNode *DefNode, unsigned DefIdx,
SDNode *UseNode, unsigned UseIdx) const {
if (!ItinData || ItinData->isEmpty())
return std::nullopt;
if (!DefNode->isMachineOpcode())
return std::nullopt;
unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
if (!UseNode->isMachineOpcode())
return ItinData->getOperandCycle(DefClass, DefIdx);
unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
}
unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
SDNode *N) const {
if (!ItinData || ItinData->isEmpty())
return 1;
if (!N->isMachineOpcode())
return 1;
return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
}
//===----------------------------------------------------------------------===//
// MachineInstr latency interface.
//===----------------------------------------------------------------------===//
unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
const MachineInstr &MI) const {
if (!ItinData || ItinData->isEmpty())
return 1;
unsigned Class = MI.getDesc().getSchedClass();
int UOps = ItinData->Itineraries[Class].NumMicroOps;
if (UOps >= 0)
return UOps;
// The # of u-ops is dynamically determined. The specific target should
// override this function to return the right number.
return 1;
}
/// Return the default expected latency for a def based on it's opcode.
unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
const MachineInstr &DefMI) const {
if (DefMI.isTransient())
return 0;
if (DefMI.mayLoad())
return SchedModel.LoadLatency;
if (isHighLatencyDef(DefMI.getOpcode()))
return SchedModel.HighLatency;
return 1;
}
unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
return 0;
}
unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr &MI,
unsigned *PredCost) const {
// Default to one cycle for no itinerary. However, an "empty" itinerary may
// still have a MinLatency property, which getStageLatency checks.
if (!ItinData)
return MI.mayLoad() ? 2 : 1;
return ItinData->getStageLatency(MI.getDesc().getSchedClass());
}
bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
const MachineInstr &DefMI,
unsigned DefIdx) const {
const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
if (!ItinData || ItinData->isEmpty())
return false;
unsigned DefClass = DefMI.getDesc().getSchedClass();
std::optional<unsigned> DefCycle =
ItinData->getOperandCycle(DefClass, DefIdx);
return DefCycle && DefCycle <= 1U;
}
bool TargetInstrInfo::isFunctionSafeToSplit(const MachineFunction &MF) const {
// TODO: We don't split functions where a section attribute has been set
// since the split part may not be placed in a contiguous region. It may also
// be more beneficial to augment the linker to ensure contiguous layout of
// split functions within the same section as specified by the attribute.
if (MF.getFunction().hasSection())
return false;
// We don't want to proceed further for cold functions
// or functions of unknown hotness. Lukewarm functions have no prefix.
std::optional<StringRef> SectionPrefix = MF.getFunction().getSectionPrefix();
if (SectionPrefix &&
(*SectionPrefix == "unlikely" || *SectionPrefix == "unknown")) {
return false;
}
return true;
}
std::optional<ParamLoadedValue>
TargetInstrInfo::describeLoadedValue(const MachineInstr &MI,
Register Reg) const {
const MachineFunction *MF = MI.getMF();
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {});
int64_t Offset;
bool OffsetIsScalable;
// To simplify the sub-register handling, verify that we only need to
// consider physical registers.
assert(MF->getProperties().hasProperty(
MachineFunctionProperties::Property::NoVRegs));
if (auto DestSrc = isCopyInstr(MI)) {
Register DestReg = DestSrc->Destination->getReg();
// If the copy destination is the forwarding reg, describe the forwarding
// reg using the copy source as the backup location. Example:
//
// x0 = MOV x7
// call callee(x0) ; x0 described as x7
if (Reg == DestReg)
return ParamLoadedValue(*DestSrc->Source, Expr);
// If the target's hook couldn't describe this copy, give up.
return std::nullopt;
} else if (auto RegImm = isAddImmediate(MI, Reg)) {
Register SrcReg = RegImm->Reg;
Offset = RegImm->Imm;
Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset);
return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
} else if (MI.hasOneMemOperand()) {
// Only describe memory which provably does not escape the function. As
// described in llvm.org/PR43343, escaped memory may be clobbered by the
// callee (or by another thread).
const auto &TII = MF->getSubtarget().getInstrInfo();
const MachineFrameInfo &MFI = MF->getFrameInfo();
const MachineMemOperand *MMO = MI.memoperands()[0];
const PseudoSourceValue *PSV = MMO->getPseudoValue();
// If the address points to "special" memory (e.g. a spill slot), it's
// sufficient to check that it isn't aliased by any high-level IR value.
if (!PSV || PSV->mayAlias(&MFI))
return std::nullopt;
const MachineOperand *BaseOp;
if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable,
TRI))
return std::nullopt;
// FIXME: Scalable offsets are not yet handled in the offset code below.
if (OffsetIsScalable)
return std::nullopt;
// TODO: Can currently only handle mem instructions with a single define.
// An example from the x86 target:
// ...
// DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx
// ...
//
if (MI.getNumExplicitDefs() != 1)
return std::nullopt;
// TODO: In what way do we need to take Reg into consideration here?
SmallVector<uint64_t, 8> Ops;
DIExpression::appendOffset(Ops, Offset);
Ops.push_back(dwarf::DW_OP_deref_size);
Ops.push_back(MMO->getSize().hasValue() ? MMO->getSize().getValue()
: ~UINT64_C(0));
Expr = DIExpression::prependOpcodes(Expr, Ops);
return ParamLoadedValue(*BaseOp, Expr);
}
return std::nullopt;
}
// Get the call frame size just before MI.
unsigned TargetInstrInfo::getCallFrameSizeAt(MachineInstr &MI) const {
// Search backwards from MI for the most recent call frame instruction.
MachineBasicBlock *MBB = MI.getParent();
for (auto &AdjI : reverse(make_range(MBB->instr_begin(), MI.getIterator()))) {
if (AdjI.getOpcode() == getCallFrameSetupOpcode())
return getFrameTotalSize(AdjI);
if (AdjI.getOpcode() == getCallFrameDestroyOpcode())
return 0;
}
// If none was found, use the call frame size from the start of the basic
// block.
return MBB->getCallFrameSize();
}
/// Both DefMI and UseMI must be valid. By default, call directly to the
/// itinerary. This may be overriden by the target.
std::optional<unsigned> TargetInstrInfo::getOperandLatency(
const InstrItineraryData *ItinData, const MachineInstr &DefMI,
unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const {
unsigned DefClass = DefMI.getDesc().getSchedClass();
unsigned UseClass = UseMI.getDesc().getSchedClass();
return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
}
bool TargetInstrInfo::getRegSequenceInputs(
const MachineInstr &MI, unsigned DefIdx,
SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
assert((MI.isRegSequence() ||
MI.isRegSequenceLike()) && "Instruction do not have the proper type");
if (!MI.isRegSequence())
return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
// We are looking at:
// Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
OpIdx += 2) {
const MachineOperand &MOReg = MI.getOperand(OpIdx);
if (MOReg.isUndef())
continue;
const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
assert(MOSubIdx.isImm() &&
"One of the subindex of the reg_sequence is not an immediate");
// Record Reg:SubReg, SubIdx.
InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
(unsigned)MOSubIdx.getImm()));
}
return true;
}
bool TargetInstrInfo::getExtractSubregInputs(
const MachineInstr &MI, unsigned DefIdx,
RegSubRegPairAndIdx &InputReg) const {
assert((MI.isExtractSubreg() ||
MI.isExtractSubregLike()) && "Instruction do not have the proper type");
if (!MI.isExtractSubreg())
return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
// We are looking at:
// Def = EXTRACT_SUBREG v0.sub1, sub0.
assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
const MachineOperand &MOReg = MI.getOperand(1);
if (MOReg.isUndef())
return false;
const MachineOperand &MOSubIdx = MI.getOperand(2);
assert(MOSubIdx.isImm() &&
"The subindex of the extract_subreg is not an immediate");
InputReg.Reg = MOReg.getReg();
InputReg.SubReg = MOReg.getSubReg();
InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
return true;
}
bool TargetInstrInfo::getInsertSubregInputs(
const MachineInstr &MI, unsigned DefIdx,
RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
assert((MI.isInsertSubreg() ||
MI.isInsertSubregLike()) && "Instruction do not have the proper type");
if (!MI.isInsertSubreg())
return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
// We are looking at:
// Def = INSERT_SEQUENCE v0, v1, sub0.
assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
const MachineOperand &MOBaseReg = MI.getOperand(1);
const MachineOperand &MOInsertedReg = MI.getOperand(2);
if (MOInsertedReg.isUndef())
return false;
const MachineOperand &MOSubIdx = MI.getOperand(3);
assert(MOSubIdx.isImm() &&
"One of the subindex of the reg_sequence is not an immediate");
BaseReg.Reg = MOBaseReg.getReg();
BaseReg.SubReg = MOBaseReg.getSubReg();
InsertedReg.Reg = MOInsertedReg.getReg();
InsertedReg.SubReg = MOInsertedReg.getSubReg();
InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
return true;
}
// Returns a MIRPrinter comment for this machine operand.
std::string TargetInstrInfo::createMIROperandComment(
const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
const TargetRegisterInfo *TRI) const {
if (!MI.isInlineAsm())
return "";
std::string Flags;
raw_string_ostream OS(Flags);
if (OpIdx == InlineAsm::MIOp_ExtraInfo) {
// Print HasSideEffects, MayLoad, MayStore, IsAlignStack
unsigned ExtraInfo = Op.getImm();
bool First = true;
for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) {
if (!First)
OS << " ";
First = false;
OS << Info;
}
return OS.str();
}
int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx);
if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx)
return "";
assert(Op.isImm() && "Expected flag operand to be an immediate");
// Pretty print the inline asm operand descriptor.
unsigned Flag = Op.getImm();
const InlineAsm::Flag F(Flag);
OS << F.getKindName();
unsigned RCID;
if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) {
if (TRI) {
OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
} else
OS << ":RC" << RCID;
}
if (F.isMemKind()) {
InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID();
OS << ":" << InlineAsm::getMemConstraintName(MCID);
}
unsigned TiedTo;
if (F.isUseOperandTiedToDef(TiedTo))
OS << " tiedto:$" << TiedTo;
if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isRegUseKind()) &&
F.getRegMayBeFolded())
OS << " foldable";
return OS.str();
}
TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() = default;
void TargetInstrInfo::mergeOutliningCandidateAttributes(
Function &F, std::vector<outliner::Candidate> &Candidates) const {
// Include target features from an arbitrary candidate for the outlined
// function. This makes sure the outlined function knows what kinds of
// instructions are going into it. This is fine, since all parent functions
// must necessarily support the instructions that are in the outlined region.
outliner::Candidate &FirstCand = Candidates.front();
const Function &ParentFn = FirstCand.getMF()->getFunction();
if (ParentFn.hasFnAttribute("target-features"))
F.addFnAttr(ParentFn.getFnAttribute("target-features"));
if (ParentFn.hasFnAttribute("target-cpu"))
F.addFnAttr(ParentFn.getFnAttribute("target-cpu"));
// Set nounwind, so we don't generate eh_frame.
if (llvm::all_of(Candidates, [](const outliner::Candidate &C) {
return C.getMF()->getFunction().hasFnAttribute(Attribute::NoUnwind);
}))
F.addFnAttr(Attribute::NoUnwind);
}
outliner::InstrType TargetInstrInfo::getOutliningType(
MachineBasicBlock::iterator &MIT, unsigned Flags) const {
MachineInstr &MI = *MIT;
// NOTE: MI.isMetaInstruction() will match CFI_INSTRUCTION, but some targets
// have support for outlining those. Special-case that here.
if (MI.isCFIInstruction())
// Just go right to the target implementation.
return getOutliningTypeImpl(MIT, Flags);
// Be conservative about inline assembly.
if (MI.isInlineAsm())
return outliner::InstrType::Illegal;
// Labels generally can't safely be outlined.
if (MI.isLabel())
return outliner::InstrType::Illegal;
// Don't let debug instructions impact analysis.
if (MI.isDebugInstr())
return outliner::InstrType::Invisible;
// Some other special cases.
switch (MI.getOpcode()) {
case TargetOpcode::IMPLICIT_DEF:
case TargetOpcode::KILL:
case TargetOpcode::LIFETIME_START:
case TargetOpcode::LIFETIME_END:
return outliner::InstrType::Invisible;
default:
break;
}
// Is this a terminator for a basic block?
if (MI.isTerminator()) {
// If this is a branch to another block, we can't outline it.
if (!MI.getParent()->succ_empty())
return outliner::InstrType::Illegal;
// Don't outline if the branch is not unconditional.
if (isPredicated(MI))
return outliner::InstrType::Illegal;
}
// Make sure none of the operands of this instruction do anything that
// might break if they're moved outside their current function.
// This includes MachineBasicBlock references, BlockAddressses,
// Constant pool indices and jump table indices.
//
// A quick note on MO_TargetIndex:
// This doesn't seem to be used in any of the architectures that the
// MachineOutliner supports, but it was still filtered out in all of them.
// There was one exception (RISC-V), but MO_TargetIndex also isn't used there.
// As such, this check is removed both here and in the target-specific
// implementations. Instead, we assert to make sure this doesn't
// catch anyone off-guard somewhere down the line.
for (const MachineOperand &MOP : MI.operands()) {
// If you hit this assertion, please remove it and adjust
// `getOutliningTypeImpl` for your target appropriately if necessary.
// Adding the assertion back to other supported architectures
// would be nice too :)
assert(!MOP.isTargetIndex() && "This isn't used quite yet!");
// CFI instructions should already have been filtered out at this point.
assert(!MOP.isCFIIndex() && "CFI instructions handled elsewhere!");
// PrologEpilogInserter should've already run at this point.
assert(!MOP.isFI() && "FrameIndex instructions should be gone by now!");
if (MOP.isMBB() || MOP.isBlockAddress() || MOP.isCPI() || MOP.isJTI())
return outliner::InstrType::Illegal;
}
// If we don't know, delegate to the target-specific hook.
return getOutliningTypeImpl(MIT, Flags);
}
bool TargetInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
unsigned &Flags) const {
// Some instrumentations create special TargetOpcode at the start which
// expands to special code sequences which must be present.
auto First = MBB.getFirstNonDebugInstr();
if (First == MBB.end())
return true;
if (First->getOpcode() == TargetOpcode::FENTRY_CALL ||
First->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_ENTER)
return false;
// Some instrumentations create special pseudo-instructions at or just before
// the end that must be present.
auto Last = MBB.getLastNonDebugInstr();
if (Last->getOpcode() == TargetOpcode::PATCHABLE_RET ||
Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL)
return false;
if (Last != First && Last->isReturn()) {
--Last;
if (Last->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_EXIT ||
Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL)
return false;
}
return true;
}