blob: 2742437ceb58952fa7c34fbaf9d7b17602ca0d7c [file] [log] [blame]
//===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass looks for safe point where the prologue and epilogue can be
// inserted.
// The safe point for the prologue (resp. epilogue) is called Save
// (resp. Restore).
// A point is safe for prologue (resp. epilogue) if and only if
// it 1) dominates (resp. post-dominates) all the frame related operations and
// between 2) two executions of the Save (resp. Restore) point there is an
// execution of the Restore (resp. Save) point.
//
// For instance, the following points are safe:
// for (int i = 0; i < 10; ++i) {
// Save
// ...
// Restore
// }
// Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
// And the following points are not:
// for (int i = 0; i < 10; ++i) {
// Save
// ...
// }
// for (int i = 0; i < 10; ++i) {
// ...
// Restore
// }
// Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
//
// This pass also ensures that the safe points are 3) cheaper than the regular
// entry and exits blocks.
//
// Property #1 is ensured via the use of MachineDominatorTree and
// MachinePostDominatorTree.
// Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
// points must be in the same loop.
// Property #3 is ensured via the MachineBlockFrequencyInfo.
//
// If this pass found points matching all these properties, then
// MachineFrameInfo is updated with this information.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <memory>
using namespace llvm;
#define DEBUG_TYPE "shrink-wrap"
STATISTIC(NumFunc, "Number of functions");
STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
STATISTIC(NumCandidatesDropped,
"Number of shrink-wrapping candidates dropped because of frequency");
static cl::opt<cl::boolOrDefault>
EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
cl::desc("enable the shrink-wrapping pass"));
static cl::opt<bool> EnablePostShrinkWrapOpt(
"enable-shrink-wrap-region-split", cl::init(true), cl::Hidden,
cl::desc("enable splitting of the restore block if possible"));
namespace {
/// Class to determine where the safe point to insert the
/// prologue and epilogue are.
/// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
/// shrink-wrapping term for prologue/epilogue placement, this pass
/// does not rely on expensive data-flow analysis. Instead we use the
/// dominance properties and loop information to decide which point
/// are safe for such insertion.
class ShrinkWrap : public MachineFunctionPass {
/// Hold callee-saved information.
RegisterClassInfo RCI;
MachineDominatorTree *MDT = nullptr;
MachinePostDominatorTree *MPDT = nullptr;
/// Current safe point found for the prologue.
/// The prologue will be inserted before the first instruction
/// in this basic block.
MachineBasicBlock *Save = nullptr;
/// Current safe point found for the epilogue.
/// The epilogue will be inserted before the first terminator instruction
/// in this basic block.
MachineBasicBlock *Restore = nullptr;
/// Hold the information of the basic block frequency.
/// Use to check the profitability of the new points.
MachineBlockFrequencyInfo *MBFI = nullptr;
/// Hold the loop information. Used to determine if Save and Restore
/// are in the same loop.
MachineLoopInfo *MLI = nullptr;
// Emit remarks.
MachineOptimizationRemarkEmitter *ORE = nullptr;
/// Frequency of the Entry block.
BlockFrequency EntryFreq;
/// Current opcode for frame setup.
unsigned FrameSetupOpcode = ~0u;
/// Current opcode for frame destroy.
unsigned FrameDestroyOpcode = ~0u;
/// Stack pointer register, used by llvm.{savestack,restorestack}
Register SP;
/// Entry block.
const MachineBasicBlock *Entry = nullptr;
using SetOfRegs = SmallSetVector<unsigned, 16>;
/// Registers that need to be saved for the current function.
mutable SetOfRegs CurrentCSRs;
/// Current MachineFunction.
MachineFunction *MachineFunc = nullptr;
/// Is `true` for the block numbers where we assume possible stack accesses
/// or computation of stack-relative addresses on any CFG path including the
/// block itself. Is `false` for basic blocks where we can guarantee the
/// opposite. False positives won't lead to incorrect analysis results,
/// therefore this approach is fair.
BitVector StackAddressUsedBlockInfo;
/// Check if \p MI uses or defines a callee-saved register or
/// a frame index. If this is the case, this means \p MI must happen
/// after Save and before Restore.
bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS,
bool StackAddressUsed) const;
const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
if (CurrentCSRs.empty()) {
BitVector SavedRegs;
const TargetFrameLowering *TFI =
MachineFunc->getSubtarget().getFrameLowering();
TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
for (int Reg = SavedRegs.find_first(); Reg != -1;
Reg = SavedRegs.find_next(Reg))
CurrentCSRs.insert((unsigned)Reg);
}
return CurrentCSRs;
}
/// Update the Save and Restore points such that \p MBB is in
/// the region that is dominated by Save and post-dominated by Restore
/// and Save and Restore still match the safe point definition.
/// Such point may not exist and Save and/or Restore may be null after
/// this call.
void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
// Try to find safe point based on dominance and block frequency without
// any change in IR.
bool performShrinkWrapping(
const ReversePostOrderTraversal<MachineBasicBlock *> &RPOT,
RegScavenger *RS);
/// This function tries to split the restore point if doing so can shrink the
/// save point further. \return True if restore point is split.
bool postShrinkWrapping(bool HasCandidate, MachineFunction &MF,
RegScavenger *RS);
/// This function analyzes if the restore point can split to create a new
/// restore point. This function collects
/// 1. Any preds of current restore that are reachable by callee save/FI
/// blocks
/// - indicated by DirtyPreds
/// 2. Any preds of current restore that are not DirtyPreds - indicated by
/// CleanPreds
/// Both sets should be non-empty for considering restore point split.
bool checkIfRestoreSplittable(
const MachineBasicBlock *CurRestore,
const DenseSet<const MachineBasicBlock *> &ReachableByDirty,
SmallVectorImpl<MachineBasicBlock *> &DirtyPreds,
SmallVectorImpl<MachineBasicBlock *> &CleanPreds,
const TargetInstrInfo *TII, RegScavenger *RS);
/// Initialize the pass for \p MF.
void init(MachineFunction &MF) {
RCI.runOnMachineFunction(MF);
MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
MPDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree();
Save = nullptr;
Restore = nullptr;
MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI();
MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
EntryFreq = MBFI->getEntryFreq();
const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
FrameSetupOpcode = TII.getCallFrameSetupOpcode();
FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore();
Entry = &MF.front();
CurrentCSRs.clear();
MachineFunc = &MF;
++NumFunc;
}
/// Check whether or not Save and Restore points are still interesting for
/// shrink-wrapping.
bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
/// Check if shrink wrapping is enabled for this target and function.
static bool isShrinkWrapEnabled(const MachineFunction &MF);
public:
static char ID;
ShrinkWrap() : MachineFunctionPass(ID) {
initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
AU.addRequired<MachineDominatorTreeWrapperPass>();
AU.addRequired<MachinePostDominatorTreeWrapperPass>();
AU.addRequired<MachineLoopInfoWrapperPass>();
AU.addRequired<MachineOptimizationRemarkEmitterPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
/// Perform the shrink-wrapping analysis and update
/// the MachineFrameInfo attached to \p MF with the results.
bool runOnMachineFunction(MachineFunction &MF) override;
};
} // end anonymous namespace
char ShrinkWrap::ID = 0;
char &llvm::ShrinkWrapID = ShrinkWrap::ID;
INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS,
bool StackAddressUsed) const {
/// Check if \p Op is known to access an address not on the function's stack .
/// At the moment, accesses where the underlying object is a global, function
/// argument, or jump table are considered non-stack accesses. Note that the
/// caller's stack may get accessed when passing an argument via the stack,
/// but not the stack of the current function.
///
auto IsKnownNonStackPtr = [](MachineMemOperand *Op) {
if (Op->getValue()) {
const Value *UO = getUnderlyingObject(Op->getValue());
if (!UO)
return false;
if (auto *Arg = dyn_cast<Argument>(UO))
return !Arg->hasPassPointeeByValueCopyAttr();
return isa<GlobalValue>(UO);
}
if (const PseudoSourceValue *PSV = Op->getPseudoValue())
return PSV->isJumpTable();
return false;
};
// Load/store operations may access the stack indirectly when we previously
// computed an address to a stack location.
if (StackAddressUsed && MI.mayLoadOrStore() &&
(MI.isCall() || MI.hasUnmodeledSideEffects() || MI.memoperands_empty() ||
!all_of(MI.memoperands(), IsKnownNonStackPtr)))
return true;
if (MI.getOpcode() == FrameSetupOpcode ||
MI.getOpcode() == FrameDestroyOpcode) {
LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
return true;
}
const MachineFunction *MF = MI.getParent()->getParent();
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
for (const MachineOperand &MO : MI.operands()) {
bool UseOrDefCSR = false;
if (MO.isReg()) {
// Ignore instructions like DBG_VALUE which don't read/def the register.
if (!MO.isDef() && !MO.readsReg())
continue;
Register PhysReg = MO.getReg();
if (!PhysReg)
continue;
assert(PhysReg.isPhysical() && "Unallocated register?!");
// The stack pointer is not normally described as a callee-saved register
// in calling convention definitions, so we need to watch for it
// separately. An SP mentioned by a call instruction, we can ignore,
// though, as it's harmless and we do not want to effectively disable tail
// calls by forcing the restore point to post-dominate them.
// PPC's LR is also not normally described as a callee-saved register in
// calling convention definitions, so we need to watch for it, too. An LR
// mentioned implicitly by a return (or "branch to link register")
// instruction we can ignore, otherwise we may pessimize shrinkwrapping.
UseOrDefCSR =
(!MI.isCall() && PhysReg == SP) ||
RCI.getLastCalleeSavedAlias(PhysReg) ||
(!MI.isReturn() && TRI->isNonallocatableRegisterCalleeSave(PhysReg));
} else if (MO.isRegMask()) {
// Check if this regmask clobbers any of the CSRs.
for (unsigned Reg : getCurrentCSRs(RS)) {
if (MO.clobbersPhysReg(Reg)) {
UseOrDefCSR = true;
break;
}
}
}
// Skip FrameIndex operands in DBG_VALUE instructions.
if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) {
LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
<< MO.isFI() << "): " << MI << '\n');
return true;
}
}
return false;
}
/// Helper function to find the immediate (post) dominator.
template <typename ListOfBBs, typename DominanceAnalysis>
static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
DominanceAnalysis &Dom, bool Strict = true) {
MachineBasicBlock *IDom = &Block;
for (MachineBasicBlock *BB : BBs) {
IDom = Dom.findNearestCommonDominator(IDom, BB);
if (!IDom)
break;
}
if (Strict && IDom == &Block)
return nullptr;
return IDom;
}
static bool isAnalyzableBB(const TargetInstrInfo &TII,
MachineBasicBlock &Entry) {
// Check if the block is analyzable.
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
return !TII.analyzeBranch(Entry, TBB, FBB, Cond);
}
/// Determines if any predecessor of MBB is on the path from block that has use
/// or def of CSRs/FI to MBB.
/// ReachableByDirty: All blocks reachable from block that has use or def of
/// CSR/FI.
static bool
hasDirtyPred(const DenseSet<const MachineBasicBlock *> &ReachableByDirty,
const MachineBasicBlock &MBB) {
for (const MachineBasicBlock *PredBB : MBB.predecessors())
if (ReachableByDirty.count(PredBB))
return true;
return false;
}
/// Derives the list of all the basic blocks reachable from MBB.
static void markAllReachable(DenseSet<const MachineBasicBlock *> &Visited,
const MachineBasicBlock &MBB) {
SmallVector<MachineBasicBlock *, 4> Worklist(MBB.successors());
Visited.insert(&MBB);
while (!Worklist.empty()) {
MachineBasicBlock *SuccMBB = Worklist.pop_back_val();
if (!Visited.insert(SuccMBB).second)
continue;
Worklist.append(SuccMBB->succ_begin(), SuccMBB->succ_end());
}
}
/// Collect blocks reachable by use or def of CSRs/FI.
static void collectBlocksReachableByDirty(
const DenseSet<const MachineBasicBlock *> &DirtyBBs,
DenseSet<const MachineBasicBlock *> &ReachableByDirty) {
for (const MachineBasicBlock *MBB : DirtyBBs) {
if (ReachableByDirty.count(MBB))
continue;
// Mark all offsprings as reachable.
markAllReachable(ReachableByDirty, *MBB);
}
}
/// \return true if there is a clean path from SavePoint to the original
/// Restore.
static bool
isSaveReachableThroughClean(const MachineBasicBlock *SavePoint,
ArrayRef<MachineBasicBlock *> CleanPreds) {
DenseSet<const MachineBasicBlock *> Visited;
SmallVector<MachineBasicBlock *, 4> Worklist(CleanPreds);
while (!Worklist.empty()) {
MachineBasicBlock *CleanBB = Worklist.pop_back_val();
if (CleanBB == SavePoint)
return true;
if (!Visited.insert(CleanBB).second || !CleanBB->pred_size())
continue;
Worklist.append(CleanBB->pred_begin(), CleanBB->pred_end());
}
return false;
}
/// This function updates the branches post restore point split.
///
/// Restore point has been split.
/// Old restore point: MBB
/// New restore point: NMBB
/// Any basic block(say BBToUpdate) which had a fallthrough to MBB
/// previously should
/// 1. Fallthrough to NMBB iff NMBB is inserted immediately above MBB in the
/// block layout OR
/// 2. Branch unconditionally to NMBB iff NMBB is inserted at any other place.
static void updateTerminator(MachineBasicBlock *BBToUpdate,
MachineBasicBlock *NMBB,
const TargetInstrInfo *TII) {
DebugLoc DL = BBToUpdate->findBranchDebugLoc();
// if NMBB isn't the new layout successor for BBToUpdate, insert unconditional
// branch to it
if (!BBToUpdate->isLayoutSuccessor(NMBB))
TII->insertUnconditionalBranch(*BBToUpdate, NMBB, DL);
}
/// This function splits the restore point and returns new restore point/BB.
///
/// DirtyPreds: Predessors of \p MBB that are ReachableByDirty
///
/// Decision has been made to split the restore point.
/// old restore point: \p MBB
/// new restore point: \p NMBB
/// This function makes the necessary block layout changes so that
/// 1. \p NMBB points to \p MBB unconditionally
/// 2. All dirtyPreds that previously pointed to \p MBB point to \p NMBB
static MachineBasicBlock *
tryToSplitRestore(MachineBasicBlock *MBB,
ArrayRef<MachineBasicBlock *> DirtyPreds,
const TargetInstrInfo *TII) {
MachineFunction *MF = MBB->getParent();
// get the list of DirtyPreds who have a fallthrough to MBB
// before the block layout change. This is just to ensure that if the NMBB is
// inserted after MBB, then we create unconditional branch from
// DirtyPred/CleanPred to NMBB
SmallPtrSet<MachineBasicBlock *, 8> MBBFallthrough;
for (MachineBasicBlock *BB : DirtyPreds)
if (BB->getFallThrough(false) == MBB)
MBBFallthrough.insert(BB);
MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
// Insert this block at the end of the function. Inserting in between may
// interfere with control flow optimizer decisions.
MF->insert(MF->end(), NMBB);
for (const MachineBasicBlock::RegisterMaskPair &LI : MBB->liveins())
NMBB->addLiveIn(LI.PhysReg);
TII->insertUnconditionalBranch(*NMBB, MBB, DebugLoc());
// After splitting, all predecessors of the restore point should be dirty
// blocks.
for (MachineBasicBlock *SuccBB : DirtyPreds)
SuccBB->ReplaceUsesOfBlockWith(MBB, NMBB);
NMBB->addSuccessor(MBB);
for (MachineBasicBlock *BBToUpdate : MBBFallthrough)
updateTerminator(BBToUpdate, NMBB, TII);
return NMBB;
}
/// This function undoes the restore point split done earlier.
///
/// DirtyPreds: All predecessors of \p NMBB that are ReachableByDirty.
///
/// Restore point was split and the change needs to be unrolled. Make necessary
/// changes to reset restore point from \p NMBB to \p MBB.
static void rollbackRestoreSplit(MachineFunction &MF, MachineBasicBlock *NMBB,
MachineBasicBlock *MBB,
ArrayRef<MachineBasicBlock *> DirtyPreds,
const TargetInstrInfo *TII) {
// For a BB, if NMBB is fallthrough in the current layout, then in the new
// layout a. BB should fallthrough to MBB OR b. BB should undconditionally
// branch to MBB
SmallPtrSet<MachineBasicBlock *, 8> NMBBFallthrough;
for (MachineBasicBlock *BB : DirtyPreds)
if (BB->getFallThrough(false) == NMBB)
NMBBFallthrough.insert(BB);
NMBB->removeSuccessor(MBB);
for (MachineBasicBlock *SuccBB : DirtyPreds)
SuccBB->ReplaceUsesOfBlockWith(NMBB, MBB);
NMBB->erase(NMBB->begin(), NMBB->end());
NMBB->eraseFromParent();
for (MachineBasicBlock *BBToUpdate : NMBBFallthrough)
updateTerminator(BBToUpdate, MBB, TII);
}
// A block is deemed fit for restore point split iff there exist
// 1. DirtyPreds - preds of CurRestore reachable from use or def of CSR/FI
// 2. CleanPreds - preds of CurRestore that arent DirtyPreds
bool ShrinkWrap::checkIfRestoreSplittable(
const MachineBasicBlock *CurRestore,
const DenseSet<const MachineBasicBlock *> &ReachableByDirty,
SmallVectorImpl<MachineBasicBlock *> &DirtyPreds,
SmallVectorImpl<MachineBasicBlock *> &CleanPreds,
const TargetInstrInfo *TII, RegScavenger *RS) {
for (const MachineInstr &MI : *CurRestore)
if (useOrDefCSROrFI(MI, RS, /*StackAddressUsed=*/true))
return false;
for (MachineBasicBlock *PredBB : CurRestore->predecessors()) {
if (!isAnalyzableBB(*TII, *PredBB))
return false;
if (ReachableByDirty.count(PredBB))
DirtyPreds.push_back(PredBB);
else
CleanPreds.push_back(PredBB);
}
return !(CleanPreds.empty() || DirtyPreds.empty());
}
bool ShrinkWrap::postShrinkWrapping(bool HasCandidate, MachineFunction &MF,
RegScavenger *RS) {
if (!EnablePostShrinkWrapOpt)
return false;
MachineBasicBlock *InitSave = nullptr;
MachineBasicBlock *InitRestore = nullptr;
if (HasCandidate) {
InitSave = Save;
InitRestore = Restore;
} else {
InitRestore = nullptr;
InitSave = &MF.front();
for (MachineBasicBlock &MBB : MF) {
if (MBB.isEHFuncletEntry())
return false;
if (MBB.isReturnBlock()) {
// Do not support multiple restore points.
if (InitRestore)
return false;
InitRestore = &MBB;
}
}
}
if (!InitSave || !InitRestore || InitRestore == InitSave ||
!MDT->dominates(InitSave, InitRestore) ||
!MPDT->dominates(InitRestore, InitSave))
return false;
// Bail out of the optimization if any of the basic block is target of
// INLINEASM_BR instruction
for (MachineBasicBlock &MBB : MF)
if (MBB.isInlineAsmBrIndirectTarget())
return false;
DenseSet<const MachineBasicBlock *> DirtyBBs;
for (MachineBasicBlock &MBB : MF) {
if (MBB.isEHPad()) {
DirtyBBs.insert(&MBB);
continue;
}
for (const MachineInstr &MI : MBB)
if (useOrDefCSROrFI(MI, RS, /*StackAddressUsed=*/true)) {
DirtyBBs.insert(&MBB);
break;
}
}
// Find blocks reachable from the use or def of CSRs/FI.
DenseSet<const MachineBasicBlock *> ReachableByDirty;
collectBlocksReachableByDirty(DirtyBBs, ReachableByDirty);
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
SmallVector<MachineBasicBlock *, 2> DirtyPreds;
SmallVector<MachineBasicBlock *, 2> CleanPreds;
if (!checkIfRestoreSplittable(InitRestore, ReachableByDirty, DirtyPreds,
CleanPreds, TII, RS))
return false;
// Trying to reach out to the new save point which dominates all dirty blocks.
MachineBasicBlock *NewSave =
FindIDom<>(**DirtyPreds.begin(), DirtyPreds, *MDT, false);
while (NewSave && (hasDirtyPred(ReachableByDirty, *NewSave) ||
EntryFreq < MBFI->getBlockFreq(NewSave) ||
/*Entry freq has been observed more than a loop block in
some cases*/
MLI->getLoopFor(NewSave)))
NewSave = FindIDom<>(**NewSave->pred_begin(), NewSave->predecessors(), *MDT,
false);
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
if (!NewSave || NewSave == InitSave ||
isSaveReachableThroughClean(NewSave, CleanPreds) ||
!TFI->canUseAsPrologue(*NewSave))
return false;
// Now we know that splitting a restore point can isolate the restore point
// from clean blocks and doing so can shrink the save point.
MachineBasicBlock *NewRestore =
tryToSplitRestore(InitRestore, DirtyPreds, TII);
// Make sure if the new restore point is valid as an epilogue, depending on
// targets.
if (!TFI->canUseAsEpilogue(*NewRestore)) {
rollbackRestoreSplit(MF, NewRestore, InitRestore, DirtyPreds, TII);
return false;
}
Save = NewSave;
Restore = NewRestore;
MDT->recalculate(MF);
MPDT->recalculate(MF);
assert((MDT->dominates(Save, Restore) && MPDT->dominates(Restore, Save)) &&
"Incorrect save or restore point due to dominance relations");
assert((!MLI->getLoopFor(Save) && !MLI->getLoopFor(Restore)) &&
"Unexpected save or restore point in a loop");
assert((EntryFreq >= MBFI->getBlockFreq(Save) &&
EntryFreq >= MBFI->getBlockFreq(Restore)) &&
"Incorrect save or restore point based on block frequency");
return true;
}
void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
RegScavenger *RS) {
// Get rid of the easy cases first.
if (!Save)
Save = &MBB;
else
Save = MDT->findNearestCommonDominator(Save, &MBB);
assert(Save);
if (!Restore)
Restore = &MBB;
else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
// means the block never returns. If that's the
// case, we don't want to call
// `findNearestCommonDominator`, which will
// return `Restore`.
Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
else
Restore = nullptr; // Abort, we can't find a restore point in this case.
// Make sure we would be able to insert the restore code before the
// terminator.
if (Restore == &MBB) {
for (const MachineInstr &Terminator : MBB.terminators()) {
if (!useOrDefCSROrFI(Terminator, RS, /*StackAddressUsed=*/true))
continue;
// One of the terminator needs to happen before the restore point.
if (MBB.succ_empty()) {
Restore = nullptr; // Abort, we can't find a restore point in this case.
break;
}
// Look for a restore point that post-dominates all the successors.
// The immediate post-dominator is what we are looking for.
Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
break;
}
}
if (!Restore) {
LLVM_DEBUG(
dbgs() << "Restore point needs to be spanned on several blocks\n");
return;
}
// Make sure Save and Restore are suitable for shrink-wrapping:
// 1. all path from Save needs to lead to Restore before exiting.
// 2. all path to Restore needs to go through Save from Entry.
// We achieve that by making sure that:
// A. Save dominates Restore.
// B. Restore post-dominates Save.
// C. Save and Restore are in the same loop.
bool SaveDominatesRestore = false;
bool RestorePostDominatesSave = false;
while (Restore &&
(!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
!(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
// Post-dominance is not enough in loops to ensure that all uses/defs
// are after the prologue and before the epilogue at runtime.
// E.g.,
// while(1) {
// Save
// Restore
// if (...)
// break;
// use/def CSRs
// }
// All the uses/defs of CSRs are dominated by Save and post-dominated
// by Restore. However, the CSRs uses are still reachable after
// Restore and before Save are executed.
//
// For now, just push the restore/save points outside of loops.
// FIXME: Refine the criteria to still find interesting cases
// for loops.
MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
// Fix (A).
if (!SaveDominatesRestore) {
Save = MDT->findNearestCommonDominator(Save, Restore);
continue;
}
// Fix (B).
if (!RestorePostDominatesSave)
Restore = MPDT->findNearestCommonDominator(Restore, Save);
// Fix (C).
if (Restore && (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
// Push Save outside of this loop if immediate dominator is different
// from save block. If immediate dominator is not different, bail out.
Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
if (!Save)
break;
} else {
// If the loop does not exit, there is no point in looking
// for a post-dominator outside the loop.
SmallVector<MachineBasicBlock*, 4> ExitBlocks;
MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
// Push Restore outside of this loop.
// Look for the immediate post-dominator of the loop exits.
MachineBasicBlock *IPdom = Restore;
for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
if (!IPdom)
break;
}
// If the immediate post-dominator is not in a less nested loop,
// then we are stuck in a program with an infinite loop.
// In that case, we will not find a safe point, hence, bail out.
if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
Restore = IPdom;
else {
Restore = nullptr;
break;
}
}
}
}
}
static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE,
StringRef RemarkName, StringRef RemarkMessage,
const DiagnosticLocation &Loc,
const MachineBasicBlock *MBB) {
ORE->emit([&]() {
return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB)
<< RemarkMessage;
});
LLVM_DEBUG(dbgs() << RemarkMessage << '\n');
return false;
}
bool ShrinkWrap::performShrinkWrapping(
const ReversePostOrderTraversal<MachineBasicBlock *> &RPOT,
RegScavenger *RS) {
for (MachineBasicBlock *MBB : RPOT) {
LLVM_DEBUG(dbgs() << "Look into: " << printMBBReference(*MBB) << '\n');
if (MBB->isEHFuncletEntry())
return giveUpWithRemarks(ORE, "UnsupportedEHFunclets",
"EH Funclets are not supported yet.",
MBB->front().getDebugLoc(), MBB);
if (MBB->isEHPad() || MBB->isInlineAsmBrIndirectTarget()) {
// Push the prologue and epilogue outside of the region that may throw (or
// jump out via inlineasm_br), by making sure that all the landing pads
// are at least at the boundary of the save and restore points. The
// problem is that a basic block can jump out from the middle in these
// cases, which we do not handle.
updateSaveRestorePoints(*MBB, RS);
if (!ArePointsInteresting()) {
LLVM_DEBUG(dbgs() << "EHPad/inlineasm_br prevents shrink-wrapping\n");
return false;
}
continue;
}
bool StackAddressUsed = false;
// Check if we found any stack accesses in the predecessors. We are not
// doing a full dataflow analysis here to keep things simple but just
// rely on a reverse portorder traversal (RPOT) to guarantee predecessors
// are already processed except for loops (and accept the conservative
// result for loops).
for (const MachineBasicBlock *Pred : MBB->predecessors()) {
if (StackAddressUsedBlockInfo.test(Pred->getNumber())) {
StackAddressUsed = true;
break;
}
}
for (const MachineInstr &MI : *MBB) {
if (useOrDefCSROrFI(MI, RS, StackAddressUsed)) {
// Save (resp. restore) point must dominate (resp. post dominate)
// MI. Look for the proper basic block for those.
updateSaveRestorePoints(*MBB, RS);
// If we are at a point where we cannot improve the placement of
// save/restore instructions, just give up.
if (!ArePointsInteresting()) {
LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n");
return false;
}
// No need to look for other instructions, this basic block
// will already be part of the handled region.
StackAddressUsed = true;
break;
}
}
StackAddressUsedBlockInfo[MBB->getNumber()] = StackAddressUsed;
}
if (!ArePointsInteresting()) {
// If the points are not interesting at this point, then they must be null
// because it means we did not encounter any frame/CSR related code.
// Otherwise, we would have returned from the previous loop.
assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n");
return false;
}
LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: "
<< EntryFreq.getFrequency() << '\n');
const TargetFrameLowering *TFI =
MachineFunc->getSubtarget().getFrameLowering();
do {
LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
<< printMBBReference(*Save) << ' '
<< printBlockFreq(*MBFI, *Save)
<< "\nRestore: " << printMBBReference(*Restore) << ' '
<< printBlockFreq(*MBFI, *Restore) << '\n');
bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save)) &&
EntryFreq >= MBFI->getBlockFreq(Restore)) &&
((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
TFI->canUseAsEpilogue(*Restore)))
break;
LLVM_DEBUG(
dbgs() << "New points are too expensive or invalid for the target\n");
MachineBasicBlock *NewBB;
if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
if (!Save)
break;
NewBB = Save;
} else {
// Restore is expensive.
Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
if (!Restore)
break;
NewBB = Restore;
}
updateSaveRestorePoints(*NewBB, RS);
} while (Save && Restore);
if (!ArePointsInteresting()) {
++NumCandidatesDropped;
return false;
}
return true;
}
bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
return false;
LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
init(MF);
ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) {
// If MF is irreducible, a block may be in a loop without
// MachineLoopInfo reporting it. I.e., we may use the
// post-dominance property in loops, which lead to incorrect
// results. Moreover, we may miss that the prologue and
// epilogue are not in the same loop, leading to unbalanced
// construction/deconstruction of the stack frame.
return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG",
"Irreducible CFGs are not supported yet.",
MF.getFunction().getSubprogram(), &MF.front());
}
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
std::unique_ptr<RegScavenger> RS(
TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
bool Changed = false;
// Initially, conservatively assume that stack addresses can be used in each
// basic block and change the state only for those basic blocks for which we
// were able to prove the opposite.
StackAddressUsedBlockInfo.resize(MF.getNumBlockIDs(), true);
bool HasCandidate = performShrinkWrapping(RPOT, RS.get());
StackAddressUsedBlockInfo.clear();
Changed = postShrinkWrapping(HasCandidate, MF, RS.get());
if (!HasCandidate && !Changed)
return false;
if (!ArePointsInteresting())
return Changed;
LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: "
<< printMBBReference(*Save) << ' '
<< "\nRestore: " << printMBBReference(*Restore) << '\n');
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setSavePoint(Save);
MFI.setRestorePoint(Restore);
++NumCandidates;
return Changed;
}
bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
switch (EnableShrinkWrapOpt) {
case cl::BOU_UNSET:
return TFI->enableShrinkWrapping(MF) &&
// Windows with CFI has some limitations that make it impossible
// to use shrink-wrapping.
!MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
// Sanitizers look at the value of the stack at the location
// of the crash. Since a crash can happen anywhere, the
// frame must be lowered before anything else happen for the
// sanitizers to be able to get a correct stack frame.
!(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) ||
MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) ||
MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) ||
MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress));
// If EnableShrinkWrap is set, it takes precedence on whatever the
// target sets. The rational is that we assume we want to test
// something related to shrink-wrapping.
case cl::BOU_TRUE:
return true;
case cl::BOU_FALSE:
return false;
}
llvm_unreachable("Invalid shrink-wrapping state");
}