| //===- InterleavedAccessPass.cpp ------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Interleaved Access pass, which identifies |
| // interleaved memory accesses and transforms them into target specific |
| // intrinsics. |
| // |
| // An interleaved load reads data from memory into several vectors, with |
| // DE-interleaving the data on a factor. An interleaved store writes several |
| // vectors to memory with RE-interleaving the data on a factor. |
| // |
| // As interleaved accesses are difficult to identified in CodeGen (mainly |
| // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector |
| // IR), we identify and transform them to intrinsics in this pass so the |
| // intrinsics can be easily matched into target specific instructions later in |
| // CodeGen. |
| // |
| // E.g. An interleaved load (Factor = 2): |
| // %wide.vec = load <8 x i32>, <8 x i32>* %ptr |
| // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6> |
| // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7> |
| // |
| // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2 |
| // intrinsic in ARM backend. |
| // |
| // In X86, this can be further optimized into a set of target |
| // specific loads followed by an optimized sequence of shuffles. |
| // |
| // E.g. An interleaved store (Factor = 3): |
| // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, |
| // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> |
| // store <12 x i32> %i.vec, <12 x i32>* %ptr |
| // |
| // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3 |
| // intrinsic in ARM backend. |
| // |
| // Similarly, a set of interleaved stores can be transformed into an optimized |
| // sequence of shuffles followed by a set of target specific stores for X86. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/CodeGen/InterleavedAccess.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include <cassert> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "interleaved-access" |
| |
| static cl::opt<bool> LowerInterleavedAccesses( |
| "lower-interleaved-accesses", |
| cl::desc("Enable lowering interleaved accesses to intrinsics"), |
| cl::init(true), cl::Hidden); |
| |
| namespace { |
| |
| class InterleavedAccessImpl { |
| friend class InterleavedAccess; |
| |
| public: |
| InterleavedAccessImpl() = default; |
| InterleavedAccessImpl(DominatorTree *DT, const TargetLowering *TLI) |
| : DT(DT), TLI(TLI), MaxFactor(TLI->getMaxSupportedInterleaveFactor()) {} |
| bool runOnFunction(Function &F); |
| |
| private: |
| DominatorTree *DT = nullptr; |
| const TargetLowering *TLI = nullptr; |
| |
| /// The maximum supported interleave factor. |
| unsigned MaxFactor = 0u; |
| |
| /// Transform an interleaved load into target specific intrinsics. |
| bool lowerInterleavedLoad(LoadInst *LI, |
| SmallSetVector<Instruction *, 32> &DeadInsts); |
| |
| /// Transform an interleaved store into target specific intrinsics. |
| bool lowerInterleavedStore(StoreInst *SI, |
| SmallSetVector<Instruction *, 32> &DeadInsts); |
| |
| /// Transform a load and a deinterleave intrinsic into target specific |
| /// instructions. |
| bool lowerDeinterleaveIntrinsic(IntrinsicInst *II, |
| SmallSetVector<Instruction *, 32> &DeadInsts); |
| |
| /// Transform an interleave intrinsic and a store into target specific |
| /// instructions. |
| bool lowerInterleaveIntrinsic(IntrinsicInst *II, |
| SmallSetVector<Instruction *, 32> &DeadInsts); |
| |
| /// Returns true if the uses of an interleaved load by the |
| /// extractelement instructions in \p Extracts can be replaced by uses of the |
| /// shufflevector instructions in \p Shuffles instead. If so, the necessary |
| /// replacements are also performed. |
| bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts, |
| ArrayRef<ShuffleVectorInst *> Shuffles); |
| |
| /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them |
| /// to binop(shuffle(x), shuffle(y)) to allow the formation of an |
| /// interleaving load. Any newly created shuffles that operate on \p LI will |
| /// be added to \p Shuffles. Returns true, if any changes to the IR have been |
| /// made. |
| bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles, |
| SmallVectorImpl<ShuffleVectorInst *> &Shuffles, |
| LoadInst *LI); |
| }; |
| |
| class InterleavedAccess : public FunctionPass { |
| InterleavedAccessImpl Impl; |
| |
| public: |
| static char ID; |
| |
| InterleavedAccess() : FunctionPass(ID) { |
| initializeInterleavedAccessPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| StringRef getPassName() const override { return "Interleaved Access Pass"; } |
| |
| bool runOnFunction(Function &F) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.setPreservesCFG(); |
| } |
| }; |
| |
| } // end anonymous namespace. |
| |
| PreservedAnalyses InterleavedAccessPass::run(Function &F, |
| FunctionAnalysisManager &FAM) { |
| auto *DT = &FAM.getResult<DominatorTreeAnalysis>(F); |
| auto *TLI = TM->getSubtargetImpl(F)->getTargetLowering(); |
| InterleavedAccessImpl Impl(DT, TLI); |
| bool Changed = Impl.runOnFunction(F); |
| |
| if (!Changed) |
| return PreservedAnalyses::all(); |
| |
| PreservedAnalyses PA; |
| PA.preserveSet<CFGAnalyses>(); |
| return PA; |
| } |
| |
| char InterleavedAccess::ID = 0; |
| |
| bool InterleavedAccess::runOnFunction(Function &F) { |
| auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); |
| if (!TPC || !LowerInterleavedAccesses) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n"); |
| |
| Impl.DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| auto &TM = TPC->getTM<TargetMachine>(); |
| Impl.TLI = TM.getSubtargetImpl(F)->getTargetLowering(); |
| Impl.MaxFactor = Impl.TLI->getMaxSupportedInterleaveFactor(); |
| |
| return Impl.runOnFunction(F); |
| } |
| |
| INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE, |
| "Lower interleaved memory accesses to target specific intrinsics", false, |
| false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE, |
| "Lower interleaved memory accesses to target specific intrinsics", false, |
| false) |
| |
| FunctionPass *llvm::createInterleavedAccessPass() { |
| return new InterleavedAccess(); |
| } |
| |
| /// Check if the mask is a DE-interleave mask for an interleaved load. |
| /// |
| /// E.g. DE-interleave masks (Factor = 2) could be: |
| /// <0, 2, 4, 6> (mask of index 0 to extract even elements) |
| /// <1, 3, 5, 7> (mask of index 1 to extract odd elements) |
| static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, |
| unsigned &Index, unsigned MaxFactor, |
| unsigned NumLoadElements) { |
| if (Mask.size() < 2) |
| return false; |
| |
| // Check potential Factors. |
| for (Factor = 2; Factor <= MaxFactor; Factor++) { |
| // Make sure we don't produce a load wider than the input load. |
| if (Mask.size() * Factor > NumLoadElements) |
| return false; |
| if (ShuffleVectorInst::isDeInterleaveMaskOfFactor(Mask, Factor, Index)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Check if the mask can be used in an interleaved store. |
| // |
| /// It checks for a more general pattern than the RE-interleave mask. |
| /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...> |
| /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35> |
| /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> |
| /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5> |
| /// |
| /// The particular case of an RE-interleave mask is: |
| /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...> |
| /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7> |
| static bool isReInterleaveMask(ShuffleVectorInst *SVI, unsigned &Factor, |
| unsigned MaxFactor) { |
| unsigned NumElts = SVI->getShuffleMask().size(); |
| if (NumElts < 4) |
| return false; |
| |
| // Check potential Factors. |
| for (Factor = 2; Factor <= MaxFactor; Factor++) { |
| if (SVI->isInterleave(Factor)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool InterleavedAccessImpl::lowerInterleavedLoad( |
| LoadInst *LI, SmallSetVector<Instruction *, 32> &DeadInsts) { |
| if (!LI->isSimple() || isa<ScalableVectorType>(LI->getType())) |
| return false; |
| |
| // Check if all users of this load are shufflevectors. If we encounter any |
| // users that are extractelement instructions or binary operators, we save |
| // them to later check if they can be modified to extract from one of the |
| // shufflevectors instead of the load. |
| |
| SmallVector<ShuffleVectorInst *, 4> Shuffles; |
| SmallVector<ExtractElementInst *, 4> Extracts; |
| // BinOpShuffles need to be handled a single time in case both operands of the |
| // binop are the same load. |
| SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles; |
| |
| for (auto *User : LI->users()) { |
| auto *Extract = dyn_cast<ExtractElementInst>(User); |
| if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) { |
| Extracts.push_back(Extract); |
| continue; |
| } |
| if (auto *BI = dyn_cast<BinaryOperator>(User)) { |
| if (!BI->user_empty() && all_of(BI->users(), [](auto *U) { |
| auto *SVI = dyn_cast<ShuffleVectorInst>(U); |
| return SVI && isa<UndefValue>(SVI->getOperand(1)); |
| })) { |
| for (auto *SVI : BI->users()) |
| BinOpShuffles.insert(cast<ShuffleVectorInst>(SVI)); |
| continue; |
| } |
| } |
| auto *SVI = dyn_cast<ShuffleVectorInst>(User); |
| if (!SVI || !isa<UndefValue>(SVI->getOperand(1))) |
| return false; |
| |
| Shuffles.push_back(SVI); |
| } |
| |
| if (Shuffles.empty() && BinOpShuffles.empty()) |
| return false; |
| |
| unsigned Factor, Index; |
| |
| unsigned NumLoadElements = |
| cast<FixedVectorType>(LI->getType())->getNumElements(); |
| auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0]; |
| // Check if the first shufflevector is DE-interleave shuffle. |
| if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor, |
| NumLoadElements)) |
| return false; |
| |
| // Holds the corresponding index for each DE-interleave shuffle. |
| SmallVector<unsigned, 4> Indices; |
| |
| Type *VecTy = FirstSVI->getType(); |
| |
| // Check if other shufflevectors are also DE-interleaved of the same type |
| // and factor as the first shufflevector. |
| for (auto *Shuffle : Shuffles) { |
| if (Shuffle->getType() != VecTy) |
| return false; |
| if (!ShuffleVectorInst::isDeInterleaveMaskOfFactor( |
| Shuffle->getShuffleMask(), Factor, Index)) |
| return false; |
| |
| assert(Shuffle->getShuffleMask().size() <= NumLoadElements); |
| Indices.push_back(Index); |
| } |
| for (auto *Shuffle : BinOpShuffles) { |
| if (Shuffle->getType() != VecTy) |
| return false; |
| if (!ShuffleVectorInst::isDeInterleaveMaskOfFactor( |
| Shuffle->getShuffleMask(), Factor, Index)) |
| return false; |
| |
| assert(Shuffle->getShuffleMask().size() <= NumLoadElements); |
| |
| if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == LI) |
| Indices.push_back(Index); |
| if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == LI) |
| Indices.push_back(Index); |
| } |
| |
| // Try and modify users of the load that are extractelement instructions to |
| // use the shufflevector instructions instead of the load. |
| if (!tryReplaceExtracts(Extracts, Shuffles)) |
| return false; |
| |
| bool BinOpShuffleChanged = |
| replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI); |
| |
| LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n"); |
| |
| // Try to create target specific intrinsics to replace the load and shuffles. |
| if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) { |
| // If Extracts is not empty, tryReplaceExtracts made changes earlier. |
| return !Extracts.empty() || BinOpShuffleChanged; |
| } |
| |
| DeadInsts.insert(Shuffles.begin(), Shuffles.end()); |
| |
| DeadInsts.insert(LI); |
| return true; |
| } |
| |
| bool InterleavedAccessImpl::replaceBinOpShuffles( |
| ArrayRef<ShuffleVectorInst *> BinOpShuffles, |
| SmallVectorImpl<ShuffleVectorInst *> &Shuffles, LoadInst *LI) { |
| for (auto *SVI : BinOpShuffles) { |
| BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0)); |
| Type *BIOp0Ty = BI->getOperand(0)->getType(); |
| ArrayRef<int> Mask = SVI->getShuffleMask(); |
| assert(all_of(Mask, [&](int Idx) { |
| return Idx < (int)cast<FixedVectorType>(BIOp0Ty)->getNumElements(); |
| })); |
| |
| BasicBlock::iterator insertPos = SVI->getIterator(); |
| auto *NewSVI1 = |
| new ShuffleVectorInst(BI->getOperand(0), PoisonValue::get(BIOp0Ty), |
| Mask, SVI->getName(), insertPos); |
| auto *NewSVI2 = new ShuffleVectorInst( |
| BI->getOperand(1), PoisonValue::get(BI->getOperand(1)->getType()), Mask, |
| SVI->getName(), insertPos); |
| BinaryOperator *NewBI = BinaryOperator::CreateWithCopiedFlags( |
| BI->getOpcode(), NewSVI1, NewSVI2, BI, BI->getName(), insertPos); |
| SVI->replaceAllUsesWith(NewBI); |
| LLVM_DEBUG(dbgs() << " Replaced: " << *BI << "\n And : " << *SVI |
| << "\n With : " << *NewSVI1 << "\n And : " |
| << *NewSVI2 << "\n And : " << *NewBI << "\n"); |
| RecursivelyDeleteTriviallyDeadInstructions(SVI); |
| if (NewSVI1->getOperand(0) == LI) |
| Shuffles.push_back(NewSVI1); |
| if (NewSVI2->getOperand(0) == LI) |
| Shuffles.push_back(NewSVI2); |
| } |
| |
| return !BinOpShuffles.empty(); |
| } |
| |
| bool InterleavedAccessImpl::tryReplaceExtracts( |
| ArrayRef<ExtractElementInst *> Extracts, |
| ArrayRef<ShuffleVectorInst *> Shuffles) { |
| // If there aren't any extractelement instructions to modify, there's nothing |
| // to do. |
| if (Extracts.empty()) |
| return true; |
| |
| // Maps extractelement instructions to vector-index pairs. The extractlement |
| // instructions will be modified to use the new vector and index operands. |
| DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap; |
| |
| for (auto *Extract : Extracts) { |
| // The vector index that is extracted. |
| auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand()); |
| auto Index = IndexOperand->getSExtValue(); |
| |
| // Look for a suitable shufflevector instruction. The goal is to modify the |
| // extractelement instruction (which uses an interleaved load) to use one |
| // of the shufflevector instructions instead of the load. |
| for (auto *Shuffle : Shuffles) { |
| // If the shufflevector instruction doesn't dominate the extract, we |
| // can't create a use of it. |
| if (!DT->dominates(Shuffle, Extract)) |
| continue; |
| |
| // Inspect the indices of the shufflevector instruction. If the shuffle |
| // selects the same index that is extracted, we can modify the |
| // extractelement instruction. |
| SmallVector<int, 4> Indices; |
| Shuffle->getShuffleMask(Indices); |
| for (unsigned I = 0; I < Indices.size(); ++I) |
| if (Indices[I] == Index) { |
| assert(Extract->getOperand(0) == Shuffle->getOperand(0) && |
| "Vector operations do not match"); |
| ReplacementMap[Extract] = std::make_pair(Shuffle, I); |
| break; |
| } |
| |
| // If we found a suitable shufflevector instruction, stop looking. |
| if (ReplacementMap.count(Extract)) |
| break; |
| } |
| |
| // If we did not find a suitable shufflevector instruction, the |
| // extractelement instruction cannot be modified, so we must give up. |
| if (!ReplacementMap.count(Extract)) |
| return false; |
| } |
| |
| // Finally, perform the replacements. |
| IRBuilder<> Builder(Extracts[0]->getContext()); |
| for (auto &Replacement : ReplacementMap) { |
| auto *Extract = Replacement.first; |
| auto *Vector = Replacement.second.first; |
| auto Index = Replacement.second.second; |
| Builder.SetInsertPoint(Extract); |
| Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index)); |
| Extract->eraseFromParent(); |
| } |
| |
| return true; |
| } |
| |
| bool InterleavedAccessImpl::lowerInterleavedStore( |
| StoreInst *SI, SmallSetVector<Instruction *, 32> &DeadInsts) { |
| if (!SI->isSimple()) |
| return false; |
| |
| auto *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand()); |
| if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType())) |
| return false; |
| |
| // Check if the shufflevector is RE-interleave shuffle. |
| unsigned Factor; |
| if (!isReInterleaveMask(SVI, Factor, MaxFactor)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n"); |
| |
| // Try to create target specific intrinsics to replace the store and shuffle. |
| if (!TLI->lowerInterleavedStore(SI, SVI, Factor)) |
| return false; |
| |
| // Already have a new target specific interleaved store. Erase the old store. |
| DeadInsts.insert(SI); |
| DeadInsts.insert(SVI); |
| return true; |
| } |
| |
| // For an (de)interleave tree like this: |
| // |
| // A C B D |
| // |___| |___| |
| // |_____| |
| // | |
| // A B C D |
| // |
| // We will get ABCD at the end while the leaf operands/results |
| // are ACBD, which are also what we initially collected in |
| // getVectorInterleaveFactor / getVectorDeinterleaveFactor. But TLI |
| // hooks (e.g. lowerDeinterleaveIntrinsicToLoad) expect ABCD, so we need |
| // to reorder them by interleaving these values. |
| static void interleaveLeafValues(MutableArrayRef<Value *> SubLeaves) { |
| unsigned NumLeaves = SubLeaves.size(); |
| if (NumLeaves == 2) |
| return; |
| |
| assert(isPowerOf2_32(NumLeaves) && NumLeaves > 1); |
| |
| const unsigned HalfLeaves = NumLeaves / 2; |
| // Visit the sub-trees. |
| interleaveLeafValues(SubLeaves.take_front(HalfLeaves)); |
| interleaveLeafValues(SubLeaves.drop_front(HalfLeaves)); |
| |
| SmallVector<Value *, 8> Buffer; |
| // a0 a1 a2 a3 b0 b1 b2 b3 |
| // -> a0 b0 a1 b1 a2 b2 a3 b3 |
| for (unsigned i = 0U; i < NumLeaves; ++i) |
| Buffer.push_back(SubLeaves[i / 2 + (i % 2 ? HalfLeaves : 0)]); |
| |
| llvm::copy(Buffer, SubLeaves.begin()); |
| } |
| |
| static bool |
| getVectorInterleaveFactor(IntrinsicInst *II, SmallVectorImpl<Value *> &Operands, |
| SmallVectorImpl<Instruction *> &DeadInsts) { |
| assert(II->getIntrinsicID() == Intrinsic::vector_interleave2); |
| |
| // Visit with BFS |
| SmallVector<IntrinsicInst *, 8> Queue; |
| Queue.push_back(II); |
| while (!Queue.empty()) { |
| IntrinsicInst *Current = Queue.front(); |
| Queue.erase(Queue.begin()); |
| |
| // All the intermediate intrinsics will be deleted. |
| DeadInsts.push_back(Current); |
| |
| for (unsigned I = 0; I < 2; ++I) { |
| Value *Op = Current->getOperand(I); |
| if (auto *OpII = dyn_cast<IntrinsicInst>(Op)) |
| if (OpII->getIntrinsicID() == Intrinsic::vector_interleave2) { |
| Queue.push_back(OpII); |
| continue; |
| } |
| |
| // If this is not a perfectly balanced tree, the leaf |
| // result types would be different. |
| if (!Operands.empty() && Op->getType() != Operands.back()->getType()) |
| return false; |
| |
| Operands.push_back(Op); |
| } |
| } |
| |
| const unsigned Factor = Operands.size(); |
| // Currently we only recognize power-of-two factors. |
| // FIXME: should we assert here instead? |
| if (Factor <= 1 || !isPowerOf2_32(Factor)) |
| return false; |
| |
| interleaveLeafValues(Operands); |
| return true; |
| } |
| |
| static bool |
| getVectorDeinterleaveFactor(IntrinsicInst *II, |
| SmallVectorImpl<Value *> &Results, |
| SmallVectorImpl<Instruction *> &DeadInsts) { |
| assert(II->getIntrinsicID() == Intrinsic::vector_deinterleave2); |
| using namespace PatternMatch; |
| if (!II->hasNUses(2)) |
| return false; |
| |
| // Visit with BFS |
| SmallVector<IntrinsicInst *, 8> Queue; |
| Queue.push_back(II); |
| while (!Queue.empty()) { |
| IntrinsicInst *Current = Queue.front(); |
| Queue.erase(Queue.begin()); |
| assert(Current->hasNUses(2)); |
| |
| // All the intermediate intrinsics will be deleted from the bottom-up. |
| DeadInsts.insert(DeadInsts.begin(), Current); |
| |
| ExtractValueInst *LHS = nullptr, *RHS = nullptr; |
| for (User *Usr : Current->users()) { |
| if (!isa<ExtractValueInst>(Usr)) |
| return 0; |
| |
| auto *EV = cast<ExtractValueInst>(Usr); |
| // Intermediate ExtractValue instructions will also be deleted. |
| DeadInsts.insert(DeadInsts.begin(), EV); |
| ArrayRef<unsigned> Indices = EV->getIndices(); |
| if (Indices.size() != 1) |
| return false; |
| |
| if (Indices[0] == 0 && !LHS) |
| LHS = EV; |
| else if (Indices[0] == 1 && !RHS) |
| RHS = EV; |
| else |
| return false; |
| } |
| |
| // We have legal indices. At this point we're either going |
| // to continue the traversal or push the leaf values into Results. |
| for (ExtractValueInst *EV : {LHS, RHS}) { |
| // Continue the traversal. We're playing safe here and matching only the |
| // expression consisting of a perfectly balanced binary tree in which all |
| // intermediate values are only used once. |
| if (EV->hasOneUse() && |
| match(EV->user_back(), |
| m_Intrinsic<Intrinsic::vector_deinterleave2>()) && |
| EV->user_back()->hasNUses(2)) { |
| auto *EVUsr = cast<IntrinsicInst>(EV->user_back()); |
| Queue.push_back(EVUsr); |
| continue; |
| } |
| |
| // If this is not a perfectly balanced tree, the leaf |
| // result types would be different. |
| if (!Results.empty() && EV->getType() != Results.back()->getType()) |
| return false; |
| |
| // Save the leaf value. |
| Results.push_back(EV); |
| } |
| } |
| |
| const unsigned Factor = Results.size(); |
| // Currently we only recognize power-of-two factors. |
| // FIXME: should we assert here instead? |
| if (Factor <= 1 || !isPowerOf2_32(Factor)) |
| return 0; |
| |
| interleaveLeafValues(Results); |
| return true; |
| } |
| |
| // Return the corresponded deinterleaved mask, or nullptr if there is no valid |
| // mask. |
| static Value *getMask(Value *WideMask, unsigned Factor, |
| VectorType *LeafValueTy) { |
| using namespace llvm::PatternMatch; |
| if (auto *IMI = dyn_cast<IntrinsicInst>(WideMask)) { |
| SmallVector<Value *, 8> Operands; |
| SmallVector<Instruction *, 8> DeadInsts; |
| if (getVectorInterleaveFactor(IMI, Operands, DeadInsts)) { |
| assert(!Operands.empty()); |
| if (Operands.size() == Factor && llvm::all_equal(Operands)) |
| return Operands[0]; |
| } |
| } |
| |
| if (match(WideMask, m_AllOnes())) { |
| // Scale the vector length of all-ones mask. |
| ElementCount OrigEC = |
| cast<VectorType>(WideMask->getType())->getElementCount(); |
| assert(OrigEC.getKnownMinValue() % Factor == 0); |
| return ConstantVector::getSplat(OrigEC.divideCoefficientBy(Factor), |
| cast<Constant>(WideMask)->getSplatValue()); |
| } |
| |
| return nullptr; |
| } |
| |
| bool InterleavedAccessImpl::lowerDeinterleaveIntrinsic( |
| IntrinsicInst *DI, SmallSetVector<Instruction *, 32> &DeadInsts) { |
| Value *LoadedVal = DI->getOperand(0); |
| if (!LoadedVal->hasOneUse() || !isa<LoadInst, VPIntrinsic>(LoadedVal)) |
| return false; |
| |
| SmallVector<Value *, 8> DeinterleaveValues; |
| SmallVector<Instruction *, 8> DeinterleaveDeadInsts; |
| if (!getVectorDeinterleaveFactor(DI, DeinterleaveValues, |
| DeinterleaveDeadInsts)) |
| return false; |
| |
| const unsigned Factor = DeinterleaveValues.size(); |
| |
| if (auto *VPLoad = dyn_cast<VPIntrinsic>(LoadedVal)) { |
| if (VPLoad->getIntrinsicID() != Intrinsic::vp_load) |
| return false; |
| // Check mask operand. Handle both all-true and interleaved mask. |
| Value *WideMask = VPLoad->getOperand(1); |
| Value *Mask = getMask(WideMask, Factor, |
| cast<VectorType>(DeinterleaveValues[0]->getType())); |
| if (!Mask) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "IA: Found a vp.load with deinterleave intrinsic " |
| << *DI << " and factor = " << Factor << "\n"); |
| |
| // Since lowerInterleaveLoad expects Shuffles and LoadInst, use special |
| // TLI function to emit target-specific interleaved instruction. |
| if (!TLI->lowerDeinterleavedIntrinsicToVPLoad(VPLoad, Mask, |
| DeinterleaveValues)) |
| return false; |
| |
| } else { |
| auto *LI = cast<LoadInst>(LoadedVal); |
| if (!LI->isSimple()) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "IA: Found a load with deinterleave intrinsic " << *DI |
| << " and factor = " << Factor << "\n"); |
| |
| // Try and match this with target specific intrinsics. |
| if (!TLI->lowerDeinterleaveIntrinsicToLoad(LI, DeinterleaveValues)) |
| return false; |
| } |
| |
| DeadInsts.insert(DeinterleaveDeadInsts.begin(), DeinterleaveDeadInsts.end()); |
| // We now have a target-specific load, so delete the old one. |
| DeadInsts.insert(cast<Instruction>(LoadedVal)); |
| return true; |
| } |
| |
| bool InterleavedAccessImpl::lowerInterleaveIntrinsic( |
| IntrinsicInst *II, SmallSetVector<Instruction *, 32> &DeadInsts) { |
| if (!II->hasOneUse()) |
| return false; |
| Value *StoredBy = II->user_back(); |
| if (!isa<StoreInst, VPIntrinsic>(StoredBy)) |
| return false; |
| |
| SmallVector<Value *, 8> InterleaveValues; |
| SmallVector<Instruction *, 8> InterleaveDeadInsts; |
| if (!getVectorInterleaveFactor(II, InterleaveValues, InterleaveDeadInsts)) |
| return false; |
| |
| const unsigned Factor = InterleaveValues.size(); |
| |
| if (auto *VPStore = dyn_cast<VPIntrinsic>(StoredBy)) { |
| if (VPStore->getIntrinsicID() != Intrinsic::vp_store) |
| return false; |
| |
| Value *WideMask = VPStore->getOperand(2); |
| Value *Mask = getMask(WideMask, Factor, |
| cast<VectorType>(InterleaveValues[0]->getType())); |
| if (!Mask) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "IA: Found a vp.store with interleave intrinsic " |
| << *II << " and factor = " << Factor << "\n"); |
| |
| // Since lowerInterleavedStore expects Shuffle and StoreInst, use special |
| // TLI function to emit target-specific interleaved instruction. |
| if (!TLI->lowerInterleavedIntrinsicToVPStore(VPStore, Mask, |
| InterleaveValues)) |
| return false; |
| } else { |
| auto *SI = cast<StoreInst>(StoredBy); |
| if (!SI->isSimple()) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "IA: Found a store with interleave intrinsic " << *II |
| << " and factor = " << Factor << "\n"); |
| |
| // Try and match this with target specific intrinsics. |
| if (!TLI->lowerInterleaveIntrinsicToStore(SI, InterleaveValues)) |
| return false; |
| } |
| |
| // We now have a target-specific store, so delete the old one. |
| DeadInsts.insert(cast<Instruction>(StoredBy)); |
| DeadInsts.insert(InterleaveDeadInsts.begin(), InterleaveDeadInsts.end()); |
| return true; |
| } |
| |
| bool InterleavedAccessImpl::runOnFunction(Function &F) { |
| // Holds dead instructions that will be erased later. |
| SmallSetVector<Instruction *, 32> DeadInsts; |
| bool Changed = false; |
| |
| for (auto &I : instructions(F)) { |
| if (auto *LI = dyn_cast<LoadInst>(&I)) |
| Changed |= lowerInterleavedLoad(LI, DeadInsts); |
| |
| if (auto *SI = dyn_cast<StoreInst>(&I)) |
| Changed |= lowerInterleavedStore(SI, DeadInsts); |
| |
| if (auto *II = dyn_cast<IntrinsicInst>(&I)) { |
| // At present, we only have intrinsics to represent (de)interleaving |
| // with a factor of 2. |
| if (II->getIntrinsicID() == Intrinsic::vector_deinterleave2) |
| Changed |= lowerDeinterleaveIntrinsic(II, DeadInsts); |
| else if (II->getIntrinsicID() == Intrinsic::vector_interleave2) |
| Changed |= lowerInterleaveIntrinsic(II, DeadInsts); |
| } |
| } |
| |
| for (auto *I : DeadInsts) |
| I->eraseFromParent(); |
| |
| return Changed; |
| } |