blob: 6e861b88c1181eb77d5ae18ddb22e74dd6e11fa4 [file] [log] [blame]
//===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
// both before and after the DAG is legalized.
//
// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
// primarily intended to handle simplification opportunities that are implicit
// in the LLVM IR and exposed by the various codegen lowering phases.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/ByteProvider.h"
#include "llvm/CodeGen/DAGCombine.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/SDPatternMatch.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/SelectionDAGTargetInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGenTypes/MachineValueType.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <iterator>
#include <optional>
#include <string>
#include <tuple>
#include <utility>
#include <variant>
#include "MatchContext.h"
using namespace llvm;
using namespace llvm::SDPatternMatch;
#define DEBUG_TYPE "dagcombine"
STATISTIC(NodesCombined , "Number of dag nodes combined");
STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
STATISTIC(SlicedLoads, "Number of load sliced");
STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops");
DEBUG_COUNTER(DAGCombineCounter, "dagcombine",
"Controls whether a DAG combine is performed for a node");
static cl::opt<bool>
CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
cl::desc("Enable DAG combiner's use of IR alias analysis"));
static cl::opt<bool>
UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
cl::desc("Enable DAG combiner's use of TBAA"));
#ifndef NDEBUG
static cl::opt<std::string>
CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
cl::desc("Only use DAG-combiner alias analysis in this"
" function"));
#endif
/// Hidden option to stress test load slicing, i.e., when this option
/// is enabled, load slicing bypasses most of its profitability guards.
static cl::opt<bool>
StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
cl::desc("Bypass the profitability model of load slicing"),
cl::init(false));
static cl::opt<bool>
MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
cl::desc("DAG combiner may split indexing from loads"));
static cl::opt<bool>
EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true),
cl::desc("DAG combiner enable merging multiple stores "
"into a wider store"));
static cl::opt<unsigned> TokenFactorInlineLimit(
"combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048),
cl::desc("Limit the number of operands to inline for Token Factors"));
static cl::opt<unsigned> StoreMergeDependenceLimit(
"combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10),
cl::desc("Limit the number of times for the same StoreNode and RootNode "
"to bail out in store merging dependence check"));
static cl::opt<bool> EnableReduceLoadOpStoreWidth(
"combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true),
cl::desc("DAG combiner enable reducing the width of load/op/store "
"sequence"));
static cl::opt<bool> ReduceLoadOpStoreWidthForceNarrowingProfitable(
"combiner-reduce-load-op-store-width-force-narrowing-profitable",
cl::Hidden, cl::init(false),
cl::desc("DAG combiner force override the narrowing profitable check when "
"reducing the width of load/op/store sequences"));
static cl::opt<bool> EnableShrinkLoadReplaceStoreWithStore(
"combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true),
cl::desc("DAG combiner enable load/<replace bytes>/store with "
"a narrower store"));
static cl::opt<bool> DisableCombines("combiner-disabled", cl::Hidden,
cl::init(false),
cl::desc("Disable the DAG combiner"));
namespace {
class DAGCombiner {
SelectionDAG &DAG;
const TargetLowering &TLI;
const SelectionDAGTargetInfo *STI;
CombineLevel Level = BeforeLegalizeTypes;
CodeGenOptLevel OptLevel;
bool LegalDAG = false;
bool LegalOperations = false;
bool LegalTypes = false;
bool ForCodeSize;
bool DisableGenericCombines;
/// Worklist of all of the nodes that need to be simplified.
///
/// This must behave as a stack -- new nodes to process are pushed onto the
/// back and when processing we pop off of the back.
///
/// The worklist will not contain duplicates but may contain null entries
/// due to nodes being deleted from the underlying DAG. For fast lookup and
/// deduplication, the index of the node in this vector is stored in the
/// node in SDNode::CombinerWorklistIndex.
SmallVector<SDNode *, 64> Worklist;
/// This records all nodes attempted to be added to the worklist since we
/// considered a new worklist entry. As we keep do not add duplicate nodes
/// in the worklist, this is different from the tail of the worklist.
SmallSetVector<SDNode *, 32> PruningList;
/// Map from candidate StoreNode to the pair of RootNode and count.
/// The count is used to track how many times we have seen the StoreNode
/// with the same RootNode bail out in dependence check. If we have seen
/// the bail out for the same pair many times over a limit, we won't
/// consider the StoreNode with the same RootNode as store merging
/// candidate again.
DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap;
// BatchAA - Used for DAG load/store alias analysis.
BatchAAResults *BatchAA;
/// This caches all chains that have already been processed in
/// DAGCombiner::getStoreMergeCandidates() and found to have no mergeable
/// stores candidates.
SmallPtrSet<SDNode *, 4> ChainsWithoutMergeableStores;
/// When an instruction is simplified, add all users of the instruction to
/// the work lists because they might get more simplified now.
void AddUsersToWorklist(SDNode *N) {
for (SDNode *Node : N->users())
AddToWorklist(Node);
}
/// Convenient shorthand to add a node and all of its user to the worklist.
void AddToWorklistWithUsers(SDNode *N) {
AddUsersToWorklist(N);
AddToWorklist(N);
}
// Prune potentially dangling nodes. This is called after
// any visit to a node, but should also be called during a visit after any
// failed combine which may have created a DAG node.
void clearAddedDanglingWorklistEntries() {
// Check any nodes added to the worklist to see if they are prunable.
while (!PruningList.empty()) {
auto *N = PruningList.pop_back_val();
if (N->use_empty())
recursivelyDeleteUnusedNodes(N);
}
}
SDNode *getNextWorklistEntry() {
// Before we do any work, remove nodes that are not in use.
clearAddedDanglingWorklistEntries();
SDNode *N = nullptr;
// The Worklist holds the SDNodes in order, but it may contain null
// entries.
while (!N && !Worklist.empty()) {
N = Worklist.pop_back_val();
}
if (N) {
assert(N->getCombinerWorklistIndex() >= 0 &&
"Found a worklist entry without a corresponding map entry!");
// Set to -2 to indicate that we combined the node.
N->setCombinerWorklistIndex(-2);
}
return N;
}
/// Call the node-specific routine that folds each particular type of node.
SDValue visit(SDNode *N);
public:
DAGCombiner(SelectionDAG &D, BatchAAResults *BatchAA, CodeGenOptLevel OL)
: DAG(D), TLI(D.getTargetLoweringInfo()),
STI(D.getSubtarget().getSelectionDAGInfo()), OptLevel(OL),
BatchAA(BatchAA) {
ForCodeSize = DAG.shouldOptForSize();
DisableGenericCombines =
DisableCombines || (STI && STI->disableGenericCombines(OptLevel));
MaximumLegalStoreInBits = 0;
// We use the minimum store size here, since that's all we can guarantee
// for the scalable vector types.
for (MVT VT : MVT::all_valuetypes())
if (EVT(VT).isSimple() && VT != MVT::Other &&
TLI.isTypeLegal(EVT(VT)) &&
VT.getSizeInBits().getKnownMinValue() >= MaximumLegalStoreInBits)
MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinValue();
}
void ConsiderForPruning(SDNode *N) {
// Mark this for potential pruning.
PruningList.insert(N);
}
/// Add to the worklist making sure its instance is at the back (next to be
/// processed.)
void AddToWorklist(SDNode *N, bool IsCandidateForPruning = true,
bool SkipIfCombinedBefore = false) {
assert(N->getOpcode() != ISD::DELETED_NODE &&
"Deleted Node added to Worklist");
// Skip handle nodes as they can't usefully be combined and confuse the
// zero-use deletion strategy.
if (N->getOpcode() == ISD::HANDLENODE)
return;
if (SkipIfCombinedBefore && N->getCombinerWorklistIndex() == -2)
return;
if (IsCandidateForPruning)
ConsiderForPruning(N);
if (N->getCombinerWorklistIndex() < 0) {
N->setCombinerWorklistIndex(Worklist.size());
Worklist.push_back(N);
}
}
/// Remove all instances of N from the worklist.
void removeFromWorklist(SDNode *N) {
PruningList.remove(N);
StoreRootCountMap.erase(N);
int WorklistIndex = N->getCombinerWorklistIndex();
// If not in the worklist, the index might be -1 or -2 (was combined
// before). As the node gets deleted anyway, there's no need to update
// the index.
if (WorklistIndex < 0)
return; // Not in the worklist.
// Null out the entry rather than erasing it to avoid a linear operation.
Worklist[WorklistIndex] = nullptr;
N->setCombinerWorklistIndex(-1);
}
void deleteAndRecombine(SDNode *N);
bool recursivelyDeleteUnusedNodes(SDNode *N);
/// Replaces all uses of the results of one DAG node with new values.
SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
bool AddTo = true);
/// Replaces all uses of the results of one DAG node with new values.
SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
return CombineTo(N, &Res, 1, AddTo);
}
/// Replaces all uses of the results of one DAG node with new values.
SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
bool AddTo = true) {
SDValue To[] = { Res0, Res1 };
return CombineTo(N, To, 2, AddTo);
}
void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
private:
unsigned MaximumLegalStoreInBits;
/// Check the specified integer node value to see if it can be simplified or
/// if things it uses can be simplified by bit propagation.
/// If so, return true.
bool SimplifyDemandedBits(SDValue Op) {
unsigned BitWidth = Op.getScalarValueSizeInBits();
APInt DemandedBits = APInt::getAllOnes(BitWidth);
return SimplifyDemandedBits(Op, DemandedBits);
}
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) {
EVT VT = Op.getValueType();
APInt DemandedElts = VT.isFixedLengthVector()
? APInt::getAllOnes(VT.getVectorNumElements())
: APInt(1, 1);
return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, false);
}
/// Check the specified vector node value to see if it can be simplified or
/// if things it uses can be simplified as it only uses some of the
/// elements. If so, return true.
bool SimplifyDemandedVectorElts(SDValue Op) {
// TODO: For now just pretend it cannot be simplified.
if (Op.getValueType().isScalableVector())
return false;
unsigned NumElts = Op.getValueType().getVectorNumElements();
APInt DemandedElts = APInt::getAllOnes(NumElts);
return SimplifyDemandedVectorElts(Op, DemandedElts);
}
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
const APInt &DemandedElts,
bool AssumeSingleUse = false);
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
bool AssumeSingleUse = false);
bool CombineToPreIndexedLoadStore(SDNode *N);
bool CombineToPostIndexedLoadStore(SDNode *N);
SDValue SplitIndexingFromLoad(LoadSDNode *LD);
bool SliceUpLoad(SDNode *N);
// Looks up the chain to find a unique (unaliased) store feeding the passed
// load. If no such store is found, returns a nullptr.
// Note: This will look past a CALLSEQ_START if the load is chained to it so
// so that it can find stack stores for byval params.
StoreSDNode *getUniqueStoreFeeding(LoadSDNode *LD, int64_t &Offset);
// Scalars have size 0 to distinguish from singleton vectors.
SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD);
bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val);
bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val);
void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
SDValue PromoteIntBinOp(SDValue Op);
SDValue PromoteIntShiftOp(SDValue Op);
SDValue PromoteExtend(SDValue Op);
bool PromoteLoad(SDValue Op);
SDValue foldShiftToAvg(SDNode *N);
// Fold `a bitwiseop (~b +/- c)` -> `a bitwiseop ~(b -/+ c)`
SDValue foldBitwiseOpWithNeg(SDNode *N, const SDLoc &DL, EVT VT);
SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
SDValue RHS, SDValue True, SDValue False,
ISD::CondCode CC);
/// Call the node-specific routine that knows how to fold each
/// particular type of node. If that doesn't do anything, try the
/// target-specific DAG combines.
SDValue combine(SDNode *N);
// Visitation implementation - Implement dag node combining for different
// node types. The semantics are as follows:
// Return Value:
// SDValue.getNode() == 0 - No change was made
// SDValue.getNode() == N - N was replaced, is dead and has been handled.
// otherwise - N should be replaced by the returned Operand.
//
SDValue visitTokenFactor(SDNode *N);
SDValue visitMERGE_VALUES(SDNode *N);
SDValue visitADD(SDNode *N);
SDValue visitADDLike(SDNode *N);
SDValue visitADDLikeCommutative(SDValue N0, SDValue N1,
SDNode *LocReference);
SDValue visitSUB(SDNode *N);
SDValue visitADDSAT(SDNode *N);
SDValue visitSUBSAT(SDNode *N);
SDValue visitADDC(SDNode *N);
SDValue visitADDO(SDNode *N);
SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N);
SDValue visitSUBC(SDNode *N);
SDValue visitSUBO(SDNode *N);
SDValue visitADDE(SDNode *N);
SDValue visitUADDO_CARRY(SDNode *N);
SDValue visitSADDO_CARRY(SDNode *N);
SDValue visitUADDO_CARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
SDNode *N);
SDValue visitSADDO_CARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
SDNode *N);
SDValue visitSUBE(SDNode *N);
SDValue visitUSUBO_CARRY(SDNode *N);
SDValue visitSSUBO_CARRY(SDNode *N);
template <class MatchContextClass> SDValue visitMUL(SDNode *N);
SDValue visitMULFIX(SDNode *N);
SDValue useDivRem(SDNode *N);
SDValue visitSDIV(SDNode *N);
SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N);
SDValue visitUDIV(SDNode *N);
SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N);
SDValue visitREM(SDNode *N);
SDValue visitMULHU(SDNode *N);
SDValue visitMULHS(SDNode *N);
SDValue visitAVG(SDNode *N);
SDValue visitABD(SDNode *N);
SDValue visitSMUL_LOHI(SDNode *N);
SDValue visitUMUL_LOHI(SDNode *N);
SDValue visitMULO(SDNode *N);
SDValue visitIMINMAX(SDNode *N);
SDValue visitAND(SDNode *N);
SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N);
SDValue visitOR(SDNode *N);
SDValue visitORLike(SDValue N0, SDValue N1, const SDLoc &DL);
SDValue visitXOR(SDNode *N);
SDValue SimplifyVCastOp(SDNode *N, const SDLoc &DL);
SDValue SimplifyVBinOp(SDNode *N, const SDLoc &DL);
SDValue visitSHL(SDNode *N);
SDValue visitSRA(SDNode *N);
SDValue visitSRL(SDNode *N);
SDValue visitFunnelShift(SDNode *N);
SDValue visitSHLSAT(SDNode *N);
SDValue visitRotate(SDNode *N);
SDValue visitABS(SDNode *N);
SDValue visitBSWAP(SDNode *N);
SDValue visitBITREVERSE(SDNode *N);
SDValue visitCTLZ(SDNode *N);
SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
SDValue visitCTTZ(SDNode *N);
SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
SDValue visitCTPOP(SDNode *N);
SDValue visitSELECT(SDNode *N);
SDValue visitVSELECT(SDNode *N);
SDValue visitVP_SELECT(SDNode *N);
SDValue visitSELECT_CC(SDNode *N);
SDValue visitSETCC(SDNode *N);
SDValue visitSETCCCARRY(SDNode *N);
SDValue visitSIGN_EXTEND(SDNode *N);
SDValue visitZERO_EXTEND(SDNode *N);
SDValue visitANY_EXTEND(SDNode *N);
SDValue visitAssertExt(SDNode *N);
SDValue visitAssertAlign(SDNode *N);
SDValue visitSIGN_EXTEND_INREG(SDNode *N);
SDValue visitEXTEND_VECTOR_INREG(SDNode *N);
SDValue visitTRUNCATE(SDNode *N);
SDValue visitTRUNCATE_USAT_U(SDNode *N);
SDValue visitBITCAST(SDNode *N);
SDValue visitFREEZE(SDNode *N);
SDValue visitBUILD_PAIR(SDNode *N);
SDValue visitFADD(SDNode *N);
SDValue visitVP_FADD(SDNode *N);
SDValue visitVP_FSUB(SDNode *N);
SDValue visitSTRICT_FADD(SDNode *N);
SDValue visitFSUB(SDNode *N);
SDValue visitFMUL(SDNode *N);
template <class MatchContextClass> SDValue visitFMA(SDNode *N);
SDValue visitFMAD(SDNode *N);
SDValue visitFDIV(SDNode *N);
SDValue visitFREM(SDNode *N);
SDValue visitFSQRT(SDNode *N);
SDValue visitFCOPYSIGN(SDNode *N);
SDValue visitFPOW(SDNode *N);
SDValue visitFCANONICALIZE(SDNode *N);
SDValue visitSINT_TO_FP(SDNode *N);
SDValue visitUINT_TO_FP(SDNode *N);
SDValue visitFP_TO_SINT(SDNode *N);
SDValue visitFP_TO_UINT(SDNode *N);
SDValue visitXROUND(SDNode *N);
SDValue visitFP_ROUND(SDNode *N);
SDValue visitFP_EXTEND(SDNode *N);
SDValue visitFNEG(SDNode *N);
SDValue visitFABS(SDNode *N);
SDValue visitFCEIL(SDNode *N);
SDValue visitFTRUNC(SDNode *N);
SDValue visitFFREXP(SDNode *N);
SDValue visitFFLOOR(SDNode *N);
SDValue visitFMinMax(SDNode *N);
SDValue visitBRCOND(SDNode *N);
SDValue visitBR_CC(SDNode *N);
SDValue visitLOAD(SDNode *N);
SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
SDValue replaceStoreOfInsertLoad(StoreSDNode *ST);
bool refineExtractVectorEltIntoMultipleNarrowExtractVectorElts(SDNode *N);
SDValue visitSTORE(SDNode *N);
SDValue visitATOMIC_STORE(SDNode *N);
SDValue visitLIFETIME_END(SDNode *N);
SDValue visitINSERT_VECTOR_ELT(SDNode *N);
SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
SDValue visitBUILD_VECTOR(SDNode *N);
SDValue visitCONCAT_VECTORS(SDNode *N);
SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
SDValue visitVECTOR_SHUFFLE(SDNode *N);
SDValue visitSCALAR_TO_VECTOR(SDNode *N);
SDValue visitINSERT_SUBVECTOR(SDNode *N);
SDValue visitVECTOR_COMPRESS(SDNode *N);
SDValue visitMLOAD(SDNode *N);
SDValue visitMSTORE(SDNode *N);
SDValue visitMGATHER(SDNode *N);
SDValue visitMSCATTER(SDNode *N);
SDValue visitMHISTOGRAM(SDNode *N);
SDValue visitPARTIAL_REDUCE_MLA(SDNode *N);
SDValue visitVPGATHER(SDNode *N);
SDValue visitVPSCATTER(SDNode *N);
SDValue visitVP_STRIDED_LOAD(SDNode *N);
SDValue visitVP_STRIDED_STORE(SDNode *N);
SDValue visitFP_TO_FP16(SDNode *N);
SDValue visitFP16_TO_FP(SDNode *N);
SDValue visitFP_TO_BF16(SDNode *N);
SDValue visitBF16_TO_FP(SDNode *N);
SDValue visitVECREDUCE(SDNode *N);
SDValue visitVPOp(SDNode *N);
SDValue visitGET_FPENV_MEM(SDNode *N);
SDValue visitSET_FPENV_MEM(SDNode *N);
template <class MatchContextClass>
SDValue visitFADDForFMACombine(SDNode *N);
template <class MatchContextClass>
SDValue visitFSUBForFMACombine(SDNode *N);
SDValue visitFMULForFMADistributiveCombine(SDNode *N);
SDValue XformToShuffleWithZero(SDNode *N);
bool reassociationCanBreakAddressingModePattern(unsigned Opc,
const SDLoc &DL,
SDNode *N,
SDValue N0,
SDValue N1);
SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0,
SDValue N1, SDNodeFlags Flags);
SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
SDValue N1, SDNodeFlags Flags);
SDValue reassociateReduction(unsigned RedOpc, unsigned Opc, const SDLoc &DL,
EVT VT, SDValue N0, SDValue N1,
SDNodeFlags Flags = SDNodeFlags());
SDValue visitShiftByConstant(SDNode *N);
SDValue foldSelectOfConstants(SDNode *N);
SDValue foldVSelectOfConstants(SDNode *N);
SDValue foldBinOpIntoSelect(SDNode *BO);
bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N);
SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2);
SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
SDValue N2, SDValue N3, ISD::CondCode CC,
bool NotExtCompare = false);
SDValue convertSelectOfFPConstantsToLoadOffset(
const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
ISD::CondCode CC);
SDValue foldSignChangeInBitcast(SDNode *N);
SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1,
SDValue N2, SDValue N3, ISD::CondCode CC);
SDValue foldSelectOfBinops(SDNode *N);
SDValue foldSextSetcc(SDNode *N);
SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
const SDLoc &DL);
SDValue foldSubToUSubSat(EVT DstVT, SDNode *N, const SDLoc &DL);
SDValue foldABSToABD(SDNode *N, const SDLoc &DL);
SDValue foldSelectToABD(SDValue LHS, SDValue RHS, SDValue True,
SDValue False, ISD::CondCode CC, const SDLoc &DL);
SDValue unfoldMaskedMerge(SDNode *N);
SDValue unfoldExtremeBitClearingToShifts(SDNode *N);
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
const SDLoc &DL, bool foldBooleans);
SDValue rebuildSetCC(SDValue N);
bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
SDValue &CC, bool MatchStrict = false) const;
bool isOneUseSetCC(SDValue N) const;
SDValue foldAddToAvg(SDNode *N, const SDLoc &DL);
SDValue foldSubToAvg(SDNode *N, const SDLoc &DL);
SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
unsigned HiOp);
SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
const TargetLowering &TLI);
SDValue foldPartialReduceMLAMulOp(SDNode *N);
SDValue foldPartialReduceAdd(SDNode *N);
SDValue CombineExtLoad(SDNode *N);
SDValue CombineZExtLogicopShiftLoad(SDNode *N);
SDValue combineRepeatedFPDivisors(SDNode *N);
SDValue combineFMulOrFDivWithIntPow2(SDNode *N);
SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf);
SDValue mergeInsertEltWithShuffle(SDNode *N, unsigned InsIndex);
SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex);
SDValue combineInsertEltToLoad(SDNode *N, unsigned InsIndex);
SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
SDValue BuildSDIV(SDNode *N);
SDValue BuildSDIVPow2(SDNode *N);
SDValue BuildUDIV(SDNode *N);
SDValue BuildSREMPow2(SDNode *N);
SDValue buildOptimizedSREM(SDValue N0, SDValue N1, SDNode *N);
SDValue BuildLogBase2(SDValue V, const SDLoc &DL,
bool KnownNeverZero = false,
bool InexpensiveOnly = false,
std::optional<EVT> OutVT = std::nullopt);
SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags);
SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags);
SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags);
SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip);
SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations,
SDNodeFlags Flags, bool Reciprocal);
SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations,
SDNodeFlags Flags, bool Reciprocal);
SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
bool DemandHighBits = true);
SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
SDValue InnerPos, SDValue InnerNeg, bool FromAdd,
bool HasPos, unsigned PosOpcode,
unsigned NegOpcode, const SDLoc &DL);
SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg,
SDValue InnerPos, SDValue InnerNeg, bool FromAdd,
bool HasPos, unsigned PosOpcode,
unsigned NegOpcode, const SDLoc &DL);
SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL,
bool FromAdd);
SDValue MatchLoadCombine(SDNode *N);
SDValue mergeTruncStores(StoreSDNode *N);
SDValue reduceLoadWidth(SDNode *N);
SDValue ReduceLoadOpStoreWidth(SDNode *N);
SDValue splitMergedValStore(StoreSDNode *ST);
SDValue TransformFPLoadStorePair(SDNode *N);
SDValue convertBuildVecZextToZext(SDNode *N);
SDValue convertBuildVecZextToBuildVecWithZeros(SDNode *N);
SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
SDValue reduceBuildVecTruncToBitCast(SDNode *N);
SDValue reduceBuildVecToShuffle(SDNode *N);
SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N,
ArrayRef<int> VectorMask, SDValue VecIn1,
SDValue VecIn2, unsigned LeftIdx,
bool DidSplitVec);
SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast);
/// Walk up chain skipping non-aliasing memory nodes,
/// looking for aliasing nodes and adding them to the Aliases vector.
void GatherAllAliases(SDNode *N, SDValue OriginalChain,
SmallVectorImpl<SDValue> &Aliases);
/// Return true if there is any possibility that the two addresses overlap.
bool mayAlias(SDNode *Op0, SDNode *Op1) const;
/// Walk up chain skipping non-aliasing memory nodes, looking for a better
/// chain (aliasing node.)
SDValue FindBetterChain(SDNode *N, SDValue Chain);
/// Try to replace a store and any possibly adjacent stores on
/// consecutive chains with better chains. Return true only if St is
/// replaced.
///
/// Notice that other chains may still be replaced even if the function
/// returns false.
bool findBetterNeighborChains(StoreSDNode *St);
// Helper for findBetterNeighborChains. Walk up store chain add additional
// chained stores that do not overlap and can be parallelized.
bool parallelizeChainedStores(StoreSDNode *St);
/// Holds a pointer to an LSBaseSDNode as well as information on where it
/// is located in a sequence of memory operations connected by a chain.
struct MemOpLink {
// Ptr to the mem node.
LSBaseSDNode *MemNode;
// Offset from the base ptr.
int64_t OffsetFromBase;
MemOpLink(LSBaseSDNode *N, int64_t Offset)
: MemNode(N), OffsetFromBase(Offset) {}
};
// Classify the origin of a stored value.
enum class StoreSource { Unknown, Constant, Extract, Load };
StoreSource getStoreSource(SDValue StoreVal) {
switch (StoreVal.getOpcode()) {
case ISD::Constant:
case ISD::ConstantFP:
return StoreSource::Constant;
case ISD::BUILD_VECTOR:
if (ISD::isBuildVectorOfConstantSDNodes(StoreVal.getNode()) ||
ISD::isBuildVectorOfConstantFPSDNodes(StoreVal.getNode()))
return StoreSource::Constant;
return StoreSource::Unknown;
case ISD::EXTRACT_VECTOR_ELT:
case ISD::EXTRACT_SUBVECTOR:
return StoreSource::Extract;
case ISD::LOAD:
return StoreSource::Load;
default:
return StoreSource::Unknown;
}
}
/// This is a helper function for visitMUL to check the profitability
/// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
/// MulNode is the original multiply, AddNode is (add x, c1),
/// and ConstNode is c2.
bool isMulAddWithConstProfitable(SDNode *MulNode, SDValue AddNode,
SDValue ConstNode);
/// This is a helper function for visitAND and visitZERO_EXTEND. Returns
/// true if the (and (load x) c) pattern matches an extload. ExtVT returns
/// the type of the loaded value to be extended.
bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
EVT LoadResultTy, EVT &ExtVT);
/// Helper function to calculate whether the given Load/Store can have its
/// width reduced to ExtVT.
bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType,
EVT &MemVT, unsigned ShAmt = 0);
/// Used by BackwardsPropagateMask to find suitable loads.
bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads,
SmallPtrSetImpl<SDNode*> &NodesWithConsts,
ConstantSDNode *Mask, SDNode *&NodeToMask);
/// Attempt to propagate a given AND node back to load leaves so that they
/// can be combined into narrow loads.
bool BackwardsPropagateMask(SDNode *N);
/// Helper function for mergeConsecutiveStores which merges the component
/// store chains.
SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
unsigned NumStores);
/// Helper function for mergeConsecutiveStores which checks if all the store
/// nodes have the same underlying object. We can still reuse the first
/// store's pointer info if all the stores are from the same object.
bool hasSameUnderlyingObj(ArrayRef<MemOpLink> StoreNodes);
/// This is a helper function for mergeConsecutiveStores. When the source
/// elements of the consecutive stores are all constants or all extracted
/// vector elements, try to merge them into one larger store introducing
/// bitcasts if necessary. \return True if a merged store was created.
bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
EVT MemVT, unsigned NumStores,
bool IsConstantSrc, bool UseVector,
bool UseTrunc);
/// This is a helper function for mergeConsecutiveStores. Stores that
/// potentially may be merged with St are placed in StoreNodes. On success,
/// returns a chain predecessor to all store candidates.
SDNode *getStoreMergeCandidates(StoreSDNode *St,
SmallVectorImpl<MemOpLink> &StoreNodes);
/// Helper function for mergeConsecutiveStores. Checks if candidate stores
/// have indirect dependency through their operands. RootNode is the
/// predecessor to all stores calculated by getStoreMergeCandidates and is
/// used to prune the dependency check. \return True if safe to merge.
bool checkMergeStoreCandidatesForDependencies(
SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
SDNode *RootNode);
/// Helper function for tryStoreMergeOfLoads. Checks if the load/store
/// chain has a call in it. \return True if a call is found.
bool hasCallInLdStChain(StoreSDNode *St, LoadSDNode *Ld);
/// This is a helper function for mergeConsecutiveStores. Given a list of
/// store candidates, find the first N that are consecutive in memory.
/// Returns 0 if there are not at least 2 consecutive stores to try merging.
unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes,
int64_t ElementSizeBytes) const;
/// This is a helper function for mergeConsecutiveStores. It is used for
/// store chains that are composed entirely of constant values.
bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes,
unsigned NumConsecutiveStores,
EVT MemVT, SDNode *Root, bool AllowVectors);
/// This is a helper function for mergeConsecutiveStores. It is used for
/// store chains that are composed entirely of extracted vector elements.
/// When extracting multiple vector elements, try to store them in one
/// vector store rather than a sequence of scalar stores.
bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes,
unsigned NumConsecutiveStores, EVT MemVT,
SDNode *Root);
/// This is a helper function for mergeConsecutiveStores. It is used for
/// store chains that are composed entirely of loaded values.
bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes,
unsigned NumConsecutiveStores, EVT MemVT,
SDNode *Root, bool AllowVectors,
bool IsNonTemporalStore, bool IsNonTemporalLoad);
/// Merge consecutive store operations into a wide store.
/// This optimization uses wide integers or vectors when possible.
/// \return true if stores were merged.
bool mergeConsecutiveStores(StoreSDNode *St);
/// Try to transform a truncation where C is a constant:
/// (trunc (and X, C)) -> (and (trunc X), (trunc C))
///
/// \p N needs to be a truncation and its first operand an AND. Other
/// requirements are checked by the function (e.g. that trunc is
/// single-use) and if missed an empty SDValue is returned.
SDValue distributeTruncateThroughAnd(SDNode *N);
/// Helper function to determine whether the target supports operation
/// given by \p Opcode for type \p VT, that is, whether the operation
/// is legal or custom before legalizing operations, and whether is
/// legal (but not custom) after legalization.
bool hasOperation(unsigned Opcode, EVT VT) {
return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations);
}
bool hasUMin(EVT VT) const {
auto LK = TLI.getTypeConversion(*DAG.getContext(), VT);
return (LK.first == TargetLoweringBase::TypeLegal ||
LK.first == TargetLoweringBase::TypePromoteInteger) &&
TLI.isOperationLegal(ISD::UMIN, LK.second);
}
public:
/// Runs the dag combiner on all nodes in the work list
void Run(CombineLevel AtLevel);
SelectionDAG &getDAG() const { return DAG; }
/// Convenience wrapper around TargetLowering::getShiftAmountTy.
EVT getShiftAmountTy(EVT LHSTy) {
return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout());
}
/// This method returns true if we are running before type legalization or
/// if the specified VT is legal.
bool isTypeLegal(const EVT &VT) {
if (!LegalTypes) return true;
return TLI.isTypeLegal(VT);
}
/// Convenience wrapper around TargetLowering::getSetCCResultType
EVT getSetCCResultType(EVT VT) const {
return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
}
void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
SDValue OrigLoad, SDValue ExtLoad,
ISD::NodeType ExtType);
};
/// This class is a DAGUpdateListener that removes any deleted
/// nodes from the worklist.
class WorklistRemover : public SelectionDAG::DAGUpdateListener {
DAGCombiner &DC;
public:
explicit WorklistRemover(DAGCombiner &dc)
: SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
void NodeDeleted(SDNode *N, SDNode *E) override {
DC.removeFromWorklist(N);
}
};
class WorklistInserter : public SelectionDAG::DAGUpdateListener {
DAGCombiner &DC;
public:
explicit WorklistInserter(DAGCombiner &dc)
: SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
// FIXME: Ideally we could add N to the worklist, but this causes exponential
// compile time costs in large DAGs, e.g. Halide.
void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); }
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// TargetLowering::DAGCombinerInfo implementation
//===----------------------------------------------------------------------===//
void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
((DAGCombiner*)DC)->AddToWorklist(N);
}
SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
}
SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, SDValue Res, bool AddTo) {
return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
}
SDValue TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
}
bool TargetLowering::DAGCombinerInfo::
recursivelyDeleteUnusedNodes(SDNode *N) {
return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N);
}
void TargetLowering::DAGCombinerInfo::
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
}
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
void DAGCombiner::deleteAndRecombine(SDNode *N) {
removeFromWorklist(N);
// If the operands of this node are only used by the node, they will now be
// dead. Make sure to re-visit them and recursively delete dead nodes.
for (const SDValue &Op : N->ops())
// For an operand generating multiple values, one of the values may
// become dead allowing further simplification (e.g. split index
// arithmetic from an indexed load).
if (Op->hasOneUse() || Op->getNumValues() > 1)
AddToWorklist(Op.getNode());
DAG.DeleteNode(N);
}
// APInts must be the same size for most operations, this helper
// function zero extends the shorter of the pair so that they match.
// We provide an Offset so that we can create bitwidths that won't overflow.
static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) {
unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth());
LHS = LHS.zext(Bits);
RHS = RHS.zext(Bits);
}
// Return true if this node is a setcc, or is a select_cc
// that selects between the target values used for true and false, making it
// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
// the appropriate nodes based on the type of node we are checking. This
// simplifies life a bit for the callers.
bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
SDValue &CC, bool MatchStrict) const {
if (N.getOpcode() == ISD::SETCC) {
LHS = N.getOperand(0);
RHS = N.getOperand(1);
CC = N.getOperand(2);
return true;
}
if (MatchStrict &&
(N.getOpcode() == ISD::STRICT_FSETCC ||
N.getOpcode() == ISD::STRICT_FSETCCS)) {
LHS = N.getOperand(1);
RHS = N.getOperand(2);
CC = N.getOperand(3);
return true;
}
if (N.getOpcode() != ISD::SELECT_CC || !TLI.isConstTrueVal(N.getOperand(2)) ||
!TLI.isConstFalseVal(N.getOperand(3)))
return false;
if (TLI.getBooleanContents(N.getValueType()) ==
TargetLowering::UndefinedBooleanContent)
return false;
LHS = N.getOperand(0);
RHS = N.getOperand(1);
CC = N.getOperand(4);
return true;
}
/// Return true if this is a SetCC-equivalent operation with only one use.
/// If this is true, it allows the users to invert the operation for free when
/// it is profitable to do so.
bool DAGCombiner::isOneUseSetCC(SDValue N) const {
SDValue N0, N1, N2;
if (isSetCCEquivalent(N, N0, N1, N2) && N->hasOneUse())
return true;
return false;
}
static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy) {
if (!ScalarTy.isSimple())
return false;
uint64_t MaskForTy = 0ULL;
switch (ScalarTy.getSimpleVT().SimpleTy) {
case MVT::i8:
MaskForTy = 0xFFULL;
break;
case MVT::i16:
MaskForTy = 0xFFFFULL;
break;
case MVT::i32:
MaskForTy = 0xFFFFFFFFULL;
break;
default:
return false;
break;
}
APInt Val;
if (ISD::isConstantSplatVector(N, Val))
return Val.getLimitedValue() == MaskForTy;
return false;
}
// Determines if it is a constant integer or a splat/build vector of constant
// integers (and undefs).
// Do not permit build vector implicit truncation.
static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) {
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N))
return !(Const->isOpaque() && NoOpaques);
if (N.getOpcode() != ISD::BUILD_VECTOR && N.getOpcode() != ISD::SPLAT_VECTOR)
return false;
unsigned BitWidth = N.getScalarValueSizeInBits();
for (const SDValue &Op : N->op_values()) {
if (Op.isUndef())
continue;
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op);
if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth ||
(Const->isOpaque() && NoOpaques))
return false;
}
return true;
}
// Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
// undef's.
static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) {
if (V.getOpcode() != ISD::BUILD_VECTOR)
return false;
return isConstantOrConstantVector(V, NoOpaques) ||
ISD::isBuildVectorOfConstantFPSDNodes(V.getNode());
}
// Determine if this an indexed load with an opaque target constant index.
static bool canSplitIdx(LoadSDNode *LD) {
return MaySplitLoadIndex &&
(LD->getOperand(2).getOpcode() != ISD::TargetConstant ||
!cast<ConstantSDNode>(LD->getOperand(2))->isOpaque());
}
bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc,
const SDLoc &DL,
SDNode *N,
SDValue N0,
SDValue N1) {
// Currently this only tries to ensure we don't undo the GEP splits done by
// CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
// we check if the following transformation would be problematic:
// (load/store (add, (add, x, offset1), offset2)) ->
// (load/store (add, x, offset1+offset2)).
// (load/store (add, (add, x, y), offset2)) ->
// (load/store (add, (add, x, offset2), y)).
if (!N0.isAnyAdd())
return false;
// Check for vscale addressing modes.
// (load/store (add/sub (add x, y), vscale))
// (load/store (add/sub (add x, y), (lsl vscale, C)))
// (load/store (add/sub (add x, y), (mul vscale, C)))
if ((N1.getOpcode() == ISD::VSCALE ||
((N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::MUL) &&
N1.getOperand(0).getOpcode() == ISD::VSCALE &&
isa<ConstantSDNode>(N1.getOperand(1)))) &&
N1.getValueType().getFixedSizeInBits() <= 64) {
int64_t ScalableOffset = N1.getOpcode() == ISD::VSCALE
? N1.getConstantOperandVal(0)
: (N1.getOperand(0).getConstantOperandVal(0) *
(N1.getOpcode() == ISD::SHL
? (1LL << N1.getConstantOperandVal(1))
: N1.getConstantOperandVal(1)));
if (Opc == ISD::SUB)
ScalableOffset = -ScalableOffset;
if (all_of(N->users(), [&](SDNode *Node) {
if (auto *LoadStore = dyn_cast<MemSDNode>(Node);
LoadStore && LoadStore->getBasePtr().getNode() == N) {
TargetLoweringBase::AddrMode AM;
AM.HasBaseReg = true;
AM.ScalableOffset = ScalableOffset;
EVT VT = LoadStore->getMemoryVT();
unsigned AS = LoadStore->getAddressSpace();
Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy,
AS);
}
return false;
}))
return true;
}
if (Opc != ISD::ADD)
return false;
auto *C2 = dyn_cast<ConstantSDNode>(N1);
if (!C2)
return false;
const APInt &C2APIntVal = C2->getAPIntValue();
if (C2APIntVal.getSignificantBits() > 64)
return false;
if (auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
if (N0.hasOneUse())
return false;
const APInt &C1APIntVal = C1->getAPIntValue();
const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal;
if (CombinedValueIntVal.getSignificantBits() > 64)
return false;
const int64_t CombinedValue = CombinedValueIntVal.getSExtValue();
for (SDNode *Node : N->users()) {
if (auto *LoadStore = dyn_cast<MemSDNode>(Node)) {
// Is x[offset2] already not a legal addressing mode? If so then
// reassociating the constants breaks nothing (we test offset2 because
// that's the one we hope to fold into the load or store).
TargetLoweringBase::AddrMode AM;
AM.HasBaseReg = true;
AM.BaseOffs = C2APIntVal.getSExtValue();
EVT VT = LoadStore->getMemoryVT();
unsigned AS = LoadStore->getAddressSpace();
Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
continue;
// Would x[offset1+offset2] still be a legal addressing mode?
AM.BaseOffs = CombinedValue;
if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
return true;
}
}
} else {
if (auto *GA = dyn_cast<GlobalAddressSDNode>(N0.getOperand(1)))
if (GA->getOpcode() == ISD::GlobalAddress && TLI.isOffsetFoldingLegal(GA))
return false;
for (SDNode *Node : N->users()) {
auto *LoadStore = dyn_cast<MemSDNode>(Node);
if (!LoadStore)
return false;
// Is x[offset2] a legal addressing mode? If so then
// reassociating the constants breaks address pattern
TargetLoweringBase::AddrMode AM;
AM.HasBaseReg = true;
AM.BaseOffs = C2APIntVal.getSExtValue();
EVT VT = LoadStore->getMemoryVT();
unsigned AS = LoadStore->getAddressSpace();
Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
return false;
}
return true;
}
return false;
}
/// Helper for DAGCombiner::reassociateOps. Try to reassociate (Opc N0, N1) if
/// \p N0 is the same kind of operation as \p Opc.
SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL,
SDValue N0, SDValue N1,
SDNodeFlags Flags) {
EVT VT = N0.getValueType();
if (N0.getOpcode() != Opc)
return SDValue();
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
if (DAG.isConstantIntBuildVectorOrConstantInt(N01)) {
SDNodeFlags NewFlags;
if (N0.getOpcode() == ISD::ADD && N0->getFlags().hasNoUnsignedWrap() &&
Flags.hasNoUnsignedWrap())
NewFlags |= SDNodeFlags::NoUnsignedWrap;
if (DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
// Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, {N01, N1})) {
NewFlags.setDisjoint(Flags.hasDisjoint() &&
N0->getFlags().hasDisjoint());
return DAG.getNode(Opc, DL, VT, N00, OpNode, NewFlags);
}
return SDValue();
}
if (TLI.isReassocProfitable(DAG, N0, N1)) {
// Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
// iff (op x, c1) has one use
SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N00, N1, NewFlags);
return DAG.getNode(Opc, DL, VT, OpNode, N01, NewFlags);
}
}
// Check for repeated operand logic simplifications.
if (Opc == ISD::AND || Opc == ISD::OR) {
// (N00 & N01) & N00 --> N00 & N01
// (N00 & N01) & N01 --> N00 & N01
// (N00 | N01) | N00 --> N00 | N01
// (N00 | N01) | N01 --> N00 | N01
if (N1 == N00 || N1 == N01)
return N0;
}
if (Opc == ISD::XOR) {
// (N00 ^ N01) ^ N00 --> N01
if (N1 == N00)
return N01;
// (N00 ^ N01) ^ N01 --> N00
if (N1 == N01)
return N00;
}
if (TLI.isReassocProfitable(DAG, N0, N1)) {
if (N1 != N01) {
// Reassociate if (op N00, N1) already exist
if (SDNode *NE = DAG.getNodeIfExists(Opc, DAG.getVTList(VT), {N00, N1})) {
// if Op (Op N00, N1), N01 already exist
// we need to stop reassciate to avoid dead loop
if (!DAG.doesNodeExist(Opc, DAG.getVTList(VT), {SDValue(NE, 0), N01}))
return DAG.getNode(Opc, DL, VT, SDValue(NE, 0), N01);
}
}
if (N1 != N00) {
// Reassociate if (op N01, N1) already exist
if (SDNode *NE = DAG.getNodeIfExists(Opc, DAG.getVTList(VT), {N01, N1})) {
// if Op (Op N01, N1), N00 already exist
// we need to stop reassciate to avoid dead loop
if (!DAG.doesNodeExist(Opc, DAG.getVTList(VT), {SDValue(NE, 0), N00}))
return DAG.getNode(Opc, DL, VT, SDValue(NE, 0), N00);
}
}
// Reassociate the operands from (OR/AND (OR/AND(N00, N001)), N1) to (OR/AND
// (OR/AND(N00, N1)), N01) when N00 and N1 are comparisons with the same
// predicate or to (OR/AND (OR/AND(N1, N01)), N00) when N01 and N1 are
// comparisons with the same predicate. This enables optimizations as the
// following one:
// CMP(A,C)||CMP(B,C) => CMP(MIN/MAX(A,B), C)
// CMP(A,C)&&CMP(B,C) => CMP(MIN/MAX(A,B), C)
if (Opc == ISD::AND || Opc == ISD::OR) {
if (N1->getOpcode() == ISD::SETCC && N00->getOpcode() == ISD::SETCC &&
N01->getOpcode() == ISD::SETCC) {
ISD::CondCode CC1 = cast<CondCodeSDNode>(N1.getOperand(2))->get();
ISD::CondCode CC00 = cast<CondCodeSDNode>(N00.getOperand(2))->get();
ISD::CondCode CC01 = cast<CondCodeSDNode>(N01.getOperand(2))->get();
if (CC1 == CC00 && CC1 != CC01) {
SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N00, N1, Flags);
return DAG.getNode(Opc, DL, VT, OpNode, N01, Flags);
}
if (CC1 == CC01 && CC1 != CC00) {
SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N01, N1, Flags);
return DAG.getNode(Opc, DL, VT, OpNode, N00, Flags);
}
}
}
}
return SDValue();
}
/// Try to reassociate commutative (Opc N0, N1) if either \p N0 or \p N1 is the
/// same kind of operation as \p Opc.
SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
SDValue N1, SDNodeFlags Flags) {
assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative.");
// Floating-point reassociation is not allowed without loose FP math.
if (N0.getValueType().isFloatingPoint() ||
N1.getValueType().isFloatingPoint())
if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros())
return SDValue();
if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1, Flags))
return Combined;
if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0, Flags))
return Combined;
return SDValue();
}
// Try to fold Opc(vecreduce(x), vecreduce(y)) -> vecreduce(Opc(x, y))
// Note that we only expect Flags to be passed from FP operations. For integer
// operations they need to be dropped.
SDValue DAGCombiner::reassociateReduction(unsigned RedOpc, unsigned Opc,
const SDLoc &DL, EVT VT, SDValue N0,
SDValue N1, SDNodeFlags Flags) {
if (N0.getOpcode() == RedOpc && N1.getOpcode() == RedOpc &&
N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() &&
N0->hasOneUse() && N1->hasOneUse() &&
TLI.isOperationLegalOrCustom(Opc, N0.getOperand(0).getValueType()) &&
TLI.shouldReassociateReduction(RedOpc, N0.getOperand(0).getValueType())) {
SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
return DAG.getNode(RedOpc, DL, VT,
DAG.getNode(Opc, DL, N0.getOperand(0).getValueType(),
N0.getOperand(0), N1.getOperand(0)));
}
// Reassociate op(op(vecreduce(a), b), op(vecreduce(c), d)) into
// op(vecreduce(op(a, c)), op(b, d)), to combine the reductions into a
// single node.
SDValue A, B, C, D, RedA, RedB;
if (sd_match(N0, m_OneUse(m_c_BinOp(
Opc,
m_AllOf(m_OneUse(m_UnaryOp(RedOpc, m_Value(A))),
m_Value(RedA)),
m_Value(B)))) &&
sd_match(N1, m_OneUse(m_c_BinOp(
Opc,
m_AllOf(m_OneUse(m_UnaryOp(RedOpc, m_Value(C))),
m_Value(RedB)),
m_Value(D)))) &&
!sd_match(B, m_UnaryOp(RedOpc, m_Value())) &&
!sd_match(D, m_UnaryOp(RedOpc, m_Value())) &&
A.getValueType() == C.getValueType() &&
hasOperation(Opc, A.getValueType()) &&
TLI.shouldReassociateReduction(RedOpc, VT)) {
if ((Opc == ISD::FADD || Opc == ISD::FMUL) &&
(!N0->getFlags().hasAllowReassociation() ||
!N1->getFlags().hasAllowReassociation() ||
!RedA->getFlags().hasAllowReassociation() ||
!RedB->getFlags().hasAllowReassociation()))
return SDValue();
SelectionDAG::FlagInserter FlagsInserter(
DAG, Flags & N0->getFlags() & N1->getFlags() & RedA->getFlags() &
RedB->getFlags());
SDValue Op = DAG.getNode(Opc, DL, A.getValueType(), A, C);
SDValue Red = DAG.getNode(RedOpc, DL, VT, Op);
SDValue Op2 = DAG.getNode(Opc, DL, VT, B, D);
return DAG.getNode(Opc, DL, VT, Red, Op2);
}
return SDValue();
}
SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
bool AddTo) {
assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
++NodesCombined;
LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: ";
To[0].dump(&DAG);
dbgs() << " and " << NumTo - 1 << " other values\n");
for (unsigned i = 0, e = NumTo; i != e; ++i)
assert((!To[i].getNode() ||
N->getValueType(i) == To[i].getValueType()) &&
"Cannot combine value to value of different type!");
WorklistRemover DeadNodes(*this);
DAG.ReplaceAllUsesWith(N, To);
if (AddTo) {
// Push the new nodes and any users onto the worklist
for (unsigned i = 0, e = NumTo; i != e; ++i) {
if (To[i].getNode())
AddToWorklistWithUsers(To[i].getNode());
}
}
// Finally, if the node is now dead, remove it from the graph. The node
// may not be dead if the replacement process recursively simplified to
// something else needing this node.
if (N->use_empty())
deleteAndRecombine(N);
return SDValue(N, 0);
}
void DAGCombiner::
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
// Replace the old value with the new one.
++NodesCombined;
LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.dump(&DAG);
dbgs() << "\nWith: "; TLO.New.dump(&DAG); dbgs() << '\n');
// Replace all uses.
DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
// Push the new node and any (possibly new) users onto the worklist.
AddToWorklistWithUsers(TLO.New.getNode());
// Finally, if the node is now dead, remove it from the graph.
recursivelyDeleteUnusedNodes(TLO.Old.getNode());
}
/// Check the specified integer node value to see if it can be simplified or if
/// things it uses can be simplified by bit propagation. If so, return true.
bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
const APInt &DemandedElts,
bool AssumeSingleUse) {
TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
KnownBits Known;
if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0,
AssumeSingleUse))
return false;
// Revisit the node.
AddToWorklist(Op.getNode());
CommitTargetLoweringOpt(TLO);
return true;
}
/// Check the specified vector node value to see if it can be simplified or
/// if things it uses can be simplified as it only uses some of the elements.
/// If so, return true.
bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op,
const APInt &DemandedElts,
bool AssumeSingleUse) {
TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
APInt KnownUndef, KnownZero;
if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero,
TLO, 0, AssumeSingleUse))
return false;
// Revisit the node.
AddToWorklist(Op.getNode());
CommitTargetLoweringOpt(TLO);
return true;
}
void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
SDLoc DL(Load);
EVT VT = Load->getValueType(0);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0));
LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: ";
Trunc.dump(&DAG); dbgs() << '\n');
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
AddToWorklist(Trunc.getNode());
recursivelyDeleteUnusedNodes(Load);
}
SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
Replace = false;
SDLoc DL(Op);
if (ISD::isUNINDEXEDLoad(Op.getNode())) {
LoadSDNode *LD = cast<LoadSDNode>(Op);
EVT MemVT = LD->getMemoryVT();
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
: LD->getExtensionType();
Replace = true;
return DAG.getExtLoad(ExtType, DL, PVT,
LD->getChain(), LD->getBasePtr(),
MemVT, LD->getMemOperand());
}
unsigned Opc = Op.getOpcode();
switch (Opc) {
default: break;
case ISD::AssertSext:
if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT))
return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1));
break;
case ISD::AssertZext:
if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT))
return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1));
break;
case ISD::Constant: {
unsigned ExtOpc =
Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
return DAG.getNode(ExtOpc, DL, PVT, Op);
}
}
if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
return SDValue();
return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op);
}
SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
return SDValue();
EVT OldVT = Op.getValueType();
SDLoc DL(Op);
bool Replace = false;
SDValue NewOp = PromoteOperand(Op, PVT, Replace);
if (!NewOp.getNode())
return SDValue();
AddToWorklist(NewOp.getNode());
if (Replace)
ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp,
DAG.getValueType(OldVT));
}
SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
EVT OldVT = Op.getValueType();
SDLoc DL(Op);
bool Replace = false;
SDValue NewOp = PromoteOperand(Op, PVT, Replace);
if (!NewOp.getNode())
return SDValue();
AddToWorklist(NewOp.getNode());
if (Replace)
ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
return DAG.getZeroExtendInReg(NewOp, DL, OldVT);
}
/// Promote the specified integer binary operation if the target indicates it is
/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
/// i32 since i16 instructions are longer.
SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
if (!LegalOperations)
return SDValue();
EVT VT = Op.getValueType();
if (VT.isVector() || !VT.isInteger())
return SDValue();
// If operation type is 'undesirable', e.g. i16 on x86, consider
// promoting it.
unsigned Opc = Op.getOpcode();
if (TLI.isTypeDesirableForOp(Opc, VT))
return SDValue();
EVT PVT = VT;
// Consult target whether it is a good idea to promote this operation and
// what's the right type to promote it to.
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
assert(PVT != VT && "Don't know what type to promote to!");
LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG));
bool Replace0 = false;
SDValue N0 = Op.getOperand(0);
SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
bool Replace1 = false;
SDValue N1 = Op.getOperand(1);
SDValue NN1 = PromoteOperand(N1, PVT, Replace1);
SDLoc DL(Op);
SDValue RV =
DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1));
// We are always replacing N0/N1's use in N and only need additional
// replacements if there are additional uses.
// Note: We are checking uses of the *nodes* (SDNode) rather than values
// (SDValue) here because the node may reference multiple values
// (for example, the chain value of a load node).
Replace0 &= !N0->hasOneUse();
Replace1 &= (N0 != N1) && !N1->hasOneUse();
// Combine Op here so it is preserved past replacements.
CombineTo(Op.getNode(), RV);
// If operands have a use ordering, make sure we deal with
// predecessor first.
if (Replace0 && Replace1 && N0->isPredecessorOf(N1.getNode())) {
std::swap(N0, N1);
std::swap(NN0, NN1);
}
if (Replace0) {
AddToWorklist(NN0.getNode());
ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
}
if (Replace1) {
AddToWorklist(NN1.getNode());
ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
}
return Op;
}
return SDValue();
}
/// Promote the specified integer shift operation if the target indicates it is
/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
/// i32 since i16 instructions are longer.
SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
if (!LegalOperations)
return SDValue();
EVT VT = Op.getValueType();
if (VT.isVector() || !VT.isInteger())
return SDValue();
// If operation type is 'undesirable', e.g. i16 on x86, consider
// promoting it.
unsigned Opc = Op.getOpcode();
if (TLI.isTypeDesirableForOp(Opc, VT))
return SDValue();
EVT PVT = VT;
// Consult target whether it is a good idea to promote this operation and
// what's the right type to promote it to.
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
assert(PVT != VT && "Don't know what type to promote to!");
LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG));
bool Replace = false;
SDValue N0 = Op.getOperand(0);
if (Opc == ISD::SRA)
N0 = SExtPromoteOperand(N0, PVT);
else if (Opc == ISD::SRL)
N0 = ZExtPromoteOperand(N0, PVT);
else
N0 = PromoteOperand(N0, PVT, Replace);
if (!N0.getNode())
return SDValue();
SDLoc DL(Op);
SDValue N1 = Op.getOperand(1);
SDValue RV =
DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1));
if (Replace)
ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
// Deal with Op being deleted.
if (Op && Op.getOpcode() != ISD::DELETED_NODE)
return RV;
}
return SDValue();
}
SDValue DAGCombiner::PromoteExtend(SDValue Op) {
if (!LegalOperations)
return SDValue();
EVT VT = Op.getValueType();
if (VT.isVector() || !VT.isInteger())
return SDValue();
// If operation type is 'undesirable', e.g. i16 on x86, consider
// promoting it.
unsigned Opc = Op.getOpcode();
if (TLI.isTypeDesirableForOp(Opc, VT))
return SDValue();
EVT PVT = VT;
// Consult target whether it is a good idea to promote this operation and
// what's the right type to promote it to.
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
assert(PVT != VT && "Don't know what type to promote to!");
// fold (aext (aext x)) -> (aext x)
// fold (aext (zext x)) -> (zext x)
// fold (aext (sext x)) -> (sext x)
LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG));
return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
}
return SDValue();
}
bool DAGCombiner::PromoteLoad(SDValue Op) {
if (!LegalOperations)
return false;
if (!ISD::isUNINDEXEDLoad(Op.getNode()))
return false;
EVT VT = Op.getValueType();
if (VT.isVector() || !VT.isInteger())
return false;
// If operation type is 'undesirable', e.g. i16 on x86, consider
// promoting it.
unsigned Opc = Op.getOpcode();
if (TLI.isTypeDesirableForOp(Opc, VT))
return false;
EVT PVT = VT;
// Consult target whether it is a good idea to promote this operation and
// what's the right type to promote it to.
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
assert(PVT != VT && "Don't know what type to promote to!");
SDLoc DL(Op);
SDNode *N = Op.getNode();
LoadSDNode *LD = cast<LoadSDNode>(N);
EVT MemVT = LD->getMemoryVT();
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
: LD->getExtensionType();
SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT,
LD->getChain(), LD->getBasePtr(),
MemVT, LD->getMemOperand());
SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: ";
Result.dump(&DAG); dbgs() << '\n');
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
AddToWorklist(Result.getNode());
recursivelyDeleteUnusedNodes(N);
return true;
}
return false;
}
/// Recursively delete a node which has no uses and any operands for
/// which it is the only use.
///
/// Note that this both deletes the nodes and removes them from the worklist.
/// It also adds any nodes who have had a user deleted to the worklist as they
/// may now have only one use and subject to other combines.
bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
if (!N->use_empty())
return false;
SmallSetVector<SDNode *, 16> Nodes;
Nodes.insert(N);
do {
N = Nodes.pop_back_val();
if (!N)
continue;
if (N->use_empty()) {
for (const SDValue &ChildN : N->op_values())
Nodes.insert(ChildN.getNode());
removeFromWorklist(N);
DAG.DeleteNode(N);
} else {
AddToWorklist(N);
}
} while (!Nodes.empty());
return true;
}
//===----------------------------------------------------------------------===//
// Main DAG Combiner implementation
//===----------------------------------------------------------------------===//
void DAGCombiner::Run(CombineLevel AtLevel) {
// set the instance variables, so that the various visit routines may use it.
Level = AtLevel;
LegalDAG = Level >= AfterLegalizeDAG;
LegalOperations = Level >= AfterLegalizeVectorOps;
LegalTypes = Level >= AfterLegalizeTypes;
WorklistInserter AddNodes(*this);
// Add all the dag nodes to the worklist.
//
// Note: All nodes are not added to PruningList here, this is because the only
// nodes which can be deleted are those which have no uses and all other nodes
// which would otherwise be added to the worklist by the first call to
// getNextWorklistEntry are already present in it.
for (SDNode &Node : DAG.allnodes())
AddToWorklist(&Node, /* IsCandidateForPruning */ Node.use_empty());
// Create a dummy node (which is not added to allnodes), that adds a reference
// to the root node, preventing it from being deleted, and tracking any
// changes of the root.
HandleSDNode Dummy(DAG.getRoot());
// While we have a valid worklist entry node, try to combine it.
while (SDNode *N = getNextWorklistEntry()) {
// If N has no uses, it is dead. Make sure to revisit all N's operands once
// N is deleted from the DAG, since they too may now be dead or may have a
// reduced number of uses, allowing other xforms.
if (recursivelyDeleteUnusedNodes(N))
continue;
WorklistRemover DeadNodes(*this);
// If this combine is running after legalizing the DAG, re-legalize any
// nodes pulled off the worklist.
if (LegalDAG) {
SmallSetVector<SDNode *, 16> UpdatedNodes;
bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
for (SDNode *LN : UpdatedNodes)
AddToWorklistWithUsers(LN);
if (!NIsValid)
continue;
}
LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
// Add any operands of the new node which have not yet been combined to the
// worklist as well. getNextWorklistEntry flags nodes that have been
// combined before. Because the worklist uniques things already, this won't
// repeatedly process the same operand.
for (const SDValue &ChildN : N->op_values())
AddToWorklist(ChildN.getNode(), /*IsCandidateForPruning=*/true,
/*SkipIfCombinedBefore=*/true);
SDValue RV = combine(N);
if (!RV.getNode())
continue;
++NodesCombined;
// Invalidate cached info.
ChainsWithoutMergeableStores.clear();
// If we get back the same node we passed in, rather than a new node or
// zero, we know that the node must have defined multiple values and
// CombineTo was used. Since CombineTo takes care of the worklist
// mechanics for us, we have no work to do in this case.
if (RV.getNode() == N)
continue;
assert(N->getOpcode() != ISD::DELETED_NODE &&
RV.getOpcode() != ISD::DELETED_NODE &&
"Node was deleted but visit returned new node!");
LLVM_DEBUG(dbgs() << " ... into: "; RV.dump(&DAG));
if (N->getNumValues() == RV->getNumValues())
DAG.ReplaceAllUsesWith(N, RV.getNode());
else {
assert(N->getValueType(0) == RV.getValueType() &&
N->getNumValues() == 1 && "Type mismatch");
DAG.ReplaceAllUsesWith(N, &RV);
}
// Push the new node and any users onto the worklist. Omit this if the
// new node is the EntryToken (e.g. if a store managed to get optimized
// out), because re-visiting the EntryToken and its users will not uncover
// any additional opportunities, but there may be a large number of such
// users, potentially causing compile time explosion.
if (RV.getOpcode() != ISD::EntryToken)
AddToWorklistWithUsers(RV.getNode());
// Finally, if the node is now dead, remove it from the graph. The node
// may not be dead if the replacement process recursively simplified to
// something else needing this node. This will also take care of adding any
// operands which have lost a user to the worklist.
recursivelyDeleteUnusedNodes(N);
}
// If the root changed (e.g. it was a dead load, update the root).
DAG.setRoot(Dummy.getValue());
DAG.RemoveDeadNodes();
}
SDValue DAGCombiner::visit(SDNode *N) {
// clang-format off
switch (N->getOpcode()) {
default: break;
case ISD::TokenFactor: return visitTokenFactor(N);
case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
case ISD::ADD: return visitADD(N);
case ISD::SUB: return visitSUB(N);
case ISD::SADDSAT:
case ISD::UADDSAT: return visitADDSAT(N);
case ISD::SSUBSAT:
case ISD::USUBSAT: return visitSUBSAT(N);
case ISD::ADDC: return visitADDC(N);
case ISD::SADDO:
case ISD::UADDO: return visitADDO(N);
case ISD::SUBC: return visitSUBC(N);
case ISD::SSUBO:
case ISD::USUBO: return visitSUBO(N);
case ISD::ADDE: return visitADDE(N);
case ISD::UADDO_CARRY: return visitUADDO_CARRY(N);
case ISD::SADDO_CARRY: return visitSADDO_CARRY(N);
case ISD::SUBE: return visitSUBE(N);
case ISD::USUBO_CARRY: return visitUSUBO_CARRY(N);
case ISD::SSUBO_CARRY: return visitSSUBO_CARRY(N);
case ISD::SMULFIX:
case ISD::SMULFIXSAT:
case ISD::UMULFIX:
case ISD::UMULFIXSAT: return visitMULFIX(N);
case ISD::MUL: return visitMUL<EmptyMatchContext>(N);
case ISD::SDIV: return visitSDIV(N);
case ISD::UDIV: return visitUDIV(N);
case ISD::SREM:
case ISD::UREM: return visitREM(N);
case ISD::MULHU: return visitMULHU(N);
case ISD::MULHS: return visitMULHS(N);
case ISD::AVGFLOORS:
case ISD::AVGFLOORU:
case ISD::AVGCEILS:
case ISD::AVGCEILU: return visitAVG(N);
case ISD::ABDS:
case ISD::ABDU: return visitABD(N);
case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
case ISD::SMULO:
case ISD::UMULO: return visitMULO(N);
case ISD::SMIN:
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX: return visitIMINMAX(N);
case ISD::AND: return visitAND(N);
case ISD::OR: return visitOR(N);
case ISD::XOR: return visitXOR(N);
case ISD::SHL: return visitSHL(N);
case ISD::SRA: return visitSRA(N);
case ISD::SRL: return visitSRL(N);
case ISD::ROTR:
case ISD::ROTL: return visitRotate(N);
case ISD::FSHL:
case ISD::FSHR: return visitFunnelShift(N);
case ISD::SSHLSAT:
case ISD::USHLSAT: return visitSHLSAT(N);
case ISD::ABS: return visitABS(N);
case ISD::BSWAP: return visitBSWAP(N);
case ISD::BITREVERSE: return visitBITREVERSE(N);
case ISD::CTLZ: return visitCTLZ(N);
case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
case ISD::CTTZ: return visitCTTZ(N);
case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
case ISD::CTPOP: return visitCTPOP(N);
case ISD::SELECT: return visitSELECT(N);
case ISD::VSELECT: return visitVSELECT(N);
case ISD::SELECT_CC: return visitSELECT_CC(N);
case ISD::SETCC: return visitSETCC(N);
case ISD::SETCCCARRY: return visitSETCCCARRY(N);
case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
case ISD::AssertSext:
case ISD::AssertZext: return visitAssertExt(N);
case ISD::AssertAlign: return visitAssertAlign(N);
case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
case ISD::SIGN_EXTEND_VECTOR_INREG:
case ISD::ZERO_EXTEND_VECTOR_INREG:
case ISD::ANY_EXTEND_VECTOR_INREG: return visitEXTEND_VECTOR_INREG(N);
case ISD::TRUNCATE: return visitTRUNCATE(N);
case ISD::TRUNCATE_USAT_U: return visitTRUNCATE_USAT_U(N);
case ISD::BITCAST: return visitBITCAST(N);
case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
case ISD::FADD: return visitFADD(N);
case ISD::STRICT_FADD: return visitSTRICT_FADD(N);
case ISD::FSUB: return visitFSUB(N);
case ISD::FMUL: return visitFMUL(N);
case ISD::FMA: return visitFMA<EmptyMatchContext>(N);
case ISD::FMAD: return visitFMAD(N);
case ISD::FDIV: return visitFDIV(N);
case ISD::FREM: return visitFREM(N);
case ISD::FSQRT: return visitFSQRT(N);
case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
case ISD::FPOW: return visitFPOW(N);
case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
case ISD::LROUND:
case ISD::LLROUND:
case ISD::LRINT:
case ISD::LLRINT: return visitXROUND(N);
case ISD::FP_ROUND: return visitFP_ROUND(N);
case ISD::FP_EXTEND: return visitFP_EXTEND(N);
case ISD::FNEG: return visitFNEG(N);
case ISD::FABS: return visitFABS(N);
case ISD::FFLOOR: return visitFFLOOR(N);
case ISD::FMINNUM:
case ISD::FMAXNUM:
case ISD::FMINIMUM:
case ISD::FMAXIMUM:
case ISD::FMINIMUMNUM:
case ISD::FMAXIMUMNUM: return visitFMinMax(N);
case ISD::FCEIL: return visitFCEIL(N);
case ISD::FTRUNC: return visitFTRUNC(N);
case ISD::FFREXP: return visitFFREXP(N);
case ISD::BRCOND: return visitBRCOND(N);
case ISD::BR_CC: return visitBR_CC(N);
case ISD::LOAD: return visitLOAD(N);
case ISD::STORE: return visitSTORE(N);
case ISD::ATOMIC_STORE: return visitATOMIC_STORE(N);
case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N);
case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N);
case ISD::MGATHER: return visitMGATHER(N);
case ISD::MLOAD: return visitMLOAD(N);
case ISD::MSCATTER: return visitMSCATTER(N);
case ISD::MSTORE: return visitMSTORE(N);
case ISD::EXPERIMENTAL_VECTOR_HISTOGRAM: return visitMHISTOGRAM(N);
case ISD::PARTIAL_REDUCE_SMLA:
case ISD::PARTIAL_REDUCE_UMLA:
case ISD::PARTIAL_REDUCE_SUMLA:
return visitPARTIAL_REDUCE_MLA(N);
case ISD::VECTOR_COMPRESS: return visitVECTOR_COMPRESS(N);
case ISD::LIFETIME_END: return visitLIFETIME_END(N);
case ISD::FP_TO_FP16: return visitFP_TO_FP16(N);
case ISD::FP16_TO_FP: return visitFP16_TO_FP(N);
case ISD::FP_TO_BF16: return visitFP_TO_BF16(N);
case ISD::BF16_TO_FP: return visitBF16_TO_FP(N);
case ISD::FREEZE: return visitFREEZE(N);
case ISD::GET_FPENV_MEM: return visitGET_FPENV_MEM(N);
case ISD::SET_FPENV_MEM: return visitSET_FPENV_MEM(N);
case ISD::FCANONICALIZE: return visitFCANONICALIZE(N);
case ISD::VECREDUCE_FADD:
case ISD::VECREDUCE_FMUL:
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_MUL:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN:
case ISD::VECREDUCE_FMAX:
case ISD::VECREDUCE_FMIN:
case ISD::VECREDUCE_FMAXIMUM:
case ISD::VECREDUCE_FMINIMUM: return visitVECREDUCE(N);
#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) case ISD::SDOPC:
#include "llvm/IR/VPIntrinsics.def"
return visitVPOp(N);
}
// clang-format on
return SDValue();
}
SDValue DAGCombiner::combine(SDNode *N) {
if (!DebugCounter::shouldExecute(DAGCombineCounter))
return SDValue();
SDValue RV;
if (!DisableGenericCombines)
RV = visit(N);
// If nothing happened, try a target-specific DAG combine.
if (!RV.getNode()) {
assert(N->getOpcode() != ISD::DELETED_NODE &&
"Node was deleted but visit returned NULL!");
if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
// Expose the DAG combiner to the target combiner impls.
TargetLowering::DAGCombinerInfo
DagCombineInfo(DAG, Level, false, this);
RV = TLI.PerformDAGCombine(N, DagCombineInfo);
}
}
// If nothing happened still, try promoting the operation.
if (!RV.getNode()) {
switch (N->getOpcode()) {
default: break;
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
RV = PromoteIntBinOp(SDValue(N, 0));
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
RV = PromoteIntShiftOp(SDValue(N, 0));
break;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
RV = PromoteExtend(SDValue(N, 0));
break;
case ISD::LOAD:
if (PromoteLoad(SDValue(N, 0)))
RV = SDValue(N, 0);
break;
}
}
// If N is a commutative binary node, try to eliminate it if the commuted
// version is already present in the DAG.
if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode())) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Constant operands are canonicalized to RHS.
if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) {
SDValue Ops[] = {N1, N0};
SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
N->getFlags());
if (CSENode)
return SDValue(CSENode, 0);
}
}
return RV;
}
/// Given a node, return its input chain if it has one, otherwise return a null
/// sd operand.
static SDValue getInputChainForNode(SDNode *N) {
if (unsigned NumOps = N->getNumOperands()) {
if (N->getOperand(0).getValueType() == MVT::Other)
return N->getOperand(0);
if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
return N->getOperand(NumOps-1);
for (unsigned i = 1; i < NumOps-1; ++i)
if (N->getOperand(i).getValueType() == MVT::Other)
return N->getOperand(i);
}
return SDValue();
}
SDValue DAGCombiner::visitFCANONICALIZE(SDNode *N) {
SDValue Operand = N->getOperand(0);
EVT VT = Operand.getValueType();
SDLoc dl(N);
// Canonicalize undef to quiet NaN.
if (Operand.isUndef()) {
APFloat CanonicalQNaN = APFloat::getQNaN(VT.getFltSemantics());
return DAG.getConstantFP(CanonicalQNaN, dl, VT);
}
return SDValue();
}
SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
// If N has two operands, where one has an input chain equal to the other,
// the 'other' chain is redundant.
if (N->getNumOperands() == 2) {
if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
return N->getOperand(0);
if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
return N->getOperand(1);
}
// Don't simplify token factors if optnone.
if (OptLevel == CodeGenOptLevel::None)
return SDValue();
// Don't simplify the token factor if the node itself has too many operands.
if (N->getNumOperands() > TokenFactorInlineLimit)
return SDValue();
// If the sole user is a token factor, we should make sure we have a
// chance to merge them together. This prevents TF chains from inhibiting
// optimizations.
if (N->hasOneUse() && N->user_begin()->getOpcode() == ISD::TokenFactor)
AddToWorklist(*(N->user_begin()));
SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
SmallPtrSet<SDNode*, 16> SeenOps;
bool Changed = false; // If we should replace this token factor.
// Start out with this token factor.
TFs.push_back(N);
// Iterate through token factors. The TFs grows when new token factors are
// encountered.
for (unsigned i = 0; i < TFs.size(); ++i) {
// Limit number of nodes to inline, to avoid quadratic compile times.
// We have to add the outstanding Token Factors to Ops, otherwise we might
// drop Ops from the resulting Token Factors.
if (Ops.size() > TokenFactorInlineLimit) {
for (unsigned j = i; j < TFs.size(); j++)
Ops.emplace_back(TFs[j], 0);
// Drop unprocessed Token Factors from TFs, so we do not add them to the
// combiner worklist later.
TFs.resize(i);
break;
}
SDNode *TF = TFs[i];
// Check each of the operands.
for (const SDValue &Op : TF->op_values()) {
switch (Op.getOpcode()) {
case ISD::EntryToken:
// Entry tokens don't need to be added to the list. They are
// redundant.
Changed = true;
break;
case ISD::TokenFactor:
if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) {
// Queue up for processing.
TFs.push_back(Op.getNode());
Changed = true;
break;
}
[[fallthrough]];
default:
// Only add if it isn't already in the list.
if (SeenOps.insert(Op.getNode()).second)
Ops.push_back(Op);
else
Changed = true;
break;
}
}
}
// Re-visit inlined Token Factors, to clean them up in case they have been
// removed. Skip the first Token Factor, as this is the current node.
for (unsigned i = 1, e = TFs.size(); i < e; i++)
AddToWorklist(TFs[i]);
// Remove Nodes that are chained to another node in the list. Do so
// by walking up chains breath-first stopping when we've seen
// another operand. In general we must climb to the EntryNode, but we can exit
// early if we find all remaining work is associated with just one operand as
// no further pruning is possible.
// List of nodes to search through and original Ops from which they originate.
SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist;
SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op.
SmallPtrSet<SDNode *, 16> SeenChains;
bool DidPruneOps = false;
unsigned NumLeftToConsider = 0;
for (const SDValue &Op : Ops) {
Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++));
OpWorkCount.push_back(1);
}
auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) {
// If this is an Op, we can remove the op from the list. Remark any
// search associated with it as from the current OpNumber.
if (SeenOps.contains(Op)) {
Changed = true;
DidPruneOps = true;
unsigned OrigOpNumber = 0;
while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op)
OrigOpNumber++;
assert((OrigOpNumber != Ops.size()) &&
"expected to find TokenFactor Operand");
// Re-mark worklist from OrigOpNumber to OpNumber
for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) {
if (Worklist[i].second == OrigOpNumber) {
Worklist[i].second = OpNumber;
}
}
OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber];
OpWorkCount[OrigOpNumber] = 0;
NumLeftToConsider--;
}
// Add if it's a new chain
if (SeenChains.insert(Op).second) {
OpWorkCount[OpNumber]++;
Worklist.push_back(std::make_pair(Op, OpNumber));
}
};
for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) {
// We need at least be consider at least 2 Ops to prune.
if (NumLeftToConsider <= 1)
break;
auto CurNode = Worklist[i].first;
auto CurOpNumber = Worklist[i].second;
assert((OpWorkCount[CurOpNumber] > 0) &&
"Node should not appear in worklist");
switch (CurNode->getOpcode()) {
case ISD::EntryToken:
// Hitting EntryToken is the only way for the search to terminate without
// hitting
// another operand's search. Prevent us from marking this operand
// considered.
NumLeftToConsider++;
break;
case ISD::TokenFactor:
for (const SDValue &Op : CurNode->op_values())
AddToWorklist(i, Op.getNode(), CurOpNumber);
break;
case ISD::LIFETIME_START:
case ISD::LIFETIME_END:
case ISD::CopyFromReg:
case ISD::CopyToReg:
AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber);
break;
default:
if (auto *MemNode = dyn_cast<MemSDNode>(CurNode))
AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber);
break;
}
OpWorkCount[CurOpNumber]--;
if (OpWorkCount[CurOpNumber] == 0)
NumLeftToConsider--;
}
// If we've changed things around then replace token factor.
if (Changed) {
SDValue Result;
if (Ops.empty()) {
// The entry token is the only possible outcome.
Result = DAG.getEntryNode();
} else {
if (DidPruneOps) {
SmallVector<SDValue, 8> PrunedOps;
//
for (const SDValue &Op : Ops) {
if (SeenChains.count(Op.getNode()) == 0)
PrunedOps.push_back(Op);
}
Result = DAG.getTokenFactor(SDLoc(N), PrunedOps);
} else {
Result = DAG.getTokenFactor(SDLoc(N), Ops);
}
}
return Result;
}
return SDValue();
}
/// MERGE_VALUES can always be eliminated.
SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
WorklistRemover DeadNodes(*this);
// Replacing results may cause a different MERGE_VALUES to suddenly
// be CSE'd with N, and carry its uses with it. Iterate until no
// uses remain, to ensure that the node can be safely deleted.
// First add the users of this node to the work list so that they
// can be tried again once they have new operands.
AddUsersToWorklist(N);
do {
// Do as a single replacement to avoid rewalking use lists.
SmallVector<SDValue, 8> Ops(N->ops());
DAG.ReplaceAllUsesWith(N, Ops.data());
} while (!N->use_empty());
deleteAndRecombine(N);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
/// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
/// ConstantSDNode pointer else nullptr.
static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
}
// isTruncateOf - If N is a truncate of some other value, return true, record
// the value being truncated in Op and which of Op's bits are zero/one in Known.
// This function computes KnownBits to avoid a duplicated call to
// computeKnownBits in the caller.
static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
KnownBits &Known) {
if (N->getOpcode() == ISD::TRUNCATE) {
Op = N->getOperand(0);
Known = DAG.computeKnownBits(Op);
if (N->getFlags().hasNoUnsignedWrap())
Known.Zero.setBitsFrom(N.getScalarValueSizeInBits());
return true;
}
if (N.getValueType().getScalarType() != MVT::i1 ||
!sd_match(
N, m_c_SetCC(m_Value(Op), m_Zero(), m_SpecificCondCode(ISD::SETNE))))
return false;
Known = DAG.computeKnownBits(Op);
return (Known.Zero | 1).isAllOnes();
}
/// Return true if 'Use' is a load or a store that uses N as its base pointer
/// and that N may be folded in the load / store addressing mode.
static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, SelectionDAG &DAG,
const TargetLowering &TLI) {
EVT VT;
unsigned AS;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
return false;
VT = LD->getMemoryVT();
AS = LD->getAddressSpace();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
return false;
VT = ST->getMemoryVT();
AS = ST->getAddressSpace();
} else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(Use)) {
if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
return false;
VT = LD->getMemoryVT();
AS = LD->getAddressSpace();
} else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(Use)) {
if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
return false;
VT = ST->getMemoryVT();
AS = ST->getAddressSpace();
} else {
return false;
}
TargetLowering::AddrMode AM;
if (N->isAnyAdd()) {
AM.HasBaseReg = true;
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (Offset)
// [reg +/- imm]
AM.BaseOffs = Offset->getSExtValue();
else
// [reg +/- reg]
AM.Scale = 1;
} else if (N->getOpcode() == ISD::SUB) {
AM.HasBaseReg = true;
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (Offset)
// [reg +/- imm]
AM.BaseOffs = -Offset->getSExtValue();
else
// [reg +/- reg]
AM.Scale = 1;
} else {
return false;
}
return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
VT.getTypeForEVT(*DAG.getContext()), AS);
}
/// This inverts a canonicalization in IR that replaces a variable select arm
/// with an identity constant. Codegen improves if we re-use the variable
/// operand rather than load a constant. This can also be converted into a
/// masked vector operation if the target supports it.
static SDValue foldSelectWithIdentityConstant(SDNode *N, SelectionDAG &DAG,
bool ShouldCommuteOperands) {
// Match a select as operand 1. The identity constant that we are looking for
// is only valid as operand 1 of a non-commutative binop.
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (ShouldCommuteOperands)
std::swap(N0, N1);
unsigned SelOpcode = N1.getOpcode();
if ((SelOpcode != ISD::VSELECT && SelOpcode != ISD::SELECT) ||
!N1.hasOneUse())
return SDValue();
// We can't hoist all instructions because of immediate UB (not speculatable).
// For example div/rem by zero.
if (!DAG.isSafeToSpeculativelyExecuteNode(N))
return SDValue();
unsigned Opcode = N->getOpcode();
EVT VT = N->getValueType(0);
SDValue Cond = N1.getOperand(0);
SDValue TVal = N1.getOperand(1);
SDValue FVal = N1.getOperand(2);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// This transform increases uses of N0, so freeze it to be safe.
// binop N0, (vselect Cond, IDC, FVal) --> vselect Cond, N0, (binop N0, FVal)
unsigned OpNo = ShouldCommuteOperands ? 0 : 1;
if (isNeutralConstant(Opcode, N->getFlags(), TVal, OpNo) &&
TLI.shouldFoldSelectWithIdentityConstant(Opcode, VT, SelOpcode, N0,
FVal)) {
SDValue F0 = DAG.getFreeze(N0);
SDValue NewBO = DAG.getNode(Opcode, SDLoc(N), VT, F0, FVal, N->getFlags());
return DAG.getSelect(SDLoc(N), VT, Cond, F0, NewBO);
}
// binop N0, (vselect Cond, TVal, IDC) --> vselect Cond, (binop N0, TVal), N0
if (isNeutralConstant(Opcode, N->getFlags(), FVal, OpNo) &&
TLI.shouldFoldSelectWithIdentityConstant(Opcode, VT, SelOpcode, N0,
TVal)) {
SDValue F0 = DAG.getFreeze(N0);
SDValue NewBO = DAG.getNode(Opcode, SDLoc(N), VT, F0, TVal, N->getFlags());
return DAG.getSelect(SDLoc(N), VT, Cond, NewBO, F0);
}
return SDValue();
}
SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 &&
"Unexpected binary operator");
if (SDValue Sel = foldSelectWithIdentityConstant(BO, DAG, false))
return Sel;
if (TLI.isCommutativeBinOp(BO->getOpcode()))
if (SDValue Sel = foldSelectWithIdentityConstant(BO, DAG, true))
return Sel;
// Don't do this unless the old select is going away. We want to eliminate the
// binary operator, not replace a binop with a select.
// TODO: Handle ISD::SELECT_CC.
unsigned SelOpNo = 0;
SDValue Sel = BO->getOperand(0);
auto BinOpcode = BO->getOpcode();
if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) {
SelOpNo = 1;
Sel = BO->getOperand(1);
// Peek through trunc to shift amount type.
if ((BinOpcode == ISD::SHL || BinOpcode == ISD::SRA ||
BinOpcode == ISD::SRL) && Sel.hasOneUse()) {
// This is valid when the truncated bits of x are already zero.
SDValue Op;
KnownBits Known;
if (isTruncateOf(DAG, Sel, Op, Known) &&
Known.countMaxActiveBits() < Sel.getScalarValueSizeInBits())
Sel = Op;
}
}
if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse())
return SDValue();
SDValue CT = Sel.getOperand(1);
if (!isConstantOrConstantVector(CT, true) &&
!DAG.isConstantFPBuildVectorOrConstantFP(CT))
return SDValue();
SDValue CF = Sel.getOperand(2);
if (!isConstantOrConstantVector(CF, true) &&
!DAG.isConstantFPBuildVectorOrConstantFP(CF))
return SDValue();
// Bail out if any constants are opaque because we can't constant fold those.
// The exception is "and" and "or" with either 0 or -1 in which case we can
// propagate non constant operands into select. I.e.:
// and (select Cond, 0, -1), X --> select Cond, 0, X
// or X, (select Cond, -1, 0) --> select Cond, -1, X
bool CanFoldNonConst =
(BinOpcode == ISD::AND || BinOpcode == ISD::OR) &&
((isNullOrNullSplat(CT) && isAllOnesOrAllOnesSplat(CF)) ||
(isNullOrNullSplat(CF) && isAllOnesOrAllOnesSplat(CT)));
SDValue CBO = BO->getOperand(SelOpNo ^ 1);
if (!CanFoldNonConst &&
!isConstantOrConstantVector(CBO, true) &&
!DAG.isConstantFPBuildVectorOrConstantFP(CBO))
return SDValue();
SDLoc DL(Sel);
SDValue NewCT, NewCF;
EVT VT = BO->getValueType(0);
if (CanFoldNonConst) {
// If CBO is an opaque constant, we can't rely on getNode to constant fold.
if ((BinOpcode == ISD::AND && isNullOrNullSplat(CT)) ||
(BinOpcode == ISD::OR && isAllOnesOrAllOnesSplat(CT)))
NewCT = CT;
else
NewCT = CBO;
if ((BinOpcode == ISD::AND && isNullOrNullSplat(CF)) ||
(BinOpcode == ISD::OR && isAllOnesOrAllOnesSplat(CF)))
NewCF = CF;
else
NewCF = CBO;
} else {
// We have a select-of-constants followed by a binary operator with a
// constant. Eliminate the binop by pulling the constant math into the
// select. Example: add (select Cond, CT, CF), CBO --> select Cond, CT +
// CBO, CF + CBO
NewCT = SelOpNo ? DAG.FoldConstantArithmetic(BinOpcode, DL, VT, {CBO, CT})
: DAG.FoldConstantArithmetic(BinOpcode, DL, VT, {CT, CBO});
if (!NewCT)
return SDValue();
NewCF = SelOpNo ? DAG.FoldConstantArithmetic(BinOpcode, DL, VT, {CBO, CF})
: DAG.FoldConstantArithmetic(BinOpcode, DL, VT, {CF, CBO});
if (!NewCF)
return SDValue();
}
SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF);
SelectOp->setFlags(BO->getFlags());
return SelectOp;
}
static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, const SDLoc &DL,
SelectionDAG &DAG) {
assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
"Expecting add or sub");
// Match a constant operand and a zext operand for the math instruction:
// add Z, C
// sub C, Z
bool IsAdd = N->getOpcode() == ISD::ADD;
SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0);
SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1);
auto *CN = dyn_cast<ConstantSDNode>(C);
if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND)
return SDValue();
// Match the zext operand as a setcc of a boolean.
if (Z.getOperand(0).getValueType() != MVT::i1)
return SDValue();
// Match the compare as: setcc (X & 1), 0, eq.
if (!sd_match(Z.getOperand(0), m_SetCC(m_And(m_Value(), m_One()), m_Zero(),
m_SpecificCondCode(ISD::SETEQ))))
return SDValue();
// We are adding/subtracting a constant and an inverted low bit. Turn that
// into a subtract/add of the low bit with incremented/decremented constant:
// add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
// sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
EVT VT = C.getValueType();
SDValue LowBit = DAG.getZExtOrTrunc(Z.getOperand(0).getOperand(0), DL, VT);
SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT)
: DAG.getConstant(CN->getAPIntValue() - 1, DL, VT);
return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit);
}
// Attempt to form avgceil(A, B) from (A | B) - ((A ^ B) >> 1)
SDValue DAGCombiner::foldSubToAvg(SDNode *N, const SDLoc &DL) {
SDValue N0 = N->getOperand(0);
EVT VT = N0.getValueType();
SDValue A, B;
if ((!LegalOperations || hasOperation(ISD::AVGCEILU, VT)) &&
sd_match(N, m_Sub(m_Or(m_Value(A), m_Value(B)),
m_Srl(m_Xor(m_Deferred(A), m_Deferred(B)), m_One())))) {
return DAG.getNode(ISD::AVGCEILU, DL, VT, A, B);
}
if ((!LegalOperations || hasOperation(ISD::AVGCEILS, VT)) &&
sd_match(N, m_Sub(m_Or(m_Value(A), m_Value(B)),
m_Sra(m_Xor(m_Deferred(A), m_Deferred(B)), m_One())))) {
return DAG.getNode(ISD::AVGCEILS, DL, VT, A, B);
}
return SDValue();
}
/// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
/// a shift and add with a different constant.
static SDValue foldAddSubOfSignBit(SDNode *N, const SDLoc &DL,
SelectionDAG &DAG) {
assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
"Expecting add or sub");
// We need a constant operand for the add/sub, and the other operand is a
// logical shift right: add (srl), C or sub C, (srl).
bool IsAdd = N->getOpcode() == ISD::ADD;
SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0);
SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1);
if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) ||
ShiftOp.getOpcode() != ISD::SRL)
return SDValue();
// The shift must be of a 'not' value.
SDValue Not = ShiftOp.getOperand(0);
if (!Not.hasOneUse() || !isBitwiseNot(Not))
return SDValue();
// The shift must be moving the sign bit to the least-significant-bit.
EVT VT = ShiftOp.getValueType();
SDValue ShAmt = ShiftOp.getOperand(1);
ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1))
return SDValue();
// Eliminate the 'not' by adjusting the shift and add/sub constant:
// add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
// sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
if (SDValue NewC = DAG.FoldConstantArithmetic(
IsAdd ? ISD::ADD : ISD::SUB, DL, VT,
{ConstantOp, DAG.getConstant(1, DL, VT)})) {
SDValue NewShift = DAG.getNode(IsAdd ? ISD::SRA : ISD::SRL, DL, VT,
Not.getOperand(0), ShAmt);
return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC);
}
return SDValue();
}
static bool
areBitwiseNotOfEachother(SDValue Op0, SDValue Op1) {
return (isBitwiseNot(Op0) && Op0.getOperand(0) == Op1) ||
(isBitwiseNot(Op1) && Op1.getOperand(0) == Op0);
}
/// Try to fold a node that behaves like an ADD (note that N isn't necessarily
/// an ISD::ADD here, it could for example be an ISD::OR if we know that there
/// are no common bits set in the operands).
SDValue DAGCombiner::visitADDLike(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
SDLoc DL(N);
// fold (add x, undef) -> undef
if (N0.isUndef())
return N0;
if (N1.isUndef())
return N1;
// fold (add c1, c2) -> c1+c2
if (SDValue C = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1}))
return C;
// canonicalize constant to RHS
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
if (areBitwiseNotOfEachother(N0, N1))
return DAG.getConstant(APInt::getAllOnes(VT.getScalarSizeInBits()), DL, VT);
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
// fold (add x, 0) -> x, vector edition
if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
return N0;
}
// fold (add x, 0) -> x
if (isNullConstant(N1))
return N0;
if (N0.getOpcode() == ISD::SUB) {
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
// fold ((A-c1)+c2) -> (A+(c2-c1))
if (SDValue Sub = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N01}))
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub);
// fold ((c1-A)+c2) -> (c1+c2)-A
if (SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N00}))
return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
}
// add (sext i1 X), 1 -> zext (not i1 X)
// We don't transform this pattern:
// add (zext i1 X), -1 -> sext (not i1 X)
// because most (?) targets generate better code for the zext form.
if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() &&
isOneOrOneSplat(N1)) {
SDValue X = N0.getOperand(0);
if ((!LegalOperations ||
(TLI.isOperationLegal(ISD::XOR, X.getValueType()) &&
TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) &&
X.getScalarValueSizeInBits() == 1) {
SDValue Not = DAG.getNOT(DL, X, X.getValueType());
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not);
}
}
// Fold (add (or x, c0), c1) -> (add x, (c0 + c1))
// iff (or x, c0) is equivalent to (add x, c0).
// Fold (add (xor x, c0), c1) -> (add x, (c0 + c1))
// iff (xor x, c0) is equivalent to (add x, c0).
if (DAG.isADDLike(N0)) {
SDValue N01 = N0.getOperand(1);
if (SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N01}))
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add);
}
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// reassociate add
if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N, N0, N1)) {
if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags()))
return RADD;
// Reassociate (add (or x, c), y) -> (add add(x, y), c)) if (or x, c) is
// equivalent to (add x, c).
// Reassociate (add (xor x, c), y) -> (add add(x, y), c)) if (xor x, c) is
// equivalent to (add x, c).
// Do this optimization only when adding c does not introduce instructions
// for adding carries.
auto ReassociateAddOr = [&](SDValue N0, SDValue N1) {
if (DAG.isADDLike(N0) && N0.hasOneUse() &&
isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) {
// If N0's type does not split or is a sign mask, it does not introduce
// add carry.
auto TyActn = TLI.getTypeAction(*DAG.getContext(), N0.getValueType());
bool NoAddCarry = TyActn == TargetLoweringBase::TypeLegal ||
TyActn == TargetLoweringBase::TypePromoteInteger ||
isMinSignedConstant(N0.getOperand(1));
if (NoAddCarry)
return DAG.getNode(
ISD::ADD, DL, VT,
DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)),
N0.getOperand(1));
}
return SDValue();
};
if (SDValue Add = ReassociateAddOr(N0, N1))
return Add;
if (SDValue Add = ReassociateAddOr(N1, N0))
return Add;
// Fold add(vecreduce(x), vecreduce(y)) -> vecreduce(add(x, y))
if (SDValue SD =
reassociateReduction(ISD::VECREDUCE_ADD, ISD::ADD, DL, VT, N0, N1))
return SD;
}
SDValue A, B, C, D;
// fold ((0-A) + B) -> B-A
if (sd_match(N0, m_Neg(m_Value(A))))
return DAG.getNode(ISD::SUB, DL, VT, N1, A);
// fold (A + (0-B)) -> A-B
if (sd_match(N1, m_Neg(m_Value(B))))
return DAG.getNode(ISD::SUB, DL, VT, N0, B);
// fold (A+(B-A)) -> B
if (sd_match(N1, m_Sub(m_Value(B), m_Specific(N0))))
return B;
// fold ((B-A)+A) -> B
if (sd_match(N0, m_Sub(m_Value(B), m_Specific(N1))))
return B;
// fold ((A-B)+(C-A)) -> (C-B)
if (sd_match(N0, m_Sub(m_Value(A), m_Value(B))) &&
sd_match(N1, m_Sub(m_Value(C), m_Specific(A))))
return DAG.getNode(ISD::SUB, DL, VT, C, B);
// fold ((A-B)+(B-C)) -> (A-C)
if (sd_match(N0, m_Sub(m_Value(A), m_Value(B))) &&
sd_match(N1, m_Sub(m_Specific(B), m_Value(C))))
return DAG.getNode(ISD::SUB, DL, VT, A, C);
// fold (A+(B-(A+C))) to (B-C)
// fold (A+(B-(C+A))) to (B-C)
if (sd_match(N1, m_Sub(m_Value(B), m_Add(m_Specific(N0), m_Value(C)))))
return DAG.getNode(ISD::SUB, DL, VT, B, C);
// fold (A+((B-A)+or-C)) to (B+or-C)
if (sd_match(N1,
m_AnyOf(m_Add(m_Sub(m_Value(B), m_Specific(N0)), m_Value(C)),
m_Sub(m_Sub(m_Value(B), m_Specific(N0)), m_Value(C)))))
return DAG.getNode(N1.getOpcode(), DL, VT, B, C);
// fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
if (sd_match(N0, m_OneUse(m_Sub(m_Value(A), m_Value(B)))) &&
sd_match(N1, m_OneUse(m_Sub(m_Value(C), m_Value(D)))) &&
(isConstantOrConstantVector(A) || isConstantOrConstantVector(C)))
return DAG.getNode(ISD::SUB, DL, VT,
DAG.getNode(ISD::ADD, SDLoc(N0), VT, A, C),
DAG.getNode(ISD::ADD, SDLoc(N1), VT, B, D));
// fold (add (umax X, C), -C) --> (usubsat X, C)
if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) {
auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) {
return (!Max && !Op) ||
(Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue()));
};
if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT,
/*AllowUndefs*/ true))
return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0),
N0.getOperand(1));
}
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
if (isOneOrOneSplat(N1)) {
// fold (add (xor a, -1), 1) -> (sub 0, a)
if (isBitwiseNot(N0))
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
N0.getOperand(0));
// fold (add (add (xor a, -1), b), 1) -> (sub b, a)
if (N0.getOpcode() == ISD::ADD) {
SDValue A, Xor;
if (isBitwiseNot(N0.getOperand(0))) {
A = N0.getOperand(1);
Xor = N0.getOperand(0);
} else if (isBitwiseNot(N0.getOperand(1))) {
A = N0.getOperand(0);
Xor = N0.getOperand(1);
}
if (Xor)
return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0));
}
// Look for:
// add (add x, y), 1
// And if the target does not like this form then turn into:
// sub y, (xor x, -1)
if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.getOpcode() == ISD::ADD &&
N0.hasOneUse() &&
// Limit this to after legalization if the add has wrap flags
(Level >= AfterLegalizeDAG || (!N->getFlags().hasNoUnsignedWrap() &&
!N->getFlags().hasNoSignedWrap()))) {
SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT);
return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not);
}
}
// (x - y) + -1 -> add (xor y, -1), x
if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
isAllOnesOrAllOnesSplat(N1, /*AllowUndefs=*/true)) {
SDValue Not = DAG.getNOT(DL, N0.getOperand(1), VT);
return DAG.getNode(ISD::ADD, DL, VT, Not, N0.getOperand(0));
}
// Fold add(mul(add(A, CA), CM), CB) -> add(mul(A, CM), CM*CA+CB).
// This can help if the inner add has multiple uses.
APInt CM, CA;
if (ConstantSDNode *CB = dyn_cast<ConstantSDNode>(N1)) {
if (VT.getScalarSizeInBits() <= 64) {
if (sd_match(N0, m_OneUse(m_Mul(m_Add(m_Value(A), m_ConstInt(CA)),
m_ConstInt(CM)))) &&
TLI.isLegalAddImmediate(
(CA * CM + CB->getAPIntValue()).getSExtValue())) {
SDNodeFlags Flags;
// If all the inputs are nuw, the outputs can be nuw. If all the input
// are _also_ nsw the outputs can be too.
if (N->getFlags().hasNoUnsignedWrap() &&
N0->getFlags().hasNoUnsignedWrap() &&
N0.getOperand(0)->getFlags().hasNoUnsignedWrap()) {
Flags |= SDNodeFlags::NoUnsignedWrap;
if (N->getFlags().hasNoSignedWrap() &&
N0->getFlags().hasNoSignedWrap() &&
N0.getOperand(0)->getFlags().hasNoSignedWrap())
Flags |= SDNodeFlags::NoSignedWrap;
}
SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N1), VT, A,
DAG.getConstant(CM, DL, VT), Flags);
return DAG.getNode(
ISD::ADD, DL, VT, Mul,
DAG.getConstant(CA * CM + CB->getAPIntValue(), DL, VT), Flags);
}
// Also look in case there is an intermediate add.
if (sd_match(N0, m_OneUse(m_Add(
m_OneUse(m_Mul(m_Add(m_Value(A), m_ConstInt(CA)),
m_ConstInt(CM))),
m_Value(B)))) &&
TLI.isLegalAddImmediate(
(CA * CM + CB->getAPIntValue()).getSExtValue())) {
SDNodeFlags Flags;
// If all the inputs are nuw, the outputs can be nuw. If all the input
// are _also_ nsw the outputs can be too.
SDValue OMul =
N0.getOperand(0) == B ? N0.getOperand(1) : N0.getOperand(0);
if (N->getFlags().hasNoUnsignedWrap() &&
N0->getFlags().hasNoUnsignedWrap() &&
OMul->getFlags().hasNoUnsignedWrap() &&
OMul.getOperand(0)->getFlags().hasNoUnsignedWrap()) {
Flags |= SDNodeFlags::NoUnsignedWrap;
if (N->getFlags().hasNoSignedWrap() &&
N0->getFlags().hasNoSignedWrap() &&
OMul->getFlags().hasNoSignedWrap() &&
OMul.getOperand(0)->getFlags().hasNoSignedWrap())
Flags |= SDNodeFlags::NoSignedWrap;
}
SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N1), VT, A,
DAG.getConstant(CM, DL, VT), Flags);
SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N1), VT, Mul, B, Flags);
return DAG.getNode(
ISD::ADD, DL, VT, Add,
DAG.getConstant(CA * CM + CB->getAPIntValue(), DL, VT), Flags);
}
}
}
if (SDValue Combined = visitADDLikeCommutative(N0, N1, N))
return Combined;
if (SDValue Combined = visitADDLikeCommutative(N1, N0, N))
return Combined;
return SDValue();
}
// Attempt to form avgfloor(A, B) from (A & B) + ((A ^ B) >> 1)
SDValue DAGCombiner::foldAddToAvg(SDNode *N, const SDLoc &DL) {
SDValue N0 = N->getOperand(0);
EVT VT = N0.getValueType();
SDValue A, B;
if ((!LegalOperations || hasOperation(ISD::AVGFLOORU, VT)) &&
sd_match(N, m_Add(m_And(m_Value(A), m_Value(B)),
m_Srl(m_Xor(m_Deferred(A), m_Deferred(B)), m_One())))) {
return DAG.getNode(ISD::AVGFLOORU, DL, VT, A, B);
}
if ((!LegalOperations || hasOperation(ISD::AVGFLOORS, VT)) &&
sd_match(N, m_Add(m_And(m_Value(A), m_Value(B)),
m_Sra(m_Xor(m_Deferred(A), m_Deferred(B)), m_One())))) {
return DAG.getNode(ISD::AVGFLOORS, DL, VT, A, B);
}
return SDValue();
}
SDValue DAGCombiner::visitADD(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
SDLoc DL(N);
if (SDValue Combined = visitADDLike(N))
return Combined;
if (SDValue V = foldAddSubBoolOfMaskedVal(N, DL, DAG))
return V;
if (SDValue V = foldAddSubOfSignBit(N, DL, DAG))
return V;
if (SDValue V = MatchRotate(N0, N1, SDLoc(N), /*FromAdd=*/true))
return V;
// Try to match AVGFLOOR fixedwidth pattern
if (SDValue V = foldAddToAvg(N, DL))
return V;
// fold (a+b) -> (a|b) iff a and b share no bits.
if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
DAG.haveNoCommonBitsSet(N0, N1))
return DAG.getNode(ISD::OR, DL, VT, N0, N1, SDNodeFlags::Disjoint);
// Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) {
const APInt &C0 = N0->getConstantOperandAPInt(0);
const APInt &C1 = N1->getConstantOperandAPInt(0);
return DAG.getVScale(DL, VT, C0 + C1);
}
// fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2)
if (N0.getOpcode() == ISD::ADD &&
N0.getOperand(1).getOpcode() == ISD::VSCALE &&
N1.getOpcode() == ISD::VSCALE) {
const APInt &VS0 = N0.getOperand(1)->getConstantOperandAPInt(0);
const APInt &VS1 = N1->getConstantOperandAPInt(0);
SDValue VS = DAG.getVScale(DL, VT, VS0 + VS1);
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS);
}
// Fold (add step_vector(c1), step_vector(c2) to step_vector(c1+c2))
if (N0.getOpcode() == ISD::STEP_VECTOR &&
N1.getOpcode() == ISD::STEP_VECTOR) {
const APInt &C0 = N0->getConstantOperandAPInt(0);
const APInt &C1 = N1->getConstantOperandAPInt(0);
APInt NewStep = C0 + C1;
return DAG.getStepVector(DL, VT, NewStep);
}
// Fold a + step_vector(c1) + step_vector(c2) to a + step_vector(c1+c2)
if (N0.getOpcode() == ISD::ADD &&
N0.getOperand(1).getOpcode() == ISD::STEP_VECTOR &&
N1.getOpcode() == ISD::STEP_VECTOR) {
const APInt &SV0 = N0.getOperand(1)->getConstantOperandAPInt(0);
const APInt &SV1 = N1->getConstantOperandAPInt(0);
APInt NewStep = SV0 + SV1;
SDValue SV = DAG.getStepVector(DL, VT, NewStep);
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), SV);
}
return SDValue();
}
SDValue DAGCombiner::visitADDSAT(SDNode *N) {
unsigned Opcode = N->getOpcode();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
bool IsSigned = Opcode == ISD::SADDSAT;
SDLoc DL(N);
// fold (add_sat x, undef) -> -1
if (N0.isUndef() || N1.isUndef())
return DAG.getAllOnesConstant(DL, VT);
// fold (add_sat c1, c2) -> c3
if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
return C;
// canonicalize constant to RHS
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(Opcode, DL, VT, N1, N0);
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
// fold (add_sat x, 0) -> x, vector edition
if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
return N0;
}
// fold (add_sat x, 0) -> x
if (isNullConstant(N1))
return N0;
// If it cannot overflow, transform into an add.
if (DAG.willNotOverflowAdd(IsSigned, N0, N1))
return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
return SDValue();
}
static SDValue getAsCarry(const TargetLowering &TLI, SDValue V,
bool ForceCarryReconstruction = false) {
bool Masked = false;
// First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
while (true) {
if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) {
V = V.getOperand(0);
continue;
}
if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) {
if (ForceCarryReconstruction)
return V;
Masked = true;
V = V.getOperand(0);
continue;
}
if (ForceCarryReconstruction && V.getValueType() == MVT::i1)
return V;
break;
}
// If this is not a carry, return.
if (V.getResNo() != 1)
return SDValue();
if (V.getOpcode() != ISD::UADDO_CARRY && V.getOpcode() != ISD::USUBO_CARRY &&
V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO)
return SDValue();
EVT VT = V->getValueType(0);
if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT))
return SDValue();
// If the result is masked, then no matter what kind of bool it is we can
// return. If it isn't, then we need to make sure the bool type is either 0 or
// 1 and not other values.
if (Masked ||
TLI.getBooleanContents(V.getValueType()) ==
TargetLoweringBase::ZeroOrOneBooleanContent)
return V;
return SDValue();
}
/// Given the operands of an add/sub operation, see if the 2nd operand is a
/// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
/// the opcode and bypass the mask operation.
static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1,
SelectionDAG &DAG, const SDLoc &DL) {
if (N1.getOpcode() == ISD::ZERO_EXTEND)
N1 = N1.getOperand(0);
if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1)))
return SDValue();
EVT VT = N0.getValueType();
SDValue N10 = N1.getOperand(0);
if (N10.getValueType() != VT && N10.getOpcode() == ISD::TRUNCATE)
N10 = N10.getOperand(0);
if (N10.getValueType() != VT)
return SDValue();
if (DAG.ComputeNumSignBits(N10) != VT.getScalarSizeInBits())
return SDValue();
// add N0, (and (AssertSext X, i1), 1) --> sub N0, X
// sub N0, (and (AssertSext X, i1), 1) --> add N0, X
return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N10);
}
/// Helper for doing combines based on N0 and N1 being added to each other.
SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1,
SDNode *LocReference) {
EVT VT = N0.getValueType();
SDLoc DL(LocReference);
// fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
SDValue Y, N;
if (sd_match(N1, m_Shl(m_Neg(m_Value(Y)), m_Value(N))))
return DAG.getNode(ISD::SUB, DL, VT, N0,
DAG.getNode(ISD::SHL, DL, VT, Y, N));
if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL))
return V;
// Look for:
// add (add x, 1), y
// And if the target does not like this form then turn into:
// sub y, (xor x, -1)
if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.getOpcode() == ISD::ADD &&
N0.hasOneUse() && isOneOrOneSplat(N0.getOperand(1)) &&
// Limit this to after legalization if the add has wrap flags
(Level >= AfterLegalizeDAG || (!N0->getFlags().hasNoUnsignedWrap() &&
!N0->getFlags().hasNoSignedWrap()))) {
SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT);
return DAG.getNode(ISD::SUB, DL, VT, N1, Not);
}
if (N0.getOpcode() == ISD::SUB && N0.hasOneUse()) {
// Hoist one-use subtraction by non-opaque constant:
// (x - C) + y -> (x + y) - C
// This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
if (isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1);
return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
}
// Hoist one-use subtraction from non-opaque constant:
// (C - x) + y -> (y - x) + C
if (isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0));
}
}
// add (mul x, C), x -> mul x, C+1
if (N0.getOpcode() == ISD::MUL && N0.getOperand(0) == N1 &&
isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true) &&
N0.hasOneUse()) {
SDValue NewC = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1),
DAG.getConstant(1, DL, VT));
return DAG.getNode(ISD::MUL, DL, VT, N0.getOperand(0), NewC);
}
// If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
// rather than 'add 0/-1' (the zext should get folded).
// add (sext i1 Y), X --> sub X, (zext i1 Y)
if (N0.getOpcode() == ISD::SIGN_EXTEND &&
N0.getOperand(0).getScalarValueSizeInBits() == 1 &&
TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) {
SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
}
// add X, (sextinreg Y i1) -> sub X, (and Y 1)
if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
if (TN->getVT() == MVT::i1) {
SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
DAG.getConstant(1, DL, VT));
return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
}
}
// (add X, (uaddo_carry Y, 0, Carry)) -> (uaddo_carry X, Y, Carry)
if (N1.getOpcode() == ISD::UADDO_CARRY && isNullConstant(N1.getOperand(1)) &&
N1.getResNo() == 0)
return DAG.getNode(ISD::UADDO_CARRY, DL, N1->getVTList(),
N0, N1.getOperand(0), N1.getOperand(2));
// (add X, Carry) -> (uaddo_carry X, 0, Carry)
if (TLI.isOperationLegalOrCustom(ISD::UADDO_CARRY, VT))
if (SDValue Carry = getAsCarry(TLI, N1))
return DAG.getNode(ISD::UADDO_CARRY, DL,
DAG.getVTList(VT, Carry.getValueType()), N0,
DAG.getConstant(0, DL, VT), Carry);
return SDValue();
}
SDValue DAGCombiner::visitADDC(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
SDLoc DL(N);
// If the flag result is dead, turn this into an ADD.
if (!N->hasAnyUseOfValue(1))
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
// canonicalize constant to RHS.
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N0C && !N1C)
return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0);
// fold (addc x, 0) -> x + no carry out
if (isNullConstant(N1))
return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
DL, MVT::Glue));
// If it cannot overflow, transform into an add.
if (DAG.computeOverflowForUnsignedAdd(N0, N1) == SelectionDAG::OFK_Never)
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
return SDValue();
}
/**
* Flips a boolean if it is cheaper to compute. If the Force parameters is set,
* then the flip also occurs if computing the inverse is the same cost.
* This function returns an empty SDValue in case it cannot flip the boolean
* without increasing the cost of the computation. If you want to flip a boolean
* no matter what, use DAG.getLogicalNOT.
*/
static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG,
const TargetLowering &TLI,
bool Force) {
if (Force && isa<ConstantSDNode>(V))
return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType());
if (V.getOpcode() != ISD::XOR)
return SDValue();
if (DAG.isBoolConstant(V.getOperand(1)) == true)
return V.getOperand(0);
if (Force && isConstOrConstSplat(V.getOperand(1), false))
return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType());
return SDValue();
}
SDValue DAGCombiner::visitADDO(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
bool IsSigned = (ISD::SADDO == N->getOpcode());
EVT CarryVT = N->getValueType(1);
SDLoc DL(N);
// If the flag result is dead, turn this into an ADD.
if (!N->hasAnyUseOfValue(1))
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
DAG.getUNDEF(CarryVT));
// canonicalize constant to RHS.
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
// fold (addo x, 0) -> x + no carry out
if (isNullOrNullSplat(N1))
return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
// If it cannot overflow, transform into an add.
if (DAG.willNotOverflowAdd(IsSigned, N0, N1))
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
DAG.getConstant(0, DL, CarryVT));
if (IsSigned) {
// fold (saddo (xor a, -1), 1) -> (ssub 0, a).
if (isBitwiseNot(N0) && isOneOrOneSplat(N1))
return DAG.getNode(ISD::SSUBO, DL, N->getVTList(),
DAG.getConstant(0, DL, VT), N0.getOperand(0));
} else {
// fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) {
SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(),
DAG.getConstant(0, DL, VT), N0.getOperand(0));
return CombineTo(
N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1)));
}
if (SDValue Combined = visitUADDOLike(N0, N1, N))
return Combined;
if (SDValue Combined = visitUADDOLike(N1, N0, N))
return Combined;
}
return SDValue();
}
SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) {
EVT VT = N0.getValueType();
if (VT.isVector())
return SDValue();
// (uaddo X, (uaddo_carry Y, 0, Carry)) -> (uaddo_carry X, Y, Carry)
// If Y + 1 cannot overflow.
if (N1.getOpcode() == ISD::UADDO_CARRY && isNullConstant(N1.getOperand(1))) {
SDValue Y = N1.getOperand(0);
SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType());
if (DAG.computeOverflowForUnsignedAdd(Y, One) == SelectionDAG::OFK_Never)
return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), N->getVTList(), N0, Y,
N1.getOperand(2));
}
// (uaddo X, Carry) -> (uaddo_carry X, 0, Carry)
if (TLI.isOperationLegalOrCustom(ISD::UADDO_CARRY, VT))
if (SDValue Carry = getAsCarry(TLI, N1))
return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), N->getVTList(), N0,
DAG.getConstant(0, SDLoc(N), VT), Carry);
return SDValue();
}
SDValue DAGCombiner::visitADDE(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CarryIn = N->getOperand(2);
// canonicalize constant to RHS
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N0C && !N1C)
return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
N1, N0, CarryIn);
// fold (adde x, y, false) -> (addc x, y)
if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
return SDValue();
}
SDValue DAGCombiner::visitUADDO_CARRY(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CarryIn = N->getOperand(2);
SDLoc DL(N);
// canonicalize constant to RHS
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N0C && !N1C)
return DAG.getNode(ISD::UADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn);
// fold (uaddo_carry x, y, false) -> (uaddo x, y)
if (isNullConstant(CarryIn)) {
if (!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0)))
return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1);
}
// fold (uaddo_carry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
if (isNullConstant(N0) && isNullConstant(N1)) {
EVT VT = N0.getValueType();
EVT CarryVT = CarryIn.getValueType();
SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT);
AddToWorklist(CarryExt.getNode());
return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt,
DAG.getConstant(1, DL, VT)),
DAG.getConstant(0, DL, CarryVT));
}
if (SDValue Combined = visitUADDO_CARRYLike(N0, N1, CarryIn, N))
return Combined;
if (SDValue Combined = visitUADDO_CARRYLike(N1, N0, CarryIn, N))
return Combined;
// We want to avoid useless duplication.
// TODO: This is done automatically for binary operations. As UADDO_CARRY is
// not a binary operation, this is not really possible to leverage this
// existing mechanism for it. However, if more operations require the same
// deduplication logic, then it may be worth generalize.
SDValue Ops[] = {N1, N0, CarryIn};
SDNode *CSENode =
DAG.getNodeIfExists(ISD::UADDO_CARRY, N->getVTList(), Ops, N->getFlags());
if (CSENode)
return SDValue(CSENode, 0);
return SDValue();
}
/**
* If we are facing some sort of diamond carry propagation pattern try to
* break it up to generate something like:
* (uaddo_carry X, 0, (uaddo_carry A, B, Z):Carry)
*
* The end result is usually an increase in operation required, but because the
* carry is now linearized, other transforms can kick in and optimize the DAG.
*
* Patterns typically look something like
* (uaddo A, B)
* / \
* Carry Sum
* | \
* | (uaddo_carry *, 0, Z)
* | /
* \ Carry
* | /
* (uaddo_carry X, *, *)
*
* But numerous variation exist. Our goal is to identify A, B, X and Z and
* produce a combine with a single path for carry propagation.
*/
static SDValue combineUADDO_CARRYDiamond(DAGCombiner &Combiner,
SelectionDAG &DAG, SDValue X,
SDValue Carry0, SDValue Carry1,
SDNode *N) {
if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1)
return SDValue();
if (Carry1.getOpcode() != ISD::UADDO)
return SDValue();
SDValue Z;
/**
* First look for a suitable Z. It will present itself in the form of
* (uaddo_carry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
*/
if (Carry0.getOpcode() == ISD::UADDO_CARRY &&
isNullConstant(Carry0.getOperand(1))) {
Z = Carry0.getOperand(2);
} else if (Carry0.getOpcode() == ISD::UADDO &&
isOneConstant(Carry0.getOperand(1))) {
EVT VT = Carry0->getValueType(1);
Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT);
} else {
// We couldn't find a suitable Z.
return SDValue();
}
auto cancelDiamond = [&](SDValue A,SDValue B) {
SDLoc DL(N);
SDValue NewY =
DAG.getNode(ISD::UADDO_CARRY, DL, Carry0->getVTList(), A, B, Z);
Combiner.AddToWorklist(NewY.getNode());
return DAG.getNode(ISD::UADDO_CARRY, DL, N->getVTList(), X,
DAG.getConstant(0, DL, X.getValueType()),
NewY.getValue(1));
};
/**
* (uaddo A, B)
* |
* Sum
* |
* (uaddo_carry *, 0, Z)
*/
if (Carry0.getOperand(0) == Carry1.getValue(0)) {
return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1));
}
/**
* (uaddo_carry A, 0, Z)
* |
* Sum
* |
* (uaddo *, B)
*/
if (Carry1.getOperand(0) == Carry0.getValue(0)) {
return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1));
}
if (Carry1.getOperand(1) == Carry0.getValue(0)) {
return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0));
}
return SDValue();
}
// If we are facing some sort of diamond carry/borrow in/out pattern try to
// match patterns like:
//
// (uaddo A, B) CarryIn
// | \ |
// | \ |
// PartialSum PartialCarryOutX /
// | | /
// | ____|____________/
// | / |
// (uaddo *, *) \________
// | \ \
// | \ |
// | PartialCarryOutY |
// | \ |
// | \ /
// AddCarrySum | ______/
// | /
// CarryOut = (or *, *)
//
// And generate UADDO_CARRY (or USUBO_CARRY) with two result values:
//
// {AddCarrySum, CarryOut} = (uaddo_carry A, B, CarryIn)
//
// Our goal is to identify A, B, and CarryIn and produce UADDO_CARRY/USUBO_CARRY
// with a single path for carry/borrow out propagation.
static SDValue combineCarryDiamond(SelectionDAG &DAG, const TargetLowering &TLI,
SDValue N0, SDValue N1, SDNode *N) {
SDValue Carry0 = getAsCarry(TLI, N0);
if (!Carry0)
return SDValue();
SDValue Carry1 = getAsCarry(TLI, N1);
if (!Carry1)
return SDValue();
unsigned Opcode = Carry0.getOpcode();
if (Opcode != Carry1.getOpcode())
return SDValue();
if (Opcode != ISD::UADDO && Opcode != ISD::USUBO)
return SDValue();
// Guarantee identical type of CarryOut
EVT CarryOutType = N->getValueType(0);
if (CarryOutType != Carry0.getValue(1).getValueType() ||
CarryOutType != Carry1.getValue(1).getValueType())
return SDValue();
// Canonicalize the add/sub of A and B (the top node in the above ASCII art)
// as Carry0 and the add/sub of the carry in as Carry1 (the middle node).
if (Carry1.getNode()->isOperandOf(Carry0.getNode()))
std::swap(Carry0, Carry1);
// Check if nodes are connected in expected way.
if (Carry1.getOperand(0) != Carry0.getValue(0) &&
Carry1.getOperand(1) != Carry0.getValue(0))
return SDValue();
// The carry in value must be on the righthand side for subtraction.
unsigned CarryInOperandNum =
Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0;
if (Opcode == ISD::USUBO && CarryInOperandNum != 1)
return SDValue();
SDValue CarryIn = Carry1.getOperand(CarryInOperandNum);
unsigned NewOp = Opcode == ISD::UADDO ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType()))
return SDValue();
// Verify that the carry/borrow in is plausibly a carry/borrow bit.
CarryIn = getAsCarry(TLI, CarryIn, true);
if (!CarryIn)
return SDValue();
SDLoc DL(N);
CarryIn = DAG.getBoolExtOrTrunc(CarryIn, DL, Carry1->getValueType(1),
Carry1->getValueType(0));
SDValue Merged =
DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0),
Carry0.getOperand(1), CarryIn);
// Please note that because we have proven that the result of the UADDO/USUBO
// of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can
// therefore prove that if the first UADDO/USUBO overflows, the second
// UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the
// maximum value.
//
// 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry
// 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow)
//
// This is important because it means that OR and XOR can be used to merge
// carry flags; and that AND can return a constant zero.
//
// TODO: match other operations that can merge flags (ADD, etc)
DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0));
if (N->getOpcode() == ISD::AND)
return DAG.getConstant(0, DL, CarryOutType);
return Merged.getValue(1);
}
SDValue DAGCombiner::visitUADDO_CARRYLike(SDValue N0, SDValue N1,
SDValue CarryIn, SDNode *N) {
// fold (uaddo_carry (xor a, -1), b, c) -> (usubo_carry b, a, !c) and flip
// carry.
if (isBitwiseNot(N0))
if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) {
SDLoc DL(N);
SDValue Sub = DAG.getNode(ISD::USUBO_CARRY, DL, N->getVTList(), N1,
N0.getOperand(0), NotC);
return CombineTo(
N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1)));
}
// Iff the flag result is dead:
// (uaddo_carry (add|uaddo X, Y), 0, Carry) -> (uaddo_carry X, Y, Carry)
// Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
// or the dependency between the instructions.
if ((N0.getOpcode() == ISD::ADD ||
(N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 &&
N0.getValue(1) != CarryIn)) &&
isNullConstant(N1) && !N->hasAnyUseOfValue(1))
return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), N->getVTList(),
N0.getOperand(0), N0.getOperand(1), CarryIn);
/**
* When one of the uaddo_carry argument is itself a carry, we may be facing
* a diamond carry propagation. In which case we try to transform the DAG
* to ensure linear carry propagation if that is possible.
*/
if (auto Y = getAsCarry(TLI, N1)) {
// Because both are carries, Y and Z can be swapped.
if (auto R = combineUADDO_CARRYDiamond(*this, DAG, N0, Y, CarryIn, N))
return R;
if (auto R = combineUADDO_CARRYDiamond(*this, DAG, N0, CarryIn, Y, N))
return R;
}
return SDValue();
}
SDValue DAGCombiner::visitSADDO_CARRYLike(SDValue N0, SDValue N1,
SDValue CarryIn, SDNode *N) {
// fold (saddo_carry (xor a, -1), b, c) -> (ssubo_carry b, a, !c)
if (isBitwiseNot(N0)) {
if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true))
return DAG.getNode(ISD::SSUBO_CARRY, SDLoc(N), N->getVTList(), N1,
N0.getOperand(0), NotC);
}
return SDValue();
}
SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CarryIn = N->getOperand(2);
SDLoc DL(N);
// canonicalize constant to RHS
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N0C && !N1C)
return DAG.getNode(ISD::SADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn);
// fold (saddo_carry x, y, false) -> (saddo x, y)
if (isNullConstant(CarryIn)) {
if (!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::SADDO, N->getValueType(0)))
return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, N1);
}
if (SDValue Combined = visitSADDO_CARRYLike(N0, N1, CarryIn, N))
return Combined;
if (SDValue Combined = visitSADDO_CARRYLike(N1, N0, CarryIn, N))
return Combined;
return SDValue();
}
// Attempt to create a USUBSAT(LHS, RHS) node with DstVT, performing a
// clamp/truncation if necessary.
static SDValue getTruncatedUSUBSAT(EVT DstVT, EVT SrcVT, SDValue LHS,
SDValue RHS, SelectionDAG &DAG,
const SDLoc &DL) {
assert(DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits() &&
"Illegal truncation");
if (DstVT == SrcVT)
return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS);
// If the LHS is zero-extended then we can perform the USUBSAT as DstVT by
// clamping RHS.
APInt UpperBits = APInt::getBitsSetFrom(SrcVT.getScalarSizeInBits(),
DstVT.getScalarSizeInBits());
if (!DAG.MaskedValueIsZero(LHS, UpperBits))
return SDValue();
SDValue SatLimit =
DAG.getConstant(APInt::getLowBitsSet(SrcVT.getScalarSizeInBits(),
DstVT.getScalarSizeInBits()),
DL, SrcVT);
RHS = DAG.getNode(ISD::UMIN, DL, SrcVT, RHS, SatLimit);
RHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, RHS);
LHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, LHS);
return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS);
}
// Try to find umax(a,b) - b or a - umin(a,b) patterns that may be converted to
// usubsat(a,b), optionally as a truncated type.
SDValue DAGCombiner::foldSubToUSubSat(EVT DstVT, SDNode *N, const SDLoc &DL) {
if (N->getOpcode() != ISD::SUB ||
!(!LegalOperations || hasOperation(ISD::USUBSAT, DstVT)))
return SDValue();
EVT SubVT = N->getValueType(0);
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// Try to find umax(a,b) - b or a - umin(a,b) patterns
// they may be converted to usubsat(a,b).
if (Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
SDValue MaxLHS = Op0.getOperand(0);
SDValue MaxRHS = Op0.getOperand(1);
if (MaxLHS == Op1)
return getTruncatedUSUBSAT(DstVT, SubVT, MaxRHS, Op1, DAG, DL);
if (MaxRHS == Op1)
return getTruncatedUSUBSAT(DstVT, SubVT, MaxLHS, Op1, DAG, DL);
}
if (Op1.getOpcode() == ISD::UMIN && Op1.hasOneUse()) {
SDValue MinLHS = Op1.getOperand(0);
SDValue MinRHS = Op1.getOperand(1);
if (MinLHS == Op0)
return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinRHS, DAG, DL);
if (MinRHS == Op0)
return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinLHS, DAG, DL);
}
// sub(a,trunc(umin(zext(a),b))) -> usubsat(a,trunc(umin(b,SatLimit)))
if (Op1.getOpcode() == ISD::TRUNCATE &&
Op1.getOperand(0).getOpcode() == ISD::UMIN &&
Op1.getOperand(0).hasOneUse()) {
SDValue MinLHS = Op1.getOperand(0).getOperand(0);
SDValue MinRHS = Op1.getOperand(0).getOperand(1);
if (MinLHS.getOpcode() == ISD::ZERO_EXTEND && MinLHS.getOperand(0) == Op0)
return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinLHS, MinRHS,
DAG, DL);
if (MinRHS.getOpcode() == ISD::ZERO_EXTEND && MinRHS.getOperand(0) == Op0)
return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinRHS, MinLHS,
DAG, DL);
}
return SDValue();
}
// Refinement of DAG/Type Legalisation (promotion) when CTLZ is used for
// counting leading ones. Broadly, it replaces the substraction with a left
// shift.
//
// * DAG Legalisation Pattern:
//
// (sub (ctlz (zeroextend (not Src)))
// BitWidthDiff)
//
// if BitWidthDiff == BitWidth(Node) - BitWidth(Src)
// -->
//
// (ctlz_zero_undef (not (shl (anyextend Src)
// BitWidthDiff)))
//
// * Type Legalisation Pattern:
//
// (sub (ctlz (and (xor Src XorMask)
// AndMask))
// BitWidthDiff)
//
// if AndMask has only trailing ones
// and MaskBitWidth(AndMask) == BitWidth(Node) - BitWidthDiff
// and XorMask has more trailing ones than AndMask
// -->
//
// (ctlz_zero_undef (not (shl Src BitWidthDiff)))
template <class MatchContextClass>
static SDValue foldSubCtlzNot(SDNode *N, SelectionDAG &DAG) {
const SDLoc DL(N);
SDValue N0 = N->getOperand(0);
EVT VT = N0.getValueType();
unsigned BitWidth = VT.getScalarSizeInBits();
MatchContextClass Matcher(DAG, DAG.getTargetLoweringInfo(), N);
APInt AndMask;
APInt XorMask;
APInt BitWidthDiff;
SDValue CtlzOp;
SDValue Src;
if (!sd_context_match(
N, Matcher, m_Sub(m_Ctlz(m_Value(CtlzOp)), m_ConstInt(BitWidthDiff))))
return SDValue();
if (sd_context_match(CtlzOp, Matcher, m_ZExt(m_Not(m_Value(Src))))) {
// DAG Legalisation Pattern:
// (sub (ctlz (zero_extend (not Op)) BitWidthDiff))
if ((BitWidth - Src.getValueType().getScalarSizeInBits()) != BitWidthDiff)
return SDValue();
Src = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Src);
} else if (sd_context_match(CtlzOp, Matcher,
m_And(m_Xor(m_Value(Src), m_ConstInt(XorMask)),
m_ConstInt(AndMask)))) {
// Type Legalisation Pattern:
// (sub (ctlz (and (xor Op XorMask) AndMask)) BitWidthDiff)
unsigned AndMaskWidth = BitWidth - BitWidthDiff.getZExtValue();
if (!(AndMask.isMask(AndMaskWidth) && XorMask.countr_one() >= AndMaskWidth))
return SDValue();
} else
return SDValue();
SDValue ShiftConst = DAG.getShiftAmountConstant(BitWidthDiff, VT, DL);
SDValue LShift = Matcher.getNode(ISD::SHL, DL, VT, Src, ShiftConst);
SDValue Not =
Matcher.getNode(ISD::XOR, DL, VT, LShift, DAG.getAllOnesConstant(DL, VT));
return Matcher.getNode(ISD::CTLZ_ZERO_UNDEF, DL, VT, Not);
}
// Fold sub(x, mul(divrem(x,y)[0], y)) to divrem(x, y)[1]
static SDValue foldRemainderIdiom(SDNode *N, SelectionDAG &DAG,
const SDLoc &DL) {
assert(N->getOpcode() == ISD::SUB && "Node must be a SUB");
SDValue Sub0 = N->getOperand(0);
SDValue Sub1 = N->getOperand(1);
auto CheckAndFoldMulCase = [&](SDValue DivRem, SDValue MaybeY) -> SDValue {
if ((DivRem.getOpcode() == ISD::SDIVREM ||
DivRem.getOpcode() == ISD::UDIVREM) &&
DivRem.getResNo() == 0 && DivRem.getOperand(0) == Sub0 &&
DivRem.getOperand(1) == MaybeY) {
return SDValue(DivRem.getNode(), 1);
}
return SDValue();
};
if (Sub1.getOpcode() == ISD::MUL) {
// (sub x, (mul divrem(x,y)[0], y))
SDValue Mul0 = Sub1.getOperand(0);
SDValue Mul1 = Sub1.getOperand(1);
if (SDValue Res = CheckAndFoldMulCase(Mul0, Mul1))
return Res;
if (SDValue Res = CheckAndFoldMulCase(Mul1, Mul0))
return Res;
} else if (Sub1.getOpcode() == ISD::SHL) {
// Handle (sub x, (shl divrem(x,y)[0], C)) where y = 1 << C
SDValue Shl0 = Sub1.getOperand(0);
SDValue Shl1 = Sub1.getOperand(1);
// Check if Shl0 is divrem(x, Y)[0]
if ((Shl0.getOpcode() == ISD::SDIVREM ||
Shl0.getOpcode() == ISD::UDIVREM) &&
Shl0.getResNo() == 0 && Shl0.getOperand(0) == Sub0) {
SDValue Divisor = Shl0.getOperand(1);
ConstantSDNode *DivC = isConstOrConstSplat(Divisor);
ConstantSDNode *ShC = isConstOrConstSplat(Shl1);
if (!DivC || !ShC)
return SDValue();
if (DivC->getAPIntValue().isPowerOf2() &&
DivC->getAPIntValue().logBase2() == ShC->getAPIntValue())
return SDValue(Shl0.getNode(), 1);
}
}
return SDValue();
}
// Since it may not be valid to emit a fold to zero for vector initializers
// check if we can before folding.
static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT,
SelectionDAG &DAG, bool LegalOperations) {
if (!VT.isVector())
return DAG.getConstant(0, DL, VT);
if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
return DAG.getConstant(0, DL, VT);
return SDValue();
}
SDValue DAGCombiner::visitSUB(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
unsigned BitWidth = VT.getScalarSizeInBits();
SDLoc DL(N);
auto PeekThroughFreeze = [](SDValue N) {
if (N->getOpcode() == ISD::FREEZE && N.hasOneUse())
return N->getOperand(0);
return N;
};
if (SDValue V = foldSubCtlzNot<EmptyMatchContext>(N, DAG))
return V;
// fold (sub x, x) -> 0
// FIXME: Refactor this and xor and other similar operations together.
if (PeekThroughFreeze(N0) == PeekThroughFreeze(N1))
return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
// fold (sub c1, c2) -> c3
if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1}))
return C;
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
// fold (sub x, 0) -> x, vector edition
if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
return N0;
}
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// fold (sub x, c) -> (add x, -c)
if (ConstantSDNode *N1C = getAsNonOpaqueConstant(N1))
return DAG.getNode(ISD::ADD, DL, VT, N0,
DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
if (isNullOrNullSplat(N0)) {
// Right-shifting everything out but the sign bit followed by negation is
// the same as flipping arithmetic/logical shift type without the negation:
// -(X >>u 31) -> (X >>s 31)
// -(X >>s 31) -> (X >>u 31)
if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) {
ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1));
if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) {
auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA;
if (!LegalOperations || TLI.isOperationLegal(NewSh, VT))
return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1));
}
}
// 0 - X --> 0 if the sub is NUW.
if (N->getFlags().hasNoUnsignedWrap())
return N0;
if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) {
// N1 is either 0 or the minimum signed value. If the sub is NSW, then
// N1 must be 0 because negating the minimum signed value is undefined.
if (N->getFlags().hasNoSignedWrap())
return N0;
// 0 - X --> X if X is 0 or the minimum signed value.
return N1;
}
// Convert 0 - abs(x).
if (N1.getOpcode() == ISD::ABS && N1.hasOneUse() &&
!TLI.isOperationLegalOrCustom(ISD::ABS, VT))
if (SDValue Result = TLI.expandABS(N1.getNode(), DAG, true))
return Result;
// Similar to the previous rule, but this time targeting an expanded abs.
// (sub 0, (max X, (sub 0, X))) --> (min X, (sub 0, X))
// as well as
// (sub 0, (min X, (sub 0, X))) --> (max X, (sub 0, X))
// Note that these two are applicable to both signed and unsigned min/max.
SDValue X;
SDValue S0;
auto NegPat = m_AllOf(m_Neg(m_Deferred(X)), m_Value(S0));
if (sd_match(N1, m_OneUse(m_AnyOf(m_SMax(m_Value(X), NegPat),
m_UMax(m_Value(X), NegPat),
m_SMin(m_Value(X), NegPat),
m_UMin(m_Value(X), NegPat))))) {
unsigned NewOpc = ISD::getInverseMinMaxOpcode(N1->getOpcode());
if (hasOperation(NewOpc, VT))
return DAG.getNode(NewOpc, DL, VT, X, S0);
}
// Fold neg(splat(neg(x)) -> splat(x)
if (VT.isVector()) {
SDValue N1S = DAG.getSplatValue(N1, true);
if (N1S && N1S.getOpcode() == ISD::SUB &&
isNullConstant(N1S.getOperand(0)))
return DAG.getSplat(VT, DL, N1S.getOperand(1));
}
// sub 0, (and x, 1) --> SIGN_EXTEND_INREG x, i1
if (N1.getOpcode() == ISD::AND && N1.hasOneUse() &&
isOneOrOneSplat(N1->getOperand(1))) {
EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), 1);
if (VT.isVector())
ExtVT = EVT::getVectorVT(*DAG.getContext(), ExtVT,
VT.getVectorElementCount());
if (TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) ==
TargetLowering::Legal) {
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N1->getOperand(0),
DAG.getValueType(ExtVT));
}
}
}
// Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
if (isAllOnesOrAllOnesSplat(N0))
return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
// fold (A - (0-B)) -> A+B
if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1));
// fold A-(A-B) -> B
if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
return N1.getOperand(1);
// fold (A+B)-A -> B
if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
return N0.getOperand(1);
// fold (A+B)-B -> A
if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
return N0.getOperand(0);
// fold (A+C1)-C2 -> A+(C1-C2)
if (N0.getOpcode() == ISD::ADD) {
SDValue N01 = N0.getOperand(1);
if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N01, N1}))
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC);
}
// fold C2-(A+C1) -> (C2-C1)-A
if (N1.getOpcode() == ISD::ADD) {
SDValue N11 = N1.getOperand(1);
if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11}))
return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0));
}
// fold (A-C1)-C2 -> A-(C1+C2)
if (N0.getOpcode() == ISD::SUB) {
SDValue N01 = N0.getOperand(1);
if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N01, N1}))
return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC);
}
// fold (c1-A)-c2 -> (c1-c2)-A
if (N0.getOpcode() == ISD::SUB) {
SDValue N00 = N0.getOperand(0);
if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N00, N1}))
return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1));
}
SDValue A, B, C;
// fold ((A+(B+C))-B) -> A+C
if (sd_match(N0, m_Add(m_Value(A), m_Add(m_Specific(N1), m_Value(C)))))
return DAG.getNode(ISD::ADD, DL, VT, A, C);
// fold ((A+(B-C))-B) -> A-C
if (sd_match(N0, m_Add(m_Value(A), m_Sub(m_Specific(N1), m_Value(C)))))
return DAG.getNode(ISD::SUB, DL, VT, A, C);
// fold ((A-(B-C))-C) -> A-B
if (sd_match(N0, m_Sub(m_Value(A), m_Sub(m_Value(B), m_Specific(N1)))))
return DAG.getNode(ISD::SUB, DL, VT, A, B);
// fold (A-(B-C)) -> A+(C-B)
if (sd_match(N1, m_OneUse(m_Sub(m_Value(B), m_Value(C)))))
return DAG.getNode(ISD::ADD, DL, VT, N0,
DAG.getNode(ISD::SUB, DL, VT, C, B));
// A - (A & B) -> A & (~B)
if (sd_match(N1, m_And(m_Specific(N0), m_Value(B))) &&
(N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true)))
return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getNOT(DL, B, VT));
// fold (A - (-B * C)) -> (A + (B * C))
if (sd_match(N1, m_OneUse(m_Mul(m_Neg(m_Value(B)), m_Value(C)))))
return DAG.getNode(ISD::ADD, DL, VT, N0,
DAG.getNode(ISD::MUL, DL, VT, B, C));
// If either operand of a sub is undef, the result is undef
if (N0.isUndef())
return N0;
if (N1.isUndef())
return N1;
if (SDValue V = foldAddSubBoolOfMaskedVal(N, DL, DAG))
return V;
if (SDValue V = foldAddSubOfSignBit(N, DL, DAG))
return V;
// Try to match AVGCEIL fixedwidth pattern
if (SDValue V = foldSubToAvg(N, DL))
return V;
if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, DL))
return V;
if (SDValue V = foldSubToUSubSat(VT, N, DL))
return V;
if (SDValue V = foldRemainderIdiom(N, DAG, DL))
return V;
// (A - B) - 1 -> add (xor B, -1), A
if (sd_match(N, m_Sub(m_OneUse(m_Sub(m_Value(A), m_Value(B))), m_One())))
return DAG.getNode(ISD::ADD, DL, VT, A, DAG.getNOT(DL, B, VT));
// Look for:
// sub y, (xor x, -1)
// And if the target does not like this form then turn into:
// add (add x, y), 1
if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) {
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0));
return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT));
}
// Hoist one-use addition by non-opaque constant:
// (x + C) - y -> (x - y) + C
if (!reassociationCanBreakAddressingModePattern(ISD::SUB, DL, N, N0, N1) &&
N0.getOpcode() == ISD::ADD && N0.hasOneUse() &&
isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1));
}
// y - (x + C) -> (y - x) - C
if (N1.getOpcode() == ISD::ADD && N1.hasOneUse() &&
isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) {
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0));
return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1));
}
// (x - C) - y -> (x - y) - C
// This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1));
}
// (C - x) - y -> C - (x + y)
if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1);
return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add);
}
// If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
// rather than 'sub 0/1' (the sext should get folded).
// sub X, (zext i1 Y) --> add X, (sext i1 Y)
if (N1.getOpcode() == ISD::ZERO_EXTEND &&
N1.getOperand(0).getScalarValueSizeInBits() == 1 &&
TLI.getBooleanContents(VT) ==
TargetLowering::ZeroOrNegativeOneBooleanContent) {
SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0));
return DAG.getNode(ISD::ADD, DL, VT, N0, SExt);
}
// fold B = sra (A, size(A)-1); sub (xor (A, B), B) -> (abs A)
if ((!LegalOperations || hasOperation(ISD::ABS, VT)) &&
sd_match(N1, m_Sra(m_Value(A), m_SpecificInt(BitWidth - 1))) &&
sd_match(N0, m_Xor(m_Specific(A), m_Specific(N1))))
return DAG.getNode(ISD::ABS, DL, VT, A);
// If the relocation model supports it, consider symbol offsets.
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
// fold (sub Sym+c1, Sym+c2) -> c1-c2
if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
if (GA->getGlobal() == GB->getGlobal())
return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
DL, VT);
}
// sub X, (sextinreg Y i1) -> add X, (and Y 1)
if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
if (TN->getVT() == MVT::i1) {
SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
DAG.getConstant(1, DL, VT));
return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
}
}
// canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C))
if (N1.getOpcode() == ISD::VSCALE && N1.hasOneUse()) {
const APInt &IntVal = N1.getConstantOperandAPInt(0);
return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal));
}
// canonicalize (sub X, step_vector(C)) to (add X, step_vector(-C))
if (N1.getOpcode() == ISD::STEP_VECTOR && N1.hasOneUse()) {
APInt NewStep = -N1.getConstantOperandAPInt(0);
return DAG.getNode(ISD::ADD, DL, VT, N0,
DAG.getStepVector(DL, VT, NewStep));
}
// Prefer an add for more folding potential and possibly better codegen:
// sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) {
SDValue ShAmt = N1.getOperand(1);
ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
if (ShAmtC && ShAmtC->getAPIntValue() == (BitWidth - 1)) {
SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt);
return DAG.getNode(ISD::ADD, DL, VT, N0, SRA);
}
}
// As with the previous fold, prefer add for more folding potential.
// Subtracting SMIN/0 is the same as adding SMIN/0:
// N0 - (X << BW-1) --> N0 + (X << BW-1)
if (N1.getOpcode() == ISD::SHL) {
ConstantSDNode *ShlC = isConstOrConstSplat(N1.getOperand(1));
if (ShlC && ShlC->getAPIntValue() == (BitWidth - 1))
return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
}
// (sub (usubo_carry X, 0, Carry), Y) -> (usubo_carry X, Y, Carry)
if (N0.getOpcode() == ISD::USUBO_CARRY && isNullConstant(N0.getOperand(1)) &&
N0.getResNo() == 0 && N0.hasOneUse())
return DAG.getNode(ISD::USUBO_CARRY, DL, N0->getVTList(),
N0.getOperand(0), N1, N0.getOperand(2));
if (TLI.isOperationLegalOrCustom(ISD::UADDO_CARRY, VT)) {
// (sub Carry, X) -> (uaddo_carry (sub 0, X), 0, Carry)
if (SDValue Carry = getAsCarry(TLI, N0)) {
SDValue X = N1;
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X);
return DAG.getNode(ISD::UADDO_CARRY, DL,
DAG.getVTList(VT, Carry.getValueType()), NegX, Zero,
Carry);
}
}
// If there's no chance of borrowing from adjacent bits, then sub is xor:
// sub C0, X --> xor X, C0
if (ConstantSDNode *C0 = isConstOrConstSplat(N0)) {
if (!C0->isOpaque()) {
const APInt &C0Val = C0->getAPIntValue();
const APInt &MaybeOnes = ~DAG.computeKnownBits(N1).Zero;
if ((C0Val - MaybeOnes) == (C0Val ^ MaybeOnes))
return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
}
}
// smax(a,b) - smin(a,b) --> abds(a,b)
if ((!LegalOperations || hasOperation(ISD::ABDS, VT)) &&
sd_match(N0, m_SMaxLike(m_Value(A), m_Value(B))) &&
sd_match(N1, m_SMinLike(m_Specific(A), m_Specific(B))))
return DAG.getNode(ISD::ABDS, DL, VT, A, B);
// smin(a,b) - smax(a,b) --> neg(abds(a,b))
if (hasOperation(ISD::ABDS, VT) &&
sd_match(N0, m_SMinLike(m_Value(A), m_Value(B))) &&
sd_match(N1, m_SMaxLike(m_Specific(A), m_Specific(B))))
return DAG.getNegative(DAG.getNode(ISD::ABDS, DL, VT, A, B), DL, VT);
// umax(a,b) - umin(a,b) --> abdu(a,b)
if ((!LegalOperations || hasOperation(ISD::ABDU, VT)) &&
sd_match(N0, m_UMaxLike(m_Value(A), m_Value(B))) &&
sd_match(N1, m_UMinLike(m_Specific(A), m_Specific(B))))
return DAG.getNode(ISD::ABDU, DL, VT, A, B);
// umin(a,b) - umax(a,b) --> neg(abdu(a,b))
if (hasOperation(ISD::ABDU, VT) &&
sd_match(N0, m_UMinLike(m_Value(A), m_Value(B))) &&
sd_match(N1, m_UMaxLike(m_Specific(A), m_Specific(B))))
return DAG.getNegative(DAG.getNode(ISD::ABDU, DL, VT, A, B), DL, VT);
// (sub x, (select (ult x, y), 0, y)) -> (umin x, (sub x, y))
// (sub x, (select (uge x, y), y, 0)) -> (umin x, (sub x, y))
if (hasUMin(VT)) {
SDValue Y;
if (sd_match(N1, m_OneUse(m_Select(m_SetCC(m_Specific(N0), m_Value(Y),
m_SpecificCondCode(ISD::SETULT)),
m_Zero(), m_Deferred(Y)))) ||
sd_match(N1, m_OneUse(m_Select(m_SetCC(m_Specific(N0), m_Value(Y),
m_SpecificCondCode(ISD::SETUGE)),
m_Deferred(Y), m_Zero()))))
return DAG.getNode(ISD::UMIN, DL, VT, N0,
DAG.getNode(ISD::SUB, DL, VT, N0, Y));
}
return SDValue();
}
SDValue DAGCombiner::visitSUBSAT(SDNode *N) {
unsigned Opcode = N->getOpcode();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
bool IsSigned = Opcode == ISD::SSUBSAT;
SDLoc DL(N);
// fold (sub_sat x, undef) -> 0
if (N0.isUndef() || N1.isUndef())
return DAG.getConstant(0, DL, VT);
// fold (sub_sat x, x) -> 0
if (N0 == N1)
return DAG.getConstant(0, DL, VT);
// fold (sub_sat c1, c2) -> c3
if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
return C;
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
// fold (sub_sat x, 0) -> x, vector edition
if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
return N0;
}
// fold (sub_sat x, 0) -> x
if (isNullConstant(N1))
return N0;
// If it cannot overflow, transform into an sub.
if (DAG.willNotOverflowSub(IsSigned, N0, N1))
return DAG.getNode(ISD::SUB, DL, VT, N0, N1);
return SDValue();
}
SDValue DAGCombiner::visitSUBC(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
SDLoc DL(N);
// If the flag result is dead, turn this into an SUB.
if (!N->hasAnyUseOfValue(1))
return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
// fold (subc x, x) -> 0 + no borrow
if (N0 == N1)
return CombineTo(N, DAG.getConstant(0, DL, VT),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
// fold (subc x, 0) -> x + no borrow
if (isNullConstant(N1))
return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
// Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
if (isAllOnesConstant(N0))
return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
return SDValue();
}
SDValue DAGCombiner::visitSUBO(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
bool IsSigned = (ISD::SSUBO == N->getOpcode());
EVT CarryVT = N->getValueType(1);
SDLoc DL(N);
// If the flag result is dead, turn this into an SUB.
if (!N->hasAnyUseOfValue(1))
return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
DAG.getUNDEF(CarryVT));
// fold (subo x, x) -> 0 + no borrow
if (N0 == N1)
return CombineTo(N, DAG.getConstant(0, DL, VT),
DAG.getConstant(0, DL, CarryVT));
// fold (subox, c) -> (addo x, -c)
if (ConstantSDNode *N1C = getAsNonOpaqueConstant(N1))
if (IsSigned && !N1C->isMinSignedValue())
return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0,
DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
// fold (subo x, 0) -> x + no borrow
if (isNullOrNullSplat(N1))
return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
// If it cannot overflow, transform into an sub.
if (DAG.willNotOverflowSub(IsSigned, N0, N1))
return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
DAG.getConstant(0, DL, CarryVT));
// Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
if (!IsSigned && isAllOnesOrAllOnesSplat(N0))
return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
DAG.getConstant(0, DL, CarryVT));
return SDValue();
}
SDValue DAGCombiner::visitSUBE(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CarryIn = N->getOperand(2);
// fold (sube x, y, false) -> (subc x, y)
if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
return SDValue();
}
SDValue DAGCombiner::visitUSUBO_CARRY(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CarryIn = N->getOperand(2);
// fold (usubo_carry x, y, false) -> (usubo x, y)
if (isNullConstant(CarryIn)) {
if (!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0)))
return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1);
}
return SDValue();
}
SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CarryIn = N->getOperand(2);
// fold (ssubo_carry x, y, false) -> (ssubo x, y)
if (isNullConstant(CarryIn)) {
if (!LegalOperations ||
TLI.isOperationLegalOrCustom(ISD::SSUBO, N->getValueType(0)))
return DAG.getNode(ISD::SSUBO, SDLoc(N), N->getVTList(), N0, N1);
}
return SDValue();
}
// Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and
// UMULFIXSAT here.
SDValue DAGCombiner::visitMULFIX(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue Scale = N->getOperand(2);
EVT VT = N0.getValueType();
// fold (mulfix x, undef, scale) -> 0
if (N0.isUndef() || N1.isUndef())
return DAG.getConstant(0, SDLoc(N), VT);
// Canonicalize constant to RHS (vector doesn't have to splat)
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale);
// fold (mulfix x, 0, scale) -> 0
if (isNullConstant(N1))
return DAG.getConstant(0, SDLoc(N), VT);
return SDValue();
}
template <class MatchContextClass> SDValue DAGCombiner::visitMUL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
unsigned BitWidth = VT.getScalarSizeInBits();
SDLoc DL(N);
bool UseVP = std::is_same_v<MatchContextClass, VPMatchContext>;
MatchContextClass Matcher(DAG, TLI, N);
// fold (mul x, undef) -> 0
if (N0.isUndef() || N1.isUndef())
return DAG.getConstant(0, DL, VT);
// fold (mul c1, c2) -> c1*c2
if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, DL, VT, {N0, N1}))
return C;
// canonicalize constant to RHS (vector doesn't have to splat)
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return Matcher.getNode(ISD::MUL, DL, VT, N1, N0);
bool N1IsConst = false;
bool N1IsOpaqueConst = false;
APInt ConstValue1;
// fold vector ops
if (VT.isVector()) {
// TODO: Change this to use SimplifyVBinOp when it supports VP op.
if (!UseVP)
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1);
assert((!N1IsConst || ConstValue1.getBitWidth() == BitWidth) &&
"Splat APInt should be element width");
} else {
N1IsConst = isa<ConstantSDNode>(N1);
if (N1IsConst) {
ConstValue1 = N1->getAsAPIntVal();
N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
}
}
// fold (mul x, 0) -> 0
if (N1IsConst && ConstValue1.isZero())
return N1;
// fold (mul x, 1) -> x
if (N1IsConst && ConstValue1.isOne())
return N0;
if (!UseVP)
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// fold (mul x, -1) -> 0-x
if (N1IsConst && ConstValue1.isAllOnes())
return Matcher.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0);
// fold (mul x, (1 << c)) -> x << c
if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
(!VT.isVector() || Level <= AfterLegalizeVectorOps)) {
if (SDValue LogBase2 = BuildLogBase2(N1, DL)) {
EVT ShiftVT = getShiftAmountTy(N0.getValueType());
SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
return Matcher.getNode(ISD::SHL, DL, VT, N0, Trunc);
}
}
// fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isNegatedPowerOf2()) {
unsigned Log2Val = (-ConstValue1).logBase2();
// FIXME: If the input is something that is easily negated (e.g. a
// single-use add), we should put the negate there.
return Matcher.getNode(
ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
Matcher.getNode(ISD::SHL, DL, VT, N0,
DAG.getShiftAmountConstant(Log2Val, VT, DL)));
}
// Attempt to reuse an existing umul_lohi/smul_lohi node, but only if the
// hi result is in use in case we hit this mid-legalization.
if (!UseVP) {
for (unsigned LoHiOpc : {ISD::UMUL_LOHI, ISD::SMUL_LOHI}) {
if (!LegalOperations || TLI.isOperationLegalOrCustom(LoHiOpc, VT)) {
SDVTList LoHiVT = DAG.getVTList(VT, VT);
// TODO: Can we match commutable operands with getNodeIfExists?
if (SDNode *LoHi = DAG.getNodeIfExists(LoHiOpc, LoHiVT, {N0, N1}))
if (LoHi->hasAnyUseOfValue(1))
return SDValue(LoHi, 0);
if (SDNode *LoHi = DAG.getNodeIfExists(LoHiOpc, LoHiVT, {N1, N0}))
if (LoHi->hasAnyUseOfValue(1))
return SDValue(LoHi, 0);
}
}
}
// Try to transform:
// (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub.
// mul x, (2^N + 1) --> add (shl x, N), x
// mul x, (2^N - 1) --> sub (shl x, N), x
// Examples: x * 33 --> (x << 5) + x
// x * 15 --> (x << 4) - x
// x * -33 --> -((x << 5) + x)
// x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
// (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub.
// mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M))
// mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M))
// Examples: x * 0x8800 --> (x << 15) + (x << 11)
// x * 0xf800 --> (x << 16) - (x << 11)
// x * -0x8800 --> -((x << 15) + (x << 11))
// x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16)
if (!UseVP && N1IsConst &&
TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) {
// TODO: We could handle more general decomposition of any constant by
// having the target set a limit on number of ops and making a
// callback to determine that sequence (similar to sqrt expansion).
unsigned MathOp = ISD::DELETED_NODE;
APInt MulC = ConstValue1.abs();
// The constant `2` should be treated as (2^0 + 1).
unsigned TZeros = MulC == 2 ? 0 : MulC.countr_zero();
MulC.lshrInPlace(TZeros);
if ((MulC - 1).isPowerOf2())
MathOp = ISD::ADD;
else if ((MulC + 1).isPowerOf2())
MathOp = ISD::SUB;
if (MathOp != ISD::DELETED_NODE) {
unsigned ShAmt =
MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2();
ShAmt += TZeros;
assert(ShAmt < BitWidth &&
"multiply-by-constant generated out of bounds shift");
SDValue Shl =
DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT));
SDValue R =
TZeros ? DAG.getNode(MathOp, DL, VT, Shl,
DAG.getNode(ISD::SHL, DL, VT, N0,
DAG.getConstant(TZeros, DL, VT)))
: DAG.getNode(MathOp, DL, VT, Shl, N0);
if (ConstValue1.isNegative())
R = DAG.getNegative(R, DL, VT);
return R;
}
}
// (mul (shl X, c1), c2) -> (mul X, c2 << c1)
if (sd_context_match(N0, Matcher, m_Opc(ISD::SHL))) {
SDValue N01 = N0.getOperand(1);
if (SDValue C3 = DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {N1, N01}))
return DAG.getNode(ISD::MUL, DL, VT, N0.getOperand(0), C3);
}
// Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
// use.
{
SDValue Sh, Y;
// Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
if (sd_context_match(N0, Matcher, m_OneUse(m_Opc(ISD::SHL))) &&
isConstantOrConstantVector(N0.getOperand(1))) {
Sh = N0; Y = N1;
} else if (sd_context_match(N1, Matcher, m_OneUse(m_Opc(ISD::SHL))) &&
isConstantOrConstantVector(N1.getOperand(1))) {
Sh = N1; Y = N0;
}
if (Sh.getNode()) {
SDValue Mul = Matcher.getNode(ISD::MUL, DL, VT, Sh.getOperand(0), Y);
return Matcher.getNode(ISD::SHL, DL, VT, Mul, Sh.getOperand(1));
}
}
// fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
if (sd_context_match(N0, Matcher, m_Opc(ISD::ADD)) &&
DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
isMulAddWithConstProfitable(N, N0, N1))
return Matcher.getNode(
ISD::ADD, DL, VT,
Matcher.getNode(ISD::MUL, SDLoc(N0), VT, N0.getOperand(0), N1),
Matcher.getNode(ISD::MUL, SDLoc(N1), VT, N0.getOperand(1), N1));
// Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)).
ConstantSDNode *NC1 = isConstOrConstSplat(N1);
if (!UseVP && N0.getOpcode() == ISD::VSCALE && NC1) {
const APInt &C0 = N0.getConstantOperandAPInt(0);
const APInt &C1 = NC1->getAPIntValue();
return DAG.getVScale(DL, VT, C0 * C1);
}
// Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
APInt MulVal;
if (!UseVP && N0.getOpcode() == ISD::STEP_VECTOR &&
ISD::isConstantSplatVector(N1.getNode(), MulVal)) {
const APInt &C0 = N0.getConstantOperandAPInt(0);
APInt NewStep = C0 * MulVal;
return DAG.getStepVector(DL, VT, NewStep);
}
// Fold Y = sra (X, size(X)-1); mul (or (Y, 1), X) -> (abs X)
SDValue X;
if (!UseVP && (!LegalOperations || hasOperation(ISD::ABS, VT)) &&
sd_context_match(
N, Matcher,
m_Mul(m_Or(m_Sra(m_Value(X), m_SpecificInt(BitWidth - 1)), m_One()),
m_Deferred(X)))) {
return Matcher.getNode(ISD::ABS, DL, VT, X);
}
// Fold ((mul x, 0/undef) -> 0,
// (mul x, 1) -> x) -> x)
// -> and(x, mask)
// We can replace vectors with '0' and '1' factors with a clearing mask.
if (VT.isFixedLengthVector()) {
unsigned NumElts = VT.getVectorNumElements();
SmallBitVector ClearMask;
ClearMask.reserve(NumElts);
auto IsClearMask = [&ClearMask](ConstantSDNode *V) {
if (!V || V->isZero()) {
ClearMask.push_back(true);
return true;
}
ClearMask.push_back(false);
return V->isOne();
};
if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::AND, VT)) &&
ISD::matchUnaryPredicate(N1, IsClearMask, /*AllowUndefs*/ true)) {
assert(N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector");
EVT LegalSVT = N1.getOperand(0).getValueType();
SDValue Zero = DAG.getConstant(0, DL, LegalSVT);
SDValue AllOnes = DAG.getAllOnesConstant(DL, LegalSVT);
SmallVector<SDValue, 16> Mask(NumElts, AllOnes);
for (unsigned I = 0; I != NumElts; ++I)
if (ClearMask[I])
Mask[I] = Zero;
return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getBuildVector(VT, DL, Mask));
}
}
// reassociate mul
// TODO: Change reassociateOps to support vp ops.
if (!UseVP)
if (SDValue RMUL = reassociateOps(ISD::MUL, DL, N0, N1, N->getFlags()))
return RMUL;
// Fold mul(vecreduce(x), vecreduce(y)) -> vecreduce(mul(x, y))
// TODO: Change reassociateReduction to support vp ops.
if (!UseVP)
if (SDValue SD =
reassociateReduction(ISD::VECREDUCE_MUL, ISD::MUL, DL, VT, N0, N1))
return SD;
// Simplify the operands using demanded-bits information.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
/// Return true if divmod libcall is available.
static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
const TargetLowering &TLI) {
RTLIB::Libcall LC;
EVT NodeType = Node->getValueType(0);
if (!NodeType.isSimple())
return false;
switch (NodeType.getSimpleVT().SimpleTy) {
default: return false; // No libcall for vector types.
case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
}
return TLI.getLibcallName(LC) != nullptr;
}
/// Issue divrem if both quotient and remainder are needed.
SDValue DAGCombiner::useDivRem(SDNode *Node) {
if (Node->use_empty())
return SDValue(); // This is a dead node, leave it alone.
unsigned Opcode = Node->getOpcode();
bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
// DivMod lib calls can still work on non-legal types if using lib-calls.
EVT VT = Node->getValueType(0);
if (VT.isVector() || !VT.isInteger())
return SDValue();
if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT))
return SDValue();
// If DIVREM is going to get expanded into a libcall,
// but there is no libcall available, then don't combine.
if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
!isDivRemLibcallAvailable(Node, isSigned, TLI))
return SDValue();
// If div is legal, it's better to do the normal expansion
unsigned OtherOpcode = 0;
if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
if (TLI.isOperationLegalOrCustom(Opcode, VT))
return SDValue();
} else {
OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
return SDValue();
}
SDValue Op0 = Node->getOperand(0);
SDValue Op1 = Node->getOperand(1);
SDValue combined;
for (SDNode *User : Op0->users()) {
if (User == Node || User->getOpcode() == ISD::DELETED_NODE ||
User->use_empty())
continue;
// Convert the other matching node(s), too;
// otherwise, the DIVREM may get target-legalized into something
// target-specific that we won't be able to recognize.
unsigned UserOpc = User->getOpcode();
if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
User->getOperand(0) == Op0 &&
User->getOperand(1) == Op1) {
if (!combined) {
if (UserOpc == OtherOpcode) {
SDVTList VTs = DAG.getVTList(VT, VT);
combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
} else if (UserOpc == DivRemOpc) {
combined = SDValue(User, 0);
} else {
assert(UserOpc == Opcode);
continue;
}
}
if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
CombineTo(User, combined);
else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
CombineTo(User, combined.getValue(1));
}
}
return combined;
}
static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
unsigned Opc = N->getOpcode();
bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc);
ConstantSDNode *N1C = isConstOrConstSplat(N1);
// X / undef -> undef
// X % undef -> undef
// X / 0 -> undef
// X % 0 -> undef
// NOTE: This includes vectors where any divisor element is zero/undef.
if (DAG.isUndef(Opc, {N0, N1}))
return DAG.getUNDEF(VT);
// undef / X -> 0
// undef % X -> 0
if (N0.isUndef())
return DAG.getConstant(0, DL, VT);
// 0 / X -> 0
// 0 % X -> 0
ConstantSDNode *N0C = isConstOrConstSplat(N0);
if (N0C && N0C->isZero())
return N0;
// X / X -> 1
// X % X -> 0
if (N0 == N1)
return DAG.getConstant(IsDiv ? 1 : 0, DL, VT);
// X / 1 -> X
// X % 1 -> 0
// If this is a boolean op (single-bit element type), we can't have
// division-by-zero or remainder-by-zero, so assume the divisor is 1.
// TODO: Similarly, if we're zero-extending a boolean divisor, then assume
// it's a 1.
if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1))
return IsDiv ? N0 : DAG.getConstant(0, DL, VT);
return SDValue();
}
SDValue DAGCombiner::visitSDIV(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT CCVT = getSetCCResultType(VT);
SDLoc DL(N);
// fold (sdiv c1, c2) -> c1/c2
if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1}))
return C;
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
// fold (sdiv X, -1) -> 0-X
ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (N1C && N1C->isAllOnes())
return DAG.getNegative(N0, DL, VT);
// fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
if (N1C && N1C->isMinSignedValue())
return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
DAG.getConstant(1, DL, VT),
DAG.getConstant(0, DL, VT));
if (SDValue V = simplifyDivRem(N, DAG))
return V;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// If we know the sign bits of both operands are zero, strength reduce to a
// udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
if (SDValue V = visitSDIVLike(N0, N1, N)) {
// If the corresponding remainder node exists, update its users with
// (Dividend - (Quotient * Divisor).
if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(),
{ N0, N1 })) {
// If the sdiv has the exact flag we shouldn't propagate it to the
// remainder node.
if (!N->getFlags().hasExact()) {
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
AddToWorklist(Mul.getNode());
AddToWorklist(Sub.getNode());
CombineTo(RemNode, Sub);
}
}
return V;
}
// sdiv, srem -> sdivrem
// If the divisor is constant, then return DIVREM only if isIntDivCheap() is
// true. Otherwise, we break the simplification logic in visitREM().
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue DivRem = useDivRem(N))
return DivRem;
return SDValue();
}
static bool isDivisorPowerOfTwo(SDValue Divisor) {
// Helper for determining whether a value is a power-2 constant scalar or a
// vector of such elements.
auto IsPowerOfTwo = [](ConstantSDNode *C) {
if (C->isZero() || C->isOpaque())
return false;
if (C->getAPIntValue().isPowerOf2())
return true;
if (C->getAPIntValue().isNegatedPowerOf2())
return true;
return false;
};
return ISD::matchUnaryPredicate(Divisor, IsPowerOfTwo);
}
SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
EVT CCVT = getSetCCResultType(VT);
unsigned BitWidth = VT.getScalarSizeInBits();
// fold (sdiv X, pow2) -> simple ops after legalize
// FIXME: We check for the exact bit here because the generic lowering gives
// better results in that case. The target-specific lowering should learn how
// to handle exact sdivs efficiently.
if (!N->getFlags().hasExact() && isDivisorPowerOfTwo(N1)) {
// Target-specific implementation of sdiv x, pow2.
if (SDValue Res = BuildSDIVPow2(N))
return Res;
// Create constants that are functions of the shift amount value.
EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy);
SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1);
C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy);
SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1);
if (!isConstantOrConstantVector(Inexact))
return SDValue();
// Splat the sign bit into the register
SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0,
DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy));
AddToWorklist(Sign.getNode());
// Add (N0 < 0) ? abs2 - 1 : 0;
SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact);
AddToWorklist(Srl.getNode());
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl);
AddToWorklist(Add.getNode());
SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1);
AddToWorklist(Sra.getNode());
// Special case: (sdiv X, 1) -> X
// Special Case: (sdiv X, -1) -> 0-X
SDValue One = DAG.getConstant(1, DL, VT);
SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ);
SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ);
SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes);
Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra);
// If dividing by a positive value, we're done. Otherwise, the result must
// be negated.
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra);
// FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT);
SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra);
return Res;
}
// If integer divide is expensive and we satisfy the requirements, emit an
// alternate sequence. Targets may check function attributes for size/speed
// trade-offs.
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
if (isConstantOrConstantVector(N1) &&
!TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue Op = BuildSDIV(N))
return Op;
return SDValue();
}
SDValue DAGCombiner::visitUDIV(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT CCVT = getSetCCResultType(VT);
SDLoc DL(N);
// fold (udiv c1, c2) -> c1/c2
if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1}))
return C;
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
// fold (udiv X, -1) -> select(X == -1, 1, 0)
ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (N1C && N1C->isAllOnes() && CCVT.isVector() == VT.isVector()) {
return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
DAG.getConstant(1, DL, VT),
DAG.getConstant(0, DL, VT));
}
if (SDValue V = simplifyDivRem(N, DAG))
return V;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
if (SDValue V = visitUDIVLike(N0, N1, N)) {
// If the corresponding remainder node exists, update its users with
// (Dividend - (Quotient * Divisor).
if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(),
{ N0, N1 })) {
// If the udiv has the exact flag we shouldn't propagate it to the
// remainder node.
if (!N->getFlags().hasExact()) {
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
AddToWorklist(Mul.getNode());
AddToWorklist(Sub.getNode());
CombineTo(RemNode, Sub);
}
}
return V;
}
// sdiv, srem -> sdivrem
// If the divisor is constant, then return DIVREM only if isIntDivCheap() is
// true. Otherwise, we break the simplification logic in visitREM().
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue DivRem = useDivRem(N))
return DivRem;
// Simplify the operands using demanded-bits information.
// We don't have demanded bits support for UDIV so this just enables constant
// folding based on known bits.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
// fold (udiv x, (1 << c)) -> x >>u c
if (isConstantOrConstantVector(N1, /*NoOpaques*/ true)) {
if (SDValue LogBase2 = BuildLogBase2(N1, DL)) {
AddToWorklist(LogBase2.getNode());
EVT ShiftVT = getShiftAmountTy(N0.getValueType());
SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
AddToWorklist(Trunc.getNode());
return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
}
}
// fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
if (N1.getOpcode() == ISD::SHL) {
SDValue N10 = N1.getOperand(0);
if (isConstantOrConstantVector(N10, /*NoOpaques*/ true)) {
if (SDValue LogBase2 = BuildLogBase2(N10, DL)) {
AddToWorklist(LogBase2.getNode());
EVT ADDVT = N1.getOperand(1).getValueType();
SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT);
AddToWorklist(Trunc.getNode());
SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc);
AddToWorklist(Add.getNode());
return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
}
}
}
// fold (udiv x, c) -> alternate
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
if (isConstantOrConstantVector(N1) &&
!TLI.isIntDivCheap(N->getValueType(0), Attr))
if (SDValue Op = BuildUDIV(N))
return Op;
return SDValue();
}
SDValue DAGCombiner::buildOptimizedSREM(SDValue N0, SDValue N1, SDNode *N) {
if (!N->getFlags().hasExact() && isDivisorPowerOfTwo(N1) &&
!DAG.doesNodeExist(ISD::SDIV, N->getVTList(), {N0, N1})) {
// Target-specific implementation of srem x, pow2.
if (SDValue Res = BuildSREMPow2(N))
return Res;
}
return SDValue();
}
// handles ISD::SREM and ISD::UREM
SDValue DAGCombiner::visitREM(SDNode *N) {
unsigned Opcode = N->getOpcode();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT CCVT = getSetCCResultType(VT);
bool isSigned = (Opcode == ISD::SREM);
SDLoc DL(N);
// fold (rem c1, c2) -> c1%c2
if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
return C;
// fold (urem X, -1) -> select(FX == -1, 0, FX)
// Freeze the numerator to avoid a miscompile with an undefined value.
if (!isSigned && llvm::isAllOnesOrAllOnesSplat(N1, /*AllowUndefs*/ false) &&
CCVT.isVector() == VT.isVector()) {
SDValue F0 = DAG.getFreeze(N0);
SDValue EqualsNeg1 = DAG.getSetCC(DL, CCVT, F0, N1, ISD::SETEQ);
return DAG.getSelect(DL, VT, EqualsNeg1, DAG.getConstant(0, DL, VT), F0);
}
if (SDValue V = simplifyDivRem(N, DAG))
return V;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
if (isSigned) {
// If we know the sign bits of both operands are zero, strength reduce to a
// urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
} else {
if (DAG.isKnownToBeAPowerOfTwo(N1)) {
// fold (urem x, pow2) -> (and x, pow2-1)
SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
AddToWorklist(Add.getNode());
return DAG.getNode(ISD::AND, DL, VT, N0, Add);
}
// fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
// fold (urem x, (lshr pow2, y)) -> (and x, (add (lshr pow2, y), -1))
// TODO: We should sink the following into isKnownToBePowerOfTwo
// using a OrZero parameter analogous to our handling in ValueTracking.
if ((N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) &&
DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) {
SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
AddToWorklist(Add.getNode());
return DAG.getNode(ISD::AND, DL, VT, N0, Add);
}
}
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
// If X/C can be simplified by the division-by-constant logic, lower
// X%C to the equivalent of X-X/C*C.
// Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
// speculative DIV must not cause a DIVREM conversion. We guard against this
// by skipping the simplification if isIntDivCheap(). When div is not cheap,
// combine will not return a DIVREM. Regardless, checking cheapness here
// makes sense since the simplification results in fatter code.
if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) {
if (isSigned) {
// check if we can build faster implementation for srem
if (SDValue OptimizedRem = buildOptimizedSREM(N0, N1, N))
return OptimizedRem;
}
SDValue OptimizedDiv =
isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N);
if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != N) {
// If the equivalent Div node also exists, update its users.
unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(),
{ N0, N1 }))
CombineTo(DivNode, OptimizedDiv);
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
AddToWorklist(OptimizedDiv.getNode());
AddToWorklist(Mul.getNode());
return Sub;
}
}
// sdiv, srem -> sdivrem
if (SDValue DivRem = useDivRem(N))
return DivRem.getValue(1);
return SDValue();
}
SDValue DAGCombiner::visitMULHS(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
// fold (mulhs c1, c2)
if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHS, DL, VT, {N0, N1}))
return C;
// canonicalize constant to RHS.
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::MULHS, DL, N->getVTList(), N1, N0);
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
// fold (mulhs x, 0) -> 0
// do not return N1, because undef node may exist.
if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
return DAG.getConstant(0, DL, VT);
}
// fold (mulhs x, 0) -> 0
if (isNullConstant(N1))
return N1;
// fold (mulhs x, 1) -> (sra x, size(x)-1)
if (isOneConstant(N1))
return DAG.getNode(
ISD::SRA, DL, VT, N0,
DAG.getShiftAmountConstant(N0.getScalarValueSizeInBits() - 1, VT, DL));
// fold (mulhs x, undef) -> 0
if (N0.isUndef() || N1.isUndef())
return DAG.getConstant(0, DL, VT);
// If the type twice as wide is legal, transform the mulhs to a wider multiply
// plus a shift.
if (!TLI.isOperationLegalOrCustom(ISD::MULHS, VT) && VT.isSimple() &&
!VT.isVector()) {
MVT Simple = VT.getSimpleVT();
unsigned SimpleSize = Simple.getSizeInBits();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
DAG.getShiftAmountConstant(SimpleSize, NewVT, DL));
return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
}
}
return SDValue();
}
SDValue DAGCombiner::visitMULHU(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
// fold (mulhu c1, c2)
if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHU, DL, VT, {N0, N1}))
return C;
// canonicalize constant to RHS.
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::MULHU, DL, N->getVTList(), N1, N0);
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
// fold (mulhu x, 0) -> 0
// do not return N1, because undef node may exist.
if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
return DAG.getConstant(0, DL, VT);
}
// fold (mulhu x, 0) -> 0
if (isNullConstant(N1))
return N1;
// fold (mulhu x, 1) -> 0
if (isOneConstant(N1))
return DAG.getConstant(0, DL, VT);
// fold (mulhu x, undef) -> 0
if (N0.isUndef() || N1.isUndef())
return DAG.getConstant(0, DL, VT);
// fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
hasOperation(ISD::SRL, VT)) {
if (SDValue LogBase2 = BuildLogBase2(N1, DL)) {
unsigned NumEltBits = VT.getScalarSizeInBits();
SDValue SRLAmt = DAG.getNode(
ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2);
EVT ShiftVT = getShiftAmountTy(N0.getValueType());
SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT);
return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
}
}
// If the type twice as wide is legal, transform the mulhu to a wider multiply
// plus a shift.
if (!TLI.isOperationLegalOrCustom(ISD::MULHU, VT) && VT.isSimple() &&
!VT.isVector()) {
MVT Simple = VT.getSimpleVT();
unsigned SimpleSize = Simple.getSizeInBits();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
DAG.getShiftAmountConstant(SimpleSize, NewVT, DL));
return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
}
}
// Simplify the operands using demanded-bits information.
// We don't have demanded bits support for MULHU so this just enables constant
// folding based on known bits.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
SDValue DAGCombiner::visitAVG(SDNode *N) {
unsigned Opcode = N->getOpcode();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
bool IsSigned = Opcode == ISD::AVGCEILS || Opcode == ISD::AVGFLOORS;
// fold (avg c1, c2)
if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
return C;
// canonicalize constant to RHS.
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(Opcode, DL, N->getVTList(), N1, N0);
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
// fold (avg x, undef) -> x
if (N0.isUndef())
return N1;
if (N1.isUndef())
return N0;
// fold (avg x, x) --> x
if (N0 == N1 && Level >= AfterLegalizeTypes)
return N0;
// fold (avgfloor x, 0) -> x >> 1
SDValue X, Y;
if (sd_match(N, m_c_BinOp(ISD::AVGFLOORS, m_Value(X), m_Zero())))
return DAG.getNode(ISD::SRA, DL, VT, X,
DAG.getShiftAmountConstant(1, VT, DL));
if (sd_match(N, m_c_BinOp(ISD::AVGFLOORU, m_Value(X), m_Zero())))
return DAG.getNode(ISD::SRL, DL, VT, X,
DAG.getShiftAmountConstant(1, VT, DL));
// fold avgu(zext(x), zext(y)) -> zext(avgu(x, y))
// fold avgs(sext(x), sext(y)) -> sext(avgs(x, y))
if (!IsSigned &&
sd_match(N, m_BinOp(Opcode, m_ZExt(m_Value(X)), m_ZExt(m_Value(Y)))) &&
X.getValueType() == Y.getValueType() &&
hasOperation(Opcode, X.getValueType())) {
SDValue AvgU = DAG.getNode(Opcode, DL, X.getValueType(), X, Y);
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, AvgU);
}
if (IsSigned &&
sd_match(N, m_BinOp(Opcode, m_SExt(m_Value(X)), m_SExt(m_Value(Y)))) &&
X.getValueType() == Y.getValueType() &&
hasOperation(Opcode, X.getValueType())) {
SDValue AvgS = DAG.getNode(Opcode, DL, X.getValueType(), X, Y);
return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, AvgS);
}
// Fold avgflooru(x,y) -> avgceilu(x,y-1) iff y != 0
// Fold avgflooru(x,y) -> avgceilu(x-1,y) iff x != 0
// Check if avgflooru isn't legal/custom but avgceilu is.
if (Opcode == ISD::AVGFLOORU && !hasOperation(ISD::AVGFLOORU, VT) &&
(!LegalOperations || hasOperation(ISD::AVGCEILU, VT))) {
if (DAG.isKnownNeverZero(N1))
return DAG.getNode(
ISD::AVGCEILU, DL, VT, N0,
DAG.getNode(ISD::ADD, DL, VT, N1, DAG.getAllOnesConstant(DL, VT)));
if (DAG.isKnownNeverZero(N0))
return DAG.getNode(
ISD::AVGCEILU, DL, VT, N1,
DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getAllOnesConstant(DL, VT)));
}
// Fold avgfloor((add nw x,y), 1) -> avgceil(x,y)
// Fold avgfloor((add nw x,1), y) -> avgceil(x,y)
if ((Opcode == ISD::AVGFLOORU && hasOperation(ISD::AVGCEILU, VT)) ||
(Opcode == ISD::AVGFLOORS && hasOperation(ISD::AVGCEILS, VT))) {
SDValue Add;
if (sd_match(N,
m_c_BinOp(Opcode,
m_AllOf(m_Value(Add), m_Add(m_Value(X), m_Value(Y))),
m_One())) ||
sd_match(N, m_c_BinOp(Opcode,
m_AllOf(m_Value(Add), m_Add(m_Value(X), m_One())),
m_Value(Y)))) {
if (IsSigned && Add->getFlags().hasNoSignedWrap())
return DAG.getNode(ISD::AVGCEILS, DL, VT, X, Y);
if (!IsSigned && Add->getFlags().hasNoUnsignedWrap())
return DAG.getNode(ISD::AVGCEILU, DL, VT, X, Y);
}
}
// Fold avgfloors(x,y) -> avgflooru(x,y) if both x and y are non-negative
if (Opcode == ISD::AVGFLOORS && hasOperation(ISD::AVGFLOORU, VT)) {
if (DAG.SignBitIsZero(N0) && DAG.SignBitIsZero(N1))
return DAG.getNode(ISD::AVGFLOORU, DL, VT, N0, N1);
}
return SDValue();
}
SDValue DAGCombiner::visitABD(SDNode *N) {
unsigned Opcode = N->getOpcode();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
// fold (abd c1, c2)
if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
return C;
// canonicalize constant to RHS.
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(Opcode, DL, N->getVTList(), N1, N0);
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
// fold (abd x, undef) -> 0
if (N0.isUndef() || N1.isUndef())
return DAG.getConstant(0, DL, VT);
// fold (abd x, x) -> 0
if (N0 == N1)
return DAG.getConstant(0, DL, VT);
SDValue X;
// fold (abds x, 0) -> abs x
if (sd_match(N, m_c_BinOp(ISD::ABDS, m_Value(X), m_Zero())) &&
(!LegalOperations || hasOperation(ISD::ABS, VT)))
return DAG.getNode(ISD::ABS, DL, VT, X);
// fold (abdu x, 0) -> x
if (sd_match(N, m_c_BinOp(ISD::ABDU, m_Value(X), m_Zero())))
return X;
// fold (abds x, y) -> (abdu x, y) iff both args are known positive
if (Opcode == ISD::ABDS && hasOperation(ISD::ABDU, VT) &&
DAG.SignBitIsZero(N0) && DAG.SignBitIsZero(N1))
return DAG.getNode(ISD::ABDU, DL, VT, N1, N0);
return SDValue();
}
/// Perform optimizations common to nodes that compute two values. LoOp and HiOp
/// give the opcodes for the two computations that are being performed. Return
/// true if a simplification was made.
SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
unsigned HiOp) {
// If the high half is not needed, just compute the low half.
bool HiExists = N->hasAnyUseOfValue(1);
if (!HiExists && (!LegalOperations ||
TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
return CombineTo(N, Res, Res);
}
// If the low half is not needed, just compute the high half.
bool LoExists = N->hasAnyUseOfValue(0);
if (!LoExists && (!LegalOperations ||
TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) {
SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
return CombineTo(N, Res, Res);
}
// If both halves are used, return as it is.
if (LoExists && HiExists)
return SDValue();
// If the two computed results can be simplified separately, separate them.
if (LoExists) {
SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
AddToWorklist(Lo.getNode());
SDValue LoOpt = combine(Lo.getNode());
if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
(!LegalOperations ||
TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType())))
return CombineTo(N, LoOpt, LoOpt);
}
if (HiExists) {
SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
AddToWorklist(Hi.getNode());
SDValue HiOpt = combine(Hi.getNode());
if (HiOpt.getNode() && HiOpt != Hi &&
(!LegalOperations ||
TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType())))
return CombineTo(N, HiOpt, HiOpt);
}
return SDValue();
}
SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
return Res;
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
// Constant fold.
if (isa<ConstantSDNode>(N0) && isa<ConstantSDNode>(N1))
return DAG.getNode(ISD::SMUL_LOHI, DL, N->getVTList(), N0, N1);
// canonicalize constant to RHS (vector doesn't have to splat)
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::SMUL_LOHI, DL, N->getVTList(), N1, N0);
// If the type is twice as wide is legal, transform the mulhu to a wider
// multiply plus a shift.
if (VT.isSimple() && !VT.isVector()) {
MVT Simple = VT.getSimpleVT();
unsigned SimpleSize = Simple.getSizeInBits();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
// Compute the high part as N1.
Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
DAG.getShiftAmountConstant(SimpleSize, NewVT, DL));
Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
// Compute the low part as N0.
Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
return CombineTo(N, Lo, Hi);
}
}
return SDValue();
}
SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
return Res;
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
// Constant fold.
if (isa<ConstantSDNode>(N0) && isa<ConstantSDNode>(N1))
return DAG.getNode(ISD::UMUL_LOHI, DL, N->getVTList(), N0, N1);
// canonicalize constant to RHS (vector doesn't have to splat)
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::UMUL_LOHI, DL, N->getVTList(), N1, N0);
// (umul_lohi N0, 0) -> (0, 0)
if (isNullConstant(N1)) {
SDValue Zero = DAG.getConstant(0, DL, VT);
return CombineTo(N, Zero, Zero);
}
// (umul_lohi N0, 1) -> (N0, 0)
if (isOneConstant(N1)) {
SDValue Zero = DAG.getConstant(0, DL, VT);
return CombineTo(N, N0, Zero);
}
// If the type is twice as wide is legal, transform the mulhu to a wider
// multiply plus a shift.
if (VT.isSimple() && !VT.isVector()) {
MVT Simple = VT.getSimpleVT();
unsigned SimpleSize = Simple.getSizeInBits();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
// Compute the high part as N1.
Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
DAG.getShiftAmountConstant(SimpleSize, NewVT, DL));
Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
// Compute the low part as N0.
Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
return CombineTo(N, Lo, Hi);
}
}
return SDValue();
}
SDValue DAGCombiner::visitMULO(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
bool IsSigned = (ISD::SMULO == N->getOpcode());
EVT CarryVT = N->getValueType(1);
SDLoc DL(N);
ConstantSDNode *N0C = isConstOrConstSplat(N0);
ConstantSDNode *N1C = isConstOrConstSplat(N1);
// fold operation with constant operands.
// TODO: Move this to FoldConstantArithmetic when it supports nodes with
// multiple results.
if (N0C && N1C) {
bool Overflow;
APInt Result =
IsSigned ? N0C->getAPIntValue().smul_ov(N1C->getAPIntValue(), Overflow)
: N0C->getAPIntValue().umul_ov(N1C->getAPIntValue(), Overflow);
return CombineTo(N, DAG.getConstant(Result, DL, VT),
DAG.getBoolConstant(Overflow, DL, CarryVT, CarryVT));
}
// canonicalize constant to RHS.
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
// fold (mulo x, 0) -> 0 + no carry out
if (isNullOrNullSplat(N1))
return CombineTo(N, DAG.getConstant(0, DL, VT),
DAG.getConstant(0, DL, CarryVT));
// (mulo x, 2) -> (addo x, x)
// FIXME: This needs a freeze.
if (N1C && N1C->getAPIntValue() == 2 &&
(!IsSigned || VT.getScalarSizeInBits() > 2))
return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL,
N->getVTList(), N0, N0);
// A 1 bit SMULO overflows if both inputs are 1.
if (IsSigned && VT.getScalarSizeInBits() == 1) {
SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, N1);
SDValue Cmp = DAG.getSetCC(DL, CarryVT, And,
DAG.getConstant(0, DL, VT), ISD::SETNE);
return CombineTo(N, And, Cmp);
}
// If it cannot overflow, transform into a mul.
if (DAG.willNotOverflowMul(IsSigned, N0, N1))
return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1),
DAG.getConstant(0, DL, CarryVT));
return SDValue();
}
// Function to calculate whether the Min/Max pair of SDNodes (potentially
// swapped around) make a signed saturate pattern, clamping to between a signed
// saturate of -2^(BW-1) and 2^(BW-1)-1, or an unsigned saturate of 0 and 2^BW.
// Returns the node being clamped and the bitwidth of the clamp in BW. Should
// work with both SMIN/SMAX nodes and setcc/select combo. The operands are the
// same as SimplifySelectCC. N0<N1 ? N2 : N3.
static SDValue isSaturatingMinMax(SDValue N0, SDValue N1, SDValue N2,
SDValue N3, ISD::CondCode CC, unsigned &BW,
bool &Unsigned, SelectionDAG &DAG) {
auto isSignedMinMax = [&](SDValue N0, SDValue N1, SDValue N2, SDValue N3,
ISD::CondCode CC) {
// The compare and select operand should be the same or the select operands
// should be truncated versions of the comparison.
if (N0 != N2 && (N2.getOpcode() != ISD::TRUNCATE || N0 != N2.getOperand(0)))
return 0;
// The constants need to be the same or a truncated version of each other.
ConstantSDNode *N1C = isConstOrConstSplat(peekThroughTruncates(N1));
ConstantSDNode *N3C = isConstOrConstSplat(peekThroughTruncates(N3));
if (!N1C || !N3C)
return 0;
const APInt &C1 = N1C->getAPIntValue().trunc(N1.getScalarValueSizeInBits());
const APInt &C2 = N3C->getAPIntValue().trunc(N3.getScalarValueSizeInBits());
if (C1.getBitWidth() < C2.getBitWidth() || C1 != C2.sext(C1.getBitWidth()))
return 0;
return CC == ISD::SETLT ? ISD::SMIN : (CC == ISD::SETGT ? ISD::SMAX : 0);
};
// Check the initial value is a SMIN/SMAX equivalent.
unsigned Opcode0 = isSignedMinMax(N0, N1, N2, N3, CC);
if (!Opcode0)
return SDValue();
// We could only need one range check, if the fptosi could never produce
// the upper value.
if (N0.getOpcode() == ISD::FP_TO_SINT && Opcode0 == ISD::SMAX) {
if (isNullOrNullSplat(N3)) {
EVT IntVT = N0.getValueType().getScalarType();
EVT FPVT = N0.getOperand(0).getValueType().getScalarType();
if (FPVT.isSimple()) {
Type *InputTy = FPVT.getTypeForEVT(*DAG.getContext());
const fltSemantics &Semantics = InputTy->getFltSemantics();
uint32_t MinBitWidth =
APFloatBase::semanticsIntSizeInBits(Semantics, /*isSigned*/ true);
if (IntVT.getSizeInBits() >= MinBitWidth) {
Unsigned = true;
BW = PowerOf2Ceil(MinBitWidth);
return N0;
}
}
}
}
SDValue N00, N01, N02, N03;
ISD::CondCode N0CC;
switch (N0.getOpcode()) {
case ISD::SMIN:
case ISD::SMAX:
N00 = N02 = N0.getOperand(0);
N01 = N03 = N0.getOperand(1);
N0CC = N0.getOpcode() == ISD::SMIN ? ISD::SETLT : ISD::SETGT;
break;
case ISD::SELECT_CC:
N00 = N0.getOperand(0);
N01 = N0.getOperand(1);
N02 = N0.getOperand(2);
N03 = N0.getOperand(3);
N0CC = cast<CondCodeSDNode>(N0.getOperand(4))->get();
break;
case ISD::SELECT:
case ISD::VSELECT:
if (N0.getOperand(0).getOpcode() != ISD::SETCC)
return SDValue();
N00 = N0.getOperand(0).getOperand(0);
N01 = N0.getOperand(0).getOperand(1);
N02 = N0.getOperand(1);
N03 = N0.getOperand(2);
N0CC = cast<CondCodeSDNode>(N0.getOperand(0).getOperand(2))->get();
break;
default:
return SDValue();
}
unsigned Opcode1 = isSignedMinMax(N00, N01, N02, N03, N0CC);
if (!Opcode1 || Opcode0 == Opcode1)
return SDValue();
ConstantSDNode *MinCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N1 : N01);
ConstantSDNode *MaxCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N01 : N1);
if (!MinCOp || !MaxCOp || MinCOp->getValueType(0) != MaxCOp->getValueType(0))
return SDValue();
const APInt &MinC = MinCOp->getAPIntValue();
const APInt &MaxC = MaxCOp->getAPIntValue();
APInt MinCPlus1 = MinC + 1;
if (-MaxC == MinCPlus1 && MinCPlus1.isPowerOf2()) {
BW = MinCPlus1.exactLogBase2() + 1;
Unsigned = false;
return N02;
}
if (MaxC == 0 && MinCPlus1.isPowerOf2()) {
BW = MinCPlus1.exactLogBase2();
Unsigned = true;
return N02;
}
return SDValue();
}
static SDValue PerformMinMaxFpToSatCombine(SDValue N0, SDValue N1, SDValue N2,
SDValue N3, ISD::CondCode CC,
SelectionDAG &DAG) {
unsigned BW;
bool Unsigned;
SDValue Fp = isSaturatingMinMax(N0, N1, N2, N3, CC, BW, Unsigned, DAG);
if (!Fp || Fp.getOpcode() != ISD::FP_TO_SINT)
return SDValue();
EVT FPVT = Fp.getOperand(0).getValueType();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), BW);
if (FPVT.isVector())
NewVT = EVT::getVectorVT(*DAG.getContext(), NewVT,
FPVT.getVectorElementCount());
unsigned NewOpc = Unsigned ? ISD::FP_TO_UINT_SAT : ISD::FP_TO_SINT_SAT;
if (!DAG.getTargetLoweringInfo().shouldConvertFpToSat(NewOpc, FPVT, NewVT))
return SDValue();
SDLoc DL(Fp);
SDValue Sat = DAG.getNode(NewOpc, DL, NewVT, Fp.getOperand(0),
DAG.getValueType(NewVT.getScalarType()));
return DAG.getExtOrTrunc(!Unsigned, Sat, DL, N2->getValueType(0));
}
static SDValue PerformUMinFpToSatCombine(SDValue N0, SDValue N1, SDValue N2,
SDValue N3, ISD::CondCode CC,
SelectionDAG &DAG) {
// We are looking for UMIN(FPTOUI(X), (2^n)-1), which may have come via a
// select/vselect/select_cc. The two operands pairs for the select (N2/N3) may
// be truncated versions of the setcc (N0/N1).
if ((N0 != N2 &&
(N2.getOpcode() != ISD::TRUNCATE || N0 != N2.getOperand(0))) ||
N0.getOpcode() != ISD::FP_TO_UINT || CC != ISD::SETULT)
return SDValue();
ConstantSDNode *N1C = isConstOrConstSplat(N1);
ConstantSDNode *N3C = isConstOrConstSplat(N3);
if (!N1C || !N3C)
return SDValue();
const APInt &C1 = N1C->getAPIntValue();
const APInt &C3 = N3C->getAPIntValue();
if (!(C1 + 1).isPowerOf2() || C1.getBitWidth() < C3.getBitWidth() ||
C1 != C3.zext(C1.getBitWidth()))
return SDValue();
unsigned BW = (C1 + 1).exactLogBase2();
EVT FPVT = N0.getOperand(0).getValueType();
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), BW);
if (FPVT.isVector())
NewVT = EVT::getVectorVT(*DAG.getContext(), NewVT,
FPVT.getVectorElementCount());
if (!DAG.getTargetLoweringInfo().shouldConvertFpToSat(ISD::FP_TO_UINT_SAT,
FPVT, NewVT))
return SDValue();
SDValue Sat =
DAG.getNode(ISD::FP_TO_UINT_SAT, SDLoc(N0), NewVT, N0.getOperand(0),
DAG.getValueType(NewVT.getScalarType()));
return DAG.getZExtOrTrunc(Sat, SDLoc(N0), N3.getValueType());
}
SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
unsigned Opcode = N->getOpcode();
SDLoc DL(N);
// fold operation with constant operands.
if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
return C;
// If the operands are the same, this is a no-op.
if (N0 == N1)
return N0;
// canonicalize constant to RHS
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(Opcode, DL, VT, N1, N0);
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
// reassociate minmax
if (SDValue RMINMAX = reassociateOps(Opcode, DL, N0, N1, N->getFlags()))
return RMINMAX;
// Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
// Only do this if:
// 1. The current op isn't legal and the flipped is.
// 2. The saturation pattern is broken by canonicalization in InstCombine.
bool IsOpIllegal = !TLI.isOperationLegal(Opcode, VT);
bool IsSatBroken = Opcode == ISD::UMIN && N0.getOpcode() == ISD::SMAX;
if ((IsSatBroken || IsOpIllegal) && (N0.isUndef() || DAG.SignBitIsZero(N0)) &&
(N1.isUndef() || DAG.SignBitIsZero(N1))) {
unsigned AltOpcode;
switch (Opcode) {
case ISD::SMIN: AltOpcode = ISD::UMIN; break;
case ISD::SMAX: AltOpcode = ISD::UMAX; break;
case ISD::UMIN: AltOpcode = ISD::SMIN; break;
case ISD::UMAX: AltOpcode = ISD::SMAX; break;
default: llvm_unreachable("Unknown MINMAX opcode");
}
if ((IsSatBroken && IsOpIllegal) || TLI.isOperationLegal(AltOpcode, VT))
return DAG.getNode(AltOpcode, DL, VT, N0, N1);
}
if (Opcode == ISD::SMIN || Opcode == ISD::SMAX)
if (SDValue S = PerformMinMaxFpToSatCombine(
N0, N1, N0, N1, Opcode == ISD::SMIN ? ISD::SETLT : ISD::SETGT, DAG))
return S;
if (Opcode == ISD::UMIN)
if (SDValue S = PerformUMinFpToSatCombine(N0, N1, N0, N1, ISD::SETULT, DAG))
return S;
// Fold min/max(vecreduce(x), vecreduce(y)) -> vecreduce(min/max(x, y))
auto ReductionOpcode = [](unsigned Opcode) {
switch (Opcode) {
case ISD::SMIN:
return ISD::VECREDUCE_SMIN;
case ISD::SMAX:
return ISD::VECREDUCE_SMAX;
case ISD::UMIN:
return ISD::VECREDUCE_UMIN;
case ISD::UMAX:
return ISD::VECREDUCE_UMAX;
default:
llvm_unreachable("Unexpected opcode");
}
};
if (SDValue SD = reassociateReduction(ReductionOpcode(Opcode), Opcode,
SDLoc(N), VT, N0, N1))
return SD;
// Simplify the operands using demanded-bits information.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
/// If this is a bitwise logic instruction and both operands have the same
/// opcode, try to sink the other opcode after the logic instruction.
SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) {
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
EVT VT = N0.getValueType();
unsigned LogicOpcode = N->getOpcode();
unsigned HandOpcode = N0.getOpcode();
assert(ISD::isBitwiseLogicOp(LogicOpcode) && "Expected logic opcode");
assert(HandOpcode == N1.getOpcode() && "Bad input!");
// Bail early if none of these transforms apply.
if (N0.getNumOperands() == 0)
return SDValue();
// FIXME: We should check number of uses of the operands to not increase
// the instruction count for all transforms.
// Handle size-changing casts (or sign_extend_inreg).
SDValue X = N0.getOperand(0);
SDValue Y = N1.getOperand(0);
EVT XVT = X.getValueType();
SDLoc DL(N);
if (ISD::isExtOpcode(HandOpcode) || ISD::isExtVecInRegOpcode(HandOpcode) ||
(HandOpcode == ISD::SIGN_EXTEND_INREG &&
N0.getOperand(1) == N1.getOperand(1))) {
// If both operands have other uses, this transform would create extra
// instructions without eliminating anything.
if (!N0.hasOneUse() && !N1.hasOneUse())
return SDValue();
// We need matching integer source types.
if (XVT != Y.getValueType())
return SDValue();
// Don't create an illegal op during or after legalization. Don't ever
// create an unsupported vector op.
if ((VT.isVector() || LegalOperations) &&
!TLI.isOperationLegalOrCustom(LogicOpcode, XVT))
return SDValue();
// Avoid infinite looping with PromoteIntBinOp.
// TODO: Should we apply desirable/legal constraints to all opcodes?
if ((HandOpcode == ISD::ANY_EXTEND ||
HandOpcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
LegalTypes && !TLI.isTypeDesirableForOp(LogicOpcode, XVT))
return SDValue();
// logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
SDNodeFlags LogicFlags;
LogicFlags.setDisjoint(N->getFlags().hasDisjoint() &&
ISD::isExtOpcode(HandOpcode));
SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y, LogicFlags);
if (HandOpcode == ISD::SIGN_EXTEND_INREG)
return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1));
return DAG.getNode(HandOpcode, DL, VT, Logic);
}
// logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
if (HandOpcode == ISD::TRUNCATE) {
// If both operands have other uses, this transform would create extra
// instructions without eliminating anything.
if (!N0.hasOneUse() && !N1.hasOneUse())
return SDValue();
// We need matching source types.
if (XVT != Y.getValueType())
return SDValue();
// Don't create an illegal op during or after legalization.
if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT))
return SDValue();
// Be extra careful sinking truncate. If it's free, there's no benefit in
// widening a binop. Also, don't create a logic op on an illegal type.
if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT))
return SDValue();
if (!TLI.isTypeLegal(XVT))
return SDValue();
SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
return DAG.getNode(HandOpcode, DL, VT, Logic);
}
// For binops SHL/SRL/SRA/AND:
// logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL ||
HandOpcode == ISD::SRA || HandOpcode == ISD::AND) &&
N0.getOperand(1) == N1.getOperand(1)) {
// If either operand has other uses, this transform is not an improvement.
if (!N0.hasOneUse() || !N1.hasOneUse())
return SDValue();
SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1));
}
// Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
if (HandOpcode == ISD::BSWAP) {
// If either operand has other uses, this transform is not an improvement.
if (!N0.hasOneUse() || !N1.hasOneUse())
return SDValue();
SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
return DAG.getNode(HandOpcode, DL, VT, Logic);
}
// For funnel shifts FSHL/FSHR:
// logic_op (OP x, x1, s), (OP y, y1, s) -->
// --> OP (logic_op x, y), (logic_op, x1, y1), s
if ((HandOpcode == ISD::FSHL || HandOpcode == ISD::FSHR) &&
N0.getOperand(2) == N1.getOperand(2)) {
if (!N0.hasOneUse() || !N1.hasOneUse())
return SDValue();
SDValue X1 = N0.getOperand(1);
SDValue Y1 = N1.getOperand(1);
SDValue S = N0.getOperand(2);
SDValue Logic0 = DAG.getNode(LogicOpcode, DL, VT, X, Y);
SDValue Logic1 = DAG.getNode(LogicOpcode, DL, VT, X1, Y1);
return DAG.getNode(HandOpcode, DL, VT, Logic0, Logic1, S);
}
// Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
// Only perform this optimization up until type legalization, before
// LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
// adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
// we don't want to undo this promotion.
// We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
// on scalars.
if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) &&
Level <= AfterLegalizeTypes) {
// Input types must be integer and the same.
if (XVT.isInteger() && XVT == Y.getValueType() &&
!(VT.isVector() && TLI.isTypeLegal(VT) &&
!XVT.isVector() && !TLI.isTypeLegal(XVT))) {
SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
return DAG.getNode(HandOpcode, DL, VT, Logic);
}
}
// Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
// Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
// If both shuffles use the same mask, and both shuffle within a single
// vector, then it is worthwhile to move the swizzle after the operation.
// The type-legalizer generates this pattern when loading illegal
// vector types from memory. In many cases this allows additional shuffle
// optimizations.
// There are other cases where moving the shuffle after the xor/and/or
// is profitable even if shuffles don't perform a swizzle.
// If both shuffles use the same mask, and both shuffles have the same first
// or second operand, then it might still be profitable to move the shuffle
// after the xor/and/or operation.
if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
auto *SVN0 = cast<ShuffleVectorSDNode>(N0);
auto *SVN1 = cast<ShuffleVectorSDNode>(N1);
assert(X.getValueType() == Y.getValueType() &&
"Inputs to shuffles are not the same type");
// Check that both shuffles use the same mask. The masks are known to be of
// the same length because the result vector type is the same.
// Check also that shuffles have only one use to avoid introducing extra
// instructions.
if (!SVN0->hasOneUse() || !SVN1->hasOneUse() ||
!SVN0->getMask().equals(SVN1->getMask()))
return SDValue();
// Don't try to fold this node if it requires introducing a
// build vector of all zeros that might be illegal at this stage.
SDValue ShOp = N0.getOperand(1);
if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
// (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
SDValue Logic = DAG.getNode(LogicOpcode, DL, VT,
N0.getOperand(0), N1.getOperand(0));
return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask());
}
// Don't try to fold this node if it requires introducing a
// build vector of all zeros that might be illegal at this stage.
ShOp = N0.getOperand(0);
if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
// (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) {
SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1),
N1.getOperand(1));
return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask());
}
}
return SDValue();
}
/// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
const SDLoc &DL) {
SDValue LL, LR, RL, RR, N0CC, N1CC;
if (!isSetCCEquivalent(N0, LL, LR, N0CC) ||
!isSetCCEquivalent(N1, RL, RR, N1CC))
return SDValue();
assert(N0.getValueType() == N1.getValueType() &&
"Unexpected operand types for bitwise logic op");
assert(LL.getValueType() == LR.getValueType() &&
RL.getValueType() == RR.getValueType() &&
"Unexpected operand types for setcc");
// If we're here post-legalization or the logic op type is not i1, the logic
// op type must match a setcc result type. Also, all folds require new
// operations on the left and right operands, so those types must match.
EVT VT = N0.getValueType();
EVT OpVT = LL.getValueType();
if (LegalOperations || VT.getScalarType() != MVT::i1)
if (VT != getSetCCResultType(OpVT))
return SDValue();
if (OpVT != RL.getValueType())
return SDValue();
ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get();
ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get();
bool IsInteger = OpVT.isInteger();
if (LR == RR && CC0 == CC1 && IsInteger) {
bool IsZero = isNullOrNullSplat(LR);
bool IsNeg1 = isAllOnesOrAllOnesSplat(LR);
// All bits clear?
bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero;
// All sign bits clear?
bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1;
// Any bits set?
bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero;
// Any sign bits set?
bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero;
// (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
// (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
// (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
// (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) {
SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL);
AddToWorklist(Or.getNode());
return DAG.getSetCC(DL, VT, Or, LR, CC1);
}
// All bits set?
bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1;
// All sign bits set?
bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero;
// Any bits clear?
bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1;
// Any sign bits clear?
bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1;
// (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
// (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
// (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
// (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) {
SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL);
AddToWorklist(And.getNode());
return DAG.getSetCC(DL, VT, And, LR, CC1);
}
}
// TODO: What is the 'or' equivalent of this fold?
// (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 &&
IsInteger && CC0 == ISD::SETNE &&
((isNullConstant(LR) && isAllOnesConstant(RR)) ||
(isAllOnesConstant(LR) && isNullConstant(RR)))) {
SDValue One = DAG.getConstant(1, DL, OpVT);
SDValue Two = DAG.getConstant(2, DL, OpVT);
SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One);
AddToWorklist(Add.getNode());
return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE);
}
// Try more general transforms if the predicates match and the only user of
// the compares is the 'and' or 'or'.
if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 &&
N0.hasOneUse() && N1.hasOneUse()) {
// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
// or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) {
SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR);
SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR);
SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR);
SDValue Zero = DAG.getConstant(0, DL, OpVT);
return DAG.getSetCC(DL, VT, Or, Zero, CC1);
}
// Turn compare of constants whose difference is 1 bit into add+and+setcc.
if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) {
// Match a shared variable operand and 2 non-opaque constant operands.
auto MatchDiffPow2 = [&](ConstantSDNode *C0, ConstantSDNode *C1) {
// The difference of the constants must be a single bit.
const APInt &CMax =
APIntOps::umax(C0->getAPIntValue(), C1->getAPIntValue());
const APInt &CMin =
APIntOps::umin(C0->getAPIntValue(), C1->getAPIntValue());
return !C0->isOpaque() && !C1->isOpaque() && (CMax - CMin).isPowerOf2();
};
if (LL == RL && ISD::matchBinaryPredicate(LR, RR, MatchDiffPow2)) {
// and/or (setcc X, CMax, ne), (setcc X, CMin, ne/eq) -->
// setcc ((sub X, CMin), ~(CMax - CMin)), 0, ne/eq
SDValue Max = DAG.getNode(ISD::UMAX, DL, OpVT, LR, RR);
SDValue Min = DAG.getNode(ISD::UMIN, DL, OpVT, LR, RR);
SDValue Offset = DAG.getNode(ISD::SUB, DL, OpVT, LL, Min);
SDValue Diff = DAG.getNode(ISD::SUB, DL, OpVT, Max, Min);
SDValue Mask = DAG.getNOT(DL, Diff, OpVT);
SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Offset, Mask);
SDValue Zero = DAG.getConstant(0, DL, OpVT);
return DAG.getSetCC(DL, VT, And, Zero, CC0);
}
}
}
// Canonicalize equivalent operands to LL == RL.
if (LL == RR && LR == RL) {
CC1 = ISD::getSetCCSwappedOperands(CC1);
std::swap(RL, RR);
}
// (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
// (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
if (LL == RL && LR == RR) {
ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT)
: ISD::getSetCCOrOperation(CC0, CC1, OpVT);
if (NewCC != ISD::SETCC_INVALID &&
(!LegalOperations ||
(TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) &&
TLI.isOperationLegal(ISD::SETCC, OpVT))))
return DAG.getSetCC(DL, VT, LL, LR, NewCC);
}
return SDValue();
}
static bool arebothOperandsNotSNan(SDValue Operand1, SDValue Operand2,
SelectionDAG &DAG) {
return DAG.isKnownNeverSNaN(Operand2) && DAG.isKnownNeverSNaN(Operand1);
}
static bool arebothOperandsNotNan(SDValue Operand1, SDValue Operand2,
SelectionDAG &DAG) {
return DAG.isKnownNeverNaN(Operand2) && DAG.isKnownNeverNaN(Operand1);
}
// FIXME: use FMINIMUMNUM if possible, such as for RISC-V.
static unsigned getMinMaxOpcodeForFP(SDValue Operand1, SDValue Operand2,
ISD::CondCode CC, unsigned OrAndOpcode,
SelectionDAG &DAG,
bool isFMAXNUMFMINNUM_IEEE,
bool isFMAXNUMFMINNUM) {
// The optimization cannot be applied for all the predicates because
// of the way FMINNUM/FMAXNUM and FMINNUM_IEEE/FMAXNUM_IEEE handle
// NaNs. For FMINNUM_IEEE/FMAXNUM_IEEE, the optimization cannot be
// applied at all if one of the operands is a signaling NaN.
// It is safe to use FMINNUM_IEEE/FMAXNUM_IEEE if all the operands
// are non NaN values.
if (((CC == ISD::SETLT || CC == ISD::SETLE) && (OrAndOpcode == ISD::OR)) ||
((CC == ISD::SETGT || CC == ISD::SETGE) && (OrAndOpcode == ISD::AND)))
return arebothOperandsNotNan(Operand1, Operand2, DAG) &&
isFMAXNUMFMINNUM_IEEE
? ISD::FMINNUM_IEEE
: ISD::DELETED_NODE;
else if (((CC == ISD::SETGT || CC == ISD::SETGE) &&
(OrAndOpcode == ISD::OR)) ||
((CC == ISD::SETLT || CC == ISD::SETLE) &&
(OrAndOpcode == ISD::AND)))
return arebothOperandsNotNan(Operand1, Operand2, DAG) &&
isFMAXNUMFMINNUM_IEEE
? ISD::FMAXNUM_IEEE
: ISD::DELETED_NODE;
// Both FMINNUM/FMAXNUM and FMINNUM_IEEE/FMAXNUM_IEEE handle quiet
// NaNs in the same way. But, FMINNUM/FMAXNUM and FMINNUM_IEEE/
// FMAXNUM_IEEE handle signaling NaNs differently. If we cannot prove
// that there are not any sNaNs, then the optimization is not valid
// for FMINNUM_IEEE/FMAXNUM_IEEE. In the presence of sNaNs, we apply
// the optimization using FMINNUM/FMAXNUM for the following cases. If
// we can prove that we do not have any sNaNs, then we can do the
// optimization using FMINNUM_IEEE/FMAXNUM_IEEE for the following
// cases.
else if (((CC == ISD::SETOLT || CC == ISD::SETOLE) &&
(OrAndOpcode == ISD::OR)) ||
((CC == ISD::SETUGT || CC == ISD::SETUGE) &&
(OrAndOpcode == ISD::AND)))
return isFMAXNUMFMINNUM ? ISD::FMINNUM
: arebothOperandsNotSNan(Operand1, Operand2, DAG) &&
isFMAXNUMFMINNUM_IEEE
? ISD::FMINNUM_IEEE
: ISD::DELETED_NODE;
else if (((CC == ISD::SETOGT || CC == ISD::SETOGE) &&
(OrAndOpcode == ISD::OR)) ||
((CC == ISD::SETULT || CC == ISD::SETULE) &&
(OrAndOpcode == ISD::AND)))
return isFMAXNUMFMINNUM ? ISD::FMAXNUM
: arebothOperandsNotSNan(Operand1, Operand2, DAG) &&
isFMAXNUMFMINNUM_IEEE
? ISD::FMAXNUM_IEEE
: ISD::DELETED_NODE;
return ISD::DELETED_NODE;
}
static SDValue foldAndOrOfSETCC(SDNode *LogicOp, SelectionDAG &DAG) {
using AndOrSETCCFoldKind = TargetLowering::AndOrSETCCFoldKind;
assert(
(LogicOp->getOpcode() == ISD::AND || LogicOp->getOpcode() == ISD::OR) &&
"Invalid Op to combine SETCC with");
// TODO: Search past casts/truncates.
SDValue LHS = LogicOp->getOperand(0);
SDValue RHS = LogicOp->getOperand(1);
if (LHS->getOpcode() != ISD::SETCC || RHS->getOpcode() != ISD::SETCC ||
!LHS->hasOneUse() || !RHS->hasOneUse())
return SDValue();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
AndOrSETCCFoldKind TargetPreference = TLI.isDesirableToCombineLogicOpOfSETCC(
LogicOp, LHS.getNode(), RHS.getNode());
SDValue LHS0 = LHS->getOperand(0);
SDValue RHS0 = RHS->getOperand(0);
SDValue LHS1 = LHS->getOperand(1);
SDValue RHS1 = RHS->getOperand(1);
// TODO: We don't actually need a splat here, for vectors we just need the
// invariants to hold for each element.
auto *LHS1C = isConstOrConstSplat(LHS1);
auto *RHS1C = isConstOrConstSplat(RHS1);
ISD::CondCode CCL = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
ISD::CondCode CCR = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
EVT VT = LogicOp->getValueType(0);
EVT OpVT = LHS0.getValueType();
SDLoc DL(LogicOp);
// Check if the operands of an and/or operation are comparisons and if they
// compare against the same value. Replace the and/or-cmp-cmp sequence with
// min/max cmp sequence. If LHS1 is equal to RHS1, then the or-cmp-cmp
// sequence will be replaced with min-cmp sequence:
// (LHS0 < LHS1) | (RHS0 < RHS1) -> min(LHS0, RHS0) < LHS1
// and and-cmp-cmp will be replaced with max-cmp sequence:
// (LHS0 < LHS1) & (RHS0 < RHS1) -> max(LHS0, RHS0) < LHS1
// The optimization does not work for `==` or `!=` .
// The two comparisons should have either the same predicate or the
// predicate of one of the comparisons is the opposite of the other one.
bool isFMAXNUMFMINNUM_IEEE = TLI.isOperationLegal(ISD::FMAXNUM_IEEE, OpVT) &&
TLI.isOperationLegal(ISD::FMINNUM_IEEE, OpVT);
bool isFMAXNUMFMINNUM = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, OpVT) &&
TLI.isOperationLegalOrCustom(ISD::FMINNUM, OpVT);
if (((OpVT.isInteger() && TLI.isOperationLegal(ISD::UMAX, OpVT) &&
TLI.isOperationLegal(ISD::SMAX, OpVT) &&
TLI.isOperationLegal(ISD::UMIN, OpVT) &&
TLI.isOperationLegal(ISD::SMIN, OpVT)) ||
(OpVT.isFloatingPoint() &&
(isFMAXNUMFMINNUM_IEEE || isFMAXNUMFMINNUM))) &&
!ISD::isIntEqualitySetCC(CCL) && !ISD::isFPEqualitySetCC(CCL) &&
CCL != ISD::SETFALSE && CCL != ISD::SETO && CCL != ISD::SETUO &&
CCL != ISD::SETTRUE &&
(CCL == CCR || CCL == ISD::getSetCCSwappedOperands(CCR))) {
SDValue CommonValue, Operand1, Operand2;
ISD::CondCode CC = ISD::SETCC_INVALID;
if (CCL == CCR) {
if (LHS0 == RHS0) {
CommonValue = LHS0;
Operand1 = LHS1;
Operand2 = RHS1;
CC = ISD::getSetCCSwappedOperands(CCL);
} else if (LHS1 == RHS1) {
CommonValue = LHS1;
Operand1 = LHS0;
Operand2 = RHS0;
CC = CCL;
}
} else {
assert(CCL == ISD::getSetCCSwappedOperands(CCR) && "Unexpected CC");
if (LHS0 == RHS1) {
CommonValue = LHS0;
Operand1 = LHS1;
Operand2 = RHS0;
CC = CCR;
} else if (RHS0 == LHS1) {
CommonValue = LHS1;
Operand1 = LHS0;
Operand2 = RHS1;
CC = CCL;
}
}
// Don't do this transform for sign bit tests. Let foldLogicOfSetCCs
// handle it using OR/AND.
if (CC == ISD::SETLT && isNullOrNullSplat(CommonValue))
CC = ISD::SETCC_INVALID;
else if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CommonValue))
CC = ISD::SETCC_INVALID;
if (CC != ISD::SETCC_INVALID) {
unsigned NewOpcode = ISD::DELETED_NODE;
bool IsSigned = isSignedIntSetCC(CC);
if (OpVT.isInteger()) {
bool IsLess = (CC == ISD::SETLE || CC == ISD::SETULE ||
CC == ISD::SETLT || CC == ISD::SETULT);
bool IsOr = (LogicOp->getOpcode() == ISD::OR);
if (IsLess == IsOr)
NewOpcode = IsSigned ? ISD::SMIN : ISD::UMIN;
else
NewOpcode = IsSigned ? ISD::SMAX : ISD::UMAX;
} else if (OpVT.isFloatingPoint())
NewOpcode =
getMinMaxOpcodeForFP(Operand1, Operand2, CC, LogicOp->getOpcode(),
DAG, isFMAXNUMFMINNUM_IEEE, isFMAXNUMFMINNUM);
if (NewOpcode != ISD::DELETED_NODE) {
SDValue MinMaxValue =
DAG.getNode(NewOpcode, DL, OpVT, Operand1, Operand2);
return DAG.getSetCC(DL, VT, MinMaxValue, CommonValue, CC);
}
}
}
if (LHS0 == LHS1 && RHS0 == RHS1 && CCL == CCR &&
LHS0.getValueType() == RHS0.getValueType() &&
((LogicOp->getOpcode() == ISD::AND && CCL == ISD::SETO) ||
(LogicOp->getOpcode() == ISD::OR && CCL == ISD::SETUO)))
return DAG.getSetCC(DL, VT, LHS0, RHS0, CCL);
if (TargetPreference == AndOrSETCCFoldKind::None)
return SDValue();
if (CCL == CCR &&
CCL == (LogicOp->getOpcode() == ISD::AND ? ISD::SETNE : ISD::SETEQ) &&
LHS0 == RHS0 && LHS1C && RHS1C && OpVT.isInteger()) {
const APInt &APLhs = LHS1C->getAPIntValue();
const APInt &APRhs = RHS1C->getAPIntValue();
// Preference is to use ISD::ABS or we already have an ISD::ABS (in which
// case this is just a compare).
if (APLhs == (-APRhs) &&
((TargetPreference & AndOrSETCCFoldKind::ABS) ||
DAG.doesNodeExist(ISD::ABS, DAG.getVTList(OpVT), {LHS0}))) {
const APInt &C = APLhs.isNegative() ? APRhs : APLhs;
// (icmp eq A, C) | (icmp eq A, -C)
// -> (icmp eq Abs(A), C)
// (icmp ne A, C) & (icmp ne A, -C)
// -> (icmp ne Abs(A), C)
SDValue AbsOp = DAG.getNode(ISD::ABS, DL, OpVT, LHS0);
return DAG.getNode(ISD::SETCC, DL, VT, AbsOp,
DAG.getConstant(C, DL, OpVT), LHS.getOperand(2));
} else if (TargetPreference &
(AndOrSETCCFoldKind::AddAnd | AndOrSETCCFoldKind::NotAnd)) {
// AndOrSETCCFoldKind::AddAnd:
// A == C0 | A == C1
// IF IsPow2(smax(C0, C1)-smin(C0, C1))
// -> ((A - smin(C0, C1)) & ~(smax(C0, C1)-smin(C0, C1))) == 0
// A != C0 & A != C1
// IF IsPow2(smax(C0, C1)-smin(C0, C1))
// -> ((A - smin(C0, C1)) & ~(smax(C0, C1)-smin(C0, C1))) != 0
// AndOrSETCCFoldKind::NotAnd:
// A == C0 | A == C1
// IF smax(C0, C1) == -1 AND IsPow2(smax(C0, C1) - smin(C0, C1))
// -> ~A & smin(C0, C1) == 0
// A != C0 & A != C1
// IF smax(C0, C1) == -1 AND IsPow2(smax(C0, C1) - smin(C0, C1))
// -> ~A & smin(C0, C1) != 0
const APInt &MaxC = APIntOps::smax(APRhs, APLhs);
const APInt &MinC = APIntOps::smin(APRhs, APLhs);
APInt Dif = MaxC - MinC;
if (!Dif.isZero() && Dif.isPowerOf2()) {
if (MaxC.isAllOnes() &&
(TargetPreference & AndOrSETCCFoldKind::NotAnd)) {
SDValue NotOp = DAG.getNOT(DL, LHS0, OpVT);
SDValue AndOp = DAG.getNode(ISD::AND, DL, OpVT, NotOp,
DAG.getConstant(MinC, DL, OpVT));
return DAG.getNode(ISD::SETCC, DL, VT, AndOp,
DAG.getConstant(0, DL, OpVT), LHS.getOperand(2));
} else if (TargetPreference & AndOrSETCCFoldKind::AddAnd) {
SDValue AddOp = DAG.getNode(ISD::ADD, DL, OpVT, LHS0,
DAG.getConstant(-MinC, DL, OpVT));
SDValue AndOp = DAG.getNode(ISD::AND, DL, OpVT, AddOp,
DAG.getConstant(~Dif, DL, OpVT));
return DAG.getNode(ISD::SETCC, DL, VT, AndOp,
DAG.getConstant(0, DL, OpVT), LHS.getOperand(2));
}
}
}
}
return SDValue();
}
// Combine `(select c, (X & 1), 0)` -> `(and (zext c), X)`.
// We canonicalize to the `select` form in the middle end, but the `and` form
// gets better codegen and all tested targets (arm, x86, riscv)
static SDValue combineSelectAsExtAnd(SDValue Cond, SDValue T, SDValue F,
const SDLoc &DL, SelectionDAG &DAG) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!isNullConstant(F))
return SDValue();
EVT CondVT = Cond.getValueType();
if (TLI.getBooleanContents(CondVT) !=
TargetLoweringBase::ZeroOrOneBooleanContent)
return SDValue();
if (T.getOpcode() != ISD::AND)
return SDValue();
if (!isOneConstant(T.getOperand(1)))
return SDValue();
EVT OpVT = T.getValueType();
SDValue CondMask =
OpVT == CondVT ? Cond : DAG.getBoolExtOrTrunc(Cond, DL, OpVT, CondVT);
return DAG.getNode(ISD::AND, DL, OpVT, CondMask, T.getOperand(0));
}
/// This contains all DAGCombine rules which reduce two values combined by
/// an And operation to a single value. This makes them reusable in the context
/// of visitSELECT(). Rules involving constants are not included as
/// visitSELECT() already handles those cases.
SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) {
EVT VT = N1.getValueType();
SDLoc DL(N);
// fold (and x, undef) -> 0
if (N0.isUndef() || N1.isUndef())
return DAG.getConstant(0, DL, VT);
if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL))
return V;
// Canonicalize:
// and(x, add) -> and(add, x)
if (N1.getOpcode() == ISD::ADD)
std::swap(N0, N1);
// TODO: Rewrite this to return a new 'AND' instead of using CombineTo.
if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
VT.isScalarInteger() && VT.getSizeInBits() <= 64 && N0->hasOneUse()) {
if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
// Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
// immediate for an add, but it is legal if its top c2 bits are set,
// transform the ADD so the immediate doesn't need to be materialized
// in a register.
APInt ADDC = ADDI->getAPIntValue();
APInt SRLC = SRLI->getAPIntValue();
if (ADDC.getSignificantBits() <= 64 && SRLC.ult(VT.getSizeInBits()) &&
!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
SRLC.getZExtValue());
if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
ADDC |= Mask;
if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
SDLoc DL0(N0);
SDValue NewAdd =
DAG.getNode(ISD::ADD, DL0, VT,
N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
CombineTo(N0.getNode(), NewAdd);
// Return N so it doesn't get rechecked!
return SDValue(N, 0);
}
}
}
}
}
}
return SDValue();
}
bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
EVT LoadResultTy, EVT &ExtVT) {
if (!AndC->getAPIntValue().isMask())
return false;
unsigned ActiveBits = AndC->getAPIntValue().countr_one();
ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
EVT LoadedVT = LoadN->getMemoryVT();
if (ExtVT == LoadedVT &&
(!LegalOperations ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
// ZEXTLOAD will match without needing to change the size of the value being
// loaded.
return true;
}
// Do not change the width of a volatile or atomic loads.
if (!LoadN->isSimple())
return false;
// Do not generate loads of non-round integer types since these can
// be expensive (and would be wrong if the type is not byte sized).
if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
return false;
if (LegalOperations &&
!TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
return false;
if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT, /*ByteOffset=*/0))
return false;
return true;
}
bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST,
ISD::LoadExtType ExtType, EVT &MemVT,
unsigned ShAmt) {
if (!LDST)
return false;
// Only allow byte offsets.
if (ShAmt % 8)
return false;
const unsigned ByteShAmt = ShAmt / 8;
// Do not generate loads of non-round integer types since these can
// be expensive (and would be wrong if the type is not byte sized).
if (!MemVT.isRound())
return false;
// Don't change the width of a volatile or atomic loads.
if (!LDST->isSimple())
return false;
EVT LdStMemVT = LDST->getMemoryVT();
// Bail out when changing the scalable property, since we can't be sure that
// we're actually narrowing here.
if (LdStMemVT.isScalableVector() != MemVT.isScalableVector())
return false;
// Verify that we are actually reducing a load width here.
if (LdStMemVT.bitsLT(MemVT))
return false;
// Ensure that this isn't going to produce an unsupported memory access.
if (ShAmt) {
const Align LDSTAlign = LDST->getAlign();
const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt);
if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
LDST->getAddressSpace(), NarrowAlign,
LDST->getMemOperand()->getFlags()))
return false;
}
// It's not possible to generate a constant of extended or untyped type.
EVT PtrType = LDST->getBasePtr().getValueType();
if (PtrType == MVT::Untyped || PtrType.isExtended())
return false;
if (isa<LoadSDNode>(LDST)) {
LoadSDNode *Load = cast<LoadSDNode>(LDST);
// Don't transform one with multiple uses, this would require adding a new
// load.
if (!SDValue(Load, 0).hasOneUse())
return false;
if (LegalOperations &&
!TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT))
return false;
// For the transform to be legal, the load must produce only two values
// (the value loaded and the chain). Don't transform a pre-increment
// load, for example, which produces an extra value. Otherwise the
// transformation is not equivalent, and the downstream logic to replace
// uses gets things wrong.
if (Load->getNumValues() > 2)
return false;
// If the load that we're shrinking is an extload and we're not just
// discarding the extension we can't simply shrink the load. Bail.
// TODO: It would be possible to merge the extensions in some cases.
if (Load->getExtensionType() != ISD::NON_EXTLOAD &&
Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
return false;
if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT, ByteShAmt))
return false;
} else {
assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode");
StoreSDNode *Store = cast<StoreSDNode>(LDST);
// Can't write outside the original store
if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
return false;
if (LegalOperations &&
!TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT))
return false;
}
return true;
}
bool DAGCombiner::SearchForAndLoads(SDNode *N,
SmallVectorImpl<LoadSDNode*> &Loads,
SmallPtrSetImpl<SDNode*> &NodesWithConsts,
ConstantSDNode *Mask,
SDNode *&NodeToMask) {
// Recursively search for the operands, looking for loads which can be
// narrowed.
for (SDValue Op : N->op_values()) {
if (Op.getValueType().isVector())
return false;
// Some constants may need fixing up later if they are too large.
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
assert(ISD::isBitwiseLogicOp(N->getOpcode()) &&
"Expected bitwise logic operation");
if (!C->getAPIntValue().isSubsetOf(Mask->getAPIntValue()))
NodesWithConsts.insert(N);
continue;
}
if (!Op.hasOneUse())
return false;
switch(Op.getOpcode()) {
case ISD::LOAD: {
auto *Load = cast<LoadSDNode>(Op);
EVT ExtVT;
if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) &&
isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) {
// ZEXTLOAD is already small enough.
if (Load->getExtensionType() == ISD::ZEXTLOAD &&
ExtVT.bitsGE(Load->getMemoryVT()))
continue;
// Use LE to convert equal sized loads to zext.
if (ExtVT.bitsLE(Load->getMemoryVT()))
Loads.push_back(Load);
continue;
}
return false;
}
case ISD::ZERO_EXTEND:
case ISD::AssertZext: {
unsigned ActiveBits = Mask->getAPIntValue().countr_one();
EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
EVT VT = Op.getOpcode() == ISD::AssertZext ?
cast<VTSDNode>(Op.getOperand(1))->getVT() :
Op.getOperand(0).getValueType();
// We can accept extending nodes if the mask is wider or an equal
// width to the original type.
if (ExtVT.bitsGE(VT))
continue;
break;
}
case ISD::OR:
case ISD::XOR:
case ISD::AND:
if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask,
NodeToMask))
return false;
continue;
}
// Allow one node which will masked along with any loads found.
if (NodeToMask)
return false;
// Also ensure that the node to be masked only produces one data result.
NodeToMask = Op.getNode();
if (NodeToMask->getNumValues() > 1) {
bool HasValue = false;
for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) {
MVT VT = SDValue(NodeToMask, i).getSimpleValueType();
if (VT != MVT::Glue && VT != MVT::Other) {
if (HasValue) {
NodeToMask = nullptr;
return false;
}
HasValue = true;
}
}
assert(HasValue && "Node to be masked has no data result?");
}
}
return true;
}
bool DAGCombiner::BackwardsPropagateMask(SDNode *N) {
auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!Mask)
return false;
if (!Mask->getAPIntValue().isMask())
return false;
// No need to do anything if the and directly uses a load.
if (isa<LoadSDNode>(N->getOperand(0)))
return false;
SmallVector<LoadSDNode*, 8> Loads;
SmallPtrSet<SDNode*, 2> NodesWithConsts;
SDNode *FixupNode = nullptr;
if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) {
if (Loads.empty())
return false;
LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump());
SDValue MaskOp = N->getOperand(1);
// If it exists, fixup the single node we allow in the tree that needs
// masking.
if (FixupNode) {
LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump());
SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode),
FixupNode->getValueType(0),
SDValue(FixupNode, 0), MaskOp);
DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And);
if (And.getOpcode() == ISD ::AND)
DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp);
}
// Narrow any constants that need it.
for (auto *LogicN : NodesWithConsts) {
SDValue Op0 = LogicN->getOperand(0);
SDValue Op1 = LogicN->getOperand(1);
// We only need to fix AND if both inputs are constants. And we only need
// to fix one of the constants.
if (LogicN->getOpcode() == ISD::AND &&
(!isa<ConstantSDNode>(Op0) || !isa<ConstantSDNode>(Op1)))
continue;
if (isa<ConstantSDNode>(Op0) && LogicN->getOpcode() != ISD::AND)
Op0 =
DAG.getNode(ISD::AND, SDLoc(Op0), Op0.getValueType(), Op0, MaskOp);
if (isa<ConstantSDNode>(Op1))
Op1 =
DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), Op1, MaskOp);
if (isa<ConstantSDNode>(Op0) && !isa<ConstantSDNode>(Op1))
std::swap(Op0, Op1);
DAG.UpdateNodeOperands(LogicN, Op0, Op1);
}
// Create narrow loads.
for (auto *Load : Loads) {
LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump());
SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0),
SDValue(Load, 0), MaskOp);
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And);
if (And.getOpcode() == ISD ::AND)
And = SDValue(
DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0);
SDValue NewLoad = reduceLoadWidth(And.getNode());
assert(NewLoad &&
"Shouldn't be masking the load if it can't be narrowed");
CombineTo(Load, NewLoad, NewLoad.getValue(1));
}
DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode());
return true;
}
return false;
}
// Unfold
// x & (-1 'logical shift' y)
// To
// (x 'opposite logical shift' y) 'logical shift' y
// if it is better for performance.
SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) {
assert(N->getOpcode() == ISD::AND);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Do we actually prefer shifts over mask?
if (!TLI.shouldFoldMaskToVariableShiftPair(N0))
return SDValue();
// Try to match (-1 '[outer] logical shift' y)
unsigned OuterShift;
unsigned InnerShift; // The opposite direction to the OuterShift.
SDValue Y; // Shift amount.
auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool {
if (!M.hasOneUse())
return false;
OuterShift = M->getOpcode();
if (OuterShift == ISD::SHL)
InnerShift = ISD::SRL;
else if (OuterShift == ISD::SRL)
InnerShift = ISD::SHL;
else
return false;
if (!isAllOnesConstant(M->getOperand(0)))
return false;
Y = M->getOperand(1);
return true;
};
SDValue X;
if (matchMask(N1))
X = N0;
else if (matchMask(N0))
X = N1;
else
return SDValue();
SDLoc DL(N);
EVT VT = N->getValueType(0);
// tmp = x 'opposite logical shift' y
SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y);
// ret = tmp 'logical shift' y
SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y);
return T1;
}
/// Try to replace shift/logic that tests if a bit is clear with mask + setcc.
/// For a target with a bit test, this is expected to become test + set and save
/// at least 1 instruction.
static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) {
assert(And->getOpcode() == ISD::AND && "Expected an 'and' op");
// Look through an optional extension.
SDValue And0 = And->getOperand(0), And1 = And->getOperand(1);
if (And0.getOpcode() == ISD::ANY_EXTEND && And0.hasOneUse())
And0 = And0.getOperand(0);
if (!isOneConstant(And1) || !And0.hasOneUse())
return SDValue();
SDValue Src = And0;
// Attempt to find a 'not' op.
// TODO: Should we favor test+set even without the 'not' op?
bool FoundNot = false;
if (isBitwiseNot(Src)) {
FoundNot = true;
Src = Src.getOperand(0);
// Look though an optional truncation. The source operand may not be the
// same type as the original 'and', but that is ok because we are masking
// off everything but the low bit.
if (Src.getOpcode() == ISD::TRUNCATE && Src.hasOneUse())
Src = Src.getOperand(0);
}
// Match a shift-right by constant.
if (Src.getOpcode() != ISD::SRL || !Src.hasOneUse())
return SDValue();
// This is probably not worthwhile without a supported type.
EVT SrcVT = Src.getValueType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isTypeLegal(SrcVT))
return SDValue();
// We might have looked through casts that make this transform invalid.
unsigned BitWidth = SrcVT.getScalarSizeInBits();
SDValue ShiftAmt = Src.getOperand(1);
auto *ShiftAmtC = dyn_cast<ConstantSDNode>(ShiftAmt);
if (!ShiftAmtC || !ShiftAmtC->getAPIntValue().ult(BitWidth))
return SDValue();
// Set source to shift source.
Src = Src.getOperand(0);
// Try again to find a 'not' op.
// TODO: Should we favor test+set even with two 'not' ops?
if (!FoundNot) {
if (!isBitwiseNot(Src))
return SDValue();
Src = Src.getOperand(0);
}
if (!TLI.hasBitTest(Src, ShiftAmt))
return SDValue();
// Turn this into a bit-test pattern using mask op + setcc:
// and (not (srl X, C)), 1 --> (and X, 1<<C) == 0
// and (srl (not X), C)), 1 --> (and X, 1<<C) == 0
SDLoc DL(And);
SDValue X = DAG.getZExtOrTrunc(Src, DL, SrcVT);
EVT CCVT =
TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
SDValue Mask = DAG.getConstant(
APInt::getOneBitSet(BitWidth, ShiftAmtC->getZExtValue()), DL, SrcVT);
SDValue NewAnd = DAG.getNode(ISD::AND, DL, SrcVT, X, Mask);
SDValue Zero = DAG.getConstant(0, DL, SrcVT);
SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ);
return DAG.getZExtOrTrunc(Setcc, DL, And->getValueType(0));
}
/// For targets that support usubsat, match a bit-hack form of that operation
/// that ends in 'and' and convert it.
static SDValue foldAndToUsubsat(SDNode *N, SelectionDAG &DAG, const SDLoc &DL) {
EVT VT = N->getValueType(0);
unsigned BitWidth = VT.getScalarSizeInBits();
APInt SignMask = APInt::getSignMask(BitWidth);
// (i8 X ^ 128) & (i8 X s>> 7) --> usubsat X, 128
// (i8 X + 128) & (i8 X s>> 7) --> usubsat X, 128
// xor/add with SMIN (signmask) are logically equivalent.
SDValue X;
if (!sd_match(N, m_And(m_OneUse(m_Xor(m_Value(X), m_SpecificInt(SignMask))),
m_OneUse(m_Sra(m_Deferred(X),
m_SpecificInt(BitWidth - 1))))) &&
!sd_match(N, m_And(m_OneUse(m_Add(m_Value(X), m_SpecificInt(SignMask))),
m_OneUse(m_Sra(m_Deferred(X),
m_SpecificInt(BitWidth - 1))))))
return SDValue();
return DAG.getNode(ISD::USUBSAT, DL, VT, X,
DAG.getConstant(SignMask, DL, VT));
}
/// Given a bitwise logic operation N with a matching bitwise logic operand,
/// fold a pattern where 2 of the source operands are identically shifted
/// values. For example:
/// ((X0 << Y) | Z) | (X1 << Y) --> ((X0 | X1) << Y) | Z
static SDValue foldLogicOfShifts(SDNode *N, SDValue LogicOp, SDValue ShiftOp,
SelectionDAG &DAG) {
unsigned LogicOpcode = N->getOpcode();
assert(ISD::isBitwiseLogicOp(LogicOpcode) &&
"Expected bitwise logic operation");
if (!LogicOp.hasOneUse() || !ShiftOp.hasOneUse())
return SDValue();
// Match another bitwise logic op and a shift.
unsigned ShiftOpcode = ShiftOp.getOpcode();
if (LogicOp.getOpcode() != LogicOpcode ||
!(ShiftOpcode == ISD::SHL || ShiftOpcode == ISD::SRL ||
ShiftOpcode == ISD::SRA))
return SDValue();
// Match another shift op inside the first logic operand. Handle both commuted
// possibilities.
// LOGIC (LOGIC (SH X0, Y), Z), (SH X1, Y) --> LOGIC (SH (LOGIC X0, X1), Y), Z
// LOGIC (LOGIC Z, (SH X0, Y)), (SH X1, Y) --> LOGIC (SH (LOGIC X0, X1), Y), Z
SDValue X1 = ShiftOp.getOperand(0);
SDValue Y = ShiftOp.getOperand(1);
SDValue X0, Z;
if (LogicOp.getOperand(0).getOpcode() == ShiftOpcode &&
LogicOp.getOperand(0).getOperand(1) == Y) {
X0 = LogicOp.getOperand(0).getOperand(0);
Z = LogicOp.getOperand(1);
} else if (LogicOp.getOperand(1).getOpcode() == ShiftOpcode &&
LogicOp.getOperand(1).getOperand(1) == Y) {
X0 = LogicOp.getOperand(1).getOperand(0);
Z = LogicOp.getOperand(0);
} else {
return SDValue();
}
EVT VT = N->getValueType(0);
SDLoc DL(N);
SDValue LogicX = DAG.getNode(LogicOpcode, DL, VT, X0, X1);
SDValue NewShift = DAG.getNode(ShiftOpcode, DL, VT, LogicX, Y);
return DAG.getNode(LogicOpcode, DL, VT, NewShift, Z);
}
/// Given a tree of logic operations with shape like
/// (LOGIC (LOGIC (X, Y), LOGIC (Z, Y)))
/// try to match and fold shift operations with the same shift amount.
/// For example:
/// LOGIC (LOGIC (SH X0, Y), Z), (LOGIC (SH X1, Y), W) -->
/// --> LOGIC (SH (LOGIC X0, X1), Y), (LOGIC Z, W)
static SDValue foldLogicTreeOfShifts(SDNode *N, SDValue LeftHand,
SDValue RightHand, SelectionDAG &DAG) {
unsigned LogicOpcode = N->getOpcode();
assert(ISD::isBitwiseLogicOp(LogicOpcode) &&
"Expected bitwise logic operation");
if (LeftHand.getOpcode() != LogicOpcode ||
RightHand.getOpcode() != LogicOpcode)
return SDValue();
if (!LeftHand.hasOneUse() || !RightHand.hasOneUse())
return SDValue();
// Try to match one of following patterns:
// LOGIC (LOGIC (SH X0, Y), Z), (LOGIC (SH X1, Y), W)
// LOGIC (LOGIC (SH X0, Y), Z), (LOGIC W, (SH X1, Y))
// Note that foldLogicOfShifts will handle commuted versions of the left hand
// itself.
SDValue CombinedShifts, W;
SDValue R0 = RightHand.getOperand(0);
SDValue R1 = RightHand.getOperand(1);
if ((CombinedShifts = foldLogicOfShifts(N, LeftHand, R0, DAG)))
W = R1;
else if ((CombinedShifts = foldLogicOfShifts(N, LeftHand, R1, DAG)))
W = R0;
else
return SDValue();
EVT VT = N->getValueType(0);
SDLoc DL(N);
return DAG.getNode(LogicOpcode, DL, VT, CombinedShifts, W);
}
/// Fold "masked merge" expressions like `(m & x) | (~m & y)` and its DeMorgan
/// variant `(~m | x) & (m | y)` into the equivalent `((x ^ y) & m) ^ y)`
/// pattern. This is typically a better representation for targets without a
/// fused "and-not" operation.
static SDValue foldMaskedMerge(SDNode *Node, SelectionDAG &DAG,
const TargetLowering &TLI, const SDLoc &DL) {
// Note that masked-merge variants using XOR or ADD expressions are
// normalized to OR by InstCombine so we only check for OR or AND.
assert((Node->getOpcode() == ISD::OR || Node->getOpcode() == ISD::AND) &&
"Must be called with ISD::OR or ISD::AND node");
// If the target supports and-not, don't fold this.
if (TLI.hasAndNot(SDValue(Node, 0)))
return SDValue();
SDValue M, X, Y;
if (sd_match(Node,
m_Or(m_OneUse(m_And(m_OneUse(m_Not(m_Value(M))), m_Value(Y))),
m_OneUse(m_And(m_Deferred(M), m_Value(X))))) ||
sd_match(Node,
m_And(m_OneUse(m_Or(m_OneUse(m_Not(m_Value(M))), m_Value(X))),
m_OneUse(m_Or(m_Deferred(M), m_Value(Y)))))) {
EVT VT = M.getValueType();
SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, X, Y);
SDValue And = DAG.getNode(ISD::AND, DL, VT, Xor, M);
return DAG.getNode(ISD::XOR, DL, VT, And, Y);
}
return SDValue();
}
SDValue DAGCombiner::visitAND(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N1.getValueType();
SDLoc DL(N);
// x & x --> x
if (N0 == N1)
return N0;
// fold (and c1, c2) -> c1&c2
if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, DL, VT, {N0, N1}))
return C;
// canonicalize constant to RHS
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::AND, DL, VT, N1, N0);
if (areBitwiseNotOfEachother(N0, N1))
return DAG.getConstant(APInt::getZero(VT.getScalarSizeInBits()), DL, VT);
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
// fold (and x, 0) -> 0, vector edition
if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
// do not return N1, because undef node may exist in N1
return DAG.getConstant(APInt::getZero(N1.getScalarValueSizeInBits()), DL,
N1.getValueType());
// fold (and x, -1) -> x, vector edition
if (ISD::isConstantSplatVectorAllOnes(N1.getNode()))
return N0;
// fold (and (masked_load) (splat_vec (x, ...))) to zext_masked_load
auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0);
ConstantSDNode *Splat = isConstOrConstSplat(N1, true, true);
if (MLoad && MLoad->getExtensionType() == ISD::EXTLOAD && Splat) {
EVT LoadVT = MLoad->getMemoryVT();
EVT ExtVT = VT;
if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT, LoadVT)) {
// For this AND to be a zero extension of the masked load the elements
// of the BuildVec must mask the bottom bits of the extended element
// type
uint64_t ElementSize =
LoadVT.getVectorElementType().getScalarSizeInBits();
if (Splat->getAPIntValue().isMask(ElementSize)) {
SDValue NewLoad = DAG.getMaskedLoad(
ExtVT, DL, MLoad->getChain(), MLoad->getBasePtr(),
MLoad->getOffset(), MLoad->getMask(), MLoad->getPassThru(),
LoadVT, MLoad->getMemOperand(), MLoad->getAddressingMode(),
ISD::ZEXTLOAD, MLoad->isExpandingLoad());
bool LoadHasOtherUsers = !N0.hasOneUse();
CombineTo(N, NewLoad);
if (LoadHasOtherUsers)
CombineTo(MLoad, NewLoad.getValue(0), NewLoad.getValue(1));
return SDValue(N, 0);
}
}
}
}
// fold (and x, -1) -> x
if (isAllOnesConstant(N1))
return N0;
// if (and x, c) is known to be zero, return 0
unsigned BitWidth = VT.getScalarSizeInBits();
ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(BitWidth)))
return DAG.getConstant(0, DL, VT);
if (SDValue R = foldAndOrOfSETCC(N, DAG))
return R;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// reassociate and
if (SDValue RAND = reassociateOps(ISD::AND, DL, N0, N1, N->getFlags()))
return RAND;
// Fold and(vecreduce(x), vecreduce(y)) -> vecreduce(and(x, y))
if (SDValue SD =
reassociateReduction(ISD::VECREDUCE_AND, ISD::AND, DL, VT, N0, N1))
return SD;
// fold (and (or x, C), D) -> D if (C & D) == D
auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) {
return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue());
};
if (N0.getOpcode() == ISD::OR &&
ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset))
return N1;
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
SDValue N0Op0 = N0.getOperand(0);
EVT SrcVT = N0Op0.getValueType();
unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
APInt Mask = ~N1C->getAPIntValue();
Mask = Mask.trunc(SrcBitWidth);
// fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
if (DAG.MaskedValueIsZero(N0Op0, Mask))
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0Op0);
// fold (and (any_ext V), c) -> (zero_ext (and (trunc V), c)) if profitable.
if (N1C->getAPIntValue().countLeadingZeros() >= (BitWidth - SrcBitWidth) &&
TLI.isTruncateFree(VT, SrcVT) && TLI.isZExtFree(SrcVT, VT) &&
TLI.isTypeDesirableForOp(ISD::AND, SrcVT) &&
TLI.isNarrowingProfitable(N, VT, SrcVT))
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT,
DAG.getNode(ISD::AND, DL, SrcVT, N0Op0,
DAG.getZExtOrTrunc(N1, DL, SrcVT)));
}
// fold (and (ext (and V, c1)), c2) -> (and (ext V), (and c1, (ext c2)))
if (ISD::isExtOpcode(N0.getOpcode())) {
unsigned ExtOpc = N0.getOpcode();
SDValue N0Op0 = N0.getOperand(0);
if (N0Op0.getOpcode() == ISD::AND &&
(ExtOpc != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0Op0, VT)) &&
N0->hasOneUse() && N0Op0->hasOneUse()) {
if (SDValue NewExt = DAG.FoldConstantArithmetic(ExtOpc, DL, VT,
{N0Op0.getOperand(1)})) {
if (SDValue NewMask =
DAG.FoldConstantArithmetic(ISD::AND, DL, VT, {N1, NewExt})) {
return DAG.getNode(ISD::AND, DL, VT,
DAG.getNode(ExtOpc, DL, VT, N0Op0.getOperand(0)),
NewMask);
}
}
}
}
// similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
// (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
// already be zero by virtue of the width of the base type of the load.
//
// the 'X' node here can either be nothing or an extract_vector_elt to catch
// more cases.
if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() &&
N0.getOperand(0).getOpcode() == ISD::LOAD &&
N0.getOperand(0).getResNo() == 0) ||
(N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) {
auto *Load =
cast<LoadSDNode>((N0.getOpcode() == ISD::LOAD) ? N0 : N0.getOperand(0));
// Get the constant (if applicable) the zero'th operand is being ANDed with.
// This can be a pure constant or a vector splat, in which case we treat the
// vector as a scalar and use the splat value.
APInt Constant = APInt::getZero(1);
if (const ConstantSDNode *C = isConstOrConstSplat(
N1, /*AllowUndef=*/false, /*AllowTruncation=*/true)) {
Constant = C->getAPIntValue();
} else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits();
APInt SplatValue, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
// Endianness should not matter here. Code below makes sure that we only
// use the result if the SplatBitSize is a multiple of the vector element
// size. And after that we AND all element sized parts of the splat
// together. So the end result should be the same regardless of in which
// order we do those operations.
const bool IsBigEndian = false;
bool IsSplat =
Vector->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
HasAnyUndefs, EltBitWidth, IsBigEndian);
// Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
// multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
if (IsSplat && (SplatBitSize % EltBitWidth) == 0) {
// Undef bits can contribute to a possible optimisation if set, so
// set them.
SplatValue |= SplatUndef;
// The splat value may be something like "0x00FFFFFF", which means 0 for
// the first vector value and FF for the rest, repeating. We need a mask
// that will apply equally to all members of the vector, so AND all the
// lanes of the constant together.
Constant = APInt::getAllOnes(EltBitWidth);
for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i)
Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth);
}
}
// If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
// actually legal and isn't going to get expanded, else this is a false
// optimisation.
bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
Load->getValueType(0),
Load->getMemoryVT());
// Resize the constant to the same size as the original memory access before
// extension. If it is still the AllOnesValue then this AND is completely
// unneeded.
Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits());
bool B;
switch (Load->getExtensionType()) {
default: B = false; break;
case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
case ISD::ZEXTLOAD:
case ISD::NON_EXTLOAD: B = true; break;
}
if (B && Constant.isAllOnes()) {
// If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
// preserve semantics once we get rid of the AND.
SDValue NewLoad(Load, 0);
// Fold the AND away. NewLoad may get replaced immediately.
CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
if (Load->getExtensionType() == ISD::EXTLOAD) {
NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
Load->getValueType(0), SDLoc(Load),
Load->getChain(), Load->getBasePtr(),
Load->getOffset(), Load->getMemoryVT(),
Load->getMemOperand());
// Replace uses of the EXTLOAD with the new ZEXTLOAD.
if (Load->getNumValues() == 3) {
// PRE/POST_INC loads have 3 values.
SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
NewLoad.getValue(2) };
CombineTo(Load, To, 3, true);
} else {
CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
}
}
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// Try to convert a constant mask AND into a shuffle clear mask.
if (VT.isVector())
if (SDValue Shuffle = XformToShuffleWithZero(N))
return Shuffle;
if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N))
return Combined;
if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR && N0.hasOneUse() && N1C &&
ISD::isExtOpcode(N0.getOperand(0).getOpcode())) {
SDValue Ext = N0.getOperand(0);
EVT ExtVT = Ext->getValueType(0);
SDValue Extendee = Ext->getOperand(0);
unsigned ScalarWidth = Extendee.getValueType().getScalarSizeInBits();
if (N1C->getAPIntValue().isMask(ScalarWidth) &&
(!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, ExtVT))) {
// (and (extract_subvector (zext|anyext|sext v) _) iN_mask)
// => (extract_subvector (iN_zeroext v))
SDValue ZeroExtExtendee =
DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVT, Extendee);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ZeroExtExtendee,
N0.getOperand(1));
}
}
// fold (and (masked_gather x)) -> (zext_masked_gather x)
if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) {
EVT MemVT = GN0->getMemoryVT();
EVT ScalarVT = MemVT.getScalarType();
if (SDValue(GN0, 0).hasOneUse() &&
isConstantSplatVectorMaskForType(N1.getNode(), ScalarVT) &&
TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) {
SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(),
GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()};
SDValue ZExtLoad = DAG.getMaskedGather(
DAG.getVTList(VT, MVT::Other), MemVT, DL, Ops, GN0->getMemOperand(),
GN0->getIndexType(), ISD::ZEXTLOAD);
CombineTo(N, ZExtLoad);
AddToWorklist(ZExtLoad.getNode());
// Avoid recheck of N.
return SDValue(N, 0);
}
}
// fold (and (load x), 255) -> (zextload x, i8)
// fold (and (extload x, i16), 255) -> (zextload x, i8)
if (N1C && N0.getOpcode() == ISD::LOAD && !VT.isVector())
if (SDValue Res = reduceLoadWidth(N))
return Res;
if (LegalTypes) {
// Attempt to propagate the AND back up to the leaves which, if they're
// loads, can be combined to narrow loads and the AND node can be removed.
// Perform after legalization so that extend nodes will already be
// combined into the loads.
if (BackwardsPropagateMask(N))
return SDValue(N, 0);
}
if (SDValue Combined = visitANDLike(N0, N1, N))
return Combined;
// Simplify: (and (op x...), (op y...)) -> (op (and x, y))
if (N0.getOpcode() == N1.getOpcode())
if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
return V;
if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG))
return R;
if (SDValue R = foldLogicOfShifts(N, N1, N0, DAG))
return R;
// Fold (and X, (bswap (not Y))) -> (and X, (not (bswap Y)))
// Fold (and X, (bitreverse (not Y))) -> (and X, (not (bitreverse Y)))
SDValue X, Y, Z, NotY;
for (unsigned Opc : {ISD::BSWAP, ISD::BITREVERSE})
if (sd_match(N,
m_And(m_Value(X), m_OneUse(m_UnaryOp(Opc, m_Value(NotY))))) &&
sd_match(NotY, m_Not(m_Value(Y))) &&
(TLI.hasAndNot(SDValue(N, 0)) || NotY->hasOneUse()))
return DAG.getNode(ISD::AND, DL, VT, X,
DAG.getNOT(DL, DAG.getNode(Opc, DL, VT, Y), VT));
// Fold (and X, (rot (not Y), Z)) -> (and X, (not (rot Y, Z)))
for (unsigned Opc : {ISD::ROTL, ISD::ROTR})
if (sd_match(N, m_And(m_Value(X),
m_OneUse(m_BinOp(Opc, m_Value(NotY), m_Value(Z))))) &&
sd_match(NotY, m_Not(m_Value(Y))) &&
(TLI.hasAndNot(SDValue(N, 0)) || NotY->hasOneUse()))
return DAG.getNode(ISD::AND, DL, VT, X,
DAG.getNOT(DL, DAG.getNode(Opc, DL, VT, Y, Z), VT));
// Fold (and X, (add (not Y), Z)) -> (and X, (not (sub Y, Z)))
// Fold (and X, (sub (not Y), Z)) -> (and X, (not (add Y, Z)))
if (TLI.hasAndNot(SDValue(N, 0)))
if (SDValue Folded = foldBitwiseOpWithNeg(N, DL, VT))
return Folded;
// Fold (and (srl X, C), 1) -> (srl X, BW-1) for signbit extraction
// If we are shifting down an extended sign bit, see if we can simplify
// this to shifting the MSB directly to expose further simplifications.
// This pattern often appears after sext_inreg legalization.
APInt Amt;
if (sd_match(N, m_And(m_Srl(m_Value(X), m_ConstInt(Amt)), m_One())) &&
Amt.ult(BitWidth - 1) && Amt.uge(BitWidth - DAG.ComputeNumSignBits(X)))
return DAG.getNode(ISD::SRL, DL, VT, X,
DAG.getShiftAmountConstant(BitWidth - 1, VT, DL));
// Masking the negated extension of a boolean is just the zero-extended
// boolean:
// and (sub 0, zext(bool X)), 1 --> zext(bool X)
// and (sub 0, sext(bool X)), 1 --> zext(bool X)
//
// Note: the SimplifyDemandedBits fold below can make an information-losing
// transform, and then we have no way to find this better fold.
if (sd_match(N, m_And(m_Sub(m_Zero(), m_Value(X)), m_One()))) {
if (X.getOpcode() == ISD::ZERO_EXTEND &&
X.getOperand(0).getScalarValueSizeInBits() == 1)
return X;
if (X.getOpcode() == ISD::SIGN_EXTEND &&
X.getOperand(0).getScalarValueSizeInBits() == 1)
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, X.getOperand(0));
}
// fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
// fold (and (sra)) -> (and (srl)) when possible.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (zext_inreg (extload x)) -> (zextload x)
// fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
if (ISD::isUNINDEXEDLoad(N0.getNode()) &&
(ISD::isEXTLoad(N0.getNode()) ||
(ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) {
auto *LN0 = cast<LoadSDNode>(N0);
EVT MemVT = LN0->getMemoryVT();
// If we zero all the possible extended bits, then we can turn this into
// a zextload if we are running before legalize or the operation is legal.
unsigned ExtBitSize = N1.getScalarValueSizeInBits();
unsigned MemBitSize = MemVT.getScalarSizeInBits();
APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize);
if (DAG.MaskedValueIsZero(N1, ExtBits) &&
((!LegalOperations && LN0->isSimple()) ||
TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
SDValue ExtLoad =
DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(),
LN0->getBasePtr(), MemVT, LN0->getMemOperand());
AddToWorklist(N);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
// fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
N0.getOperand(1), false))
return BSwap;
}
if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N))
return Shifts;
if (SDValue V = combineShiftAnd1ToBitTest(N, DAG))
return V;
// Recognize the following pattern:
//
// AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask)
//
// where bitmask is a mask that clears the upper bits of AndVT. The
// number of bits in bitmask must be a power of two.
auto IsAndZeroExtMask = [](SDValue LHS, SDValue RHS) {
if (LHS->getOpcode() != ISD::SIGN_EXTEND)
return false;
auto *C = dyn_cast<ConstantSDNode>(RHS);
if (!C)
return false;
if (!C->getAPIntValue().isMask(
LHS.getOperand(0).getValueType().getFixedSizeInBits()))
return false;
return true;
};
// Replace (and (sign_extend ...) #bitmask) with (zero_extend ...).
if (IsAndZeroExtMask(N0, N1))
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
if (hasOperation(ISD::USUBSAT, VT))
if (SDValue V = foldAndToUsubsat(N, DAG, DL))
return V;
// Postpone until legalization completed to avoid interference with bswap
// folding
if (LegalOperations || VT.isVector())
if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG))
return R;
if (VT.isScalarInteger() && VT != MVT::i1)
if (SDValue R = foldMaskedMerge(N, DAG, TLI, DL))
return R;
return SDValue();
}
/// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
bool DemandHighBits) {
if (!LegalOperations)
return SDValue();
EVT VT = N->getValueType(0);
if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
return SDValue();
if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
return SDValue();
// Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
bool LookPassAnd0 = false;
bool LookPassAnd1 = false;
if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
std::swap(N0, N1);
if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
std::swap(N0, N1);
if (N0.getOpcode() == ISD::AND) {
if (!N0->hasOneUse())
return SDValue();
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
// Also handle 0xffff since the LHS is guaranteed to have zeros there.
// This is needed for X86.
if (!N01C || (N01C->getZExtValue() != 0xFF00 &&
N01C->getZExtValue() != 0xFFFF))
return SDValue();
N0 = N0.getOperand(0);
LookPassAnd0 = true;
}
if (N1.getOpcode() == ISD::AND) {
if (!N1->hasOneUse())
return SDValue();
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
if (!N11C || N11C->getZExtValue() != 0xFF)
return SDValue();
N1 = N1.getOperand(0);
LookPassAnd1 = true;
}
if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
std::swap(N0, N1);
if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
return SDValue();
if (!N0->hasOneUse() || !N1->hasOneUse())
return SDValue();
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
if (!N01C || !N11C)
return SDValue();
if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
return SDValue();
// Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
SDValue N00 = N0->getOperand(0);
if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
if (!N00->hasOneUse())
return SDValue();
ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
if (!N001C || N001C->getZExtValue() != 0xFF)
return SDValue();
N00 = N00.getOperand(0);
LookPassAnd0 = true;
}
SDValue N10 = N1->getOperand(0);
if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
if (!N10->hasOneUse())
return SDValue();
ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
// Also allow 0xFFFF since the bits will be shifted out. This is needed
// for X86.
if (!N101C || (N101C->getZExtValue() != 0xFF00 &&
N101C->getZExtValue() != 0xFFFF))
return SDValue();
N10 = N10.getOperand(0);
LookPassAnd1 = true;
}
if (N00 != N10)
return SDValue();
// Make sure everything beyond the low halfword gets set to zero since the SRL
// 16 will clear the top bits.
unsigned OpSizeInBits = VT.getSizeInBits();
if (OpSizeInBits > 16) {
// If the left-shift isn't masked out then the only way this is a bswap is
// if all bits beyond the low 8 are 0. In that case the entire pattern
// reduces to a left shift anyway: leave it for other parts of the combiner.
if (DemandHighBits && !LookPassAnd0)
return SDValue();
// However, if the right shift isn't masked out then it might be because
// it's not needed. See if we can spot that too. If the high bits aren't
// demanded, we only need bits 23:16 to be zero. Otherwise, we need all
// upper bits to be zero.
if (!LookPassAnd1) {
unsigned HighBit = DemandHighBits ? OpSizeInBits : 24;
if (!DAG.MaskedValueIsZero(N10,
APInt::getBitsSet(OpSizeInBits, 16, HighBit)))
return SDValue();
}
}
SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
if (OpSizeInBits > 16) {
SDLoc DL(N);
Res = DAG.getNode(ISD::SRL, DL, VT, Res,
DAG.getShiftAmountConstant(OpSizeInBits - 16, VT, DL));
}
return Res;
}
/// Return true if the specified node is an element that makes up a 32-bit
/// packed halfword byteswap.
/// ((x & 0x000000ff) << 8) |
/// ((x & 0x0000ff00) >> 8) |
/// ((x & 0x00ff0000) << 8) |
/// ((x & 0xff000000) >> 8)
static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
if (!N->hasOneUse())
return false;
unsigned Opc = N.getOpcode();
if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
return false;
SDValue N0 = N.getOperand(0);
unsigned Opc0 = N0.getOpcode();
if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL)
return false;
ConstantSDNode *N1C = nullptr;
// SHL or SRL: look upstream for AND mask operand
if (Opc == ISD::AND)
N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
else if (Opc0 == ISD::AND)
N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!N1C)
return false;
unsigned MaskByteOffset;
switch (N1C->getZExtValue()) {
default:
return false;
case 0xFF: MaskByteOffset = 0; break;
case 0xFF00: MaskByteOffset = 1; break;
case 0xFFFF:
// In case demanded bits didn't clear the bits that will be shifted out.
// This is needed for X86.
if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) {
MaskByteOffset = 1;
break;
}
return false;
case 0xFF0000: MaskByteOffset = 2; break;
case 0xFF000000: MaskByteOffset = 3; break;
}
// Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
if (Opc == ISD::AND) {
if (MaskByteOffset == 0 || MaskByteOffset == 2) {
// (x >> 8) & 0xff
// (x >> 8) & 0xff0000
if (Opc0 != ISD::SRL)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!C || C->getZExtValue() != 8)
return false;
} else {
// (x << 8) & 0xff00
// (x << 8) & 0xff000000
if (Opc0 != ISD::SHL)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!C || C->getZExtValue() != 8)
return false;
}
} else if (Opc == ISD::SHL) {
// (x & 0xff) << 8
// (x & 0xff0000) << 8
if (MaskByteOffset != 0 && MaskByteOffset != 2)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!C || C->getZExtValue() != 8)
return false;
} else { // Opc == ISD::SRL
// (x & 0xff00) >> 8
// (x & 0xff000000) >> 8
if (MaskByteOffset != 1 && MaskByteOffset != 3)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!C || C->getZExtValue() != 8)
return false;
}
if (Parts[MaskByteOffset])
return false;
Parts[MaskByteOffset] = N0.getOperand(0).getNode();
return true;
}
// Match 2 elements of a packed halfword bswap.
static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) {
if (N.getOpcode() == ISD::OR)
return isBSwapHWordElement(N.getOperand(0), Parts) &&
isBSwapHWordElement(N.getOperand(1), Parts);
if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) {
ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1));
if (!C || C->getAPIntValue() != 16)
return false;
Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode();
return true;
}
return false;
}
// Match this pattern:
// (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff))
// And rewrite this to:
// (rotr (bswap A), 16)
static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI,
SelectionDAG &DAG, SDNode *N, SDValue N0,
SDValue N1, EVT VT) {
assert(N->getOpcode() == ISD::OR && VT == MVT::i32 &&
"MatchBSwapHWordOrAndAnd: expecting i32");
if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
return SDValue();
if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND)
return SDValue();
// TODO: this is too restrictive; lifting this restriction requires more tests
if (!N0->hasOneUse() || !N1->hasOneUse())
return SDValue();
ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1));
ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1));
if (!Mask0 || !Mask1)
return SDValue();
if (Mask0->getAPIntValue() != 0xff00ff00 ||
Mask1->getAPIntValue() != 0x00ff00ff)
return SDValue();
SDValue Shift0 = N0.getOperand(0);
SDValue Shift1 = N1.getOperand(0);
if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL)
return SDValue();
ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1));
ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1));
if (!ShiftAmt0 || !ShiftAmt1)
return SDValue();
if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8)
return SDValue();
if (Shift0.getOperand(0) != Shift1.getOperand(0))
return SDValue();
SDLoc DL(N);
SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0));
SDValue ShAmt = DAG.getShiftAmountConstant(16, VT, DL);
return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
}
/// Match a 32-bit packed halfword bswap. That is
/// ((x & 0x000000ff) << 8) |
/// ((x & 0x0000ff00) >> 8) |
/// ((x & 0x00ff0000) << 8) |
/// ((x & 0xff000000) >> 8)
/// => (rotl (bswap x), 16)
SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
if (!LegalOperations)
return SDValue();
EVT VT = N->getValueType(0);
if (VT != MVT::i32)
return SDValue();
if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
return SDValue();
if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT))
return BSwap;
// Try again with commuted operands.
if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT))
return BSwap;
// Look for either
// (or (bswaphpair), (bswaphpair))
// (or (or (bswaphpair), (and)), (and))
// (or (or (and), (bswaphpair)), (and))
SDNode *Parts[4] = {};
if (isBSwapHWordPair(N0, Parts)) {
// (or (or (and), (and)), (or (and), (and)))
if (!isBSwapHWordPair(N1, Parts))
return SDValue();
} else if (N0.getOpcode() == ISD::OR) {
// (or (or (or (and), (and)), (and)), (and))
if (!isBSwapHWordElement(N1, Parts))
return SDValue();
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) &&
!(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts)))
return SDValue();
} else {
return SDValue();
}
// Make sure the parts are all coming from the same node.
if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
return SDValue();
SDLoc DL(N);
SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
SDValue(Parts[0], 0));
// Result of the bswap should be rotated by 16. If it's not legal, then
// do (x << 16) | (x >> 16).
SDValue ShAmt = DAG.getShiftAmountConstant(16, VT, DL);
if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
return DAG.getNode(ISD::OR, DL, VT,
DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
}
/// This contains all DAGCombine rules which reduce two values combined by
/// an Or operation to a single value \see visitANDLike().
SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, const SDLoc &DL) {
EVT VT = N1.getValueType();
// fold (or x, undef) -> -1
if (!LegalOperations && (N0.isUndef() || N1.isUndef()))
return DAG.getAllOnesConstant(DL, VT);
if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL))
return V;
// (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
// Don't increase # computations.
(N0->hasOneUse() || N1->hasOneUse())) {
// We can only do this xform if we know that bits from X that are set in C2
// but not in C1 are already zero. Likewise for Y.
if (const ConstantSDNode *N0O1C =
getAsNonOpaqueConstant(N0.getOperand(1))) {
if (const ConstantSDNode *N1O1C =
getAsNonOpaqueConstant(N1.getOperand(1))) {
// We can only do this xform if we know that bits from X that are set in
// C2 but not in C1 are already zero. Likewise for Y.
const APInt &LHSMask = N0O1C->getAPIntValue();
const APInt &RHSMask = N1O1C->getAPIntValue();
if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
N0.getOperand(0), N1.getOperand(0));
return DAG.getNode(ISD::AND, DL, VT, X,
DAG.getConstant(LHSMask | RHSMask, DL, VT));
}
}
}
}
// (or (and X, M), (and X, N)) -> (and X, (or M, N))
if (N0.getOpcode() == ISD::AND &&
N1.getOpcode() == ISD::AND &&
N0.getOperand(0) == N1.getOperand(0) &&
// Don't increase # computations.
(N0->hasOneUse() || N1->hasOneUse())) {
SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
N0.getOperand(1), N1.getOperand(1));
return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X);
}
return SDValue();
}
/// OR combines for which the commuted variant will be tried as well.
static SDValue visitORCommutative(SelectionDAG &DAG, SDValue N0, SDValue N1,
SDNode *N) {
EVT VT = N0.getValueType();
unsigned BW = VT.getScalarSizeInBits();
SDLoc DL(N);
auto peekThroughResize = [](SDValue V) {
if (V->getOpcode() == ISD::ZERO_EXTEND || V->getOpcode() == ISD::TRUNCATE)
return V->getOperand(0);
return V;
};
SDValue N0Resized = peekThroughResize(N0);
if (N0Resized.getOpcode() == ISD::AND) {
SDValue N1Resized = peekThroughResize(N1);
SDValue N00 = N0Resized.getOperand(0);
SDValue N01 = N0Resized.getOperand(1);
// fold or (and x, y), x --> x
if (N00 == N1Resized || N01 == N1Resized)
return N1;
// fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
// TODO: Set AllowUndefs = true.
if (SDValue NotOperand = getBitwiseNotOperand(N01, N00,
/* AllowUndefs */ false)) {
if (peekThroughResize(NotOperand) == N1Resized)
return DAG.getNode(ISD::OR, DL, VT, DAG.getZExtOrTrunc(N00, DL, VT),
N1);
}
// fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
if (SDValue NotOperand = getBitwiseNotOperand(N00, N01,
/* AllowUndefs */ false)) {
if (peekThroughResize(NotOperand) == N1Resized)
return DAG.getNode(ISD::OR, DL, VT, DAG.getZExtOrTrunc(N01, DL, VT),
N1);
}
}
SDValue X, Y;
// fold or (xor X, N1), N1 --> or X, N1
if (sd_match(N0, m_Xor(m_Value(X), m_Specific(N1))))
return DAG.getNode(ISD::OR, DL, VT, X, N1);
// fold or (xor x, y), (x and/or y) --> or x, y
if (sd_match(N0, m_Xor(m_Value(X), m_Value(Y))) &&
(sd_match(N1, m_And(m_Specific(X), m_Specific(Y))) ||
sd_match(N1, m_Or(m_Specific(X), m_Specific(Y)))))
return DAG.getNode(ISD::OR, DL, VT, X, Y);
if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG))
return R;
auto peekThroughZext = [](SDValue V) {
if (V->getOpcode() == ISD::ZERO_EXTEND)
return V->getOperand(0);
return V;
};
// (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y
if (N0.getOpcode() == ISD::FSHL && N1.getOpcode() == ISD::SHL &&
N0.getOperand(0) == N1.getOperand(0) &&
peekThroughZext(N0.getOperand(2)) == peekThroughZext(N1.getOperand(1)))
return N0;
// (fshr ?, X, Y) | (srl X, Y) --> fshr ?, X, Y
if (N0.getOpcode() == ISD::FSHR && N1.getOpcode() == ISD::SRL &&
N0.getOperand(1) == N1.getOperand(0) &&
peekThroughZext(N0.getOperand(2)) == peekThroughZext(N1.getOperand(1)))
return N0;
// Attempt to match a legalized build_pair-esque pattern:
// or(shl(aext(Hi),BW/2),zext(Lo))
SDValue Lo, Hi;
if (sd_match(N0,
m_OneUse(m_Shl(m_AnyExt(m_Value(Hi)), m_SpecificInt(BW / 2)))) &&
sd_match(N1, m_ZExt(m_Value(Lo))) &&
Lo.getScalarValueSizeInBits() == (BW / 2) &&
Lo.getValueType() == Hi.getValueType()) {
// Fold build_pair(not(Lo),not(Hi)) -> not(build_pair(Lo,Hi)).
SDValue NotLo, NotHi;
if (sd_match(Lo, m_OneUse(m_Not(m_Value(NotLo)))) &&
sd_match(Hi, m_OneUse(m_Not(m_Value(NotHi))))) {
Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotLo);
Hi = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NotHi);
Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
DAG.getShiftAmountConstant(BW / 2, VT, DL));
return DAG.getNOT(DL, DAG.getNode(ISD::OR, DL, VT, Lo, Hi), VT);
}
}
return SDValue();
}
SDValue DAGCombiner::visitOR(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N1.getValueType();
SDLoc DL(N);
// x | x --> x
if (N0 == N1)
return N0;
// fold (or c1, c2) -> c1|c2
if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, DL, VT, {N0, N1}))
return C;
// canonicalize constant to RHS
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::OR, DL, VT, N1, N0);
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
// fold (or x, 0) -> x, vector edition
if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
return N0;
// fold (or x, -1) -> -1, vector edition
if (ISD::isConstantSplatVectorAllOnes(N1.getNode()))
// do not return N1, because undef node may exist in N1
return DAG.getAllOnesConstant(DL, N1.getValueType());
// fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
// Do this only if the resulting type / shuffle is legal.
auto *SV0 = dyn_cast<ShuffleVectorSDNode>(N0);
auto *SV1 = dyn_cast<ShuffleVectorSDNode>(N1);
if (SV0 && SV1 && TLI.isTypeLegal(VT)) {
bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode());
bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode());
bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode());
// Ensure both shuffles have a zero input.
if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) {
assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!");
assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!");
bool CanFold = true;
int NumElts = VT.getVectorNumElements();
SmallVector<int, 4> Mask(NumElts, -1);
for (int i = 0; i != NumElts; ++i) {
int M0 = SV0->getMaskElt(i);
int M1 = SV1->getMaskElt(i);
// Determine if either index is pointing to a zero vector.
bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts));
bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts));
// If one element is zero and the otherside is undef, keep undef.
// This also handles the case that both are undef.
if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0))
continue;
// Make sure only one of the elements is zero.
if (M0Zero == M1Zero) {
CanFold = false;
break;
}
assert((M0 >= 0 || M1 >= 0) && "Undef index!");
// We have a zero and non-zero element. If the non-zero came from
// SV0 make the index a LHS index. If it came from SV1, make it
// a RHS index. We need to mod by NumElts because we don't care
// which operand it came from in the original shuffles.
Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts;
}
if (CanFold) {
SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0);
SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0);
SDValue LegalShuffle =
TLI.buildLegalVectorShuffle(VT, DL, NewLHS, NewRHS, Mask, DAG);
if (LegalShuffle)
return LegalShuffle;
}
}
}
}
// fold (or x, 0) -> x
if (isNullConstant(N1))
return N0;
// fold (or x, -1) -> -1
if (isAllOnesConstant(N1))
return N1;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// fold (or x, c) -> c iff (x & ~c) == 0
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
return N1;
if (SDValue R = foldAndOrOfSETCC(N, DAG))
return R;
if (SDValue Combined = visitORLike(N0, N1, DL))
return Combined;
if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N))
return Combined;
// Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
return BSwap;
if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
return BSwap;
// reassociate or
if (SDValue ROR = reassociateOps(ISD::OR, DL, N0, N1, N->getFlags()))
return ROR;
// Fold or(vecreduce(x), vecreduce(y)) -> vecreduce(or(x, y))
if (SDValue SD =
reassociateReduction(ISD::VECREDUCE_OR, ISD::OR, DL, VT, N0, N1))
return SD;
// Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
// iff (c1 & c2) != 0 or c1/c2 are undef.
auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) {
return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue());
};
if (N0.getOpcode() == ISD::AND && N0->hasOneUse() &&
ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) {
if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT,
{N1, N0.getOperand(1)})) {
SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1);
AddToWorklist(IOR.getNode());
return DAG.getNode(ISD::AND, DL, VT, COR, IOR);
}
}
if (SDValue Combined = visitORCommutative(DAG, N0, N1, N))
return Combined;
if (SDValue Combined = visitORCommutative(DAG, N1, N0, N))
return Combined;
// Simplify: (or (op x...), (op y...)) -> (op (or x, y))
if (N0.getOpcode() == N1.getOpcode())
if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
return V;
// See if this is some rotate idiom.
if (SDValue Rot = MatchRotate(N0, N1, DL, /*FromAdd=*/false))
return Rot;
if (SDValue Load = MatchLoadCombine(N))
return Load;
// Simplify the operands using demanded-bits information.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// If OR can be rewritten into ADD, try combines based on ADD.
if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) &&
DAG.isADDLike(SDValue(N, 0)))
if (SDValue Combined = visitADDLike(N))
return Combined;
// Postpone until legalization completed to avoid interference with bswap
// folding
if (LegalOperations || VT.isVector())
if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG))
return R;
if (VT.isScalarInteger() && VT != MVT::i1)
if (SDValue R = foldMaskedMerge(N, DAG, TLI, DL))
return R;
return SDValue();
}
static SDValue stripConstantMask(const SelectionDAG &DAG, SDValue Op,
SDValue &Mask) {
if (Op.getOpcode() == ISD::AND &&
DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
Mask = Op.getOperand(1);
return Op.getOperand(0);
}
return Op;
}
/// Match "(X shl/srl V1) & V2" where V2 may not be present.
static bool matchRotateHalf(const SelectionDAG &DAG, SDValue Op, SDValue &Shift,
SDValue &Mask) {
Op = stripConstantMask(DAG, Op, Mask);
if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
Shift = Op;
return true;
}
return false;
}
/// Helper function for visitOR to extract the needed side of a rotate idiom
/// from a shl/srl/mul/udiv. This is meant to handle cases where
/// InstCombine merged some outside op with one of the shifts from
/// the rotate pattern.
/// \returns An empty \c SDValue if the needed shift couldn't be extracted.
/// Otherwise, returns an expansion of \p ExtractFrom based on the following
/// patterns:
///
/// (or (add v v) (shrl v bitwidth-1)):
/// expands (add v v) -> (shl v 1)
///
/// (or (mul v c0) (shrl (mul v c1) c2)):
/// expands (mul v c0) -> (shl (mul v c1) c3)
///
/// (or (udiv v c0) (shl (udiv v c1) c2)):
/// expands (udiv v c0) -> (shrl (udiv v c1) c3)
///
/// (or (shl v c0) (shrl (shl v c1) c2)):
/// expands (shl v c0) -> (shl (shl v c1) c3)
///
/// (or (shrl v c0) (shl (shrl v c1) c2)):
/// expands (shrl v c0) -> (shrl (shrl v c1) c3)
///
/// Such that in all cases, c3+c2==bitwidth(op v c1).
static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift,
SDValue ExtractFrom, SDValue &Mask,
const SDLoc &DL) {
assert(OppShift && ExtractFrom && "Empty SDValue");
if (OppShift.getOpcode() != ISD::SHL && OppShift.getOpcode() != ISD::SRL)
return SDValue();
ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask);
// Value and Type of the shift.
SDValue OppShiftLHS = OppShift.getOperand(0);
EVT ShiftedVT = OppShiftLHS.getValueType();
// Amount of the existing shift.
ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1));
// (add v v) -> (shl v 1)
// TODO: Should this be a general DAG canonicalization?
if (OppShift.getOpcode() == ISD::SRL && OppShiftCst &&
ExtractFrom.getOpcode() == ISD::ADD &&
ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) &&
ExtractFrom.getOperand(0) == OppShiftLHS &&
OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1)
return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS,
DAG.getShiftAmountConstant(1, ShiftedVT, DL));
// Preconditions:
// (or (op0 v c0) (shiftl/r (op0 v c1) c2))
//
// Find opcode of the needed shift to be extracted from (op0 v c0).
unsigned Opcode = ISD::DELETED_NODE;
bool IsMulOrDiv = false;
// Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
// opcode or its arithmetic (mul or udiv) variant.
auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) {
IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant;
if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift)
return false;
Opcode = NeededShift;
return true;
};
// op0 must be either the needed shift opcode or the mul/udiv equivalent
// that the needed shift can be extracted from.
if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) &&
(OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV)))
return SDValue();
// op0 must be the same opcode on both sides, have the same LHS argument,
// and produce the same value type.
if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() ||
OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) ||
ShiftedVT != ExtractFrom.getValueType())
return SDValue();
// Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1));
// Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
ConstantSDNode *ExtractFromCst =
isConstOrConstSplat(ExtractFrom.getOperand(1));
// TODO: We should be able to handle non-uniform constant vectors for these values
// Check that we have constant values.
if (!OppShiftCst || !OppShiftCst->getAPIntValue() ||
!OppLHSCst || !OppLHSCst->getAPIntValue() ||
!ExtractFromCst || !ExtractFromCst->getAPIntValue())
return SDValue();
// Compute the shift amount we need to extract to complete the rotate.
const unsigned VTWidth = ShiftedVT.getScalarSizeInBits();
if (OppShiftCst->getAPIntValue().ugt(VTWidth))
return SDValue();
APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue();
// Normalize the bitwidth of the two mul/udiv/shift constant operands.
APInt ExtractFromAmt = ExtractFromCst->getAPIntValue();
APInt OppLHSAmt = OppLHSCst->getAPIntValue();
zeroExtendToMatch(ExtractFromAmt, OppLHSAmt);
// Now try extract the needed shift from the ExtractFrom op and see if the
// result matches up with the existing shift's LHS op.
if (IsMulOrDiv) {
// Op to extract from is a mul or udiv by a constant.
// Check:
// c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
// c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(),
NeededShiftAmt.getZExtValue());
APInt ResultAmt;
APInt Rem;
APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem);
if (Rem != 0 || ResultAmt != OppLHSAmt)
return SDValue();
} else {
// Op to extract from is a shift by a constant.
// Check:
// c2 - (bitwidth(op0 v c0) - c1) == c0
if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc(
ExtractFromAmt.getBitWidth()))
return SDValue();
}
// Return the expanded shift op that should allow a rotate to be formed.
EVT ShiftVT = OppShift.getOperand(1).getValueType();
EVT ResVT = ExtractFrom.getValueType();
SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT);
return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode);
}
// Return true if we can prove that, whenever Neg and Pos are both in the
// range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
// for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
//
// (or (shift1 X, Neg), (shift2 X, Pos))
//
// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
// in direction shift1 by Neg. The range [0, EltSize) means that we only need
// to consider shift amounts with defined behavior.
//
// The IsRotate flag should be set when the LHS of both shifts is the same.
// Otherwise if matching a general funnel shift, it should be clear.
static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize,
SelectionDAG &DAG, bool IsRotate, bool FromAdd) {
const auto &TLI = DAG.getTargetLoweringInfo();
// If EltSize is a power of 2 then:
//
// (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
// (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
//
// So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
// for the stronger condition:
//
// Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
//
// for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
// we can just replace Neg with Neg' for the rest of the function.
//
// In other cases we check for the even stronger condition:
//
// Neg == EltSize - Pos [B]
//
// for all Neg and Pos. Note that the (or ...) then invokes undefined
// behavior if Pos == 0 (and consequently Neg == EltSize).
//
// We could actually use [A] whenever EltSize is a power of 2, but the
// only extra cases that it would match are those uninteresting ones
// where Neg and Pos are never in range at the same time. E.g. for
// EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
// as well as (sub 32, Pos), but:
//
// (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
//
// always invokes undefined behavior for 32-bit X.
//
// Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
// This allows us to peek through any operations that only affect Mask's
// un-demanded bits.
//
// NOTE: We can only do this when matching operations which won't modify the
// least Log2(EltSize) significant bits and not a general funnel shift.
unsigned MaskLoBits = 0;
if (IsRotate && !FromAdd && isPowerOf2_64(EltSize)) {
unsigned Bits = Log2_64(EltSize);
unsigned NegBits = Neg.getScalarValueSizeInBits();
if (NegBits >= Bits) {
APInt DemandedBits = APInt::getLowBitsSet(NegBits, Bits);
if (SDValue Inner =
TLI.SimplifyMultipleUseDemandedBits(Neg, DemandedBits, DAG)) {
Neg = Inner;
MaskLoBits = Bits;
}
}
}
// Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
if (Neg.getOpcode() != ISD::SUB)
return false;
ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0));
if (!NegC)
return false;
SDValue NegOp1 = Neg.getOperand(1);
// On the RHS of [A], if Pos is the result of operation on Pos' that won't
// affect Mask's demanded bits, just replace Pos with Pos'. These operations
// are redundant for the purpose of the equality.
if (MaskLoBits) {
unsigned PosBits = Pos.getScalarValueSizeInBits();
if (PosBits >= MaskLoBits) {
APInt DemandedBits = APInt::getLowBitsSet(PosBits, MaskLoBits);
if (SDValue Inner =
TLI.SimplifyMultipleUseDemandedBits(Pos, DemandedBits, DAG)) {
Pos = Inner;
}
}
}
// The condition we need is now:
//
// (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
//
// If NegOp1 == Pos then we need:
//
// EltSize & Mask == NegC & Mask
//
// (because "x & Mask" is a truncation and distributes through subtraction).
//
// We also need to account for a potential truncation of NegOp1 if the amount
// has already been legalized to a shift amount type.
APInt Width;
if ((Pos == NegOp1) ||
(NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0)))
Width = NegC->getAPIntValue();
// Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
// Then the condition we want to prove becomes:
//
// (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
//
// which, again because "x & Mask" is a truncation, becomes:
//
// NegC & Mask == (EltSize - PosC) & Mask
// EltSize & Mask == (NegC + PosC) & Mask
else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
Width = PosC->getAPIntValue() + NegC->getAPIntValue();
else
return false;
} else
return false;
// Now we just need to check that EltSize & Mask == Width & Mask.
if (MaskLoBits)
// EltSize & Mask is 0 since Mask is EltSize - 1.
return Width.getLoBits(MaskLoBits) == 0;
return Width == EltSize;
}
// A subroutine of MatchRotate used once we have found an OR of two opposite
// shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
// former being preferred if supported. InnerPos and InnerNeg are Pos and
// Neg with outer conversions stripped away.
SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
SDValue Neg, SDValue InnerPos,
SDValue InnerNeg, bool FromAdd,
bool HasPos, unsigned PosOpcode,
unsigned NegOpcode, const SDLoc &DL) {
// fold (or/add (shl x, (*ext y)),
// (srl x, (*ext (sub 32, y)))) ->
// (rotl x, y) or (rotr x, (sub 32, y))
//
// fold (or/add (shl x, (*ext (sub 32, y))),
// (srl x, (*ext y))) ->
// (rotr x, y) or (rotl x, (sub 32, y))
EVT VT = Shifted.getValueType();
if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG,
/*IsRotate*/ true, FromAdd))
return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
HasPos ? Pos : Neg);
return SDValue();
}
// A subroutine of MatchRotate used once we have found an OR of two opposite
// shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces
// to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the
// former being preferred if supported. InnerPos and InnerNeg are Pos and
// Neg with outer conversions stripped away.
// TODO: Merge with MatchRotatePosNeg.
SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos,
SDValue Neg, SDValue InnerPos,
SDValue InnerNeg, bool FromAdd,
bool HasPos, unsigned PosOpcode,
unsigned NegOpcode, const SDLoc &DL) {
EVT VT = N0.getValueType();
unsigned EltBits = VT.getScalarSizeInBits();
// fold (or/add (shl x0, (*ext y)),
// (srl x1, (*ext (sub 32, y)))) ->
// (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y))
//
// fold (or/add (shl x0, (*ext (sub 32, y))),
// (srl x1, (*ext y))) ->
// (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y))
if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG, /*IsRotate*/ N0 == N1,
FromAdd))
return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1,
HasPos ? Pos : Neg);
// Matching the shift+xor cases, we can't easily use the xor'd shift amount
// so for now just use the PosOpcode case if its legal.
// TODO: When can we use the NegOpcode case?
if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) {
SDValue X;
// fold (or/add (shl x0, y), (srl (srl x1, 1), (xor y, 31)))
// -> (fshl x0, x1, y)
if (sd_match(N1, m_Srl(m_Value(X), m_One())) &&
sd_match(InnerNeg,
m_Xor(m_Specific(InnerPos), m_SpecificInt(EltBits - 1))) &&
TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) {
return DAG.getNode(ISD::FSHL, DL, VT, N0, X, Pos);
}
// fold (or/add (shl (shl x0, 1), (xor y, 31)), (srl x1, y))
// -> (fshr x0, x1, y)
if (sd_match(N0, m_Shl(m_Value(X), m_One())) &&
sd_match(InnerPos,
m_Xor(m_Specific(InnerNeg), m_SpecificInt(EltBits - 1))) &&
TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) {
return DAG.getNode(ISD::FSHR, DL, VT, X, N1, Neg);
}
// fold (or/add (shl (add x0, x0), (xor y, 31)), (srl x1, y))
// -> (fshr x0, x1, y)
// TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization?
if (sd_match(N0, m_Add(m_Value(X), m_Deferred(X))) &&
sd_match(InnerPos,
m_Xor(m_Specific(InnerNeg), m_SpecificInt(EltBits - 1))) &&
TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) {
return DAG.getNode(ISD::FSHR, DL, VT, X, N1, Neg);
}
}
return SDValue();
}
// MatchRotate - Handle an 'or' or 'add' of two operands. If this is one of the
// many idioms for rotate, and if the target supports rotation instructions,
// generate a rot[lr]. This also matches funnel shift patterns, similar to
// rotation but with different shifted sources.
SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL,
bool FromAdd) {
EVT VT = LHS.getValueType();
// The target must have at least one rotate/funnel flavor.
// We still try to match rotate by constant pre-legalization.
// TODO: Support pre-legalization funnel-shift by constant.
bool HasROTL = hasOperation(ISD::ROTL, VT);
bool HasROTR = hasOperation(ISD::ROTR, VT);
bool HasFSHL = hasOperation(ISD::FSHL, VT);
bool HasFSHR = hasOperation(ISD::FSHR, VT);
// If the type is going to be promoted and the target has enabled custom
// lowering for rotate, allow matching rotate by non-constants. Only allow
// this for scalar types.
if (VT.isScalarInteger() && TLI.getTypeAction(*DAG.getContext(), VT) ==
TargetLowering::TypePromoteInteger) {
HasROTL |= TLI.getOperationAction(ISD::ROTL, VT) == TargetLowering::Custom;
HasROTR |= TLI.getOperationAction(ISD::ROTR, VT) == TargetLowering::Custom;
}
if (LegalOperations && !HasROTL && !HasROTR && !HasFSHL && !HasFSHR)
return SDValue();
// Check for truncated rotate.
if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE &&
LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) {
assert(LHS.getValueType() == RHS.getValueType());
if (SDValue Rot =
MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL, FromAdd))
return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot);
}
// Match "(X shl/srl V1) & V2" where V2 may not be present.
SDValue LHSShift; // The shift.
SDValue LHSMask; // AND value if any.
matchRotateHalf(DAG, LHS, LHSShift, LHSMask);
SDValue RHSShift; // The shift.
SDValue RHSMask; // AND value if any.
matchRotateHalf(DAG, RHS, RHSShift, RHSMask);
// If neither side matched a rotate half, bail
if (!LHSShift && !RHSShift)
return SDValue();
// InstCombine may have combined a constant shl, srl, mul, or udiv with one
// side of the rotate, so try to handle that here. In all cases we need to
// pass the matched shift from the opposite side to compute the opcode and
// needed shift amount to extract. We still want to do this if both sides
// matched a rotate half because one half may be a potential overshift that
// can be broken down (ie if InstCombine merged two shl or srl ops into a
// single one).
// Have LHS side of the rotate, try to extract the needed shift from the RHS.
if (LHSShift)
if (SDValue NewRHSShift =
extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL))
RHSShift = NewRHSShift;
// Have RHS side of the rotate, try to extract the needed shift from the LHS.
if (RHSShift)
if (SDValue NewLHSShift =
extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL))
LHSShift = NewLHSShift;
// If a side is still missing, nothing else we can do.
if (!RHSShift || !LHSShift)
return SDValue();
// At this point we've matched or extracted a shift op on each side.
if (LHSShift.getOpcode() == RHSShift.getOpcode())
return SDValue(); // Shifts must disagree.
// Canonicalize shl to left side in a shl/srl pair.
if (RHSShift.getOpcode() == ISD::SHL) {
std::swap(LHS, RHS);
std::swap(LHSShift, RHSShift);
std::swap(LHSMask, RHSMask);
}
// Something has gone wrong - we've lost the shl/srl pair - bail.
if (LHSShift.getOpcode() != ISD::SHL || RHSShift.getOpcode() != ISD::SRL)
return SDValue();
unsigned EltSizeInBits = VT.getScalarSizeInBits();
SDValue LHSShiftArg = LHSShift.getOperand(0);
SDValue LHSShiftAmt = LHSShift.getOperand(1);
SDValue RHSShiftArg = RHSShift.getOperand(0);
SDValue RHSShiftAmt = RHSShift.getOperand(1);
auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits;
};
auto ApplyMasks = [&](SDValue Res) {
// If there is an AND of either shifted operand, apply it to the result.
if (LHSMask.getNode() || RHSMask.getNode()) {
SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
SDValue Mask = AllOnes;
if (LHSMask.getNode()) {
SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt);
Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits));
}
if (RHSMask.getNode()) {
SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt);
Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits));
}
Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask);
}
return Res;
};
// TODO: Support pre-legalization funnel-shift by constant.
bool IsRotate = LHSShiftArg == RHSShiftArg;
if (!IsRotate && !(HasFSHL || HasFSHR)) {
if (TLI.isTypeLegal(VT) && LHS.hasOneUse() && RHS.hasOneUse() &&
ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
// Look for a disguised rotate by constant.
// The common shifted operand X may be hidden inside another 'or'.
SDValue X, Y;
auto matchOr = [&X, &Y](SDValue Or, SDValue CommonOp) {
if (!Or.hasOneUse() || Or.getOpcode() != ISD::OR)
return false;
if (CommonOp == Or.getOperand(0)) {
X = CommonOp;
Y = Or.getOperand(1);
return true;
}
if (CommonOp == Or.getOperand(1)) {
X = CommonOp;
Y = Or.getOperand(0);
return true;
}
return false;
};
SDValue Res;
if (matchOr(LHSShiftArg, RHSShiftArg)) {
// (shl (X | Y), C1) | (srl X, C2) --> (rotl X, C1) | (shl Y, C1)
SDValue RotX = DAG.getNode(ISD::ROTL, DL, VT, X, LHSShiftAmt);
SDValue ShlY = DAG.getNode(ISD::SHL, DL, VT, Y, LHSShiftAmt);
Res = DAG.getNode(ISD::OR, DL, VT, RotX, ShlY);
} else if (matchOr(RHSShiftArg, LHSShiftArg)) {
// (shl X, C1) | (srl (X | Y), C2) --> (rotl X, C1) | (srl Y, C2)
SDValue RotX = DAG.getNode(ISD::ROTL, DL, VT, X, LHSShiftAmt);
SDValue SrlY = DAG.getNode(ISD::SRL, DL, VT, Y, RHSShiftAmt);
Res = DAG.getNode(ISD::OR, DL, VT, RotX, SrlY);
} else {
return SDValue();
}
return ApplyMasks(Res);
}
return SDValue(); // Requires funnel shift support.
}
// fold (or/add (shl x, C1), (srl x, C2)) -> (rotl x, C1)
// fold (or/add (shl x, C1), (srl x, C2)) -> (rotr x, C2)
// fold (or/add (shl x, C1), (srl y, C2)) -> (fshl x, y, C1)
// fold (or/add (shl x, C1), (srl y, C2)) -> (fshr x, y, C2)
// iff C1+C2 == EltSizeInBits
if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
SDValue Res;
if (IsRotate && (HasROTL || HasROTR || !(HasFSHL || HasFSHR))) {
bool UseROTL = !LegalOperations || HasROTL;
Res = DAG.getNode(UseROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
UseROTL ? LHSShiftAmt : RHSShiftAmt);
} else {
bool UseFSHL = !LegalOperations || HasFSHL;
Res = DAG.getNode(UseFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg,
RHSShiftArg, UseFSHL ? LHSShiftAmt : RHSShiftAmt);
}
return ApplyMasks(Res);
}
// Even pre-legalization, we can't easily rotate/funnel-shift by a variable
// shift.
if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR)
return SDValue();
// If there is a mask here, and we have a variable shift, we can't be sure
// that we're masking out the right stuff.
if (LHSMask.getNode() || RHSMask.getNode())
return SDValue();
// If the shift amount is sign/zext/any-extended just peel it off.
SDValue LExtOp0 = LHSShiftAmt;
SDValue RExtOp0 = RHSShiftAmt;
if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
(RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
LExtOp0 = LHSShiftAmt.getOperand(0);
RExtOp0 = RHSShiftAmt.getOperand(0);
}
if (IsRotate && (HasROTL || HasROTR)) {
if (SDValue TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt,
LExtOp0, RExtOp0, FromAdd, HasROTL,
ISD::ROTL, ISD::ROTR, DL))
return TryL;
if (SDValue TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
RExtOp0, LExtOp0, FromAdd, HasROTR,
ISD::ROTR, ISD::ROTL, DL))
return TryR;
}
if (SDValue TryL = MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt,
RHSShiftAmt, LExtOp0, RExtOp0, FromAdd,
HasFSHL, ISD::FSHL, ISD::FSHR, DL))
return TryL;
if (SDValue TryR = MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt,
LHSShiftAmt, RExtOp0, LExtOp0, FromAdd,
HasFSHR, ISD::FSHR, ISD::FSHL, DL))
return TryR;
return SDValue();
}
/// Recursively traverses the expression calculating the origin of the requested
/// byte of the given value. Returns std::nullopt if the provider can't be
/// calculated.
///
/// For all the values except the root of the expression, we verify that the
/// value has exactly one use and if not then return std::nullopt. This way if
/// the origin of the byte is returned it's guaranteed that the values which
/// contribute to the byte are not used outside of this expression.
/// However, there is a special case when dealing with vector loads -- we allow
/// more than one use if the load is a vector type. Since the values that
/// contribute to the byte ultimately come from the ExtractVectorElements of the
/// Load, we don't care if the Load has uses other than ExtractVectorElements,
/// because those operations are independent from the pattern to be combined.
/// For vector loads, we simply care that the ByteProviders are adjacent
/// positions of the same vector, and their index matches the byte that is being
/// provided. This is captured by the \p VectorIndex algorithm. \p VectorIndex
/// is the index used in an ExtractVectorElement, and \p StartingIndex is the
/// byte position we are trying to provide for the LoadCombine. If these do
/// not match, then we can not combine the vector loads. \p Index uses the
/// byte position we are trying to provide for and is matched against the
/// shl and load size. The \p Index algorithm ensures the requested byte is
/// provided for by the pattern, and the pattern does not over provide bytes.
///
///
/// The supported LoadCombine pattern for vector loads is as follows
/// or
/// / \
/// or shl
/// / \ |
/// or shl zext
/// / \ | |
/// shl zext zext EVE*
/// | | | |
/// zext EVE* EVE* LOAD
/// | | |
/// EVE* LOAD LOAD
/// |
/// LOAD
///
/// *ExtractVectorElement
using SDByteProvider = ByteProvider<SDNode *>;
static std::optional<SDByteProvider>
calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth,
std::optional<uint64_t> VectorIndex,
unsigned StartingIndex = 0) {
// Typical i64 by i8 pattern requires recursion up to 8 calls depth
if (Depth == 10)
return std::nullopt;
// Only allow multiple uses if the instruction is a vector load (in which
// case we will use the load for every ExtractVectorElement)
if (Depth && !Op.hasOneUse() &&
(Op.getOpcode() != ISD::LOAD || !Op.getValueType().isVector()))
return std::nullopt;
// Fail to combine if we have encountered anything but a LOAD after handling
// an ExtractVectorElement.
if (Op.getOpcode() != ISD::LOAD && VectorIndex.has_value())
return std::nullopt;
unsigned BitWidth = Op.getValueSizeInBits();
if (BitWidth % 8 != 0)
return std::nullopt;
unsigned ByteWidth = BitWidth / 8;
assert(Index < ByteWidth && "invalid index requested");
(void) ByteWidth;
switch (Op.getOpcode()) {
case ISD::OR: {
auto LHS =
calculateByteProvider(Op->getOperand(0), Index, Depth + 1, VectorIndex);
if (!LHS)
return std::nullopt;
auto RHS =
calculateByteProvider(Op->getOperand(1), Index, Depth + 1, VectorIndex);
if (!RHS)
return std::nullopt;
if (LHS->isConstantZero())
return RHS;
if (RHS->isConstantZero())
return LHS;
return std::nullopt;
}
case ISD::SHL: {
auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
if (!ShiftOp)
return std::nullopt;
uint64_t BitShift = ShiftOp->getZExtValue();
if (BitShift % 8 != 0)
return std::nullopt;
uint64_t ByteShift = BitShift / 8;
// If we are shifting by an amount greater than the index we are trying to
// provide, then do not provide anything. Otherwise, subtract the index by
// the amount we shifted by.
return Index < ByteShift
? SDByteProvider::getConstantZero()
: calculateByteProvider(Op->getOperand(0), Index - ByteShift,
Depth + 1, VectorIndex, Index);
}
case ISD::ANY_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND: {
SDValue NarrowOp = Op->getOperand(0);
unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
if (NarrowBitWidth % 8 != 0)
return std::nullopt;
uint64_t NarrowByteWidth = NarrowBitWidth / 8;
if (Index >= NarrowByteWidth)
return Op.getOpcode() == ISD::ZERO_EXTEND
? std::optional<SDByteProvider>(
SDByteProvider::getConstantZero())
: std::nullopt;
return calculateByteProvider(NarrowOp, Index, Depth + 1, VectorIndex,
StartingIndex);
}
case ISD::BSWAP:
return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1,
Depth + 1, VectorIndex, StartingIndex);
case ISD::EXTRACT_VECTOR_ELT: {
auto OffsetOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
if (!OffsetOp)
return std::nullopt;
VectorIndex = OffsetOp->getZExtValue();
SDValue NarrowOp = Op->getOperand(0);
unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
if (NarrowBitWidth % 8 != 0)
return std::nullopt;
uint64_t NarrowByteWidth = NarrowBitWidth / 8;
// EXTRACT_VECTOR_ELT can extend the element type to the width of the return
// type, leaving the high bits undefined.
if (Index >= NarrowByteWidth)
return std::nullopt;
// Check to see if the position of the element in the vector corresponds
// with the byte we are trying to provide for. In the case of a vector of
// i8, this simply means the VectorIndex == StartingIndex. For non i8 cases,
// the element will provide a range of bytes. For example, if we have a
// vector of i16s, each element provides two bytes (V[1] provides byte 2 and
// 3).
if (*VectorIndex * NarrowByteWidth > StartingIndex)
return std::nullopt;
if ((*VectorIndex + 1) * NarrowByteWidth <= StartingIndex)
return std::nullopt;
return calculateByteProvider(Op->getOperand(0), Index, Depth + 1,
VectorIndex, StartingIndex);
}
case ISD::LOAD: {
auto L = cast<LoadSDNode>(Op.getNode());
if (!L->isSimple() || L->isIndexed())
return std::nullopt;
unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
if (NarrowBitWidth % 8 != 0)
return std::nullopt;
uint64_t NarrowByteWidth = NarrowBitWidth / 8;
// If the width of the load does not reach byte we are trying to provide for
// and it is not a ZEXTLOAD, then the load does not provide for the byte in
// question
if (Index >= NarrowByteWidth)
return L->getExtensionType() == ISD::ZEXTLOAD
? std::optional<SDByteProvider>(
SDByteProvider::getConstantZero())
: std::nullopt;
unsigned BPVectorIndex = VectorIndex.value_or(0U);
return SDByteProvider::getSrc(L, Index, BPVectorIndex);
}
}
return std::nullopt;
}
static unsigned littleEndianByteAt(unsigned BW, unsigned i) {
return i;
}
static unsigned bigEndianByteAt(unsigned BW, unsigned i) {
return BW - i - 1;
}
// Check if the bytes offsets we are looking at match with either big or
// little endian value loaded. Return true for big endian, false for little
// endian, and std::nullopt if match failed.
static std::optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets,
int64_t FirstOffset) {
// The endian can be decided only when it is 2 bytes at least.
unsigned Width = ByteOffsets.size();
if (Width < 2)
return std::nullopt;
bool BigEndian = true, LittleEndian = true;
for (unsigned i = 0; i < Width; i++) {
int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset;
LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i);
BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i);
if (!BigEndian && !LittleEndian)
return std::nullopt;
}
assert((BigEndian != LittleEndian) && "It should be either big endian or"
"little endian");
return BigEndian;
}
// Look through one layer of truncate or extend.
static SDValue stripTruncAndExt(SDValue Value) {
switch (Value.getOpcode()) {
case ISD::TRUNCATE:
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ANY_EXTEND:
return Value.getOperand(0);
}
return SDValue();
}
/// Match a pattern where a wide type scalar value is stored by several narrow
/// stores. Fold it into a single store or a BSWAP and a store if the targets
/// supports it.
///
/// Assuming little endian target:
/// i8 *p = ...
/// i32 val = ...
/// p[0] = (val >> 0) & 0xFF;
/// p[1] = (val >> 8) & 0xFF;
/// p[2] = (val >> 16) & 0xFF;
/// p[3] = (val >> 24) & 0xFF;
/// =>
/// *((i32)p) = val;
///
/// i8 *p = ...
/// i32 val = ...
/// p[0] = (val >> 24) & 0xFF;
/// p[1] = (val >> 16) & 0xFF;
/// p[2] = (val >> 8) & 0xFF;
/// p[3] = (val >> 0) & 0xFF;
/// =>
/// *((i32)p) = BSWAP(val);
SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) {
// The matching looks for "store (trunc x)" patterns that appear early but are
// likely to be replaced by truncating store nodes during combining.
// TODO: If there is evidence that running this later would help, this
// limitation could be removed. Legality checks may need to be added
// for the created store and optional bswap/rotate.
if (LegalOperations || OptLevel == CodeGenOptLevel::None)
return SDValue();
// We only handle merging simple stores of 1-4 bytes.
// TODO: Allow unordered atomics when wider type is legal (see D66309)
EVT MemVT = N->getMemoryVT();
if (!(MemVT == MVT::i8 || MemVT == MVT::i16 || MemVT == MVT::i32) ||
!N->isSimple() || N->isIndexed())
return SDValue();
// Collect all of the stores in the chain, upto the maximum store width (i64).
SDValue Chain = N->getChain();
SmallVector<StoreSDNode *, 8> Stores = {N};
unsigned NarrowNumBits = MemVT.getScalarSizeInBits();
unsigned MaxWideNumBits = 64;
unsigned MaxStores = MaxWideNumBits / NarrowNumBits;
while (auto *Store = dyn_cast<StoreSDNode>(Chain)) {
// All stores must be the same size to ensure that we are writing all of the
// bytes in the wide value.
// This store should have exactly one use as a chain operand for another
// store in the merging set. If there are other chain uses, then the
// transform may not be safe because order of loads/stores outside of this
// set may not be preserved.
// TODO: We could allow multiple sizes by tracking each stored byte.
if (Store->getMemoryVT() != MemVT || !Store->isSimple() ||
Store->isIndexed() || !Store->hasOneUse())
return SDValue();
Stores.push_back(Store);
Chain = Store->getChain();
if (MaxStores < Stores.size())
return SDValue();
}
// There is no reason to continue if we do not have at least a pair of stores.
if (Stores.size() < 2)
return SDValue();
// Handle simple types only.
LLVMContext &Context = *DAG.getContext();
unsigned NumStores = Stores.size();
unsigned WideNumBits = NumStores * NarrowNumBits;
EVT WideVT = EVT::getIntegerVT(Context, WideNumBits);
if (WideVT != MVT::i16 && WideVT != MVT::i32 && WideVT != MVT::i64)
return SDValue();
// Check if all bytes of the source value that we are looking at are stored
// to the same base address. Collect offsets from Base address into OffsetMap.
SDValue SourceValue;
SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX);
int64_t FirstOffset = INT64_MAX;
StoreSDNode *FirstStore = nullptr;
std::optional<BaseIndexOffset> Base;
for (auto *Store : Stores) {
// All the stores store different parts of the CombinedValue. A truncate is
// required to get the partial value.
SDValue Trunc = Store->getValue();
if (Trunc.getOpcode() != ISD::TRUNCATE)
return SDValue();
// Other than the first/last part, a shift operation is required to get the
// offset.
int64_t Offset = 0;
SDValue WideVal = Trunc.getOperand(0);
if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) &&
isa<ConstantSDNode>(WideVal.getOperand(1))) {
// The shift amount must be a constant multiple of the narrow type.
// It is translated to the offset address in the wide source value "y".
//
// x = srl y, ShiftAmtC
// i8 z = trunc x
// store z, ...
uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1);
if (ShiftAmtC % NarrowNumBits != 0)
return SDValue();
// Make sure we aren't reading bits that are shifted in.
if (ShiftAmtC > WideVal.getScalarValueSizeInBits() - NarrowNumBits)
return SDValue();
Offset = ShiftAmtC / NarrowNumBits;
WideVal = WideVal.getOperand(0);
}
// Stores must share the same source value with different offsets.
if (!SourceValue)
SourceValue = WideVal;
else if (SourceValue != WideVal) {
// Truncate and extends can be stripped to see if the values are related.
if (stripTruncAndExt(SourceValue) != WideVal &&
stripTruncAndExt(WideVal) != SourceValue)
return SDValue();
if (WideVal.getScalarValueSizeInBits() >
SourceValue.getScalarValueSizeInBits())
SourceValue = WideVal;
// Give up if the source value type is smaller than the store size.
if (SourceValue.getScalarValueSizeInBits() < WideVT.getScalarSizeInBits())
return SDValue();
}
// Stores must share the same base address.
BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG);
int64_t ByteOffsetFromBase = 0;
if (!Base)
Base = Ptr;
else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
return SDValue();
// Remember the first store.
if (ByteOffsetFromBase < FirstOffset) {
FirstStore = Store;
FirstOffset = ByteOffsetFromBase;
}
// Map the offset in the store and the offset in the combined value, and
// early return if it has been set before.
if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX)
return SDValue();
OffsetMap[Offset] = ByteOffsetFromBase;
}
assert(FirstOffset != INT64_MAX && "First byte offset must be set");
assert(FirstStore && "First store must be set");
// Check that a store of the wide type is both allowed and fast on the target
const DataLayout &Layout = DAG.getDataLayout();
unsigned Fast = 0;
bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT,
*FirstStore->getMemOperand(), &Fast);
if (!Allowed || !Fast)
return SDValue();
// Check if the pieces of the value are going to the expected places in memory
// to merge the stores.
auto checkOffsets = [&](bool MatchLittleEndian) {
if (MatchLittleEndian) {
for (unsigned i = 0; i != NumStores; ++i)
if (OffsetMap[i] != i * (NarrowNumBits / 8) + FirstOffset)
return false;
} else { // MatchBigEndian by reversing loop counter.
for (unsigned i = 0, j = NumStores - 1; i != NumStores; ++i, --j)
if (OffsetMap[j] != i * (NarrowNumBits / 8) + FirstOffset)
return false;
}
return true;
};
// Check if the offsets line up for the native data layout of this target.
bool NeedBswap = false;
bool NeedRotate = false;
if (!checkOffsets(Layout.isLittleEndian())) {
// Special-case: check if byte offsets line up for the opposite endian.
if (NarrowNumBits == 8 && checkOffsets(Layout.isBigEndian()))
NeedBswap = true;
else if (NumStores == 2 && checkOffsets(Layout.isBigEndian()))
NeedRotate = true;
else
return SDValue();
}
SDLoc DL(N);
if (WideVT != SourceValue.getValueType()) {
assert(SourceValue.getValueType().getScalarSizeInBits() > WideNumBits &&
"Unexpected store value to merge");
SourceValue = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SourceValue);
}
// Before legalize we can introduce illegal bswaps/rotates which will be later
// converted to an explicit bswap sequence. This way we end up with a single
// store and byte shuffling instead of several stores and byte shuffling.
if (NeedBswap) {
SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue);
} else if (NeedRotate) {
assert(WideNumBits % 2 == 0 && "Unexpected type for rotate");
SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT);
SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt);
}
SDValue NewStore =
DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(),
FirstStore->getPointerInfo(), FirstStore->getAlign());
// Rely on other DAG combine rules to remove the other individual stores.
DAG.ReplaceAllUsesWith(N, NewStore.getNode());
return NewStore;
}
/// Match a pattern where a wide type scalar value is loaded by several narrow
/// loads and combined by shifts and ors. Fold it into a single load or a load
/// and a BSWAP if the targets supports it.
///
/// Assuming little endian target:
/// i8 *a = ...
/// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
/// =>
/// i32 val = *((i32)a)
///
/// i8 *a = ...
/// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
/// =>
/// i32 val = BSWAP(*((i32)a))
///
/// TODO: This rule matches complex patterns with OR node roots and doesn't
/// interact well with the worklist mechanism. When a part of the pattern is
/// updated (e.g. one of the loads) its direct users are put into the worklist,
/// but the root node of the pattern which triggers the load combine is not
/// necessarily a direct user of the changed node. For example, once the address
/// of t28 load is reassociated load combine won't be triggered:
/// t25: i32 = add t4, Constant:i32<2>
/// t26: i64 = sign_extend t25
/// t27: i64 = add t2, t26
/// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
/// t29: i32 = zero_extend t28
/// t32: i32 = shl t29, Constant:i8<8>
/// t33: i32 = or t23, t32
/// As a possible fix visitLoad can check if the load can be a part of a load
/// combine pattern and add corresponding OR roots to the worklist.
SDValue DAGCombiner::MatchLoadCombine(SDNode *N) {
assert(N->getOpcode() == ISD::OR &&
"Can only match load combining against OR nodes");
// Handles simple types only
EVT VT = N->getValueType(0);
if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
return SDValue();
unsigned ByteWidth = VT.getSizeInBits() / 8;
bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian();
auto MemoryByteOffset = [&](SDByteProvider P) {
assert(P.hasSrc() && "Must be a memory byte provider");
auto *Load = cast<LoadSDNode>(P.Src.value());
unsigned LoadBitWidth = Load->getMemoryVT().getScalarSizeInBits();
assert(LoadBitWidth % 8 == 0 &&
"can only analyze providers for individual bytes not bit");
unsigned LoadByteWidth = LoadBitWidth / 8;
return IsBigEndianTarget ? bigEndianByteAt(LoadByteWidth, P.DestOffset)
: littleEndianByteAt(LoadByteWidth, P.DestOffset);
};
std::optional<BaseIndexOffset> Base;
SDValue Chain;
SmallPtrSet<LoadSDNode *, 8> Loads;
std::optional<SDByteProvider> FirstByteProvider;
int64_t FirstOffset = INT64_MAX;
// Check if all the bytes of the OR we are looking at are loaded from the same
// base address. Collect bytes offsets from Base address in ByteOffsets.
SmallVector<int64_t, 8> ByteOffsets(ByteWidth);
unsigned ZeroExtendedBytes = 0;
for (int i = ByteWidth - 1; i >= 0; --i) {
auto P =
calculateByteProvider(SDValue(N, 0), i, 0, /*VectorIndex*/ std::nullopt,
/*StartingIndex*/ i);
if (!P)
return SDValue();
if (P->isConstantZero()) {
// It's OK for the N most significant bytes to be 0, we can just
// zero-extend the load.
if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i)))
return SDValue();
continue;
}
assert(P->hasSrc() && "provenance should either be memory or zero");
auto *L = cast<LoadSDNode>(P->Src.value());
// All loads must share the same chain
SDValue LChain = L->getChain();
if (!Chain)
Chain = LChain;
else if (Chain != LChain)
return SDValue();
// Loads must share the same base address
BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG);
int64_t ByteOffsetFromBase = 0;
// For vector loads, the expected load combine pattern will have an
// ExtractElement for each index in the vector. While each of these
// ExtractElements will be accessing the same base address as determined
// by the load instruction, the actual bytes they interact with will differ
// due to different ExtractElement indices. To accurately determine the
// byte position of an ExtractElement, we offset the base load ptr with
// the index multiplied by the byte size of each element in the vector.
if (L->getMemoryVT().isVector()) {
unsigned LoadWidthInBit = L->getMemoryVT().getScalarSizeInBits();
if (LoadWidthInBit % 8 != 0)
return SDValue();
unsigned ByteOffsetFromVector = P->SrcOffset * LoadWidthInBit / 8;
Ptr.addToOffset(ByteOffsetFromVector);
}
if (!Base)
Base = Ptr;
else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
return SDValue();
// Calculate the offset of the current byte from the base address
ByteOffsetFromBase += MemoryByteOffset(*P);
ByteOffsets[i] = ByteOffsetFromBase;
// Remember the first byte load
if (ByteOffsetFromBase < FirstOffset) {
FirstByteProvider = P;
FirstOffset = ByteOffsetFromBase;
}
Loads.insert(L);
}
assert(!Loads.empty() && "All the bytes of the value must be loaded from "
"memory, so there must be at least one load which produces the value");
assert(Base && "Base address of the accessed memory location must be set");
assert(FirstOffset != INT64_MAX && "First byte offset must be set");
bool NeedsZext = ZeroExtendedBytes > 0;
EVT MemVT =
EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8);
if (!MemVT.isSimple())
return SDValue();
// Before legalize we can introduce too wide illegal loads which will be later
// split into legal sized loads. This enables us to combine i64 load by i8
// patterns to a couple of i32 loads on 32 bit targets.
if (LegalOperations &&
!TLI.isLoadExtLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, VT,
MemVT))
return SDValue();
// Check if the bytes of the OR we are looking at match with either big or
// little endian value load
std::optional<bool> IsBigEndian = isBigEndian(
ArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset);
if (!IsBigEndian)
return SDValue();
assert(FirstByteProvider && "must be set");
// Ensure that the first byte is loaded from zero offset of the first load.
// So the combined value can be loaded from the first load address.
if (MemoryByteOffset(*FirstByteProvider) != 0)
return SDValue();
auto *FirstLoad = cast<LoadSDNode>(FirstByteProvider->Src.value());
// The node we are looking at matches with the pattern, check if we can
// replace it with a single (possibly zero-extended) load and bswap + shift if
// needed.
// If the load needs byte swap check if the target supports it
bool NeedsBswap = IsBigEndianTarget != *IsBigEndian;
// Before legalize we can introduce illegal bswaps which will be later
// converted to an explicit bswap sequence. This way we end up with a single
// load and byte shuffling instead of several loads and byte shuffling.
// We do not introduce illegal bswaps when zero-extending as this tends to
// introduce too many arithmetic instructions.
if (NeedsBswap && (LegalOperations || NeedsZext) &&
!TLI.isOperationLegal(ISD::BSWAP, VT))
return SDValue();
// If we need to bswap and zero extend, we have to insert a shift. Check that
// it is legal.
if (NeedsBswap && NeedsZext && LegalOperations &&
!TLI.isOperationLegal(ISD::SHL, VT))
return SDValue();
// Check that a load of the wide type is both allowed and fast on the target
unsigned Fast = 0;
bool Allowed =
TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
*FirstLoad->getMemOperand(), &Fast);
if (!Allowed || !Fast)
return SDValue();
SDValue NewLoad =
DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT,
Chain, FirstLoad->getBasePtr(),
FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign());
// Transfer chain users from old loads to the new load.
for (LoadSDNode *L : Loads)
DAG.makeEquivalentMemoryOrdering(L, NewLoad);
if (!NeedsBswap)
return NewLoad;
SDValue ShiftedLoad =
NeedsZext ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad,
DAG.getShiftAmountConstant(ZeroExtendedBytes * 8,
VT, SDLoc(N)))
: NewLoad;
return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad);
}
// If the target has andn, bsl, or a similar bit-select instruction,
// we want to unfold masked merge, with canonical pattern of:
// | A | |B|
// ((x ^ y) & m) ^ y
// | D |
// Into:
// (x & m) | (y & ~m)
// If y is a constant, m is not a 'not', and the 'andn' does not work with
// immediates, we unfold into a different pattern:
// ~(~x & m) & (m | y)
// If x is a constant, m is a 'not', and the 'andn' does not work with
// immediates, we unfold into a different pattern:
// (x | ~m) & ~(~m & ~y)
// NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
// the very least that breaks andnpd / andnps patterns, and because those
// patterns are simplified in IR and shouldn't be created in the DAG
SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) {
assert(N->getOpcode() == ISD::XOR);
// Don't touch 'not' (i.e. where y = -1).
if (isAllOnesOrAllOnesSplat(N->getOperand(1)))
return SDValue();
EVT VT = N->getValueType(0);
// There are 3 commutable operators in the pattern,
// so we have to deal with 8 possible variants of the basic pattern.
SDValue X, Y, M;
auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) {
if (And.getOpcode() != ISD::AND || !And.hasOneUse())
return false;
SDValue Xor = And.getOperand(XorIdx);
if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
return false;
SDValue Xor0 = Xor.getOperand(0);
SDValue Xor1 = Xor.getOperand(1);
// Don't touch 'not' (i.e. where y = -1).
if (isAllOnesOrAllOnesSplat(Xor1))
return false;
if (Other == Xor0)
std::swap(Xor0, Xor1);
if (Other != Xor1)
return false;
X = Xor0;
Y = Xor1;
M = And.getOperand(XorIdx ? 0 : 1);
return true;
};
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) &&
!matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0))
return SDValue();
// Don't do anything if the mask is constant. This should not be reachable.
// InstCombine should have already unfolded this pattern, and DAGCombiner
// probably shouldn't produce it, too.
if (isa<ConstantSDNode>(M.getNode()))
return SDValue();
// We can transform if the target has AndNot
if (!TLI.hasAndNot(M))
return SDValue();
SDLoc DL(N);
// If Y is a constant, check that 'andn' works with immediates. Unless M is
// a bitwise not that would already allow ANDN to be used.
if (!TLI.hasAndNot(Y) && !isBitwiseNot(M)) {
assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable.");
// If not, we need to do a bit more work to make sure andn is still used.
SDValue NotX = DAG.getNOT(DL, X, VT);
SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M);
SDValue NotLHS = DAG.getNOT(DL, LHS, VT);
SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y);
return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS);
}
// If X is a constant and M is a bitwise not, check that 'andn' works with
// immediates.
if (!TLI.hasAndNot(X) && isBitwiseNot(M)) {
assert(TLI.hasAndNot(Y) && "Only mask is a variable? Unreachable.");
// If not, we need to do a bit more work to make sure andn is still used.
SDValue NotM = M.getOperand(0);
SDValue LHS = DAG.getNode(ISD::OR, DL, VT, X, NotM);
SDValue NotY = DAG.getNOT(DL, Y, VT);
SDValue RHS = DAG.getNode(ISD::AND, DL, VT, NotM, NotY);
SDValue NotRHS = DAG.getNOT(DL, RHS, VT);
return DAG.getNode(ISD::AND, DL, VT, LHS, NotRHS);
}
SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M);
SDValue NotM = DAG.getNOT(DL, M, VT);
SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM);
return DAG.getNode(ISD::OR, DL, VT, LHS, RHS);
}
SDValue DAGCombiner::visitXOR(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
SDLoc DL(N);
// fold (xor undef, undef) -> 0. This is a common idiom (misuse).
if (N0.isUndef() && N1.isUndef())
return DAG.getConstant(0, DL, VT);
// fold (xor x, undef) -> undef
if (N0.isUndef())
return N0;
if (N1.isUndef())
return N1;
// fold (xor c1, c2) -> c1^c2
if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1}))
return C;
// canonicalize constant to RHS
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
// fold (xor x, 0) -> x, vector edition
if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
return N0;
}
// fold (xor x, 0) -> x
if (isNullConstant(N1))
return N0;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// reassociate xor
if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags()))
return RXOR;
// Fold xor(vecreduce(x), vecreduce(y)) -> vecreduce(xor(x, y))
if (SDValue SD =
reassociateReduction(ISD::VECREDUCE_XOR, ISD::XOR, DL, VT, N0, N1))
return SD;
// fold (a^b) -> (a|b) iff a and b share no bits.
if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
DAG.haveNoCommonBitsSet(N0, N1))
return DAG.getNode(ISD::OR, DL, VT, N0, N1, SDNodeFlags::Disjoint);
// look for 'add-like' folds:
// XOR(N0,MIN_SIGNED_VALUE) == ADD(N0,MIN_SIGNED_VALUE)
if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) &&
isMinSignedConstant(N1))
if (SDValue Combined = visitADDLike(N))
return Combined;
// fold !(x cc y) -> (x !cc y)
unsigned N0Opcode = N0.getOpcode();
SDValue LHS, RHS, CC;
if (TLI.isConstTrueVal(N1) &&
isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/ true)) {
ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
LHS.getValueType());
if (!LegalOperations ||
TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
switch (N0Opcode) {
default:
llvm_unreachable("Unhandled SetCC Equivalent!");
case ISD::SETCC:
return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC);
case ISD::SELECT_CC:
return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2),
N0.getOperand(3), NotCC);
case ISD::STRICT_FSETCC:
case ISD::STRICT_FSETCCS: {
if (N0.hasOneUse()) {
// FIXME Can we handle multiple uses? Could we token factor the chain
// results from the new/old setcc?
SDValue SetCC =
DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC,
N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS);
CombineTo(N, SetCC);
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1));
recursivelyDeleteUnusedNodes(N0.getNode());
return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
break;
}
}
}
}
// fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() &&
isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
SDValue V = N0.getOperand(0);
SDLoc DL0(N0);
V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V,
DAG.getConstant(1, DL0, V.getValueType()));
AddToWorklist(V.getNode());
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V);
}
// fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
// fold (not (and x, y)) -> (or (not x), (not y)) iff x or y are setcc
if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() &&
(N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) {
unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
return DAG.getNode(NewOpcode, DL, VT, N00, N01);
}
}
// fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
// fold (not (and x, y)) -> (or (not x), (not y)) iff x or y are constants
if (isAllOnesConstant(N1) && N0.hasOneUse() &&
(N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) {
unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
return DAG.getNode(NewOpcode, DL, VT, N00, N01);
}
}
// fold (not (neg x)) -> (add X, -1)
// FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if
// Y is a constant or the subtract has a single use.
if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB &&
isNullConstant(N0.getOperand(0))) {
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1),
DAG.getAllOnesConstant(DL, VT));
}
// fold (not (add X, -1)) -> (neg X)
if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && isAllOnesConstant(N1) &&
isAllOnesOrAllOnesSplat(N0.getOperand(1))) {
return DAG.getNegative(N0.getOperand(0), DL, VT);
}
// fold (xor (and x, y), y) -> (and (not x), y)
if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) {
SDValue X = N0.getOperand(0);
SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
AddToWorklist(NotX.getNode());
return DAG.getNode(ISD::AND, DL, VT, NotX, N1);
}
// fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
if (!LegalOperations || hasOperation(ISD::ABS, VT)) {
SDValue A = N0Opcode == ISD::ADD ? N0 : N1;
SDValue S = N0Opcode == ISD::SRA ? N0 : N1;
if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) {
SDValue A0 = A.getOperand(0), A1 = A.getOperand(1);
SDValue S0 = S.getOperand(0);
if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0))
if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1)))
if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1))
return DAG.getNode(ISD::ABS, DL, VT, S0);
}
}
// fold (xor x, x) -> 0
if (N0 == N1)
return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
// fold (xor (shl 1, x), -1) -> (rotl ~1, x)
// Here is a concrete example of this equivalence:
// i16 x == 14
// i16 shl == 1 << 14 == 16384 == 0b0100000000000000
// i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
//
// =>
//
// i16 ~1 == 0b1111111111111110
// i16 rol(~1, 14) == 0b1011111111111111
//
// Some additional tips to help conceptualize this transform:
// - Try to see the operation as placing a single zero in a value of all ones.
// - There exists no value for x which would allow the result to contain zero.
// - Values of x larger than the bitwidth are undefined and do not require a
// consistent result.
// - Pushing the zero left requires shifting one bits in from the right.
// A rotate left of ~1 is a nice way of achieving the desired result.
if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL &&
isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
return DAG.getNode(ISD::ROTL, DL, VT, DAG.getSignedConstant(~1, DL, VT),
N0.getOperand(1));
}
// Simplify: xor (op x...), (op y...) -> (op (xor x, y))
if (N0Opcode == N1.getOpcode())
if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
return V;
if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG))
return R;
if (SDValue R = foldLogicOfShifts(N, N1, N0, DAG))
return R;
if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG))
return R;
// Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
if (SDValue MM = unfoldMaskedMerge(N))
return MM;
// Simplify the expression using non-local knowledge.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N))
return Combined;
return SDValue();
}
/// If we have a shift-by-constant of a bitwise logic op that itself has a
/// shift-by-constant operand with identical opcode, we may be able to convert
/// that into 2 independent shifts followed by the logic op. This is a
/// throughput improvement.
static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) {
// Match a one-use bitwise logic op.
SDValue LogicOp = Shift->getOperand(0);
if (!LogicOp.hasOneUse())
return SDValue();
unsigned LogicOpcode = LogicOp.getOpcode();
if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR &&
LogicOpcode != ISD::XOR)
return SDValue();
// Find a matching one-use shift by constant.
unsigned ShiftOpcode = Shift->getOpcode();
SDValue C1 = Shift->getOperand(1);
ConstantSDNode *C1Node = isConstOrConstSplat(C1);
assert(C1Node && "Expected a shift with constant operand");
const APInt &C1Val = C1Node->getAPIntValue();
auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp,
const APInt *&ShiftAmtVal) {
if (V.getOpcode() != ShiftOpcode || !V.hasOneUse())
return false;
ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1));
if (!ShiftCNode)
return false;
// Capture the shifted operand and shift amount value.
ShiftOp = V.getOperand(0);
ShiftAmtVal = &ShiftCNode->getAPIntValue();
// Shift amount types do not have to match their operand type, so check that
// the constants are the same width.
if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth())
return false;
// The fold is not valid if the sum of the shift values doesn't fit in the
// given shift amount type.
bool Overflow = false;
APInt NewShiftAmt = C1Val.uadd_ov(*ShiftAmtVal, Overflow);
if (Overflow)
return false;
// The fold is not valid if the sum of the shift values exceeds bitwidth.
if (NewShiftAmt.uge(V.getScalarValueSizeInBits()))
return false;
return true;
};
// Logic ops are commutative, so check each operand for a match.
SDValue X, Y;
const APInt *C0Val;
if (matchFirstShift(LogicOp.getOperand(0), X, C0Val))
Y = LogicOp.getOperand(1);
else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val))
Y = LogicOp.getOperand(0);
else
return SDValue();
// shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
SDLoc DL(Shift);
EVT VT = Shift->getValueType(0);
EVT ShiftAmtVT = Shift->getOperand(1).getValueType();
SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT);
SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC);
SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1);
return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2,
LogicOp->getFlags());
}
/// Handle transforms common to the three shifts, when the shift amount is a
/// constant.
/// We are looking for: (shift being one of shl/sra/srl)
/// shift (binop X, C0), C1
/// And want to transform into:
/// binop (shift X, C1), (shift C0, C1)
SDValue DAGCombiner::visitShiftByConstant(SDNode *N) {
assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand");
// Do not turn a 'not' into a regular xor.
if (isBitwiseNot(N->getOperand(0)))
return SDValue();
// The inner binop must be one-use, since we want to replace it.
SDValue LHS = N->getOperand(0);
if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level))
return SDValue();
// Fold shift(bitop(shift(x,c1),y), c2) -> bitop(shift(x,c1+c2),shift(y,c2)).
if (SDValue R = combineShiftOfShiftedLogic(N, DAG))
return R;
// We want to pull some binops through shifts, so that we have (and (shift))
// instead of (shift (and)), likewise for add, or, xor, etc. This sort of
// thing happens with address calculations, so it's important to canonicalize
// it.
switch (LHS.getOpcode()) {
default:
return SDValue();
case ISD::OR:
case ISD::XOR:
case ISD::AND:
break;
case ISD::ADD:
if (N->getOpcode() != ISD::SHL)
return SDValue(); // only shl(add) not sr[al](add).
break;
}
// FIXME: disable this unless the input to the binop is a shift by a constant
// or is copy/select. Enable this in other cases when figure out it's exactly
// profitable.
SDValue BinOpLHSVal = LHS.getOperand(0);
bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL ||
BinOpLHSVal.getOpcode() == ISD::SRA ||
BinOpLHSVal.getOpcode() == ISD::SRL) &&
isa<ConstantSDNode>(BinOpLHSVal.getOperand(1));
bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg ||
BinOpLHSVal.getOpcode() == ISD::SELECT;
if (!IsShiftByConstant && !IsCopyOrSelect)
return SDValue();
if (IsCopyOrSelect && N->hasOneUse())
return SDValue();
// Attempt to fold the constants, shifting the binop RHS by the shift amount.
SDLoc DL(N);
EVT VT = N->getValueType(0);
if (SDValue NewRHS = DAG.FoldConstantArithmetic(
N->getOpcode(), DL, VT, {LHS.getOperand(1), N->getOperand(1)})) {
SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0),
N->getOperand(1));
return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS);
}
return SDValue();
}
SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
assert(N->getOpcode() == ISD::TRUNCATE);
assert(N->getOperand(0).getOpcode() == ISD::AND);
// (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
EVT TruncVT = N->getValueType(0);
if (N->hasOneUse() && N->getOperand(0).hasOneUse() &&
TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) {
SDValue N01 = N->getOperand(0).getOperand(1);
if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) {
SDLoc DL(N);
SDValue N00 = N->getOperand(0).getOperand(0);
SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00);
SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01);
AddToWorklist(Trunc00.getNode());
AddToWorklist(Trunc01.getNode());
return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01);
}
}
return SDValue();
}
SDValue DAGCombiner::visitRotate(SDNode *N) {
SDLoc dl(N);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
unsigned Bitsize = VT.getScalarSizeInBits();
// fold (rot x, 0) -> x
if (isNullOrNullSplat(N1))
return N0;
// fold (rot x, c) -> x iff (c % BitSize) == 0
if (isPowerOf2_32(Bitsize) && Bitsize > 1) {
APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1);
if (DAG.MaskedValueIsZero(N1, ModuloMask))
return N0;
}
// fold (rot x, c) -> (rot x, c % BitSize)
bool OutOfRange = false;
auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) {
OutOfRange |= C->getAPIntValue().uge(Bitsize);
return true;
};
if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) {
EVT AmtVT = N1.getValueType();
SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT);
if (SDValue Amt =
DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits}))
return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt);
}
// rot i16 X, 8 --> bswap X
auto *RotAmtC = isConstOrConstSplat(N1);
if (RotAmtC && RotAmtC->getAPIntValue() == 8 &&
VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT))
return DAG.getNode(ISD::BSWAP, dl, VT, N0);
// Simplify the operands using demanded-bits information.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND) {
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1);
}
unsigned NextOp = N0.getOpcode();
// fold (rot* (rot* x, c2), c1)
// -> (rot* x, ((c1 % bitsize) +- (c2 % bitsize) + bitsize) % bitsize)
if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) {
bool C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1);
bool C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1));
if (C1 && C2 && N1.getValueType() == N0.getOperand(1).getValueType()) {
EVT ShiftVT = N1.getValueType();
bool SameSide = (N->getOpcode() == NextOp);
unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB;
SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT);
SDValue Norm1 = DAG.FoldConstantArithmetic(ISD::UREM, dl, ShiftVT,
{N1, BitsizeC});
SDValue Norm2 = DAG.FoldConstantArithmetic(ISD::UREM, dl, ShiftVT,
{N0.getOperand(1), BitsizeC});
if (Norm1 && Norm2)
if (SDValue CombinedShift = DAG.FoldConstantArithmetic(
CombineOp, dl, ShiftVT, {Norm1, Norm2})) {
CombinedShift = DAG.FoldConstantArithmetic(ISD::ADD, dl, ShiftVT,
{CombinedShift, BitsizeC});
SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic(
ISD::UREM, dl, ShiftVT, {CombinedShift, BitsizeC});
return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0),
CombinedShiftNorm);
}
}
}
return SDValue();
}
SDValue DAGCombiner::visitSHL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (SDValue V = DAG.simplifyShift(N0, N1))
return V;
SDLoc DL(N);
EVT VT = N0.getValueType();
EVT ShiftVT = N1.getValueType();
unsigned OpSizeInBits = VT.getScalarSizeInBits();
// fold (shl c1, c2) -> c1<<c2
if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {N0, N1}))
return C;
// fold vector ops
if (VT.isVector()) {
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
// If setcc produces all-one true value then:
// (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
if (N1CV && N1CV->isConstant()) {
if (N0.getOpcode() == ISD::AND) {
SDValue N00 = N0->getOperand(0);
SDValue N01 = N0->getOperand(1);
BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
TargetLowering::ZeroOrNegativeOneBooleanContent) {
if (SDValue C =
DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {N01, N1}))
return DAG.getNode(ISD::AND, DL, VT, N00, C);
}
}
}
}
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// if (shl x, c) is known to be zero, return 0
if (DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits)))
return DAG.getConstant(0, DL, VT);
// fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND) {
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
return DAG.getNode(ISD::SHL, DL, VT, N0, NewOp1);
}
// fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
if (N0.getOpcode() == ISD::SHL) {
auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
return (c1 + c2).uge(OpSizeInBits);
};
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
return DAG.getConstant(0, DL, VT);
auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
return (c1 + c2).ult(OpSizeInBits);
};
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum);
}
}
// fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
// For this to be valid, the second form must not preserve any of the bits
// that are shifted out by the inner shift in the first form. This means
// the outer shift size must be >= the number of bits added by the ext.
// As a corollary, we don't care what kind of ext it is.
if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
N0.getOpcode() == ISD::ANY_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND) &&
N0.getOperand(0).getOpcode() == ISD::SHL) {
SDValue N0Op0 = N0.getOperand(0);
SDValue InnerShiftAmt = N0Op0.getOperand(1);
EVT InnerVT = N0Op0.getValueType();
uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits();
auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
return c2.uge(OpSizeInBits - InnerBitwidth) &&
(c1 + c2).uge(OpSizeInBits);
};
if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange,
/*AllowUndefs*/ false,
/*AllowTypeMismatch*/ true))
return DAG.getConstant(0, DL, VT);
auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
return c2.uge(OpSizeInBits - InnerBitwidth) &&
(c1 + c2).ult(OpSizeInBits);
};
if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange,
/*AllowUndefs*/ false,
/*AllowTypeMismatch*/ true)) {
SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0));
SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT);
Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1);
return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum);
}
}
// fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
// Only fold this if the inner zext has no other uses to avoid increasing
// the total number of instructions.
if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
N0.getOperand(0).getOpcode() == ISD::SRL) {
SDValue N0Op0 = N0.getOperand(0);
SDValue InnerShiftAmt = N0Op0.getOperand(1);
auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2);
return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2);
};
if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual,
/*AllowUndefs*/ false,
/*AllowTypeMismatch*/ true)) {
EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType();
SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT);
NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL);
AddToWorklist(NewSHL.getNode());
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
}
}
if (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) {
auto MatchShiftAmount = [OpSizeInBits](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
const APInt &LHSC = LHS->getAPIntValue();
const APInt &RHSC = RHS->getAPIntValue();
return LHSC.ult(OpSizeInBits) && RHSC.ult(OpSizeInBits) &&
LHSC.getZExtValue() <= RHSC.getZExtValue();
};
// fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
// fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 >= C2
if (N0->getFlags().hasExact()) {
if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount,
/*AllowUndefs*/ false,
/*AllowTypeMismatch*/ true)) {
SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01);
return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff);
}
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount,
/*AllowUndefs*/ false,
/*AllowTypeMismatch*/ true)) {
SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1);
return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), Diff);
}
}
// fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
// (and (srl x, (sub c1, c2), MASK)
// Only fold this if the inner shift has no other uses -- if it does,
// folding this will increase the total number of instructions.
if (N0.getOpcode() == ISD::SRL &&
(N0.getOperand(1) == N1 || N0.hasOneUse()) &&
TLI.shouldFoldConstantShiftPairToMask(N, Level)) {
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount,
/*AllowUndefs*/ false,
/*AllowTypeMismatch*/ true)) {
SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1);
SDValue Mask = DAG.getAllOnesConstant(DL, VT);
Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, N01);
Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, Diff);
SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Diff);
return DAG.getNode(ISD::AND, DL, VT, Shift, Mask);
}
if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount,
/*AllowUndefs*/ false,
/*AllowTypeMismatch*/ true)) {
SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01);
SDValue Mask = DAG.getAllOnesConstant(DL, VT);
Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, N1);
SDValue Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff);
return DAG.getNode(ISD::AND, DL, VT, Shift, Mask);
}
}
}
// fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) &&
isConstantOrConstantVector(N1, /* No Opaques */ true)) {
SDValue AllBits = DAG.getAllOnesConstant(DL, VT);
SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1);
return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask);
}
// fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
// fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
// Variant of version done on multiply, except mul by a power of 2 is turned
// into a shift.
if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) &&
TLI.isDesirableToCommuteWithShift(N, Level)) {
SDValue N01 = N0.getOperand(1);
if (SDValue Shl1 =
DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, {N01, N1})) {
SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
AddToWorklist(Shl0.getNode());
SDNodeFlags Flags;
// Preserve the disjoint flag for Or.
if (N0.getOpcode() == ISD::OR && N0->getFlags().hasDisjoint())
Flags |= SDNodeFlags::Disjoint;
return DAG.getNode(N0.getOpcode(), DL, VT, Shl0, Shl1, Flags);
}
}
// fold (shl (sext (add_nsw x, c1)), c2) -> (add (shl (sext x), c2), c1 << c2)
// TODO: Add zext/add_nuw variant with suitable test coverage
// TODO: Should we limit this with isLegalAddImmediate?
if (N0.getOpcode() == ISD::SIGN_EXTEND &&
N0.getOperand(0).getOpcode() == ISD::ADD &&
N0.getOperand(0)->getFlags().hasNoSignedWrap() &&
TLI.isDesirableToCommuteWithShift(N, Level)) {
SDValue Add = N0.getOperand(0);
SDLoc DL(N0);
if (SDValue ExtC = DAG.FoldConstantArithmetic(N0.getOpcode(), DL, VT,
{Add.getOperand(1)})) {
if (SDValue ShlC =
DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {ExtC, N1})) {
SDValue ExtX = DAG.getNode(N0.getOpcode(), DL, VT, Add.getOperand(0));
SDValue ShlX = DAG.getNode(ISD::SHL, DL, VT, ExtX, N1);
return DAG.getNode(ISD::ADD, DL, VT, ShlX, ShlC);
}
}
}
// fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
if (N0.getOpcode() == ISD::MUL && N0->hasOneUse()) {
SDValue N01 = N0.getOperand(1);
if (SDValue Shl =
DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, {N01, N1}))
return DAG.getNode(ISD::MUL, DL, VT, N0.getOperand(0), Shl);
}
ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (N1C && !N1C->isOpaque())
if (SDValue NewSHL = visitShiftByConstant(N))
return NewSHL;
// fold (shl X, cttz(Y)) -> (mul (Y & -Y), X) if cttz is unsupported on the
// target.
if (((N1.getOpcode() == ISD::CTTZ &&
VT.getScalarSizeInBits() <= ShiftVT.getScalarSizeInBits()) ||
N1.getOpcode() == ISD::CTTZ_ZERO_UNDEF) &&
N1.hasOneUse() && !TLI.isOperationLegalOrCustom(ISD::CTTZ, ShiftVT) &&
TLI.isOperationLegalOrCustom(ISD::MUL, VT)) {
SDValue Y = N1.getOperand(0);
SDLoc DL(N);
SDValue NegY = DAG.getNegative(Y, DL, ShiftVT);
SDValue And =
DAG.getZExtOrTrunc(DAG.getNode(ISD::AND, DL, ShiftVT, Y, NegY), DL, VT);
return DAG.getNode(ISD::MUL, DL, VT, And, N0);
}
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)).
if (N0.getOpcode() == ISD::VSCALE && N1C) {
const APInt &C0 = N0.getConstantOperandAPInt(0);
const APInt &C1 = N1C->getAPIntValue();
return DAG.getVScale(DL, VT, C0 << C1);
}
// Fold (shl step_vector(C0), C1) to (step_vector(C0 << C1)).
APInt ShlVal;
if (N0.getOpcode() == ISD::STEP_VECTOR &&
ISD::isConstantSplatVector(N1.getNode(), ShlVal)) {
const APInt &C0 = N0.getConstantOperandAPInt(0);
if (ShlVal.ult(C0.getBitWidth())) {
APInt NewStep = C0 << ShlVal;
return DAG.getStepVector(DL, VT, NewStep);
}
}
return SDValue();
}
// Transform a right shift of a multiply into a multiply-high.
// Examples:
// (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b)
// (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b)
static SDValue combineShiftToMULH(SDNode *N, const SDLoc &DL, SelectionDAG &DAG,
const TargetLowering &TLI) {
assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
"SRL or SRA node is required here!");
// Check the shift amount. Proceed with the transformation if the shift
// amount is constant.
ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1));
if (!ShiftAmtSrc)
return SDValue();
// The operation feeding into the shift must be a multiply.
SDValue ShiftOperand = N->getOperand(0);
if (ShiftOperand.getOpcode() != ISD::MUL)
return SDValue();
// Both operands must be equivalent extend nodes.
SDValue LeftOp = ShiftOperand.getOperand(0);
SDValue RightOp = ShiftOperand.getOperand(1);
bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND;
bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND;
if (!IsSignExt && !IsZeroExt)
return SDValue();
EVT NarrowVT = LeftOp.getOperand(0).getValueType();
unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits();
// return true if U may use the lower bits of its operands
auto UserOfLowerBits = [NarrowVTSize](SDNode *U) {
if (U->getOpcode() != ISD::SRL && U->getOpcode() != ISD::SRA) {
return true;
}
ConstantSDNode *UShiftAmtSrc = isConstOrConstSplat(U->getOperand(1));
if (!UShiftAmtSrc) {
return true;
}
unsigned UShiftAmt = UShiftAmtSrc->getZExtValue();
return UShiftAmt < NarrowVTSize;
};
// If the lower part of the MUL is also used and MUL_LOHI is supported
// do not introduce the MULH in favor of MUL_LOHI
unsigned MulLoHiOp = IsSignExt ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
if (!ShiftOperand.hasOneUse() &&
TLI.isOperationLegalOrCustom(MulLoHiOp, NarrowVT) &&
llvm::any_of(ShiftOperand->users(), UserOfLowerBits)) {
return SDValue();
}
SDValue MulhRightOp;
if (ConstantSDNode *Constant = isConstOrConstSplat(RightOp)) {
unsigned ActiveBits = IsSignExt
? Constant->getAPIntValue().getSignificantBits()
: Constant->getAPIntValue().getActiveBits();
if (ActiveBits > NarrowVTSize)
return SDValue();
MulhRightOp = DAG.getConstant(
Constant->getAPIntValue().trunc(NarrowVT.getScalarSizeInBits()), DL,
NarrowVT);
} else {
if (LeftOp.getOpcode() != RightOp.getOpcode())
return SDValue();
// Check that the two extend nodes are the same type.
if (NarrowVT != RightOp.getOperand(0).getValueType())
return SDValue();
MulhRightOp = RightOp.getOperand(0);
}
EVT WideVT = LeftOp.getValueType();
// Proceed with the transformation if the wide types match.
assert((WideVT == RightOp.getValueType()) &&
"Cannot have a multiply node with two different operand types.");
// Proceed with the transformation if the wide type is twice as large
// as the narrow type.
if (WideVT.getScalarSizeInBits() != 2 * NarrowVTSize)
return SDValue();
// Check the shift amount with the narrow type size.
// Proceed with the transformation if the shift amount is the width
// of the narrow type.
unsigned ShiftAmt = ShiftAmtSrc->getZExtValue();
if (ShiftAmt != NarrowVTSize)
return SDValue();
// If the operation feeding into the MUL is a sign extend (sext),
// we use mulhs. Othewise, zero extends (zext) use mulhu.
unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU;
// Combine to mulh if mulh is legal/custom for the narrow type on the target
// or if it is a vector type then we could transform to an acceptable type and
// rely on legalization to split/combine the result.
if (NarrowVT.isVector()) {
EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), NarrowVT);
if (TransformVT.getVectorElementType() != NarrowVT.getVectorElementType() ||
!TLI.isOperationLegalOrCustom(MulhOpcode, TransformVT))
return SDValue();
} else {
if (!TLI.isOperationLegalOrCustom(MulhOpcode, NarrowVT))
return SDValue();
}
SDValue Result =
DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0), MulhRightOp);
bool IsSigned = N->getOpcode() == ISD::SRA;
return DAG.getExtOrTrunc(IsSigned, Result, DL, WideVT);
}
// fold (bswap (logic_op(bswap(x),y))) -> logic_op(x,bswap(y))
// This helper function accept SDNode with opcode ISD::BSWAP and ISD::BITREVERSE
static SDValue foldBitOrderCrossLogicOp(SDNode *N, SelectionDAG &DAG) {
unsigned Opcode = N->getOpcode();
if (Opcode != ISD::BSWAP && Opcode != ISD::BITREVERSE)
return SDValue();
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
SDLoc DL(N);
SDValue X, Y;
// If both operands are bswap/bitreverse, ignore the multiuse
if (sd_match(N0, m_OneUse(m_BitwiseLogic(m_UnaryOp(Opcode, m_Value(X)),
m_UnaryOp(Opcode, m_Value(Y))))))
return DAG.getNode(N0.getOpcode(), DL, VT, X, Y);
// Otherwise need to ensure logic_op and bswap/bitreverse(x) have one use.
if (sd_match(N0, m_OneUse(m_BitwiseLogic(
m_OneUse(m_UnaryOp(Opcode, m_Value(X))), m_Value(Y))))) {
SDValue NewBitReorder = DAG.getNode(Opcode, DL, VT, Y);
return DAG.getNode(N0.getOpcode(), DL, VT, X, NewBitReorder);
}
return SDValue();
}
SDValue DAGCombiner::visitSRA(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (SDValue V = DAG.simplifyShift(N0, N1))
return V;
SDLoc DL(N);
EVT VT = N0.getValueType();
unsigned OpSizeInBits = VT.getScalarSizeInBits();
// fold (sra c1, c2) -> (sra c1, c2)
if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, DL, VT, {N0, N1}))
return C;
// Arithmetic shifting an all-sign-bit value is a no-op.
// fold (sra 0, x) -> 0
// fold (sra -1, x) -> -1
if (DAG.ComputeNumSignBits(N0) == OpSizeInBits)
return N0;
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
ConstantSDNode *N1C = isConstOrConstSplat(N1);
// fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
// clamp (add c1, c2) to max shift.
if (N0.getOpcode() == ISD::SRA) {
EVT ShiftVT = N1.getValueType();
EVT ShiftSVT = ShiftVT.getScalarType();
SmallVector<SDValue, 16> ShiftValues;
auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
APInt Sum = c1 + c2;
unsigned ShiftSum =
Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue();
ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT));
return true;
};
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) {
SDValue ShiftValue;
if (N1.getOpcode() == ISD::BUILD_VECTOR)
ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues);
else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
assert(ShiftValues.size() == 1 &&
"Expected matchBinaryPredicate to return one element for "
"SPLAT_VECTORs");
ShiftValue = DAG.getSplatVector(ShiftVT, DL, ShiftValues[0]);
} else
ShiftValue = ShiftValues[0];
return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue);
}
}
// fold (sra (shl X, m), (sub result_size, n))
// -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
// result_size - n != m.
// If truncate is free for the target sext(shl) is likely to result in better
// code.
if (N0.getOpcode() == ISD::SHL && N1C) {
// Get the two constants of the shifts, CN0 = m, CN = n.
const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
if (N01C) {
LLVMContext &Ctx = *DAG.getContext();
// Determine what the truncate's result bitsize and type would be.
EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
if (VT.isVector())
TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount());
// Determine the residual right-shift amount.
int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
// If the shift is not a no-op (in which case this should be just a sign
// extend already), the truncated to type is legal, sign_extend is legal
// on that type, and the truncate to that type is both legal and free,
// perform the transform.
if ((ShiftAmt > 0) &&
TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
TLI.isTruncateFree(VT, TruncVT)) {
SDValue Amt = DAG.getShiftAmountConstant(ShiftAmt, VT, DL);
SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
N0.getOperand(0), Amt);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
Shift);
return DAG.getNode(ISD::SIGN_EXTEND, DL,
N->getValueType(0), Trunc);
}
}
}
// We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
// sra (add (shl X, N1C), AddC), N1C -->
// sext (add (trunc X to (width - N1C)), AddC')
// sra (sub AddC, (shl X, N1C)), N1C -->
// sext (sub AddC1',(trunc X to (width - N1C)))
if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB) && N1C &&
N0.hasOneUse()) {
bool IsAdd = N0.getOpcode() == ISD::ADD;
SDValue Shl = N0.getOperand(IsAdd ? 0 : 1);
if (Shl.getOpcode() == ISD::SHL && Shl.getOperand(1) == N1 &&
Shl.hasOneUse()) {
// TODO: AddC does not need to be a splat.
if (ConstantSDNode *AddC =
isConstOrConstSplat(N0.getOperand(IsAdd ? 1 : 0))) {
// Determine what the truncate's type would be and ask the target if
// that is a free operation.
LLVMContext &Ctx = *DAG.getContext();
unsigned ShiftAmt = N1C->getZExtValue();
EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt);
if (VT.isVector())
TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount());
// TODO: The simple type check probably belongs in the default hook
// implementation and/or target-specific overrides (because
// non-simple types likely require masking when legalized), but
// that restriction may conflict with other transforms.
if (TruncVT.isSimple() && isTypeLegal(TruncVT) &&
TLI.isTruncateFree(VT, TruncVT)) {
SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT);
SDValue ShiftC =
DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt).trunc(
TruncVT.getScalarSizeInBits()),
DL, TruncVT);
SDValue Add;
if (IsAdd)
Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC);
else
Add = DAG.getNode(ISD::SUB, DL, TruncVT, ShiftC, Trunc);
return DAG.getSExtOrTrunc(Add, DL, VT);
}
}
}
}
// fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND) {
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
return DAG.getNode(ISD::SRA, DL, VT, N0, NewOp1);
}
// fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
// fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
// if c1 is equal to the number of bits the trunc removes
// TODO - support non-uniform vector shift amounts.
if (N0.getOpcode() == ISD::TRUNCATE &&
(N0.getOperand(0).getOpcode() == ISD::SRL ||
N0.getOperand(0).getOpcode() == ISD::SRA) &&
N0.getOperand(0).hasOneUse() &&
N0.getOperand(0).getOperand(1).hasOneUse() && N1C) {
SDValue N0Op0 = N0.getOperand(0);
if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
EVT LargeVT = N0Op0.getValueType();
unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits;
if (LargeShift->getAPIntValue() == TruncBits) {
EVT LargeShiftVT = getShiftAmountTy(LargeVT);
SDValue Amt = DAG.getZExtOrTrunc(N1, DL, LargeShiftVT);
Amt = DAG.getNode(ISD::ADD, DL, LargeShiftVT, Amt,
DAG.getConstant(TruncBits, DL, LargeShiftVT));
SDValue SRA =
DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt);
return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
}
}
}
// Simplify, based on bits shifted out of the LHS.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// If the sign bit is known to be zero, switch this to a SRL.
if (DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::SRL, DL, VT, N0, N1);
if (N1C && !N1C->isOpaque())
if (SDValue NewSRA = visitShiftByConstant(N))
return NewSRA;
// Try to transform this shift into a multiply-high if
// it matches the appropriate pattern detected in combineShiftToMULH.
if (SDValue MULH = combineShiftToMULH(N, DL, DAG, TLI))
return MULH;
// Attempt to convert a sra of a load into a narrower sign-extending load.
if (SDValue NarrowLoad = reduceLoadWidth(N))
return NarrowLoad;
if (SDValue AVG = foldShiftToAvg(N))
return AVG;
return SDValue();
}
SDValue DAGCombiner::visitSRL(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (SDValue V = DAG.simplifyShift(N0, N1))
return V;
SDLoc DL(N);
EVT VT = N0.getValueType();
EVT ShiftVT = N1.getValueType();
unsigned OpSizeInBits = VT.getScalarSizeInBits();
// fold (srl c1, c2) -> c1 >>u c2
if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, DL, VT, {N0, N1}))
return C;
// fold vector ops
if (VT.isVector())
if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
return FoldedVOp;
if (SDValue NewSel = foldBinOpIntoSelect(N))
return NewSel;
// if (srl x, c) is known to be zero, return 0
ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (N1C &&
DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits)))
return DAG.getConstant(0, DL, VT);
// fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
if (N0.getOpcode() == ISD::SRL) {
auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
return (c1 + c2).uge(OpSizeInBits);
};
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
return DAG.getConstant(0, DL, VT);
auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
APInt c1 = LHS->getAPIntValue();
APInt c2 = RHS->getAPIntValue();
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
return (c1 + c2).ult(OpSizeInBits);
};
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum);
}
}
if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
N0.getOperand(0).getOpcode() == ISD::SRL) {
SDValue InnerShift = N0.getOperand(0);
// TODO - support non-uniform vector shift amounts.
if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) {
uint64_t c1 = N001C->getZExtValue();
uint64_t c2 = N1C->getZExtValue();
EVT InnerShiftVT = InnerShift.getValueType();
EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType();
uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
// srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2)))
// This is only valid if the OpSizeInBits + c1 = size of inner shift.
if (c1 + OpSizeInBits == InnerShiftSize) {
if (c1 + c2 >= InnerShiftSize)
return DAG.getConstant(0, DL, VT);
SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT);
SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT,
InnerShift.getOperand(0), NewShiftAmt);
return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift);
}
// In the more general case, we can clear the high bits after the shift:
// srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask)
if (N0.hasOneUse() && InnerShift.hasOneUse() &&
c1 + c2 < InnerShiftSize) {
SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT);
SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT,
InnerShift.getOperand(0), NewShiftAmt);
SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize,
OpSizeInBits - c2),
DL, InnerShiftVT);
SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask);
return DAG.getNode(ISD::TRUNCATE, DL, VT, And);
}
}
}
// fold (srl (shl x, c1), c2) -> (and (shl x, (sub c1, c2), MASK) or
// (and (srl x, (sub c2, c1), MASK)
if (N0.getOpcode() == ISD::SHL &&
(N0.getOperand(1) == N1 || N0->hasOneUse()) &&
TLI.shouldFoldConstantShiftPairToMask(N, Level)) {
auto MatchShiftAmount = [OpSizeInBits](ConstantSDNode *LHS,
ConstantSDNode *RHS) {
const APInt &LHSC = LHS->getAPIntValue();
const APInt &RHSC = RHS->getAPIntValue();
return LHSC.ult(OpSizeInBits) && RHSC.ult(OpSizeInBits) &&
LHSC.getZExtValue() <= RHSC.getZExtValue();
};
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount,
/*AllowUndefs*/ false,
/*AllowTypeMismatch*/ true)) {
SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1);
SDValue Mask = DAG.getAllOnesConstant(DL, VT);
Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, N01);
Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, Diff);
SDValue Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff);
return DAG.getNode(ISD::AND, DL, VT, Shift, Mask);
}
if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount,
/*AllowUndefs*/ false,
/*AllowTypeMismatch*/ true)) {
SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01);
SDValue Mask = DAG.getAllOnesConstant(DL, VT);
Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, N1);
SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Diff);
return DAG.getNode(ISD::AND, DL, VT, Shift, Mask);
}
}
// fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
// TODO - support non-uniform vector shift amounts.
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
// Shifting in all undef bits?
EVT SmallVT = N0.getOperand(0).getValueType();
unsigned BitSize = SmallVT.getScalarSizeInBits();
if (N1C->getAPIntValue().uge(BitSize))
return DAG.getUNDEF(VT);
if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
uint64_t ShiftAmt = N1C->getZExtValue();
SDLoc DL0(N0);
SDValue SmallShift =
DAG.getNode(ISD::SRL, DL0, SmallVT, N0.getOperand(0),
DAG.getShiftAmountConstant(ShiftAmt, SmallVT, DL0));
AddToWorklist(SmallShift.getNode());
APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt);
return DAG.getNode(ISD::AND, DL, VT,
DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
DAG.getConstant(Mask, DL, VT));
}
}
// fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
// bit, which is unmodified by sra.
if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) {
if (N0.getOpcode() == ISD::SRA)
return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), N1);
}
// fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit), and x has a power
// of two bitwidth. The "5" represents (log2 (bitwidth x)).
if (N1C && N0.getOpcode() == ISD::CTLZ &&
isPowerOf2_32(OpSizeInBits) &&
N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
KnownBits Known = DAG.computeKnownBits(N0.getOperand(0));
// If any of the input bits are KnownOne, then the input couldn't be all
// zeros, thus the result of the srl will always be zero.
if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
// If all of the bits input the to ctlz node are known to be zero, then
// the result of the ctlz is "32" and the result of the shift is one.
APInt UnknownBits = ~Known.Zero;
if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
// Otherwise, check to see if there is exactly one bit input to the ctlz.
if (UnknownBits.isPowerOf2()) {
// Okay, we know that only that the single bit specified by UnknownBits
// could be set on input to the CTLZ node. If this bit is set, the SRL
// will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
// to an SRL/XOR pair, which is likely to simplify more.
unsigned ShAmt = UnknownBits.countr_zero();
SDValue Op = N0.getOperand(0);
if (ShAmt) {
SDLoc DL(N0);
Op = DAG.getNode(ISD::SRL, DL, VT, Op,
DAG.getShiftAmountConstant(ShAmt, VT, DL));
AddToWorklist(Op.getNode());
}
return DAG.getNode(ISD::XOR, DL, VT, Op, DAG.getConstant(1, DL, VT));
}
}
// fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND) {
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
return DAG.getNode(ISD::SRL, DL, VT, N0, NewOp1);
}
// fold (srl (logic_op x, (shl (zext y), c1)), c1)
// -> (logic_op (srl x, c1), (zext y))
// c1 <= leadingzeros(zext(y))
SDValue X, ZExtY;
if (N1C && sd_match(N0, m_OneUse(m_BitwiseLogic(
m_Value(X),
m_OneUse(m_Shl(m_AllOf(m_Value(ZExtY),
m_Opc(ISD::ZERO_EXTEND)),
m_Specific(N1))))))) {
unsigned NumLeadingZeros = ZExtY.getScalarValueSizeInBits() -
ZExtY.getOperand(0).getScalarValueSizeInBits();
if (N1C->getZExtValue() <= NumLeadingZeros)
return DAG.getNode(N0.getOpcode(), SDLoc(N0), VT,
DAG.getNode(ISD::SRL, SDLoc(N0), VT, X, N1), ZExtY);
}
// fold operands of srl based on knowledge that the low bits are not
// demanded.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
if (N1C && !N1C->isOpaque())
if (SDValue NewSRL = visitShiftByConstant(N))
return NewSRL;
// Attempt to convert a srl of a load into a narrower zero-extending load.
if (SDValue NarrowLoad = reduceLoadWidth(N))
return NarrowLoad;
// Here is a common situation. We want to optimize:
//
// %a = ...
// %b = and i32 %a, 2
// %c = srl i32 %b, 1
// brcond i32 %c ...
//
// into
//
// %a = ...
// %b = and %a, 2
// %c = setcc eq %b, 0
// brcond %c ...
//
// However when after the source operand of SRL is optimized into AND, the SRL
// itself may not be optimized further. Look for it and add the BRCOND into
// the worklist.
//
// The also tends to happen for binary operations when SimplifyDemandedBits
// is involved.
//
// FIXME: This is unecessary if we process the DAG in topological order,
// which we plan to do. This workaround can be removed once the DAG is
// processed in topological order.
if (N->hasOneUse()) {
SDNode *User = *N->user_begin();
// Look pass the truncate.
if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse())
User = *User->user_begin();
if (User->getOpcode() == ISD::BRCOND || User->getOpcode() == ISD::AND ||
User->getOpcode() == ISD::OR || User->getOpcode() == ISD::XOR)
AddToWorklist(User);
}
// Try to transform this shift into a multiply-high if
// it matches the appropriate pattern detected in combineShiftToMULH.
if (SDValue MULH = combineShiftToMULH(N, DL, DAG, TLI))
return MULH;
if (SDValue AVG = foldShiftToAvg(N))
return AVG;
return SDValue();
}
SDValue DAGCombiner::visitFunnelShift(SDNode *N) {
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
bool IsFSHL = N->getOpcode() == ISD::FSHL;
unsigned BitWidth = VT.getScalarSizeInBits();
SDLoc DL(N);
// fold (fshl N0, N1, 0) -> N0
// fold (fshr N0, N1, 0) -> N1
if (isPowerOf2_32(BitWidth))
if (DAG.MaskedValueIsZero(
N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1)))
return IsFSHL ? N0 : N1;
auto IsUndefOrZero = [](SDValue V) {
return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true);
};
// TODO - support non-uniform vector shift amounts.
if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) {
EVT ShAmtTy = N2.getValueType();
// fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
if (Cst->getAPIntValue().uge(BitWidth)) {
uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth);
return DAG.getNode(N->getOpcode(), DL, VT, N0, N1,
DAG.getConstant(RotAmt, DL, ShAmtTy));
}
unsigned ShAmt = Cst->getZExtValue();
if (ShAmt == 0)
return IsFSHL ? N0 : N1;
// fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
// fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
// fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
// fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
if (IsUndefOrZero(N0))
return DAG.getNode(
ISD::SRL, DL, VT, N1,
DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, DL, ShAmtTy));
if (IsUndefOrZero(N1))
return DAG.getNode(
ISD::SHL, DL, VT, N0,
DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, DL, ShAmtTy));
// fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
// fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
// TODO - bigendian support once we have test coverage.
// TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine?
// TODO - permit LHS EXTLOAD if extensions are shifted out.
if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() &&
!DAG.getDataLayout().isBigEndian()) {
auto *LHS = dyn_cast<LoadSDNode>(N0);
auto *RHS = dyn_cast<LoadSDNode>(N1);
if (LHS && RHS && LHS->isSimple() && RHS->isSimple() &&
LHS->getAddressSpace() == RHS->getAddressSpace() &&
(LHS->hasNUsesOfValue(1, 0) || RHS->hasNUsesOfValue(1, 0)) &&
ISD::isNON_EXTLoad(RHS) && ISD::isNON_EXTLoad(LHS)) {
if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) {
SDLoc DL(RHS);
uint64_t PtrOff =
IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8);
Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff);
unsigned Fast = 0;
if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
RHS->getAddressSpace(), NewAlign,
RHS->getMemOperand()->getFlags(), &Fast) &&
Fast) {
SDValue NewPtr = DAG.getMemBasePlusOffset(
RHS->getBasePtr(), TypeSize::getFixed(PtrOff), DL);
AddToWorklist(NewPtr.getNode());
SDValue Load = DAG.getLoad(
VT, DL, RHS->getChain(), NewPtr,
RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign,
RHS->getMemOperand()->getFlags(), RHS->getAAInfo());
DAG.makeEquivalentMemoryOrdering(LHS, Load.getValue(1));
DAG.makeEquivalentMemoryOrdering(RHS, Load.getValue(1));
return Load;
}
}
}
}
}
// fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
// fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
// iff We know the shift amount is in range.
// TODO: when is it worth doing SUB(BW, N2) as well?
if (isPowerOf2_32(BitWidth)) {
APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1);
if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
return DAG.getNode(ISD::SRL, DL, VT, N1, N2);
if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
return DAG.getNode(ISD::SHL, DL, VT, N0, N2);
}
// fold (fshl N0, N0, N2) -> (rotl N0, N2)
// fold (fshr N0, N0, N2) -> (rotr N0, N2)
// TODO: Investigate flipping this rotate if only one is legal.
// If funnel shift is legal as well we might be better off avoiding
// non-constant (BW - N2).
unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR;
if (N0 == N1 && hasOperation(RotOpc, VT))
return DAG.getNode(RotOpc, DL, VT, N0, N2);
// Simplify, based on bits shifted out of N0/N1.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
return SDValue();
}
SDValue DAGCombiner::visitSHLSAT(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (SDValue V = DAG.simplifyShift(N0, N1))
return V;
SDLoc DL(N);
EVT VT = N0.getValueType();
// fold (*shlsat c1, c2) -> c1<<c2
if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1}))
return C;
ConstantSDNode *N1C = isConstOrConstSplat(N1);
if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) {
// fold (sshlsat x, c) -> (shl x, c)
if (N->getOpcode() == ISD::SSHLSAT && N1C &&
N1C->getAPIntValue().ult(DAG.ComputeNumSignBits(N0)))
return DAG.getNode(ISD::SHL, DL, VT, N0, N1);
// fold (ushlsat x, c) -> (shl x, c)
if (N->getOpcode() == ISD::USHLSAT && N1C &&
N1C->getAPIntValue().ule(
DAG.computeKnownBits(N0).countMinLeadingZeros()))
return DAG.getNode(ISD::SHL, DL, VT, N0, N1);
}
return SDValue();
}
// Given a ABS node, detect the following patterns:
// (ABS (SUB (EXTEND a), (EXTEND b))).
// (TRUNC (ABS (SUB (EXTEND a), (EXTEND b)))).
// Generates UABD/SABD instruction.
SDValue DAGCombiner::foldABSToABD(SDNode *N, const SDLoc &DL) {
EVT SrcVT = N->getValueType(0);
if (N->getOpcode() == ISD::TRUNCATE)
N = N->getOperand(0).getNode();
EVT VT = N->getValueType(0);
SDValue Op0, Op1;
if (!sd_match(N, m_Abs(m_Sub(m_Value(Op0), m_Value(Op1)))))
return SDValue();
SDValue AbsOp0 = N->getOperand(0);
unsigned Opc0 = Op0.getOpcode();
// Check if the operands of the sub are (zero|sign)-extended.
// TODO: Should we use ValueTracking instead?
if (Opc0 != Op1.getOpcode() ||
(Opc0 != ISD::ZERO_EXTEND && Opc0 != ISD::SIGN_EXTEND &&
Opc0 != ISD::SIGN_EXTEND_INREG)) {
// fold (abs (sub nsw x, y)) -> abds(x, y)
// Don't fold this for unsupported types as we lose the NSW handling.
if (AbsOp0->getFlags().hasNoSignedWrap() && hasOperation(ISD::ABDS, VT) &&
TLI.preferABDSToABSWithNSW(VT)) {
SDValue ABD = DAG.getNode(ISD::ABDS, DL, VT, Op0, Op1);
return DAG.getZExtOrTrunc(ABD, DL, SrcVT);
}
return SDValue();
}
EVT VT0, VT1;
if (Opc0 == ISD::SIGN_EXTEND_INREG) {
VT0 = cast<VTSDNode>(Op0.getOperand(1))->getVT();
VT1 = cast<VTSDNode>(Op1.getOperand(1))->getVT();
} else {
VT0 = Op0.getOperand(0).getValueType();
VT1 = Op1.getOperand(0).getValueType();
}
unsigned ABDOpcode = (Opc0 == ISD::ZERO_EXTEND) ? ISD::ABDU : ISD::ABDS;
// fold abs(sext(x) - sext(y)) -> zext(abds(x, y))
// fold abs(zext(x) - zext(y)) -> zext(abdu(x, y))
EVT MaxVT = VT0.bitsGT(VT1) ? VT0 : VT1;
if ((VT0 == MaxVT || Op0->hasOneUse()) &&
(VT1 == MaxVT || Op1->hasOneUse()) &&
(!LegalTypes || hasOperation(ABDOpcode, MaxVT))) {
SDValue ABD = DAG.getNode(ABDOpcode, DL, MaxVT,
DAG.getNode(ISD::TRUNCATE, DL, MaxVT, Op0),
DAG.getNode(ISD::TRUNCATE, DL, MaxVT, Op1));
ABD = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, ABD);
return DAG.getZExtOrTrunc(ABD, DL, SrcVT);
}
// fold abs(sext(x) - sext(y)) -> abds(sext(x), sext(y))
// fold abs(zext(x) - zext(y)) -> abdu(zext(x), zext(y))
if (!LegalOperations || hasOperation(ABDOpcode, VT)) {
SDValue ABD = DAG.getNode(ABDOpcode, DL, VT, Op0, Op1);
return DAG.getZExtOrTrunc(ABD, DL, SrcVT);
}
return SDValue();
}
SDValue DAGCombiner::visitABS(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
SDLoc DL(N);
// fold (abs c1) -> c2
if (SDValue C = DAG.FoldConstantArithmetic(ISD::ABS, DL, VT, {N0}))
return C;
// fold (abs (abs x)) -> (abs x)
if (N0.getOpcode() == ISD::ABS)
return N0;
// fold (abs x) -> x iff not-negative
if (DAG.SignBitIsZero(N0))
return N0;
if (SDValue ABD = foldABSToABD(N, DL))
return ABD;
// fold (abs (sign_extend_inreg x)) -> (zero_extend (abs (truncate x)))
// iff zero_extend/truncate are free.
if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG) {
EVT ExtVT = cast<VTSDNode>(N0.getOperand(1))->getVT();
if (TLI.isTruncateFree(VT, ExtVT) && TLI.isZExtFree(ExtVT, VT) &&
TLI.isTypeDesirableForOp(ISD::ABS, ExtVT) &&
hasOperation(ISD::ABS, ExtVT)) {
return DAG.getNode(
ISD::ZERO_EXTEND, DL, VT,
DAG.getNode(ISD::ABS, DL, ExtVT,
DAG.getNode(ISD::TRUNCATE, DL, ExtVT, N0.getOperand(0))));
}
}
return SDValue();
}
SDValue DAGCombiner::visitBSWAP(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
SDLoc DL(N);
// fold (bswap c1) -> c2
if (SDValue C = DAG.FoldConstantArithmetic(ISD::BSWAP, DL, VT, {N0}))
return C;
// fold (bswap (bswap x)) -> x
if (N0.getOpcode() == ISD::BSWAP)
return N0.getOperand(0);
// Canonicalize bswap(bitreverse(x)) -> bitreverse(bswap(x)). If bitreverse
// isn't supported, it will be expanded to bswap followed by a manual reversal
// of bits in each byte. By placing bswaps before bitreverse, we can remove
// the two bswaps if the bitreverse gets expanded.
if (N0.getOpcode() == ISD::BITREVERSE && N0.hasOneUse()) {
SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, N0.getOperand(0));
return DAG.getNode(ISD::BITREVERSE, DL, VT, BSwap);
}
// fold (bswap shl(x,c)) -> (zext(bswap(trunc(shl(x,sub(c,bw/2))))))
// iff x >= bw/2 (i.e. lower half is known zero)
unsigned BW = VT.getScalarSizeInBits();
if (BW >= 32 && N0.getOpcode() == ISD::SHL && N0.hasOneUse()) {
auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), BW / 2);
if (ShAmt && ShAmt->getAPIntValue().ult(BW) &&
ShAmt->getZExtValue() >= (BW / 2) &&
(ShAmt->getZExtValue() % 16) == 0 && TLI.isTypeLegal(HalfVT) &&
TLI.isTruncateFree(VT, HalfVT) &&
(!LegalOperations || hasOperation(ISD::BSWAP, HalfVT))) {
SDValue Res = N0.getOperand(0);
if (uint64_t NewShAmt = (ShAmt->getZExtValue() - (BW / 2)))
Res = DAG.getNode(ISD::SHL, DL, VT, Res,
DAG.getShiftAmountConstant(NewShAmt, VT, DL));
Res = DAG.getZExtOrTrunc(Res, DL, HalfVT);
Res = DAG.getNode(ISD::BSWAP, DL, HalfVT, Res);
return DAG.getZExtOrTrunc(Res, DL, VT);
}
}
// Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as
// inverse-shift-of-bswap:
// bswap (X u<< C) --> (bswap X) u>> C
// bswap (X u>> C) --> (bswap X) u<< C
if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
N0.hasOneUse()) {
auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (ShAmt && ShAmt->getAPIntValue().ult(BW) &&
ShAmt->getZExtValue() % 8 == 0) {
SDValue NewSwap = DAG.getNode(ISD::BSWAP, DL, VT, N0.getOperand(0));
unsigned InverseShift = N0.getOpcode() == ISD::SHL ? ISD::SRL : ISD::SHL;
return DAG.getNode(InverseShift, DL, VT, NewSwap, N0.getOperand(1));
}
}
if (SDValue V = foldBitOrderCrossLogicOp(N, DAG))
return V;
return SDValue();
}
SDValue DAGCombiner::visitBITREVERSE(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
SDLoc DL(N);
// fold (bitreverse c1) -> c2
if (SDValue C = DAG.FoldConstantArithmetic(ISD::BITREVERSE, DL, VT, {N0}))
return C;
// fold (bitreverse (bitreverse x)) -> x
if (N0.getOpcode() == ISD::BITREVERSE)
return N0.getOperand(0);
SDValue X, Y;
// fold (bitreverse (lshr (bitreverse x), y)) -> (shl x, y)
if ((!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) &&
sd_match(N, m_BitReverse(m_Srl(m_BitReverse(m_Value(X)), m_Value(Y)))))
return DAG.getNode(ISD::SHL, DL, VT, X, Y);
// fold (bitreverse (shl (bitreverse x), y)) -> (lshr x, y)
if ((!LegalOperations || TLI.isOperationLegal(ISD::SRL, VT)) &&
sd_match(N, m_BitReverse(m_Shl(m_BitReverse(m_Value(X)), m_Value(Y)))))
return DAG.getNode(ISD::SRL, DL, VT, X, Y);
return SDValue();
}
SDValue DAGCombiner::visitCTLZ(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
SDLoc DL(N);
// fold (ctlz c1) -> c2
if (SDValue C = DAG.FoldConstantArithmetic(ISD::CTLZ, DL, VT, {N0}))
return C;
// If the value is known never to be zero, switch to the undef version.
if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT))
if (DAG.isKnownNeverZero(N0))
return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, DL, VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
SDLoc DL(N);
// fold (ctlz_zero_undef c1) -> c2
if (SDValue C =
DAG.FoldConstantArithmetic(ISD::CTLZ_ZERO_UNDEF, DL, VT, {N0}))
return C;
return SDValue();
}
SDValue DAGCombiner::visitCTTZ(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
SDLoc DL(N);
// fold (cttz c1) -> c2
if (SDValue C = DAG.FoldConstantArithmetic(ISD::CTTZ, DL, VT, {N0}))
return C;
// If the value is known never to be zero, switch to the undef version.
if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT))
if (DAG.isKnownNeverZero(N0))
return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, DL, VT, N0);
return SDValue();
}
SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
SDLoc DL(N);
// fold (cttz_zero_undef c1) -> c2
if (SDValue C =
DAG.FoldConstantArithmetic(ISD::CTTZ_ZERO_UNDEF, DL, VT, {N0}))
return C;
return SDValue();
}
SDValue DAGCombiner::visitCTPOP(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
unsigned NumBits = VT.getScalarSizeInBits();
SDLoc DL(N);
// fold (ctpop c1) -> c2
if (SDValue C = DAG.FoldConstantArithmetic(ISD::CTPOP, DL, VT, {N0}))
return C;
// If the source is being shifted, but doesn't affect any active bits,
// then we can call CTPOP on the shift source directly.
if (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SHL) {
if (ConstantSDNode *AmtC = isConstOrConstSplat(N0.getOperand(1))) {
const APInt &Amt = AmtC->getAPIntValue();
if (Amt.ult(NumBits)) {
KnownBits KnownSrc = DAG.computeKnownBits(N0.getOperand(0));
if ((N0.getOpcode() == ISD::SRL &&
Amt.ule(KnownSrc.countMinTrailingZeros())) ||
(N0.getOpcode() == ISD::SHL &&
Amt.ule(KnownSrc.countMinLeadingZeros()))) {
return DAG.getNode(ISD::CTPOP, DL, VT, N0.getOperand(0));
}
}
}
}
// If the upper bits are known to be zero, then see if its profitable to
// only count the lower bits.
if (VT.isScalarInteger() && NumBits > 8 && (NumBits & 1) == 0) {
EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), NumBits / 2);
if (hasOperation(ISD::CTPOP, HalfVT) &&
TLI.isTypeDesirableForOp(ISD::CTPOP, HalfVT) &&
TLI.isTruncateFree(N0, HalfVT) && TLI.isZExtFree(HalfVT, VT)) {
APInt UpperBits = APInt::getHighBitsSet(NumBits, NumBits / 2);
if (DAG.MaskedValueIsZero(N0, UpperBits)) {
SDValue PopCnt = DAG.getNode(ISD::CTPOP, DL, HalfVT,
DAG.getZExtOrTrunc(N0, DL, HalfVT));
return DAG.getZExtOrTrunc(PopCnt, DL, VT);
}
}
}
return SDValue();
}
static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS,
SDValue RHS, const SDNodeFlags Flags,
const TargetLowering &TLI) {
EVT VT = LHS.getValueType();
if (!VT.isFloatingPoint())
return false;
const TargetOptions &Options = DAG.getTarget().Options;
return (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) &&
TLI.isProfitableToCombineMinNumMaxNum(VT) &&
(Flags.hasNoNaNs() ||
(DAG.isKnownNeverNaN(RHS) && DAG.isKnownNeverNaN(LHS)));
}
static SDValue combineMinNumMaxNumImpl(const SDLoc &DL, EVT VT, SDValue LHS,
SDValue RHS, SDValue True, SDValue False,
ISD::CondCode CC,
const TargetLowering &TLI,
SelectionDAG &DAG) {
EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
switch (CC) {
case ISD::SETOLT:
case ISD::SETOLE:
case ISD::SETLT:
case ISD::SETLE:
case ISD::SETULT:
case ISD::SETULE: {
// Since it's known never nan to get here already, either fminnum or
// fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
// expanded in terms of it.
unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
return DAG.getNode(Opcode, DL, VT, LHS, RHS);
return SDValue();
}
case ISD::SETOGT:
case ISD::SETOGE:
case ISD::SETGT:
case ISD::SETGE:
case ISD::SETUGT:
case ISD::SETUGE: {
unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
return DAG.getNode(Opcode, DL, VT, LHS, RHS);
return SDValue();
}
default:
return SDValue();
}
}
SDValue DAGCombiner::foldShiftToAvg(SDNode *N) {
const unsigned Opcode = N->getOpcode();
// Convert (sr[al] (add n[su]w x, y)) -> (avgfloor[su] x, y)
if (Opcode != ISD::SRA && Opcode != ISD::SRL)
return SDValue();
unsigned FloorISD = 0;
auto VT = N->getValueType(0);
bool IsUnsigned = false;
// Decide wether signed or unsigned.
switch (Opcode) {
case ISD::SRA:
if (!hasOperation(ISD::AVGFLOORS, VT))
return SDValue();
FloorISD = ISD::AVGFLOORS;
break;
case ISD::SRL:
IsUnsigned = true;
if (!hasOperation(ISD::AVGFLOORU, VT))
return SDValue();
FloorISD = ISD::AVGFLOORU;
break;
default:
return SDValue();
}
// Captured values.
SDValue A, B, Add;
// Match floor average as it is common to both floor/ceil avgs.
if (!sd_match(N, m_BinOp(Opcode,
m_AllOf(m_Value(Add), m_Add(m_Value(A), m_Value(B))),
m_One())))
return SDValue();
// Can't optimize adds that may wrap.
if (IsUnsigned && !Add->getFlags().hasNoUnsignedWrap())
return SDValue();
if (!IsUnsigned && !Add->getFlags().hasNoSignedWrap())
return SDValue();
return DAG.getNode(FloorISD, SDLoc(N), N->getValueType(0), {A, B});
}
SDValue DAGCombiner::foldBitwiseOpWithNeg(SDNode *N, const SDLoc &DL, EVT VT) {
unsigned Opc = N->getOpcode();
SDValue X, Y, Z;
if (sd_match(
N, m_BitwiseLogic(m_Value(X), m_Add(m_Not(m_Value(Y)), m_Value(Z)))))
return DAG.getNode(Opc, DL, VT, X,
DAG.getNOT(DL, DAG.getNode(ISD::SUB, DL, VT, Y, Z), VT));
if (sd_match(N, m_BitwiseLogic(m_Value(X), m_Sub(m_OneUse(m_Not(m_Value(Y))),
m_Value(Z)))))
return DAG.getNode(Opc, DL, VT, X,
DAG.getNOT(DL, DAG.getNode(ISD::ADD, DL, VT, Y, Z), VT));
return SDValue();
}
/// Generate Min/Max node
SDValue DAGCombiner::combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
SDValue RHS, SDValue True,
SDValue False, ISD::CondCode CC) {
if ((LHS == True && RHS == False) || (LHS == False && RHS == True))
return combineMinNumMaxNumImpl(DL, VT, LHS, RHS, True, False, CC, TLI, DAG);
// If we can't directly match this, try to see if we can pull an fneg out of
// the select.
SDValue NegTrue = TLI.getCheaperOrNeutralNegatedExpression(
True, DAG, LegalOperations, ForCodeSize);
if (!NegTrue)
return SDValue();
HandleSDNode NegTrueHandle(NegTrue);
// Try to unfold an fneg from the select if we are comparing the negated
// constant.
//
// select (setcc x, K) (fneg x), -K -> fneg(minnum(x, K))
//
// TODO: Handle fabs
if (LHS == NegTrue) {
// If we can't directly match this, try to see if we can pull an fneg out of
// the select.
SDValue NegRHS = TLI.getCheaperOrNeutralNegatedExpression(
RHS, DAG, LegalOperations, ForCodeSize);
if (NegRHS) {
HandleSDNode NegRHSHandle(NegRHS);
if (NegRHS == False) {
SDValue Combined = combineMinNumMaxNumImpl(DL, VT, LHS, RHS, NegTrue,
False, CC, TLI, DAG);
if (Combined)
return DAG.getNode(ISD::FNEG, DL, VT, Combined);
}
}
}
return SDValue();
}
/// If a (v)select has a condition value that is a sign-bit test, try to smear
/// the condition operand sign-bit across the value width and use it as a mask.
static SDValue foldSelectOfConstantsUsingSra(SDNode *N, const SDLoc &DL,
SelectionDAG &DAG) {
SDValue Cond = N->getOperand(0);
SDValue C1 = N->getOperand(1);
SDValue C2 = N->getOperand(2);
if (!isConstantOrConstantVector(C1) || !isConstantOrConstantVector(C2))
return SDValue();
EVT VT = N->getValueType(0);
if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() ||
VT != Cond.getOperand(0).getValueType())
return SDValue();
// The inverted-condition + commuted-select variants of these patterns are
// canonicalized to these forms in IR.
SDValue X = Cond.getOperand(0);
SDValue CondC = Cond.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) &&
isAllOnesOrAllOnesSplat(C2)) {
// i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1
SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
return DAG.getNode(ISD::OR, DL, VT, Sra, C1);
}
if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) {
// i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1
SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
return DAG.getNode(ISD::AND, DL, VT, Sra, C1);
}
return SDValue();
}
static bool shouldConvertSelectOfConstantsToMath(const SDValue &Cond, EVT VT,
const TargetLowering &TLI) {
if (!TLI.convertSelectOfConstantsToMath(VT))
return false;
if (Cond.getOpcode() != ISD::SETCC || !Cond->hasOneUse())
return true;
if (!TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
return true;
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
if (CC == ISD::SETLT && isNullOrNullSplat(Cond.getOperand(1)))
return true;
if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(Cond.getOperand(1)))
return true;
return false;
}
SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) {
SDValue Cond = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
EVT VT = N->getValueType(0);
EVT CondVT = Cond.getValueType();
SDLoc DL(N);
if (!VT.isInteger())
return SDValue();
auto *C1 = dyn_cast<ConstantSDNode>(N1);
auto *C2 = dyn_cast<ConstantSDNode>(N2);
if (!C1 || !C2)
return SDValue();
if (CondVT != MVT::i1 || LegalOperations) {
// fold (select Cond, 0, 1) -> (xor Cond, 1)
// We can't do this reliably if integer based booleans have different contents
// to floating point based booleans. This is because we can't tell whether we
// have an integer-based boolean or a floating-point-based boolean unless we
// can find the SETCC that produced it and inspect its operands. This is
// fairly easy if C is the SETCC node, but it can potentially be
// undiscoverable (or not reasonably discoverable). For example, it could be
// in another basic block or it could require searching a complicated
// expression.
if (CondVT.isInteger() &&
TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
TargetLowering::ZeroOrOneBooleanContent &&
TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
TargetLowering::ZeroOrOneBooleanContent &&
C1->isZero() && C2->isOne()) {
SDValue NotCond =
DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT));
if (VT.bitsEq(CondVT))
return NotCond;
return DAG.getZExtOrTrunc(NotCond, DL, VT);
}
return SDValue();
}
// Only do this before legalization to avoid conflicting with target-specific
// transforms in the other direction (create a select from a zext/sext). There
// is also a target-independent combine here in DAGCombiner in the other
// direction for (select Cond, -1, 0) when the condition is not i1.
assert(CondVT == MVT::i1 && !LegalOperations);
// select Cond, 1, 0 --> zext (Cond)
if (C1->isOne() && C2->isZero())
return DAG.getZExtOrTrunc(Cond, DL, VT);
// select Cond, -1, 0 --> sext (Cond)
if (C1->isAllOnes() && C2->isZero())
return DAG.getSExtOrTrunc(Cond, DL, VT);
// select Cond, 0, 1 --> zext (!Cond)
if (C1->isZero() && C2->isOne()) {
SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
NotCond = DAG.getZExtOrTrunc(NotCond, DL, VT);
return NotCond;
}
// select Cond, 0, -1 --> sext (!Cond)
if (C1->isZero() && C2->isAllOnes()) {
SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
NotCond = DAG.getSExtOrTrunc(NotCond, DL, VT);
return NotCond;
}
// Use a target hook because some targets may prefer to transform in the
// other direction.
if (!shouldConvertSelectOfConstantsToMath(Cond, VT, TLI))
return SDValue();
// For any constants that differ by 1, we can transform the select into
// an extend and add.
const APInt &C1Val = C1->getAPIntValue();
const APInt &C2Val = C2->getAPIntValue();
// select Cond, C1, C1-1 --> add (zext Cond), C1-1
if (C1Val - 1 == C2Val) {
Cond = DAG.getZExtOrTrunc(Cond, DL, VT);
return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
}
// select Cond, C1, C1+1 --> add (sext Cond), C1+1
if (C1Val + 1 == C2Val) {
Cond = DAG.getSExtOrTrunc(Cond, DL, VT);
return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
}
// select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2)
if (C1Val.isPowerOf2() && C2Val.isZero()) {
Cond = DAG.getZExtOrTrunc(Cond, DL, VT);
SDValue ShAmtC =
DAG.getShiftAmountConstant(C1Val.exactLogBase2(), VT, DL);
return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC);
}
// select Cond, -1, C --> or (sext Cond), C
if (C1->isAllOnes()) {
Cond = DAG.getSExtOrTrunc(Cond, DL, VT);
return DAG.getNode(ISD::OR, DL, VT, Cond, N2);
}
// select Cond, C, -1 --> or (sext (not Cond)), C
if (C2->isAllOnes()) {
SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
NotCond = DAG.getSExtOrTrunc(NotCond, DL, VT);
return DAG.getNode(ISD::OR, DL, VT, NotCond, N1);
}
if (SDValue V = foldSelectOfConstantsUsingSra(N, DL, DAG))
return V;
return SDValue();
}
template <class MatchContextClass>
static SDValue foldBoolSelectToLogic(SDNode *N, const SDLoc &DL,
SelectionDAG &DAG) {
assert((N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD::VSELECT ||
N->getOpcode() == ISD::VP_SELECT) &&
"Expected a (v)(vp.)select");
SDValue Cond = N->getOperand(0);
SDValue T = N->getOperand(1), F = N->getOperand(2);
EVT VT = N->getValueType(0);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
MatchContextClass matcher(DAG, TLI, N);
if (VT != Cond.getValueType() || VT.getScalarSizeInBits() != 1)
return SDValue();
// select Cond, Cond, F --> or Cond, freeze(F)
// select Cond, 1, F --> or Cond, freeze(F)
if (Cond == T || isOneOrOneSplat(T, /* AllowUndefs */ true))
return matcher.getNode(ISD::OR, DL, VT, Cond, DAG.getFreeze(F));
// select Cond, T, Cond --> and Cond, freeze(T)
// select Cond, T, 0 --> and Cond, freeze(T)
if (Cond == F || isNullOrNullSplat(F, /* AllowUndefs */ true))
return matcher.getNode(ISD::AND, DL, VT, Cond, DAG.getFreeze(T));
// select Cond, T, 1 --> or (not Cond), freeze(T)
if (isOneOrOneSplat(F, /* AllowUndefs */ true)) {
SDValue NotCond =
matcher.getNode(ISD::XOR, DL, VT, Cond, DAG.getAllOnesConstant(DL, VT));
return matcher.getNode(ISD::OR, DL, VT, NotCond, DAG.getFreeze(T));
}
// select Cond, 0, F --> and (not Cond), freeze(F)
if (isNullOrNullSplat(T, /* AllowUndefs */ true)) {
SDValue NotCond =
matcher.getNode(ISD::XOR, DL, VT, Cond, DAG.getAllOnesConstant(DL, VT));
return matcher.getNode(ISD::AND, DL, VT, NotCond, DAG.getFreeze(F));
}
return SDValue();
}
static SDValue foldVSelectToSignBitSplatMask(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
EVT VT = N->getValueType(0);
unsigned EltSizeInBits = VT.getScalarSizeInBits();
SDValue Cond0, Cond1;
ISD::CondCode CC;
if (!sd_match(N0, m_OneUse(m_SetCC(m_Value(Cond0), m_Value(Cond1),
m_CondCode(CC)))) ||
VT != Cond0.getValueType())
return SDValue();
// Match a signbit check of Cond0 as "Cond0 s<0". Swap select operands if the
// compare is inverted from that pattern ("Cond0 s> -1").
if (CC == ISD::SETLT && isNullOrNullSplat(Cond1))
; // This is the pattern we are looking for.
else if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(Cond1))
std::swap(N1, N2);
else
return SDValue();
// (Cond0 s< 0) ? N1 : 0 --> (Cond0 s>> BW-1) & freeze(N1)
if (isNullOrNullSplat(N2)) {
SDLoc DL(N);
SDValue ShiftAmt = DAG.getShiftAmountConstant(EltSizeInBits - 1, VT, DL);
SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt);
return DAG.getNode(ISD::AND, DL, VT, Sra, DAG.getFreeze(N1));
}
// (Cond0 s< 0) ? -1 : N2 --> (Cond0 s>> BW-1) | freeze(N2)
if (isAllOnesOrAllOnesSplat(N1)) {
SDLoc DL(N);
SDValue ShiftAmt = DAG.getShiftAmountConstant(EltSizeInBits - 1, VT, DL);
SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt);
return DAG.getNode(ISD::OR, DL, VT, Sra, DAG.getFreeze(N2));
}
// If we have to invert the sign bit mask, only do that transform if the
// target has a bitwise 'and not' instruction (the invert is free).
// (Cond0 s< -0) ? 0 : N2 --> ~(Cond0 s>> BW-1) & freeze(N2)
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (isNullOrNullSplat(N1) && TLI.hasAndNot(N1)) {
SDLoc DL(N);
SDValue ShiftAmt = DAG.getShiftAmountConstant(EltSizeInBits - 1, VT, DL);
SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt);
SDValue Not = DAG.getNOT(DL, Sra, VT);
return DAG.getNode(ISD::AND, DL, VT, Not, DAG.getFreeze(N2));
}
// TODO: There's another pattern in this family, but it may require
// implementing hasOrNot() to check for profitability:
// (Cond0 s> -1) ? -1 : N2 --> ~(Cond0 s>> BW-1) | freeze(N2)
return SDValue();
}
// Match SELECTs with absolute difference patterns.
// (select (setcc a, b, set?gt), (sub a, b), (sub b, a)) --> (abd? a, b)
// (select (setcc a, b, set?ge), (sub a, b), (sub b, a)) --> (abd? a, b)
// (select (setcc a, b, set?lt), (sub b, a), (sub a, b)) --> (abd? a, b)
// (select (setcc a, b, set?le), (sub b, a), (sub a, b)) --> (abd? a, b)
SDValue DAGCombiner::foldSelectToABD(SDValue LHS, SDValue RHS, SDValue True,
SDValue False, ISD::CondCode CC,
const SDLoc &DL) {
bool IsSigned = isSignedIntSetCC(CC);
unsigned ABDOpc = IsSigned ? ISD::ABDS : ISD::ABDU;
EVT VT = LHS.getValueType();
if (LegalOperations && !hasOperation(ABDOpc, VT))
return SDValue();
switch (CC) {
case ISD::SETGT:
case ISD::SETGE:
case ISD::SETUGT:
case ISD::SETUGE:
if (sd_match(True, m_Sub(m_Specific(LHS), m_Specific(RHS))) &&
sd_match(False, m_Sub(m_Specific(RHS), m_Specific(LHS))))
return DAG.getNode(ABDOpc, DL, VT, LHS, RHS);
if (sd_match(True, m_Sub(m_Specific(RHS), m_Specific(LHS))) &&
sd_match(False, m_Sub(m_Specific(LHS), m_Specific(RHS))) &&
hasOperation(ABDOpc, VT))
return DAG.getNegative(DAG.getNode(ABDOpc, DL, VT, LHS, RHS), DL, VT);
break;
case ISD::SETLT:
case ISD::SETLE:
case ISD::SETULT:
case ISD::SETULE:
if (sd_match(True, m_Sub(m_Specific(RHS), m_Specific(LHS))) &&
sd_match(False, m_Sub(m_Specific(LHS), m_Specific(RHS))))
return DAG.getNode(ABDOpc, DL, VT, LHS, RHS);
if (sd_match(True, m_Sub(m_Specific(LHS), m_Specific(RHS))) &&
sd_match(False, m_Sub(m_Specific(RHS), m_Specific(LHS))) &&
hasOperation(ABDOpc, VT))
return DAG.getNegative(DAG.getNode(ABDOpc, DL, VT, LHS, RHS), DL, VT);
break;
default:
break;
}
return SDValue();
}
SDValue DAGCombiner::visitSELECT(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
EVT VT = N->getValueType(0);
EVT VT0 = N0.getValueType();
SDLoc DL(N);
SDNodeFlags Flags = N->getFlags();
if (SDValue V = DAG.simplifySelect(N0, N1, N2))
return V;
if (SDValue V = foldBoolSelectToLogic<EmptyMatchContext>(N, DL, DAG))
return V;
// select (not Cond), N1, N2 -> select Cond, N2, N1
if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) {
SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1);
SelectOp->setFlags(Flags);
return SelectOp;
}
if (SDValue V = foldSelectOfConstants(N))
return V;
// If we can fold this based on the true/false value, do so.
if (SimplifySelectOps(N, N1, N2))
return SDValue(N, 0); // Don't revisit N.
if (VT0 == MVT::i1) {
// The code in this block deals with the following 2 equivalences:
// select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
// select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
// The target can specify its preferred form with the
// shouldNormalizeToSelectSequence() callback. However we always transform
// to the right anyway if we find the inner select exists in the DAG anyway
// and we always transform to the left side if we know that we can further
// optimize the combination of the conditions.
bool normalizeToSequence =
TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT);
// select (and Cond0, Cond1), X, Y
// -> select Cond0, (select Cond1, X, Y), Y
if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
SDValue Cond0 = N0->getOperand(0);
SDValue Cond1 = N0->getOperand(1);
SDValue InnerSelect =
DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags);
if (normalizeToSequence || !InnerSelect.use_empty())
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0,
InnerSelect, N2, Flags);
// Cleanup on failure.
if (InnerSelect.use_empty())
recursivelyDeleteUnusedNodes(InnerSelect.getNode());
}
// select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
SDValue Cond0 = N0->getOperand(0);
SDValue Cond1 = N0->getOperand(1);
SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(),
Cond1, N1, N2, Flags);
if (normalizeToSequence || !InnerSelect.use_empty())
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1,
InnerSelect, Flags);
// Cleanup on failure.
if (InnerSelect.use_empty())
recursivelyDeleteUnusedNodes(InnerSelect.getNode());
}
// select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
SDValue N1_0 = N1->getOperand(0);
SDValue N1_1 = N1->getOperand(1);
SDValue N1_2 = N1->getOperand(2);
if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
// Create the actual and node if we can generate good code for it.
if (!normalizeToSequence) {
SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0);
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1,
N2, Flags);
}
// Otherwise see if we can optimize the "and" to a better pattern.
if (SDValue Combined = visitANDLike(N0, N1_0, N)) {
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1,
N2, Flags);
}
}
}
// select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
SDValue N2_0 = N2->getOperand(0);
SDValue N2_1 = N2->getOperand(1);
SDValue N2_2 = N2->getOperand(2);
if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
// Create the actual or node if we can generate good code for it.
if (!normalizeToSequence) {
SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0);
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1,
N2_2, Flags);
}
// Otherwise see if we can optimize to a better pattern.
if (SDValue Combined = visitORLike(N0, N2_0, DL))
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1,
N2_2, Flags);
}
}
// select usubo(x, y).overflow, (sub y, x), (usubo x, y) -> abdu(x, y)
if (N0.getOpcode() == ISD::USUBO && N0.getResNo() == 1 &&
N2.getNode() == N0.getNode() && N2.getResNo() == 0 &&
N1.getOpcode() == ISD::SUB && N2.getOperand(0) == N1.getOperand(1) &&
N2.getOperand(1) == N1.getOperand(0) &&
(!LegalOperations || TLI.isOperationLegal(ISD::ABDU, VT)))
return DAG.getNode(ISD::ABDU, DL, VT, N0.getOperand(0), N0.getOperand(1));
// select usubo(x, y).overflow, (usubo x, y), (sub y, x) -> neg (abdu x, y)
if (N0.getOpcode() == ISD::USUBO && N0.getResNo() == 1 &&
N1.getNode() == N0.getNode() && N1.getResNo() == 0 &&
N2.getOpcode() == ISD::SUB && N2.getOperand(0) == N1.getOperand(1) &&
N2.getOperand(1) == N1.getOperand(0) &&
(!LegalOperations || TLI.isOperationLegal(ISD::ABDU, VT)))
return DAG.getNegative(
DAG.getNode(ISD::ABDU, DL, VT, N0.getOperand(0), N0.getOperand(1)),
DL, VT);
}
// Fold selects based on a setcc into other things, such as min/max/abs.
if (N0.getOpcode() == ISD::SETCC) {
SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
// select (fcmp lt x, y), x, y -> fminnum x, y
// select (fcmp gt x, y), x, y -> fmaxnum x, y
//
// This is OK if we don't care what happens if either operand is a NaN.
if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, Flags, TLI))
if (SDValue FMinMax =
combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, CC))
return FMinMax;
// Use 'unsigned add with overflow' to optimize an unsigned saturating add.
// This is conservatively limited to pre-legal-operations to give targets
// a chance to reverse the transform if they want to do that. Also, it is
// unlikely that the pattern would be formed late, so it's probably not
// worth going through the other checks.
if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) &&
CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) &&
N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) {
auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1));
auto *NotC = dyn_cast<ConstantSDNode>(Cond1);
if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) {
// select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
// uaddo Cond0, C; select uaddo.1, -1, uaddo.0
//
// The IR equivalent of this transform would have this form:
// %a = add %x, C
// %c = icmp ugt %x, ~C
// %r = select %c, -1, %a
// =>
// %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
// %u0 = extractvalue %u, 0
// %u1 = extractvalue %u, 1
// %r = select %u1, -1, %u0
SDVTList VTs = DAG.getVTList(VT, VT0);
SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1));
return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0));
}
}
if (TLI.isOperationLegal(ISD::SELECT_CC, VT) ||
(!LegalOperations &&
TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) {
// Any flags available in a select/setcc fold will be on the setcc as they
// migrated from fcmp
Flags = N0->getFlags();
SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1,
N2, N0.getOperand(2));
SelectNode->setFlags(Flags);
return SelectNode;
}
if (SDValue ABD = foldSelectToABD(Cond0, Cond1, N1, N2, CC, DL))
return ABD;
if (SDValue NewSel = SimplifySelect(DL, N0, N1, N2))
return NewSel;
// (select (ugt x, C), (add x, ~C), x) -> (umin (add x, ~C), x)
// (select (ult x, C), x, (add x, -C)) -> (umin x, (add x, -C))
APInt C;
if (sd_match(Cond1, m_ConstInt(C)) && hasUMin(VT)) {
if (CC == ISD::SETUGT && Cond0 == N2 &&
sd_match(N1, m_Add(m_Specific(N2), m_SpecificInt(~C)))) {
// The resulting code relies on an unsigned wrap in ADD.
// Recreating ADD to drop possible nuw/nsw flags.
SDValue AddC = DAG.getConstant(~C, DL, VT);
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N2, AddC);
return DAG.getNode(ISD::UMIN, DL, VT, Add, N2);
}
if (CC == ISD::SETULT && Cond0 == N1 &&
sd_match(N2, m_Add(m_Specific(N1), m_SpecificInt(-C)))) {
// Ditto.
SDValue AddC = DAG.getConstant(-C, DL, VT);
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, AddC);
return DAG.getNode(ISD::UMIN, DL, VT, N1, Add);
}
}
}
if (!VT.isVector())
if (SDValue BinOp = foldSelectOfBinops(N))
return BinOp;
if (SDValue R = combineSelectAsExtAnd(N0, N1, N2, DL, DAG))
return R;
return SDValue();
}
// This function assumes all the vselect's arguments are CONCAT_VECTOR
// nodes and that the condition is a BV of ConstantSDNodes (or undefs).
static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
SDValue Cond = N->getOperand(0);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
EVT VT = N->getValueType(0);
int NumElems = VT.getVectorNumElements();
assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
RHS.getOpcode() == ISD::CONCAT_VECTORS &&
Cond.getOpcode() == ISD::BUILD_VECTOR);
// CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
// binary ones here.
if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
return SDValue();
// We're sure we have an even number of elements due to the
// concat_vectors we have as arguments to vselect.
// Skip BV elements until we find one that's not an UNDEF
// After we find an UNDEF element, keep looping until we get to half the
// length of the BV and see if all the non-undef nodes are the same.
ConstantSDNode *BottomHalf = nullptr;
for (int i = 0; i < NumElems / 2; ++i) {
if (Cond->getOperand(i)->isUndef())
continue;
if (BottomHalf == nullptr)
BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
else if (Cond->getOperand(i).getNode() != BottomHalf)
return SDValue();
}
// Do the same for the second half of the BuildVector
ConstantSDNode *TopHalf = nullptr;
for (int i = NumElems / 2; i < NumElems; ++i) {
if (Cond->getOperand(i)->isUndef())
continue;
if (TopHalf == nullptr)
TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
else if (Cond->getOperand(i).getNode() != TopHalf)
return SDValue();
}
assert(TopHalf && BottomHalf &&
"One half of the selector was all UNDEFs and the other was all the "
"same value. This should have been addressed before this function.");
return DAG.getNode(
ISD::CONCAT_VECTORS, DL, VT,
BottomHalf->isZero() ? RHS->getOperand(0) : LHS->getOperand(0),
TopHalf->isZero() ? RHS->getOperand(1) : LHS->getOperand(1));
}
bool refineUniformBase(SDValue &BasePtr, SDValue &Index, bool IndexIsScaled,
SelectionDAG &DAG, const SDLoc &DL) {
// Only perform the transformation when existing operands can be reused.
if (IndexIsScaled)
return false;
if (!isNullConstant(BasePtr) && !Index.hasOneUse())
return false;
EVT VT = BasePtr.getValueType();
if (SDValue SplatVal = DAG.getSplatValue(Index);
SplatVal && !isNullConstant(SplatVal) &&
SplatVal.getValueType() == VT) {
BasePtr = DAG.getNode(ISD::ADD, DL, VT, BasePtr, SplatVal);
Index = DAG.getSplat(Index.getValueType(), DL, DAG.getConstant(0, DL, VT));
return true;
}
if (Index.getOpcode() != ISD::ADD)
return false;
if (SDValue SplatVal = DAG.getSplatValue(Index.getOperand(0));
SplatVal && SplatVal.getValueType() == VT) {
BasePtr = DAG.getNode(ISD::ADD, DL, VT, BasePtr, SplatVal);
Index = Index.getOperand(1);
return true;
}
if (SDValue SplatVal = DAG.getSplatValue(Index.getOperand(1));
SplatVal && SplatVal.getValueType() == VT) {
BasePtr = DAG.getNode(ISD::ADD, DL, VT, BasePtr, SplatVal);
Index = Index.getOperand(0);
return true;
}
return false;
}
// Fold sext/zext of index into index type.
bool refineIndexType(SDValue &Index, ISD::MemIndexType &IndexType, EVT DataVT,
SelectionDAG &DAG) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// It's always safe to look through zero extends.
if (Index.getOpcode() == ISD::ZERO_EXTEND) {
if (TLI.shouldRemoveExtendFromGSIndex(Index, DataVT)) {
IndexType = ISD::UNSIGNED_SCALED;
Index = Index.getOperand(0);
return true;
}
if (ISD::isIndexTypeSigned(IndexType)) {
IndexType = ISD::UNSIGNED_SCALED;
return true;
}
}
// It's only safe to look through sign extends when Index is signed.
if (Index.getOpcode() == ISD::SIGN_EXTEND &&
ISD::isIndexTypeSigned(IndexType) &&
TLI.shouldRemoveExtendFromGSIndex(Index, DataVT)) {
Index = Index.getOperand(0);
return true;
}
return false;
}
SDValue DAGCombiner::visitVPSCATTER(SDNode *N) {
VPScatterSDNode *MSC = cast<VPScatterSDNode>(N)