blob: d925089d5689f18b4f20da88cca1eca553457b3d [file] [log] [blame]
//===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the DAGTypeLegalizer class. This is a private interface
// shared between the code that implements the SelectionDAG::LegalizeTypes
// method.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
#define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
#include "MatchContext.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/Support/Compiler.h"
namespace llvm {
//===----------------------------------------------------------------------===//
/// This takes an arbitrary SelectionDAG as input and hacks on it until only
/// value types the target machine can handle are left. This involves promoting
/// small sizes to large sizes or splitting up large values into small values.
///
class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
const TargetLowering &TLI;
SelectionDAG &DAG;
public:
/// This pass uses the NodeId on the SDNodes to hold information about the
/// state of the node. The enum has all the values.
enum NodeIdFlags {
/// All operands have been processed, so this node is ready to be handled.
ReadyToProcess = 0,
/// This is a new node, not before seen, that was created in the process of
/// legalizing some other node.
NewNode = -1,
/// This node's ID needs to be set to the number of its unprocessed
/// operands.
Unanalyzed = -2,
/// This is a node that has already been processed.
Processed = -3
// 1+ - This is a node which has this many unprocessed operands.
};
private:
/// This is a bitvector that contains two bits for each simple value type,
/// where the two bits correspond to the LegalizeAction enum from
/// TargetLowering. This can be queried with "getTypeAction(VT)".
TargetLowering::ValueTypeActionImpl ValueTypeActions;
/// Return how we should legalize values of this type.
TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
return TLI.getTypeAction(*DAG.getContext(), VT);
}
/// Return true if this type is legal on this target.
bool isTypeLegal(EVT VT) const {
return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
}
/// Return true if this is a simple legal type.
bool isSimpleLegalType(EVT VT) const {
return VT.isSimple() && TLI.isTypeLegal(VT);
}
EVT getSetCCResultType(EVT VT) const {
return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
}
/// Pretend all of this node's results are legal.
bool IgnoreNodeResults(SDNode *N) const {
return N->getOpcode() == ISD::TargetConstant ||
N->getOpcode() == ISD::Register;
}
// Bijection from SDValue to unique id. As each created node gets a
// new id we do not need to worry about reuse expunging. Should we
// run out of ids, we can do a one time expensive compactifcation.
typedef unsigned TableId;
TableId NextValueId = 1;
SmallDenseMap<SDValue, TableId, 8> ValueToIdMap;
SmallDenseMap<TableId, SDValue, 8> IdToValueMap;
/// For integer nodes that are below legal width, this map indicates what
/// promoted value to use.
SmallDenseMap<TableId, TableId, 8> PromotedIntegers;
/// For integer nodes that need to be expanded this map indicates which
/// operands are the expanded version of the input.
SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers;
/// For floating-point nodes converted to integers of the same size, this map
/// indicates the converted value to use.
SmallDenseMap<TableId, TableId, 8> SoftenedFloats;
/// For floating-point nodes that have a smaller precision than the smallest
/// supported precision, this map indicates what promoted value to use.
SmallDenseMap<TableId, TableId, 8> PromotedFloats;
/// For floating-point nodes that have a smaller precision than the smallest
/// supported precision, this map indicates the converted value to use.
SmallDenseMap<TableId, TableId, 8> SoftPromotedHalfs;
/// For float nodes that need to be expanded this map indicates which operands
/// are the expanded version of the input.
SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats;
/// For nodes that are <1 x ty>, this map indicates the scalar value of type
/// 'ty' to use.
SmallDenseMap<TableId, TableId, 8> ScalarizedVectors;
/// For nodes that need to be split this map indicates which operands are the
/// expanded version of the input.
SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors;
/// For vector nodes that need to be widened, indicates the widened value to
/// use.
SmallDenseMap<TableId, TableId, 8> WidenedVectors;
/// For values that have been replaced with another, indicates the replacement
/// value to use.
SmallDenseMap<TableId, TableId, 8> ReplacedValues;
/// This defines a worklist of nodes to process. In order to be pushed onto
/// this worklist, all operands of a node must have already been processed.
SmallVector<SDNode*, 128> Worklist;
TableId getTableId(SDValue V) {
assert(V.getNode() && "Getting TableId on SDValue()");
auto I = ValueToIdMap.find(V);
if (I != ValueToIdMap.end()) {
// replace if there's been a shift.
RemapId(I->second);
assert(I->second && "All Ids should be nonzero");
return I->second;
}
// Add if it's not there.
ValueToIdMap.insert(std::make_pair(V, NextValueId));
IdToValueMap.insert(std::make_pair(NextValueId, V));
++NextValueId;
assert(NextValueId != 0 &&
"Ran out of Ids. Increase id type size or add compactification");
return NextValueId - 1;
}
const SDValue &getSDValue(TableId &Id) {
RemapId(Id);
assert(Id && "TableId should be non-zero");
auto I = IdToValueMap.find(Id);
assert(I != IdToValueMap.end() && "cannot find Id in map");
return I->second;
}
public:
explicit DAGTypeLegalizer(SelectionDAG &dag)
: TLI(dag.getTargetLoweringInfo()), DAG(dag),
ValueTypeActions(TLI.getValueTypeActions()) {
static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
"Too many value types for ValueTypeActions to hold!");
}
/// This is the main entry point for the type legalizer. This does a
/// top-down traversal of the dag, legalizing types as it goes. Returns
/// "true" if it made any changes.
bool run();
void NoteDeletion(SDNode *Old, SDNode *New) {
assert(Old != New && "node replaced with self");
for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
TableId NewId = getTableId(SDValue(New, i));
TableId OldId = getTableId(SDValue(Old, i));
if (OldId != NewId) {
ReplacedValues[OldId] = NewId;
// Delete Node from tables. We cannot do this when OldId == NewId,
// because NewId can still have table references to it in
// ReplacedValues.
IdToValueMap.erase(OldId);
PromotedIntegers.erase(OldId);
ExpandedIntegers.erase(OldId);
SoftenedFloats.erase(OldId);
PromotedFloats.erase(OldId);
SoftPromotedHalfs.erase(OldId);
ExpandedFloats.erase(OldId);
ScalarizedVectors.erase(OldId);
SplitVectors.erase(OldId);
WidenedVectors.erase(OldId);
}
ValueToIdMap.erase(SDValue(Old, i));
}
}
SelectionDAG &getDAG() const { return DAG; }
private:
SDNode *AnalyzeNewNode(SDNode *N);
void AnalyzeNewValue(SDValue &Val);
void PerformExpensiveChecks();
void RemapId(TableId &Id);
void RemapValue(SDValue &V);
// Common routines.
SDValue BitConvertToInteger(SDValue Op);
SDValue BitConvertVectorToIntegerVector(SDValue Op);
SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
bool CustomWidenLowerNode(SDNode *N, EVT VT);
/// Replace each result of the given MERGE_VALUES node with the corresponding
/// input operand, except for the result 'ResNo', for which the corresponding
/// input operand is returned.
SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
SDValue JoinIntegers(SDValue Lo, SDValue Hi);
std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
void ReplaceValueWith(SDValue From, SDValue To);
void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
SDValue &Lo, SDValue &Hi);
//===--------------------------------------------------------------------===//
// Integer Promotion Support: LegalizeIntegerTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed operand Op which was promoted to a larger integer type,
/// this returns the promoted value. The low bits of the promoted value
/// corresponding to the original type are exactly equal to Op.
/// The extra bits contain rubbish, so the promoted value may need to be zero-
/// or sign-extended from the original type before it is usable (the helpers
/// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
/// For example, if Op is an i16 and was promoted to an i32, then this method
/// returns an i32, the lower 16 bits of which coincide with Op, and the upper
/// 16 bits of which contain rubbish.
SDValue GetPromotedInteger(SDValue Op) {
TableId &PromotedId = PromotedIntegers[getTableId(Op)];
SDValue PromotedOp = getSDValue(PromotedId);
assert(PromotedOp.getNode() && "Operand wasn't promoted?");
return PromotedOp;
}
void SetPromotedInteger(SDValue Op, SDValue Result);
/// Get a promoted operand and sign extend it to the final size.
SDValue SExtPromotedInteger(SDValue Op) {
EVT OldVT = Op.getValueType();
SDLoc dl(Op);
Op = GetPromotedInteger(Op);
return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
DAG.getValueType(OldVT));
}
/// Get a promoted operand and zero extend it to the final size.
SDValue ZExtPromotedInteger(SDValue Op) {
EVT OldVT = Op.getValueType();
SDLoc dl(Op);
Op = GetPromotedInteger(Op);
return DAG.getZeroExtendInReg(Op, dl, OldVT);
}
// Promote the given operand V (vector or scalar) according to N's specific
// reduction kind. N must be an integer VECREDUCE_* or VP_REDUCE_*. Returns
// the nominal extension opcode (ISD::(ANY|ZERO|SIGN)_EXTEND) and the
// promoted value.
SDValue PromoteIntOpVectorReduction(SDNode *N, SDValue V);
// Integer Result Promotion.
void PromoteIntegerResult(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_AssertSext(SDNode *N);
SDValue PromoteIntRes_AssertZext(SDNode *N);
SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
SDValue PromoteIntRes_INSERT_SUBVECTOR(SDNode *N);
SDValue PromoteIntRes_VECTOR_REVERSE(SDNode *N);
SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
SDValue PromoteIntRes_VECTOR_SPLICE(SDNode *N);
SDValue PromoteIntRes_VECTOR_INTERLEAVE_DEINTERLEAVE(SDNode *N);
SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
SDValue PromoteIntRes_ScalarOp(SDNode *N);
SDValue PromoteIntRes_STEP_VECTOR(SDNode *N);
SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N);
SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
SDValue PromoteIntRes_BITCAST(SDNode *N);
SDValue PromoteIntRes_BSWAP(SDNode *N);
SDValue PromoteIntRes_BITREVERSE(SDNode *N);
SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
SDValue PromoteIntRes_Constant(SDNode *N);
SDValue PromoteIntRes_CTLZ(SDNode *N);
SDValue PromoteIntRes_CTPOP_PARITY(SDNode *N);
SDValue PromoteIntRes_CTTZ(SDNode *N);
SDValue PromoteIntRes_VP_CttzElements(SDNode *N);
SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
SDValue PromoteIntRes_FP_TO_XINT_SAT(SDNode *N);
SDValue PromoteIntRes_FP_TO_FP16_BF16(SDNode *N);
SDValue PromoteIntRes_STRICT_FP_TO_FP16_BF16(SDNode *N);
SDValue PromoteIntRes_XRINT(SDNode *N);
SDValue PromoteIntRes_FREEZE(SDNode *N);
SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
SDValue PromoteIntRes_LOAD(LoadSDNode *N);
SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N);
SDValue PromoteIntRes_Overflow(SDNode *N);
SDValue PromoteIntRes_FFREXP(SDNode *N);
SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_Select(SDNode *N);
SDValue PromoteIntRes_SELECT_CC(SDNode *N);
SDValue PromoteIntRes_SETCC(SDNode *N);
SDValue PromoteIntRes_SHL(SDNode *N);
SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N);
SDValue PromoteIntRes_SExtIntBinOp(SDNode *N);
SDValue PromoteIntRes_UMINUMAX(SDNode *N);
SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
SDValue PromoteIntRes_SRA(SDNode *N);
SDValue PromoteIntRes_SRL(SDNode *N);
SDValue PromoteIntRes_TRUNCATE(SDNode *N);
SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_UADDSUBO_CARRY(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_SADDSUBO_CARRY(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_UNDEF(SDNode *N);
SDValue PromoteIntRes_VAARG(SDNode *N);
SDValue PromoteIntRes_VSCALE(SDNode *N);
SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
template <class MatchContextClass>
SDValue PromoteIntRes_ADDSUBSHLSAT(SDNode *N);
SDValue PromoteIntRes_MULFIX(SDNode *N);
SDValue PromoteIntRes_DIVFIX(SDNode *N);
SDValue PromoteIntRes_GET_ROUNDING(SDNode *N);
SDValue PromoteIntRes_VECREDUCE(SDNode *N);
SDValue PromoteIntRes_VP_REDUCE(SDNode *N);
SDValue PromoteIntRes_ABS(SDNode *N);
SDValue PromoteIntRes_Rotate(SDNode *N);
SDValue PromoteIntRes_FunnelShift(SDNode *N);
SDValue PromoteIntRes_VPFunnelShift(SDNode *N);
SDValue PromoteIntRes_IS_FPCLASS(SDNode *N);
// Integer Operand Promotion.
bool PromoteIntegerOperand(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
SDValue PromoteIntOp_BITCAST(SDNode *N);
SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
SDValue PromoteIntOp_INSERT_SUBVECTOR(SDNode *N);
SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
SDValue PromoteIntOp_ScalarOp(SDNode *N);
SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_Shift(SDNode *N);
SDValue PromoteIntOp_FunnelShift(SDNode *N);
SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
SDValue PromoteIntOp_VP_SIGN_EXTEND(SDNode *N);
SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
SDValue PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N);
SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_TRUNCATE(SDNode *N);
SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
SDValue PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N);
SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
SDValue PromoteIntOp_VP_ZERO_EXTEND(SDNode *N);
SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N);
SDValue PromoteIntOp_FIX(SDNode *N);
SDValue PromoteIntOp_ExpOp(SDNode *N);
SDValue PromoteIntOp_VECREDUCE(SDNode *N);
SDValue PromoteIntOp_VP_REDUCE(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_SET_ROUNDING(SDNode *N);
SDValue PromoteIntOp_STACKMAP(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_PATCHPOINT(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_VP_STRIDED(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_VP_SPLICE(SDNode *N, unsigned OpNo);
void SExtOrZExtPromotedOperands(SDValue &LHS, SDValue &RHS);
void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
//===--------------------------------------------------------------------===//
// Integer Expansion Support: LegalizeIntegerTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed operand Op which was expanded into two integers of half
/// the size, this returns the two halves. The low bits of Op are exactly
/// equal to the bits of Lo; the high bits exactly equal Hi.
/// For example, if Op is an i64 which was expanded into two i32's, then this
/// method returns the two i32's, with Lo being equal to the lower 32 bits of
/// Op, and Hi being equal to the upper 32 bits.
void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
// Integer Result Expansion.
void ExpandIntegerResult(SDNode *N, unsigned ResNo);
void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ABS (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_READCOUNTER (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_GET_ROUNDING (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_FP_TO_XINT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_FP_TO_XINT_SAT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_XROUND_XRINT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_UADDSUBO_CARRY (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SADDSUBO_CARRY (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_BITREVERSE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_PARITY (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ShiftThroughStack (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_MINMAX (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_UADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_XMULO (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUBSAT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SHLSAT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_MULFIX (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_DIVFIX (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ATOMIC_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_VECREDUCE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_Rotate (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_FunnelShift (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_VSCALE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
SDValue &Lo, SDValue &Hi);
bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
// Integer Operand Expansion.
bool ExpandIntegerOperand(SDNode *N, unsigned OpNo);
SDValue ExpandIntOp_BR_CC(SDNode *N);
SDValue ExpandIntOp_SELECT_CC(SDNode *N);
SDValue ExpandIntOp_SETCC(SDNode *N);
SDValue ExpandIntOp_SETCCCARRY(SDNode *N);
SDValue ExpandIntOp_Shift(SDNode *N);
SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue ExpandIntOp_TRUNCATE(SDNode *N);
SDValue ExpandIntOp_XINT_TO_FP(SDNode *N);
SDValue ExpandIntOp_RETURNADDR(SDNode *N);
SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
SDValue ExpandIntOp_SPLAT_VECTOR(SDNode *N);
SDValue ExpandIntOp_STACKMAP(SDNode *N, unsigned OpNo);
SDValue ExpandIntOp_PATCHPOINT(SDNode *N, unsigned OpNo);
SDValue ExpandIntOp_VP_STRIDED(SDNode *N, unsigned OpNo);
void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
ISD::CondCode &CCCode, const SDLoc &dl);
//===--------------------------------------------------------------------===//
// Float to Integer Conversion Support: LegalizeFloatTypes.cpp
//===--------------------------------------------------------------------===//
/// GetSoftenedFloat - Given a processed operand Op which was converted to an
/// integer of the same size, this returns the integer. The integer contains
/// exactly the same bits as Op - only the type changed. For example, if Op
/// is an f32 which was softened to an i32, then this method returns an i32,
/// the bits of which coincide with those of Op
SDValue GetSoftenedFloat(SDValue Op) {
TableId Id = getTableId(Op);
auto Iter = SoftenedFloats.find(Id);
if (Iter == SoftenedFloats.end()) {
assert(isSimpleLegalType(Op.getValueType()) &&
"Operand wasn't converted to integer?");
return Op;
}
SDValue SoftenedOp = getSDValue(Iter->second);
assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?");
return SoftenedOp;
}
void SetSoftenedFloat(SDValue Op, SDValue Result);
// Convert Float Results to Integer.
void SoftenFloatResult(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC);
SDValue SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC);
SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_ARITH_FENCE(SDNode *N);
SDValue SoftenFloatRes_BITCAST(SDNode *N);
SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
SDValue SoftenFloatRes_ConstantFP(SDNode *N);
SDValue SoftenFloatRes_EXTRACT_ELEMENT(SDNode *N);
SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo);
SDValue SoftenFloatRes_FABS(SDNode *N);
SDValue SoftenFloatRes_FMINNUM(SDNode *N);
SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
SDValue SoftenFloatRes_FADD(SDNode *N);
SDValue SoftenFloatRes_FCBRT(SDNode *N);
SDValue SoftenFloatRes_FCEIL(SDNode *N);
SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
SDValue SoftenFloatRes_FCOS(SDNode *N);
SDValue SoftenFloatRes_FDIV(SDNode *N);
SDValue SoftenFloatRes_FEXP(SDNode *N);
SDValue SoftenFloatRes_FEXP2(SDNode *N);
SDValue SoftenFloatRes_FEXP10(SDNode *N);
SDValue SoftenFloatRes_FFLOOR(SDNode *N);
SDValue SoftenFloatRes_FLOG(SDNode *N);
SDValue SoftenFloatRes_FLOG2(SDNode *N);
SDValue SoftenFloatRes_FLOG10(SDNode *N);
SDValue SoftenFloatRes_FMA(SDNode *N);
SDValue SoftenFloatRes_FMUL(SDNode *N);
SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
SDValue SoftenFloatRes_FNEG(SDNode *N);
SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
SDValue SoftenFloatRes_BF16_TO_FP(SDNode *N);
SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
SDValue SoftenFloatRes_FPOW(SDNode *N);
SDValue SoftenFloatRes_ExpOp(SDNode *N);
SDValue SoftenFloatRes_FFREXP(SDNode *N);
SDValue SoftenFloatRes_FREEZE(SDNode *N);
SDValue SoftenFloatRes_FREM(SDNode *N);
SDValue SoftenFloatRes_FRINT(SDNode *N);
SDValue SoftenFloatRes_FROUND(SDNode *N);
SDValue SoftenFloatRes_FROUNDEVEN(SDNode *N);
SDValue SoftenFloatRes_FSIN(SDNode *N);
SDValue SoftenFloatRes_FSQRT(SDNode *N);
SDValue SoftenFloatRes_FSUB(SDNode *N);
SDValue SoftenFloatRes_FTRUNC(SDNode *N);
SDValue SoftenFloatRes_LOAD(SDNode *N);
SDValue SoftenFloatRes_ATOMIC_LOAD(SDNode *N);
SDValue SoftenFloatRes_SELECT(SDNode *N);
SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
SDValue SoftenFloatRes_UNDEF(SDNode *N);
SDValue SoftenFloatRes_VAARG(SDNode *N);
SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
SDValue SoftenFloatRes_VECREDUCE(SDNode *N);
SDValue SoftenFloatRes_VECREDUCE_SEQ(SDNode *N);
// Convert Float Operand to Integer.
bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
SDValue SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC);
SDValue SoftenFloatOp_BITCAST(SDNode *N);
SDValue SoftenFloatOp_BR_CC(SDNode *N);
SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N);
SDValue SoftenFloatOp_FP_TO_XINT_SAT(SDNode *N);
SDValue SoftenFloatOp_LROUND(SDNode *N);
SDValue SoftenFloatOp_LLROUND(SDNode *N);
SDValue SoftenFloatOp_LRINT(SDNode *N);
SDValue SoftenFloatOp_LLRINT(SDNode *N);
SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
SDValue SoftenFloatOp_SETCC(SDNode *N);
SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
SDValue SoftenFloatOp_ATOMIC_STORE(SDNode *N, unsigned OpNo);
SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N);
//===--------------------------------------------------------------------===//
// Float Expansion Support: LegalizeFloatTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed operand Op which was expanded into two floating-point
/// values of half the size, this returns the two halves.
/// The low bits of Op are exactly equal to the bits of Lo; the high bits
/// exactly equal Hi. For example, if Op is a ppcf128 which was expanded
/// into two f64's, then this method returns the two f64's, with Lo being
/// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
// Float Result Expansion.
void ExpandFloatResult(SDNode *N, unsigned ResNo);
void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC,
SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC,
SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FMINNUM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FMAXNUM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FCBRT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FEXP10 (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FMA (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FLDEXP (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FREEZE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FREM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FROUND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FROUNDEVEN(SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
// Float Operand Expansion.
bool ExpandFloatOperand(SDNode *N, unsigned OpNo);
SDValue ExpandFloatOp_BR_CC(SDNode *N);
SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
SDValue ExpandFloatOp_FP_TO_XINT(SDNode *N);
SDValue ExpandFloatOp_LROUND(SDNode *N);
SDValue ExpandFloatOp_LLROUND(SDNode *N);
SDValue ExpandFloatOp_LRINT(SDNode *N);
SDValue ExpandFloatOp_LLRINT(SDNode *N);
SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
SDValue ExpandFloatOp_SETCC(SDNode *N);
SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
ISD::CondCode &CCCode, const SDLoc &dl,
SDValue &Chain, bool IsSignaling = false);
//===--------------------------------------------------------------------===//
// Float promotion support: LegalizeFloatTypes.cpp
//===--------------------------------------------------------------------===//
SDValue GetPromotedFloat(SDValue Op) {
TableId &PromotedId = PromotedFloats[getTableId(Op)];
SDValue PromotedOp = getSDValue(PromotedId);
assert(PromotedOp.getNode() && "Operand wasn't promoted?");
return PromotedOp;
}
void SetPromotedFloat(SDValue Op, SDValue Result);
void PromoteFloatResult(SDNode *N, unsigned ResNo);
SDValue PromoteFloatRes_BITCAST(SDNode *N);
SDValue PromoteFloatRes_BinOp(SDNode *N);
SDValue PromoteFloatRes_ConstantFP(SDNode *N);
SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
SDValue PromoteFloatRes_FMAD(SDNode *N);
SDValue PromoteFloatRes_ExpOp(SDNode *N);
SDValue PromoteFloatRes_FFREXP(SDNode *N);
SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
SDValue PromoteFloatRes_STRICT_FP_ROUND(SDNode *N);
SDValue PromoteFloatRes_LOAD(SDNode *N);
SDValue PromoteFloatRes_ATOMIC_LOAD(SDNode *N);
SDValue PromoteFloatRes_SELECT(SDNode *N);
SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
SDValue PromoteFloatRes_UnaryOp(SDNode *N);
SDValue PromoteFloatRes_UNDEF(SDNode *N);
SDValue BitcastToInt_ATOMIC_SWAP(SDNode *N);
SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
SDValue PromoteFloatRes_VECREDUCE(SDNode *N);
SDValue PromoteFloatRes_VECREDUCE_SEQ(SDNode *N);
bool PromoteFloatOperand(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_STRICT_FP_EXTEND(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_UnaryOp(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_FP_TO_XINT_SAT(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_ATOMIC_STORE(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
//===--------------------------------------------------------------------===//
// Half soft promotion support: LegalizeFloatTypes.cpp
//===--------------------------------------------------------------------===//
SDValue GetSoftPromotedHalf(SDValue Op) {
TableId &PromotedId = SoftPromotedHalfs[getTableId(Op)];
SDValue PromotedOp = getSDValue(PromotedId);
assert(PromotedOp.getNode() && "Operand wasn't promoted?");
return PromotedOp;
}
void SetSoftPromotedHalf(SDValue Op, SDValue Result);
void SoftPromoteHalfResult(SDNode *N, unsigned ResNo);
SDValue SoftPromoteHalfRes_ARITH_FENCE(SDNode *N);
SDValue SoftPromoteHalfRes_BinOp(SDNode *N);
SDValue SoftPromoteHalfRes_BITCAST(SDNode *N);
SDValue SoftPromoteHalfRes_ConstantFP(SDNode *N);
SDValue SoftPromoteHalfRes_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue SoftPromoteHalfRes_FCOPYSIGN(SDNode *N);
SDValue SoftPromoteHalfRes_FMAD(SDNode *N);
SDValue SoftPromoteHalfRes_ExpOp(SDNode *N);
SDValue SoftPromoteHalfRes_FFREXP(SDNode *N);
SDValue SoftPromoteHalfRes_FP_ROUND(SDNode *N);
SDValue SoftPromoteHalfRes_LOAD(SDNode *N);
SDValue SoftPromoteHalfRes_ATOMIC_LOAD(SDNode *N);
SDValue SoftPromoteHalfRes_SELECT(SDNode *N);
SDValue SoftPromoteHalfRes_SELECT_CC(SDNode *N);
SDValue SoftPromoteHalfRes_UnaryOp(SDNode *N);
SDValue SoftPromoteHalfRes_XINT_TO_FP(SDNode *N);
SDValue SoftPromoteHalfRes_UNDEF(SDNode *N);
SDValue SoftPromoteHalfRes_VECREDUCE(SDNode *N);
SDValue SoftPromoteHalfRes_VECREDUCE_SEQ(SDNode *N);
bool SoftPromoteHalfOperand(SDNode *N, unsigned OpNo);
SDValue SoftPromoteHalfOp_BITCAST(SDNode *N);
SDValue SoftPromoteHalfOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
SDValue SoftPromoteHalfOp_FP_EXTEND(SDNode *N);
SDValue SoftPromoteHalfOp_FP_TO_XINT(SDNode *N);
SDValue SoftPromoteHalfOp_FP_TO_XINT_SAT(SDNode *N);
SDValue SoftPromoteHalfOp_SETCC(SDNode *N);
SDValue SoftPromoteHalfOp_SELECT_CC(SDNode *N, unsigned OpNo);
SDValue SoftPromoteHalfOp_STORE(SDNode *N, unsigned OpNo);
SDValue SoftPromoteHalfOp_ATOMIC_STORE(SDNode *N, unsigned OpNo);
SDValue SoftPromoteHalfOp_STACKMAP(SDNode *N, unsigned OpNo);
SDValue SoftPromoteHalfOp_PATCHPOINT(SDNode *N, unsigned OpNo);
//===--------------------------------------------------------------------===//
// Scalarization Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed one-element vector Op which was scalarized to its
/// element type, this returns the element. For example, if Op is a v1i32,
/// Op = < i32 val >, this method returns val, an i32.
SDValue GetScalarizedVector(SDValue Op) {
TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)];
SDValue ScalarizedOp = getSDValue(ScalarizedId);
assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
return ScalarizedOp;
}
void SetScalarizedVector(SDValue Op, SDValue Result);
// Vector Result Scalarization: <1 x ty> -> ty.
void ScalarizeVectorResult(SDNode *N, unsigned ResNo);
SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
SDValue ScalarizeVecRes_BinOp(SDNode *N);
SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
SDValue ScalarizeVecRes_StrictFPOp(SDNode *N);
SDValue ScalarizeVecRes_OverflowOp(SDNode *N, unsigned ResNo);
SDValue ScalarizeVecRes_InregOp(SDNode *N);
SDValue ScalarizeVecRes_VecInregOp(SDNode *N);
SDValue ScalarizeVecRes_ADDRSPACECAST(SDNode *N);
SDValue ScalarizeVecRes_BITCAST(SDNode *N);
SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
SDValue ScalarizeVecRes_ExpOp(SDNode *N);
SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
SDValue ScalarizeVecRes_VSELECT(SDNode *N);
SDValue ScalarizeVecRes_SELECT(SDNode *N);
SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
SDValue ScalarizeVecRes_SETCC(SDNode *N);
SDValue ScalarizeVecRes_UNDEF(SDNode *N);
SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
SDValue ScalarizeVecRes_FP_TO_XINT_SAT(SDNode *N);
SDValue ScalarizeVecRes_IS_FPCLASS(SDNode *N);
SDValue ScalarizeVecRes_FIX(SDNode *N);
SDValue ScalarizeVecRes_FFREXP(SDNode *N, unsigned ResNo);
// Vector Operand Scalarization: <1 x ty> -> ty.
bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
SDValue ScalarizeVecOp_BITCAST(SDNode *N);
SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
SDValue ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N);
SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue ScalarizeVecOp_VSELECT(SDNode *N);
SDValue ScalarizeVecOp_VSETCC(SDNode *N);
SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
SDValue ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N, unsigned OpNo);
SDValue ScalarizeVecOp_FP_EXTEND(SDNode *N);
SDValue ScalarizeVecOp_STRICT_FP_EXTEND(SDNode *N);
SDValue ScalarizeVecOp_VECREDUCE(SDNode *N);
SDValue ScalarizeVecOp_VECREDUCE_SEQ(SDNode *N);
//===--------------------------------------------------------------------===//
// Vector Splitting Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed vector Op which was split into vectors of half the size,
/// this method returns the halves. The first elements of Op coincide with the
/// elements of Lo; the remaining elements of Op coincide with the elements of
/// Hi: Op is what you would get by concatenating Lo and Hi.
/// For example, if Op is a v8i32 that was split into two v4i32's, then this
/// method returns the two v4i32's, with Lo corresponding to the first 4
/// elements of Op, and Hi to the last 4 elements.
void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
/// Split mask operator of a VP intrinsic.
std::pair<SDValue, SDValue> SplitMask(SDValue Mask);
/// Split mask operator of a VP intrinsic in a given location.
std::pair<SDValue, SDValue> SplitMask(SDValue Mask, const SDLoc &DL);
// Helper function for incrementing the pointer when splitting
// memory operations
void IncrementPointer(MemSDNode *N, EVT MemVT, MachinePointerInfo &MPI,
SDValue &Ptr, uint64_t *ScaledOffset = nullptr);
// Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
void SplitVectorResult(SDNode *N, unsigned ResNo);
void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_ADDRSPACECAST(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_FFREXP(SDNode *N, unsigned ResNo, SDValue &Lo, SDValue &Hi);
void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo,
SDValue &Lo, SDValue &Hi);
void SplitVecRes_FIX(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_FPOp_MultiType(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_IS_FPCLASS(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi);
void SplitVecRes_VP_LOAD(VPLoadSDNode *LD, SDValue &Lo, SDValue &Hi);
void SplitVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *SLD, SDValue &Lo,
SDValue &Hi);
void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi);
void SplitVecRes_Gather(MemSDNode *VPGT, SDValue &Lo, SDValue &Hi,
bool SplitSETCC = false);
void SplitVecRes_ScalarOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_STEP_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_VECTOR_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
SDValue &Hi);
void SplitVecRes_VECTOR_SPLICE(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_VECTOR_DEINTERLEAVE(SDNode *N);
void SplitVecRes_VECTOR_INTERLEAVE(SDNode *N);
void SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_FP_TO_XINT_SAT(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_VP_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi);
// Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
bool SplitVectorOperand(SDNode *N, unsigned OpNo);
SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo);
SDValue SplitVecOp_VECREDUCE_SEQ(SDNode *N);
SDValue SplitVecOp_VP_REDUCE(SDNode *N, unsigned OpNo);
SDValue SplitVecOp_UnaryOp(SDNode *N);
SDValue SplitVecOp_TruncateHelper(SDNode *N);
SDValue SplitVecOp_BITCAST(SDNode *N);
SDValue SplitVecOp_INSERT_SUBVECTOR(SDNode *N, unsigned OpNo);
SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue SplitVecOp_ExtVecInRegOp(SDNode *N);
SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue SplitVecOp_VP_STORE(VPStoreSDNode *N, unsigned OpNo);
SDValue SplitVecOp_VP_STRIDED_STORE(VPStridedStoreSDNode *N, unsigned OpNo);
SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
SDValue SplitVecOp_Scatter(MemSDNode *N, unsigned OpNo);
SDValue SplitVecOp_Gather(MemSDNode *MGT, unsigned OpNo);
SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
SDValue SplitVecOp_VSETCC(SDNode *N);
SDValue SplitVecOp_FP_ROUND(SDNode *N);
SDValue SplitVecOp_FPOpDifferentTypes(SDNode *N);
SDValue SplitVecOp_FP_TO_XINT_SAT(SDNode *N);
SDValue SplitVecOp_VP_CttzElements(SDNode *N);
//===--------------------------------------------------------------------===//
// Vector Widening Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
/// Given a processed vector Op which was widened into a larger vector, this
/// method returns the larger vector. The elements of the returned vector
/// consist of the elements of Op followed by elements containing rubbish.
/// For example, if Op is a v2i32 that was widened to a v4i32, then this
/// method returns a v4i32 for which the first two elements are the same as
/// those of Op, while the last two elements contain rubbish.
SDValue GetWidenedVector(SDValue Op) {
TableId &WidenedId = WidenedVectors[getTableId(Op)];
SDValue WidenedOp = getSDValue(WidenedId);
assert(WidenedOp.getNode() && "Operand wasn't widened?");
return WidenedOp;
}
void SetWidenedVector(SDValue Op, SDValue Result);
/// Given a mask Mask, returns the larger vector into which Mask was widened.
SDValue GetWidenedMask(SDValue Mask, ElementCount EC) {
// For VP operations, we must also widen the mask. Note that the mask type
// may not actually need widening, leading it be split along with the VP
// operation.
// FIXME: This could lead to an infinite split/widen loop. We only handle
// the case where the mask needs widening to an identically-sized type as
// the vector inputs.
assert(getTypeAction(Mask.getValueType()) ==
TargetLowering::TypeWidenVector &&
"Unable to widen binary VP op");
Mask = GetWidenedVector(Mask);
assert(Mask.getValueType().getVectorElementCount() == EC &&
"Unable to widen binary VP op");
return Mask;
}
// Widen Vector Result Promotion.
void WidenVectorResult(SDNode *N, unsigned ResNo);
SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
SDValue WidenVecRes_ADDRSPACECAST(SDNode *N);
SDValue WidenVecRes_AssertZext(SDNode* N);
SDValue WidenVecRes_BITCAST(SDNode* N);
SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N);
SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
SDValue WidenVecRes_INSERT_SUBVECTOR(SDNode *N);
SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
SDValue WidenVecRes_LOAD(SDNode* N);
SDValue WidenVecRes_VP_LOAD(VPLoadSDNode *N);
SDValue WidenVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *N);
SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N);
SDValue WidenVecRes_VP_GATHER(VPGatherSDNode* N);
SDValue WidenVecRes_ScalarOp(SDNode* N);
SDValue WidenVecRes_Select(SDNode *N);
SDValue WidenVSELECTMask(SDNode *N);
SDValue WidenVecRes_SELECT_CC(SDNode* N);
SDValue WidenVecRes_SETCC(SDNode* N);
SDValue WidenVecRes_STRICT_FSETCC(SDNode* N);
SDValue WidenVecRes_UNDEF(SDNode *N);
SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
SDValue WidenVecRes_VECTOR_REVERSE(SDNode *N);
SDValue WidenVecRes_Ternary(SDNode *N);
SDValue WidenVecRes_Binary(SDNode *N);
SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
SDValue WidenVecRes_BinaryWithExtraScalarOp(SDNode *N);
SDValue WidenVecRes_StrictFP(SDNode *N);
SDValue WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo);
SDValue WidenVecRes_Convert(SDNode *N);
SDValue WidenVecRes_Convert_StrictFP(SDNode *N);
SDValue WidenVecRes_FP_TO_XINT_SAT(SDNode *N);
SDValue WidenVecRes_XRINT(SDNode *N);
SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
SDValue WidenVecRes_UnarySameEltsWithScalarArg(SDNode *N);
SDValue WidenVecRes_ExpOp(SDNode *N);
SDValue WidenVecRes_Unary(SDNode *N);
SDValue WidenVecRes_InregOp(SDNode *N);
// Widen Vector Operand.
bool WidenVectorOperand(SDNode *N, unsigned OpNo);
SDValue WidenVecOp_BITCAST(SDNode *N);
SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
SDValue WidenVecOp_EXTEND(SDNode *N);
SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue WidenVecOp_INSERT_SUBVECTOR(SDNode *N);
SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
SDValue WidenVecOp_EXTEND_VECTOR_INREG(SDNode *N);
SDValue WidenVecOp_STORE(SDNode* N);
SDValue WidenVecOp_VP_STORE(SDNode *N, unsigned OpNo);
SDValue WidenVecOp_VP_STRIDED_STORE(SDNode *N, unsigned OpNo);
SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo);
SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo);
SDValue WidenVecOp_VP_SCATTER(SDNode* N, unsigned OpNo);
SDValue WidenVecOp_SETCC(SDNode* N);
SDValue WidenVecOp_STRICT_FSETCC(SDNode* N);
SDValue WidenVecOp_VSELECT(SDNode *N);
SDValue WidenVecOp_Convert(SDNode *N);
SDValue WidenVecOp_FP_TO_XINT_SAT(SDNode *N);
SDValue WidenVecOp_UnrollVectorOp(SDNode *N);
SDValue WidenVecOp_IS_FPCLASS(SDNode *N);
SDValue WidenVecOp_VECREDUCE(SDNode *N);
SDValue WidenVecOp_VECREDUCE_SEQ(SDNode *N);
SDValue WidenVecOp_VP_REDUCE(SDNode *N);
SDValue WidenVecOp_ExpOp(SDNode *N);
SDValue WidenVecOp_VP_CttzElements(SDNode *N);
/// Helper function to generate a set of operations to perform
/// a vector operation for a wider type.
///
SDValue UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE);
//===--------------------------------------------------------------------===//
// Vector Widening Utilities Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
/// Helper function to generate a set of loads to load a vector with a
/// resulting wider type. It takes:
/// LdChain: list of chains for the load to be generated.
/// Ld: load to widen
SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
LoadSDNode *LD);
/// Helper function to generate a set of extension loads to load a vector with
/// a resulting wider type. It takes:
/// LdChain: list of chains for the load to be generated.
/// Ld: load to widen
/// ExtType: extension element type
SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
LoadSDNode *LD, ISD::LoadExtType ExtType);
/// Helper function to generate a set of stores to store a widen vector into
/// non-widen memory. Returns true if successful, false otherwise.
/// StChain: list of chains for the stores we have generated
/// ST: store of a widen value
bool GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
/// Modifies a vector input (widen or narrows) to a vector of NVT. The
/// input vector must have the same element type as NVT.
/// When FillWithZeroes is "on" the vector will be widened with zeroes.
/// By default, the vector will be widened with undefined values.
SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false);
/// Return a mask of vector type MaskVT to replace InMask. Also adjust
/// MaskVT to ToMaskVT if needed with vector extension or truncation.
SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT);
//===--------------------------------------------------------------------===//
// Generic Splitting: LegalizeTypesGeneric.cpp
//===--------------------------------------------------------------------===//
// Legalization methods which only use that the illegal type is split into two
// not necessarily identical types. As such they can be used for splitting
// vectors and expanding integers and floats.
void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
if (Op.getValueType().isVector())
GetSplitVector(Op, Lo, Hi);
else if (Op.getValueType().isInteger())
GetExpandedInteger(Op, Lo, Hi);
else
GetExpandedFloat(Op, Lo, Hi);
}
/// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
/// given value.
void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
// Generic Result Splitting.
void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
SDValue &Lo, SDValue &Hi);
void SplitVecRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitRes_ARITH_FENCE (SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitRes_Select (SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitRes_FREEZE (SDNode *N, SDValue &Lo, SDValue &Hi);
//===--------------------------------------------------------------------===//
// Generic Expansion: LegalizeTypesGeneric.cpp
//===--------------------------------------------------------------------===//
// Legalization methods which only use that the illegal type is split into two
// identical types of half the size, and that the Lo/Hi part is stored first
// in memory on little/big-endian machines, followed by the Hi/Lo part. As
// such they can be used for expanding integers and floats.
void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
if (Op.getValueType().isInteger())
GetExpandedInteger(Op, Lo, Hi);
else
GetExpandedFloat(Op, Lo, Hi);
}
/// This function will split the integer \p Op into \p NumElements
/// operations of type \p EltVT and store them in \p Ops.
void IntegerToVector(SDValue Op, unsigned NumElements,
SmallVectorImpl<SDValue> &Ops, EVT EltVT);
// Generic Result Expansion.
void ExpandRes_MERGE_VALUES (SDNode *N, unsigned ResNo,
SDValue &Lo, SDValue &Hi);
void ExpandRes_BITCAST (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi);
// Generic Operand Expansion.
SDValue ExpandOp_BITCAST (SDNode *N);
SDValue ExpandOp_BUILD_VECTOR (SDNode *N);
SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N);
SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo);
};
} // end namespace llvm.
#endif