blob: 749374a3aa48af2a7f2cf42c2183da65e135c0ef [file] [log] [blame]
//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines routines for folding instructions into constants.
//
// Also, to supplement the basic IR ConstantExpr simplifications,
// this file defines some additional folding routines that can make use of
// DataLayout information. These functions cannot go in IR due to library
// dependency issues.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/Config/config.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantFold.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/IntrinsicsWebAssembly.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cerrno>
#include <cfenv>
#include <cmath>
#include <cstdint>
using namespace llvm;
namespace {
//===----------------------------------------------------------------------===//
// Constant Folding internal helper functions
//===----------------------------------------------------------------------===//
static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
Constant *C, Type *SrcEltTy,
unsigned NumSrcElts,
const DataLayout &DL) {
// Now that we know that the input value is a vector of integers, just shift
// and insert them into our result.
unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
for (unsigned i = 0; i != NumSrcElts; ++i) {
Constant *Element;
if (DL.isLittleEndian())
Element = C->getAggregateElement(NumSrcElts - i - 1);
else
Element = C->getAggregateElement(i);
if (Element && isa<UndefValue>(Element)) {
Result <<= BitShift;
continue;
}
auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
if (!ElementCI)
return ConstantExpr::getBitCast(C, DestTy);
Result <<= BitShift;
Result |= ElementCI->getValue().zext(Result.getBitWidth());
}
return nullptr;
}
/// Constant fold bitcast, symbolically evaluating it with DataLayout.
/// This always returns a non-null constant, but it may be a
/// ConstantExpr if unfoldable.
Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
"Invalid constantexpr bitcast!");
// Catch the obvious splat cases.
if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
return Res;
if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
// Handle a vector->scalar integer/fp cast.
if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
Type *SrcEltTy = VTy->getElementType();
// If the vector is a vector of floating point, convert it to vector of int
// to simplify things.
if (SrcEltTy->isFloatingPointTy()) {
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
auto *SrcIVTy = FixedVectorType::get(
IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
// Ask IR to do the conversion now that #elts line up.
C = ConstantExpr::getBitCast(C, SrcIVTy);
}
APInt Result(DL.getTypeSizeInBits(DestTy), 0);
if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
SrcEltTy, NumSrcElts, DL))
return CE;
if (isa<IntegerType>(DestTy))
return ConstantInt::get(DestTy, Result);
APFloat FP(DestTy->getFltSemantics(), Result);
return ConstantFP::get(DestTy->getContext(), FP);
}
}
// The code below only handles casts to vectors currently.
auto *DestVTy = dyn_cast<VectorType>(DestTy);
if (!DestVTy)
return ConstantExpr::getBitCast(C, DestTy);
// If this is a scalar -> vector cast, convert the input into a <1 x scalar>
// vector so the code below can handle it uniformly.
if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
Constant *Ops = C; // don't take the address of C!
return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
}
// If this is a bitcast from constant vector -> vector, fold it.
if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
return ConstantExpr::getBitCast(C, DestTy);
// If the element types match, IR can fold it.
unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
if (NumDstElt == NumSrcElt)
return ConstantExpr::getBitCast(C, DestTy);
Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
Type *DstEltTy = DestVTy->getElementType();
// Otherwise, we're changing the number of elements in a vector, which
// requires endianness information to do the right thing. For example,
// bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
// folds to (little endian):
// <4 x i32> <i32 0, i32 0, i32 1, i32 0>
// and to (big endian):
// <4 x i32> <i32 0, i32 0, i32 0, i32 1>
// First thing is first. We only want to think about integer here, so if
// we have something in FP form, recast it as integer.
if (DstEltTy->isFloatingPointTy()) {
// Fold to an vector of integers with same size as our FP type.
unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
auto *DestIVTy = FixedVectorType::get(
IntegerType::get(C->getContext(), FPWidth), NumDstElt);
// Recursively handle this integer conversion, if possible.
C = FoldBitCast(C, DestIVTy, DL);
// Finally, IR can handle this now that #elts line up.
return ConstantExpr::getBitCast(C, DestTy);
}
// Okay, we know the destination is integer, if the input is FP, convert
// it to integer first.
if (SrcEltTy->isFloatingPointTy()) {
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
auto *SrcIVTy = FixedVectorType::get(
IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
// Ask IR to do the conversion now that #elts line up.
C = ConstantExpr::getBitCast(C, SrcIVTy);
// If IR wasn't able to fold it, bail out.
if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
!isa<ConstantDataVector>(C))
return C;
}
// Now we know that the input and output vectors are both integer vectors
// of the same size, and that their #elements is not the same. Do the
// conversion here, which depends on whether the input or output has
// more elements.
bool isLittleEndian = DL.isLittleEndian();
SmallVector<Constant*, 32> Result;
if (NumDstElt < NumSrcElt) {
// Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
Constant *Zero = Constant::getNullValue(DstEltTy);
unsigned Ratio = NumSrcElt/NumDstElt;
unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
unsigned SrcElt = 0;
for (unsigned i = 0; i != NumDstElt; ++i) {
// Build each element of the result.
Constant *Elt = Zero;
unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
for (unsigned j = 0; j != Ratio; ++j) {
Constant *Src = C->getAggregateElement(SrcElt++);
if (Src && isa<UndefValue>(Src))
Src = Constant::getNullValue(
cast<VectorType>(C->getType())->getElementType());
else
Src = dyn_cast_or_null<ConstantInt>(Src);
if (!Src) // Reject constantexpr elements.
return ConstantExpr::getBitCast(C, DestTy);
// Zero extend the element to the right size.
Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(),
DL);
assert(Src && "Constant folding cannot fail on plain integers");
// Shift it to the right place, depending on endianness.
Src = ConstantFoldBinaryOpOperands(
Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
DL);
assert(Src && "Constant folding cannot fail on plain integers");
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
// Mix it in.
Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL);
assert(Elt && "Constant folding cannot fail on plain integers");
}
Result.push_back(Elt);
}
return ConstantVector::get(Result);
}
// Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
unsigned Ratio = NumDstElt/NumSrcElt;
unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
// Loop over each source value, expanding into multiple results.
for (unsigned i = 0; i != NumSrcElt; ++i) {
auto *Element = C->getAggregateElement(i);
if (!Element) // Reject constantexpr elements.
return ConstantExpr::getBitCast(C, DestTy);
if (isa<UndefValue>(Element)) {
// Correctly Propagate undef values.
Result.append(Ratio, UndefValue::get(DstEltTy));
continue;
}
auto *Src = dyn_cast<ConstantInt>(Element);
if (!Src)
return ConstantExpr::getBitCast(C, DestTy);
unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
for (unsigned j = 0; j != Ratio; ++j) {
// Shift the piece of the value into the right place, depending on
// endianness.
APInt Elt = Src->getValue().lshr(ShiftAmt);
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
// Truncate and remember this piece.
Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize)));
}
}
return ConstantVector::get(Result);
}
} // end anonymous namespace
/// If this constant is a constant offset from a global, return the global and
/// the constant. Because of constantexprs, this function is recursive.
bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
APInt &Offset, const DataLayout &DL,
DSOLocalEquivalent **DSOEquiv) {
if (DSOEquiv)
*DSOEquiv = nullptr;
// Trivial case, constant is the global.
if ((GV = dyn_cast<GlobalValue>(C))) {
unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
Offset = APInt(BitWidth, 0);
return true;
}
if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
if (DSOEquiv)
*DSOEquiv = FoundDSOEquiv;
GV = FoundDSOEquiv->getGlobalValue();
unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
Offset = APInt(BitWidth, 0);
return true;
}
// Otherwise, if this isn't a constant expr, bail out.
auto *CE = dyn_cast<ConstantExpr>(C);
if (!CE) return false;
// Look through ptr->int and ptr->ptr casts.
if (CE->getOpcode() == Instruction::PtrToInt ||
CE->getOpcode() == Instruction::BitCast)
return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
DSOEquiv);
// i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
auto *GEP = dyn_cast<GEPOperator>(CE);
if (!GEP)
return false;
unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
APInt TmpOffset(BitWidth, 0);
// If the base isn't a global+constant, we aren't either.
if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
DSOEquiv))
return false;
// Otherwise, add any offset that our operands provide.
if (!GEP->accumulateConstantOffset(DL, TmpOffset))
return false;
Offset = TmpOffset;
return true;
}
Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
const DataLayout &DL) {
do {
Type *SrcTy = C->getType();
if (SrcTy == DestTy)
return C;
TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
if (!TypeSize::isKnownGE(SrcSize, DestSize))
return nullptr;
// Catch the obvious splat cases (since all-zeros can coerce non-integral
// pointers legally).
if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
return Res;
// If the type sizes are the same and a cast is legal, just directly
// cast the constant.
// But be careful not to coerce non-integral pointers illegally.
if (SrcSize == DestSize &&
DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
DL.isNonIntegralPointerType(DestTy->getScalarType())) {
Instruction::CastOps Cast = Instruction::BitCast;
// If we are going from a pointer to int or vice versa, we spell the cast
// differently.
if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
Cast = Instruction::IntToPtr;
else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
Cast = Instruction::PtrToInt;
if (CastInst::castIsValid(Cast, C, DestTy))
return ConstantFoldCastOperand(Cast, C, DestTy, DL);
}
// If this isn't an aggregate type, there is nothing we can do to drill down
// and find a bitcastable constant.
if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
return nullptr;
// We're simulating a load through a pointer that was bitcast to point to
// a different type, so we can try to walk down through the initial
// elements of an aggregate to see if some part of the aggregate is
// castable to implement the "load" semantic model.
if (SrcTy->isStructTy()) {
// Struct types might have leading zero-length elements like [0 x i32],
// which are certainly not what we are looking for, so skip them.
unsigned Elem = 0;
Constant *ElemC;
do {
ElemC = C->getAggregateElement(Elem++);
} while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
C = ElemC;
} else {
// For non-byte-sized vector elements, the first element is not
// necessarily located at the vector base address.
if (auto *VT = dyn_cast<VectorType>(SrcTy))
if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
return nullptr;
C = C->getAggregateElement(0u);
}
} while (C);
return nullptr;
}
namespace {
/// Recursive helper to read bits out of global. C is the constant being copied
/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
/// results into and BytesLeft is the number of bytes left in
/// the CurPtr buffer. DL is the DataLayout.
bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
unsigned BytesLeft, const DataLayout &DL) {
assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
"Out of range access");
// If this element is zero or undefined, we can just return since *CurPtr is
// zero initialized.
if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
return true;
if (auto *CI = dyn_cast<ConstantInt>(C)) {
if ((CI->getBitWidth() & 7) != 0)
return false;
const APInt &Val = CI->getValue();
unsigned IntBytes = unsigned(CI->getBitWidth()/8);
for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
unsigned n = ByteOffset;
if (!DL.isLittleEndian())
n = IntBytes - n - 1;
CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue();
++ByteOffset;
}
return true;
}
if (auto *CFP = dyn_cast<ConstantFP>(C)) {
if (CFP->getType()->isDoubleTy()) {
C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
}
if (CFP->getType()->isFloatTy()){
C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
}
if (CFP->getType()->isHalfTy()){
C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
}
return false;
}
if (auto *CS = dyn_cast<ConstantStruct>(C)) {
const StructLayout *SL = DL.getStructLayout(CS->getType());
unsigned Index = SL->getElementContainingOffset(ByteOffset);
uint64_t CurEltOffset = SL->getElementOffset(Index);
ByteOffset -= CurEltOffset;
while (true) {
// If the element access is to the element itself and not to tail padding,
// read the bytes from the element.
uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
if (ByteOffset < EltSize &&
!ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
BytesLeft, DL))
return false;
++Index;
// Check to see if we read from the last struct element, if so we're done.
if (Index == CS->getType()->getNumElements())
return true;
// If we read all of the bytes we needed from this element we're done.
uint64_t NextEltOffset = SL->getElementOffset(Index);
if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
return true;
// Move to the next element of the struct.
CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
ByteOffset = 0;
CurEltOffset = NextEltOffset;
}
// not reached.
}
if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
isa<ConstantDataSequential>(C)) {
uint64_t NumElts, EltSize;
Type *EltTy;
if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
NumElts = AT->getNumElements();
EltTy = AT->getElementType();
EltSize = DL.getTypeAllocSize(EltTy);
} else {
NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
EltTy = cast<FixedVectorType>(C->getType())->getElementType();
// TODO: For non-byte-sized vectors, current implementation assumes there is
// padding to the next byte boundary between elements.
if (!DL.typeSizeEqualsStoreSize(EltTy))
return false;
EltSize = DL.getTypeStoreSize(EltTy);
}
uint64_t Index = ByteOffset / EltSize;
uint64_t Offset = ByteOffset - Index * EltSize;
for (; Index != NumElts; ++Index) {
if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
BytesLeft, DL))
return false;
uint64_t BytesWritten = EltSize - Offset;
assert(BytesWritten <= EltSize && "Not indexing into this element?");
if (BytesWritten >= BytesLeft)
return true;
Offset = 0;
BytesLeft -= BytesWritten;
CurPtr += BytesWritten;
}
return true;
}
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::IntToPtr &&
CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
BytesLeft, DL);
}
}
// Otherwise, unknown initializer type.
return false;
}
Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
int64_t Offset, const DataLayout &DL) {
// Bail out early. Not expect to load from scalable global variable.
if (isa<ScalableVectorType>(LoadTy))
return nullptr;
auto *IntType = dyn_cast<IntegerType>(LoadTy);
// If this isn't an integer load we can't fold it directly.
if (!IntType) {
// If this is a non-integer load, we can try folding it as an int load and
// then bitcast the result. This can be useful for union cases. Note
// that address spaces don't matter here since we're not going to result in
// an actual new load.
if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
!LoadTy->isVectorTy())
return nullptr;
Type *MapTy = Type::getIntNTy(C->getContext(),
DL.getTypeSizeInBits(LoadTy).getFixedValue());
if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
!LoadTy->isX86_AMXTy())
// Materializing a zero can be done trivially without a bitcast
return Constant::getNullValue(LoadTy);
Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
Res = FoldBitCast(Res, CastTy, DL);
if (LoadTy->isPtrOrPtrVectorTy()) {
// For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
!LoadTy->isX86_AMXTy())
return Constant::getNullValue(LoadTy);
if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
// Be careful not to replace a load of an addrspace value with an inttoptr here
return nullptr;
Res = ConstantExpr::getIntToPtr(Res, LoadTy);
}
return Res;
}
return nullptr;
}
unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
if (BytesLoaded > 32 || BytesLoaded == 0)
return nullptr;
// If we're not accessing anything in this constant, the result is undefined.
if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
return PoisonValue::get(IntType);
// TODO: We should be able to support scalable types.
TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
if (InitializerSize.isScalable())
return nullptr;
// If we're not accessing anything in this constant, the result is undefined.
if (Offset >= (int64_t)InitializerSize.getFixedValue())
return PoisonValue::get(IntType);
unsigned char RawBytes[32] = {0};
unsigned char *CurPtr = RawBytes;
unsigned BytesLeft = BytesLoaded;
// If we're loading off the beginning of the global, some bytes may be valid.
if (Offset < 0) {
CurPtr += -Offset;
BytesLeft += Offset;
Offset = 0;
}
if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
return nullptr;
APInt ResultVal = APInt(IntType->getBitWidth(), 0);
if (DL.isLittleEndian()) {
ResultVal = RawBytes[BytesLoaded - 1];
for (unsigned i = 1; i != BytesLoaded; ++i) {
ResultVal <<= 8;
ResultVal |= RawBytes[BytesLoaded - 1 - i];
}
} else {
ResultVal = RawBytes[0];
for (unsigned i = 1; i != BytesLoaded; ++i) {
ResultVal <<= 8;
ResultVal |= RawBytes[i];
}
}
return ConstantInt::get(IntType->getContext(), ResultVal);
}
} // anonymous namespace
// If GV is a constant with an initializer read its representation starting
// at Offset and return it as a constant array of unsigned char. Otherwise
// return null.
Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV,
uint64_t Offset) {
if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
return nullptr;
const DataLayout &DL = GV->getParent()->getDataLayout();
Constant *Init = const_cast<Constant *>(GV->getInitializer());
TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
if (InitSize < Offset)
return nullptr;
uint64_t NBytes = InitSize - Offset;
if (NBytes > UINT16_MAX)
// Bail for large initializers in excess of 64K to avoid allocating
// too much memory.
// Offset is assumed to be less than or equal than InitSize (this
// is enforced in ReadDataFromGlobal).
return nullptr;
SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
unsigned char *CurPtr = RawBytes.data();
if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
return nullptr;
return ConstantDataArray::get(GV->getContext(), RawBytes);
}
/// If this Offset points exactly to the start of an aggregate element, return
/// that element, otherwise return nullptr.
Constant *getConstantAtOffset(Constant *Base, APInt Offset,
const DataLayout &DL) {
if (Offset.isZero())
return Base;
if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
return nullptr;
Type *ElemTy = Base->getType();
SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
if (!Offset.isZero() || !Indices[0].isZero())
return nullptr;
Constant *C = Base;
for (const APInt &Index : drop_begin(Indices)) {
if (Index.isNegative() || Index.getActiveBits() >= 32)
return nullptr;
C = C->getAggregateElement(Index.getZExtValue());
if (!C)
return nullptr;
}
return C;
}
Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
const APInt &Offset,
const DataLayout &DL) {
if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
return Result;
// Explicitly check for out-of-bounds access, so we return poison even if the
// constant is a uniform value.
TypeSize Size = DL.getTypeAllocSize(C->getType());
if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
return PoisonValue::get(Ty);
// Try an offset-independent fold of a uniform value.
if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty, DL))
return Result;
// Try hard to fold loads from bitcasted strange and non-type-safe things.
if (Offset.getSignificantBits() <= 64)
if (Constant *Result =
FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
return Result;
return nullptr;
}
Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
const DataLayout &DL) {
return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
}
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
APInt Offset,
const DataLayout &DL) {
// We can only fold loads from constant globals with a definitive initializer.
// Check this upfront, to skip expensive offset calculations.
auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
return nullptr;
C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
DL, Offset, /* AllowNonInbounds */ true));
if (C == GV)
if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
Offset, DL))
return Result;
// If this load comes from anywhere in a uniform constant global, the value
// is always the same, regardless of the loaded offset.
return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty, DL);
}
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
const DataLayout &DL) {
APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
return ConstantFoldLoadFromConstPtr(C, Ty, std::move(Offset), DL);
}
Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty,
const DataLayout &DL) {
if (isa<PoisonValue>(C))
return PoisonValue::get(Ty);
if (isa<UndefValue>(C))
return UndefValue::get(Ty);
// If padding is needed when storing C to memory, then it isn't considered as
// uniform.
if (!DL.typeSizeEqualsStoreSize(C->getType()))
return nullptr;
if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy())
return Constant::getNullValue(Ty);
if (C->isAllOnesValue() &&
(Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
return Constant::getAllOnesValue(Ty);
return nullptr;
}
namespace {
/// One of Op0/Op1 is a constant expression.
/// Attempt to symbolically evaluate the result of a binary operator merging
/// these together. If target data info is available, it is provided as DL,
/// otherwise DL is null.
Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
const DataLayout &DL) {
// SROA
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
// Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
// bits.
if (Opc == Instruction::And) {
KnownBits Known0 = computeKnownBits(Op0, DL);
KnownBits Known1 = computeKnownBits(Op1, DL);
if ((Known1.One | Known0.Zero).isAllOnes()) {
// All the bits of Op0 that the 'and' could be masking are already zero.
return Op0;
}
if ((Known0.One | Known1.Zero).isAllOnes()) {
// All the bits of Op1 that the 'and' could be masking are already zero.
return Op1;
}
Known0 &= Known1;
if (Known0.isConstant())
return ConstantInt::get(Op0->getType(), Known0.getConstant());
}
// If the constant expr is something like &A[123] - &A[4].f, fold this into a
// constant. This happens frequently when iterating over a global array.
if (Opc == Instruction::Sub) {
GlobalValue *GV1, *GV2;
APInt Offs1, Offs2;
if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
// (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
// PtrToInt may change the bitwidth so we have convert to the right size
// first.
return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
Offs2.zextOrTrunc(OpSize));
}
}
return nullptr;
}
/// If array indices are not pointer-sized integers, explicitly cast them so
/// that they aren't implicitly casted by the getelementptr.
Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
Type *ResultTy, bool InBounds,
std::optional<ConstantRange> InRange,
const DataLayout &DL, const TargetLibraryInfo *TLI) {
Type *IntIdxTy = DL.getIndexType(ResultTy);
Type *IntIdxScalarTy = IntIdxTy->getScalarType();
bool Any = false;
SmallVector<Constant*, 32> NewIdxs;
for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
if ((i == 1 ||
!isa<StructType>(GetElementPtrInst::getIndexedType(
SrcElemTy, Ops.slice(1, i - 1)))) &&
Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
Any = true;
Type *NewType =
Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
Constant *NewIdx = ConstantFoldCastOperand(
CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType,
DL);
if (!NewIdx)
return nullptr;
NewIdxs.push_back(NewIdx);
} else
NewIdxs.push_back(Ops[i]);
}
if (!Any)
return nullptr;
Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs,
InBounds, InRange);
return ConstantFoldConstant(C, DL, TLI);
}
/// If we can symbolically evaluate the GEP constant expression, do so.
Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
ArrayRef<Constant *> Ops,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
bool InBounds = GEP->isInBounds();
Type *SrcElemTy = GEP->getSourceElementType();
Type *ResElemTy = GEP->getResultElementType();
Type *ResTy = GEP->getType();
if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
return nullptr;
if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, GEP->isInBounds(),
GEP->getInRange(), DL, TLI))
return C;
Constant *Ptr = Ops[0];
if (!Ptr->getType()->isPointerTy())
return nullptr;
Type *IntIdxTy = DL.getIndexType(Ptr->getType());
for (unsigned i = 1, e = Ops.size(); i != e; ++i)
if (!isa<ConstantInt>(Ops[i]))
return nullptr;
unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
APInt Offset = APInt(
BitWidth,
DL.getIndexedOffsetInType(
SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)));
std::optional<ConstantRange> InRange = GEP->getInRange();
if (InRange)
InRange = InRange->sextOrTrunc(BitWidth);
// If this is a GEP of a GEP, fold it all into a single GEP.
while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
InBounds &= GEP->isInBounds();
SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
// Do not try the incorporate the sub-GEP if some index is not a number.
bool AllConstantInt = true;
for (Value *NestedOp : NestedOps)
if (!isa<ConstantInt>(NestedOp)) {
AllConstantInt = false;
break;
}
if (!AllConstantInt)
break;
// TODO: Try to intersect two inrange attributes?
if (!InRange) {
InRange = GEP->getInRange();
if (InRange)
// Adjust inrange by offset until now.
InRange = InRange->sextOrTrunc(BitWidth).subtract(Offset);
}
Ptr = cast<Constant>(GEP->getOperand(0));
SrcElemTy = GEP->getSourceElementType();
Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
}
// If the base value for this address is a literal integer value, fold the
// getelementptr to the resulting integer value casted to the pointer type.
APInt BasePtr(BitWidth, 0);
if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
if (CE->getOpcode() == Instruction::IntToPtr) {
if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
BasePtr = Base->getValue().zextOrTrunc(BitWidth);
}
}
auto *PTy = cast<PointerType>(Ptr->getType());
if ((Ptr->isNullValue() || BasePtr != 0) &&
!DL.isNonIntegralPointerType(PTy)) {
Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
return ConstantExpr::getIntToPtr(C, ResTy);
}
// Otherwise form a regular getelementptr. Recompute the indices so that
// we eliminate over-indexing of the notional static type array bounds.
// This makes it easy to determine if the getelementptr is "inbounds".
// For GEPs of GlobalValues, use the value type, otherwise use an i8 GEP.
if (auto *GV = dyn_cast<GlobalValue>(Ptr))
SrcElemTy = GV->getValueType();
else
SrcElemTy = Type::getInt8Ty(Ptr->getContext());
if (!SrcElemTy->isSized())
return nullptr;
Type *ElemTy = SrcElemTy;
SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
if (Offset != 0)
return nullptr;
// Try to add additional zero indices to reach the desired result element
// type.
// TODO: Should we avoid extra zero indices if ResElemTy can't be reached and
// we'll have to insert a bitcast anyway?
while (ElemTy != ResElemTy) {
Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0);
if (!NextTy)
break;
Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth));
ElemTy = NextTy;
}
SmallVector<Constant *, 32> NewIdxs;
for (const APInt &Index : Indices)
NewIdxs.push_back(ConstantInt::get(
Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index));
return ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, InBounds,
InRange);
}
/// Attempt to constant fold an instruction with the
/// specified opcode and operands. If successful, the constant result is
/// returned, if not, null is returned. Note that this function can fail when
/// attempting to fold instructions like loads and stores, which have no
/// constant expression form.
Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
ArrayRef<Constant *> Ops,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
Type *DestTy = InstOrCE->getType();
if (Instruction::isUnaryOp(Opcode))
return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
if (Instruction::isBinaryOp(Opcode)) {
switch (Opcode) {
default:
break;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
// Handle floating point instructions separately to account for denormals
// TODO: If a constant expression is being folded rather than an
// instruction, denormals will not be flushed/treated as zero
if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I);
}
}
return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
}
if (Instruction::isCast(Opcode))
return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
Type *SrcElemTy = GEP->getSourceElementType();
if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy))
return nullptr;
if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
return C;
return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1),
GEP->isInBounds(), GEP->getInRange());
}
if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) {
if (CE->isCompare())
return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
DL, TLI);
return CE->getWithOperands(Ops);
}
switch (Opcode) {
default: return nullptr;
case Instruction::ICmp:
case Instruction::FCmp: {
auto *C = cast<CmpInst>(InstOrCE);
return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
DL, TLI, C);
}
case Instruction::Freeze:
return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
case Instruction::Call:
if (auto *F = dyn_cast<Function>(Ops.back())) {
const auto *Call = cast<CallBase>(InstOrCE);
if (canConstantFoldCallTo(Call, F))
return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
}
return nullptr;
case Instruction::Select:
return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
case Instruction::ExtractValue:
return ConstantFoldExtractValueInstruction(
Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
case Instruction::InsertElement:
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
case Instruction::InsertValue:
return ConstantFoldInsertValueInstruction(
Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(
Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
case Instruction::Load: {
const auto *LI = dyn_cast<LoadInst>(InstOrCE);
if (LI->isVolatile())
return nullptr;
return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
}
}
}
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Constant Folding public APIs
//===----------------------------------------------------------------------===//
namespace {
Constant *
ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
const TargetLibraryInfo *TLI,
SmallDenseMap<Constant *, Constant *> &FoldedOps) {
if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
return const_cast<Constant *>(C);
SmallVector<Constant *, 8> Ops;
for (const Use &OldU : C->operands()) {
Constant *OldC = cast<Constant>(&OldU);
Constant *NewC = OldC;
// Recursively fold the ConstantExpr's operands. If we have already folded
// a ConstantExpr, we don't have to process it again.
if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
auto It = FoldedOps.find(OldC);
if (It == FoldedOps.end()) {
NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
FoldedOps.insert({OldC, NewC});
} else {
NewC = It->second;
}
}
Ops.push_back(NewC);
}
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
if (Constant *Res =
ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI))
return Res;
return const_cast<Constant *>(C);
}
assert(isa<ConstantVector>(C));
return ConstantVector::get(Ops);
}
} // end anonymous namespace
Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
// Handle PHI nodes quickly here...
if (auto *PN = dyn_cast<PHINode>(I)) {
Constant *CommonValue = nullptr;
SmallDenseMap<Constant *, Constant *> FoldedOps;
for (Value *Incoming : PN->incoming_values()) {
// If the incoming value is undef then skip it. Note that while we could
// skip the value if it is equal to the phi node itself we choose not to
// because that would break the rule that constant folding only applies if
// all operands are constants.
if (isa<UndefValue>(Incoming))
continue;
// If the incoming value is not a constant, then give up.
auto *C = dyn_cast<Constant>(Incoming);
if (!C)
return nullptr;
// Fold the PHI's operands.
C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
// If the incoming value is a different constant to
// the one we saw previously, then give up.
if (CommonValue && C != CommonValue)
return nullptr;
CommonValue = C;
}
// If we reach here, all incoming values are the same constant or undef.
return CommonValue ? CommonValue : UndefValue::get(PN->getType());
}
// Scan the operand list, checking to see if they are all constants, if so,
// hand off to ConstantFoldInstOperandsImpl.
if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
return nullptr;
SmallDenseMap<Constant *, Constant *> FoldedOps;
SmallVector<Constant *, 8> Ops;
for (const Use &OpU : I->operands()) {
auto *Op = cast<Constant>(&OpU);
// Fold the Instruction's operands.
Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
Ops.push_back(Op);
}
return ConstantFoldInstOperands(I, Ops, DL, TLI);
}
Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
SmallDenseMap<Constant *, Constant *> FoldedOps;
return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
}
Constant *llvm::ConstantFoldInstOperands(Instruction *I,
ArrayRef<Constant *> Ops,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
}
Constant *llvm::ConstantFoldCompareInstOperands(
unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
const TargetLibraryInfo *TLI, const Instruction *I) {
CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
// fold: icmp (inttoptr x), null -> icmp x, 0
// fold: icmp null, (inttoptr x) -> icmp 0, x
// fold: icmp (ptrtoint x), 0 -> icmp x, null
// fold: icmp 0, (ptrtoint x) -> icmp null, x
// fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
// fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
//
// FIXME: The following comment is out of data and the DataLayout is here now.
// ConstantExpr::getCompare cannot do this, because it doesn't have DL
// around to know if bit truncation is happening.
if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
if (Ops1->isNullValue()) {
if (CE0->getOpcode() == Instruction::IntToPtr) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
/*IsSigned*/ false, DL)) {
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
}
}
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
if (CE0->getOpcode() == Instruction::PtrToInt) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
if (CE0->getType() == IntPtrTy) {
Constant *C = CE0->getOperand(0);
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
}
}
}
if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
if (CE0->getOpcode() == CE1->getOpcode()) {
if (CE0->getOpcode() == Instruction::IntToPtr) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
/*IsSigned*/ false, DL);
Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy,
/*IsSigned*/ false, DL);
if (C0 && C1)
return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
}
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
if (CE0->getOpcode() == Instruction::PtrToInt) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
if (CE0->getType() == IntPtrTy &&
CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
return ConstantFoldCompareInstOperands(
Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
}
}
}
}
// Convert pointer comparison (base+offset1) pred (base+offset2) into
// offset1 pred offset2, for the case where the offset is inbounds. This
// only works for equality and unsigned comparison, as inbounds permits
// crossing the sign boundary. However, the offset comparison itself is
// signed.
if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
APInt Offset0(IndexWidth, 0);
Value *Stripped0 =
Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0);
APInt Offset1(IndexWidth, 0);
Value *Stripped1 =
Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1);
if (Stripped0 == Stripped1)
return ConstantExpr::getCompare(
ICmpInst::getSignedPredicate(Predicate),
ConstantInt::get(CE0->getContext(), Offset0),
ConstantInt::get(CE0->getContext(), Offset1));
}
} else if (isa<ConstantExpr>(Ops1)) {
// If RHS is a constant expression, but the left side isn't, swap the
// operands and try again.
Predicate = ICmpInst::getSwappedPredicate(Predicate);
return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
}
// Flush any denormal constant float input according to denormal handling
// mode.
Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false);
if (!Ops0)
return nullptr;
Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false);
if (!Ops1)
return nullptr;
return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
}
Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
const DataLayout &DL) {
assert(Instruction::isUnaryOp(Opcode));
return ConstantFoldUnaryInstruction(Opcode, Op);
}
Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
Constant *RHS,
const DataLayout &DL) {
assert(Instruction::isBinaryOp(Opcode));
if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
return C;
if (ConstantExpr::isDesirableBinOp(Opcode))
return ConstantExpr::get(Opcode, LHS, RHS);
return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
}
Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I,
bool IsOutput) {
if (!I || !I->getParent() || !I->getFunction())
return Operand;
ConstantFP *CFP = dyn_cast<ConstantFP>(Operand);
if (!CFP)
return Operand;
const APFloat &APF = CFP->getValueAPF();
// TODO: Should this canonicalize nans?
if (!APF.isDenormal())
return Operand;
Type *Ty = CFP->getType();
DenormalMode DenormMode =
I->getFunction()->getDenormalMode(Ty->getFltSemantics());
DenormalMode::DenormalModeKind Mode =
IsOutput ? DenormMode.Output : DenormMode.Input;
switch (Mode) {
default:
llvm_unreachable("unknown denormal mode");
case DenormalMode::Dynamic:
return nullptr;
case DenormalMode::IEEE:
return Operand;
case DenormalMode::PreserveSign:
if (APF.isDenormal()) {
return ConstantFP::get(
Ty->getContext(),
APFloat::getZero(Ty->getFltSemantics(), APF.isNegative()));
}
return Operand;
case DenormalMode::PositiveZero:
if (APF.isDenormal()) {
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(Ty->getFltSemantics(), false));
}
return Operand;
}
return Operand;
}
Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS,
Constant *RHS, const DataLayout &DL,
const Instruction *I) {
if (Instruction::isBinaryOp(Opcode)) {
// Flush denormal inputs if needed.
Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
if (!Op0)
return nullptr;
Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
if (!Op1)
return nullptr;
// Calculate constant result.
Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
if (!C)
return nullptr;
// Flush denormal output if needed.
return FlushFPConstant(C, I, /* IsOutput */ true);
}
// If instruction lacks a parent/function and the denormal mode cannot be
// determined, use the default (IEEE).
return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
}
Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
Type *DestTy, const DataLayout &DL) {
assert(Instruction::isCast(Opcode));
switch (Opcode) {
default:
llvm_unreachable("Missing case");
case Instruction::PtrToInt:
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
Constant *FoldedValue = nullptr;
// If the input is a inttoptr, eliminate the pair. This requires knowing
// the width of a pointer, so it can't be done in ConstantExpr::getCast.
if (CE->getOpcode() == Instruction::IntToPtr) {
// zext/trunc the inttoptr to pointer size.
FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0),
DL.getIntPtrType(CE->getType()),
/*IsSigned=*/false, DL);
} else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
// If we have GEP, we can perform the following folds:
// (ptrtoint (gep null, x)) -> x
// (ptrtoint (gep (gep null, x), y) -> x + y, etc.
unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
APInt BaseOffset(BitWidth, 0);
auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
DL, BaseOffset, /*AllowNonInbounds=*/true));
if (Base->isNullValue()) {
FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
} else {
// ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
if (GEP->getNumIndices() == 1 &&
GEP->getSourceElementType()->isIntegerTy(8)) {
auto *Ptr = cast<Constant>(GEP->getPointerOperand());
auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
Type *IntIdxTy = DL.getIndexType(Ptr->getType());
if (Sub && Sub->getType() == IntIdxTy &&
Sub->getOpcode() == Instruction::Sub &&
Sub->getOperand(0)->isNullValue())
FoldedValue = ConstantExpr::getSub(
ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1));
}
}
}
if (FoldedValue) {
// Do a zext or trunc to get to the ptrtoint dest size.
return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false,
DL);
}
}
break;
case Instruction::IntToPtr:
// If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
// the int size is >= the ptr size and the address spaces are the same.
// This requires knowing the width of a pointer, so it can't be done in
// ConstantExpr::getCast.
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::PtrToInt) {
Constant *SrcPtr = CE->getOperand(0);
unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
if (MidIntSize >= SrcPtrSize) {
unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
if (SrcAS == DestTy->getPointerAddressSpace())
return FoldBitCast(CE->getOperand(0), DestTy, DL);
}
}
}
break;
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::AddrSpaceCast:
break;
case Instruction::BitCast:
return FoldBitCast(C, DestTy, DL);
}
if (ConstantExpr::isDesirableCastOp(Opcode))
return ConstantExpr::getCast(Opcode, C, DestTy);
return ConstantFoldCastInstruction(Opcode, C, DestTy);
}
Constant *llvm::ConstantFoldIntegerCast(Constant *C, Type *DestTy,
bool IsSigned, const DataLayout &DL) {
Type *SrcTy = C->getType();
if (SrcTy == DestTy)
return C;
if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL);
if (IsSigned)
return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL);
return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL);
}
//===----------------------------------------------------------------------===//
// Constant Folding for Calls
//
bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
if (Call->isNoBuiltin())
return false;
if (Call->getFunctionType() != F->getFunctionType())
return false;
switch (F->getIntrinsicID()) {
// Operations that do not operate floating-point numbers and do not depend on
// FP environment can be folded even in strictfp functions.
case Intrinsic::bswap:
case Intrinsic::ctpop:
case Intrinsic::ctlz:
case Intrinsic::cttz:
case Intrinsic::fshl:
case Intrinsic::fshr:
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group:
case Intrinsic::masked_load:
case Intrinsic::get_active_lane_mask:
case Intrinsic::abs:
case Intrinsic::smax:
case Intrinsic::smin:
case Intrinsic::umax:
case Intrinsic::umin:
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
case Intrinsic::sadd_sat:
case Intrinsic::uadd_sat:
case Intrinsic::ssub_sat:
case Intrinsic::usub_sat:
case Intrinsic::smul_fix:
case Intrinsic::smul_fix_sat:
case Intrinsic::bitreverse:
case Intrinsic::is_constant:
case Intrinsic::vector_reduce_add:
case Intrinsic::vector_reduce_mul:
case Intrinsic::vector_reduce_and:
case Intrinsic::vector_reduce_or:
case Intrinsic::vector_reduce_xor:
case Intrinsic::vector_reduce_smin:
case Intrinsic::vector_reduce_smax:
case Intrinsic::vector_reduce_umin:
case Intrinsic::vector_reduce_umax:
// Target intrinsics
case Intrinsic::amdgcn_perm:
case Intrinsic::amdgcn_wave_reduce_umin:
case Intrinsic::amdgcn_wave_reduce_umax:
case Intrinsic::amdgcn_s_wqm:
case Intrinsic::amdgcn_s_quadmask:
case Intrinsic::amdgcn_s_bitreplicate:
case Intrinsic::arm_mve_vctp8:
case Intrinsic::arm_mve_vctp16:
case Intrinsic::arm_mve_vctp32:
case Intrinsic::arm_mve_vctp64:
case Intrinsic::aarch64_sve_convert_from_svbool:
// WebAssembly float semantics are always known
case Intrinsic::wasm_trunc_signed:
case Intrinsic::wasm_trunc_unsigned:
return true;
// Floating point operations cannot be folded in strictfp functions in
// general case. They can be folded if FP environment is known to compiler.
case Intrinsic::minnum:
case Intrinsic::maxnum:
case Intrinsic::minimum:
case Intrinsic::maximum:
case Intrinsic::log:
case Intrinsic::log2:
case Intrinsic::log10:
case Intrinsic::exp:
case Intrinsic::exp2:
case Intrinsic::exp10:
case Intrinsic::sqrt:
case Intrinsic::sin:
case Intrinsic::cos:
case Intrinsic::pow:
case Intrinsic::powi:
case Intrinsic::ldexp:
case Intrinsic::fma:
case Intrinsic::fmuladd:
case Intrinsic::frexp:
case Intrinsic::fptoui_sat:
case Intrinsic::fptosi_sat:
case Intrinsic::convert_from_fp16:
case Intrinsic::convert_to_fp16:
case Intrinsic::amdgcn_cos:
case Intrinsic::amdgcn_cubeid:
case Intrinsic::amdgcn_cubema:
case Intrinsic::amdgcn_cubesc:
case Intrinsic::amdgcn_cubetc:
case Intrinsic::amdgcn_fmul_legacy:
case Intrinsic::amdgcn_fma_legacy:
case Intrinsic::amdgcn_fract:
case Intrinsic::amdgcn_sin:
// The intrinsics below depend on rounding mode in MXCSR.
case Intrinsic::x86_sse_cvtss2si:
case Intrinsic::x86_sse_cvtss2si64:
case Intrinsic::x86_sse_cvttss2si:
case Intrinsic::x86_sse_cvttss2si64:
case Intrinsic::x86_sse2_cvtsd2si:
case Intrinsic::x86_sse2_cvtsd2si64:
case Intrinsic::x86_sse2_cvttsd2si:
case Intrinsic::x86_sse2_cvttsd2si64:
case Intrinsic::x86_avx512_vcvtss2si32:
case Intrinsic::x86_avx512_vcvtss2si64:
case Intrinsic::x86_avx512_cvttss2si:
case Intrinsic::x86_avx512_cvttss2si64:
case Intrinsic::x86_avx512_vcvtsd2si32:
case Intrinsic::x86_avx512_vcvtsd2si64:
case Intrinsic::x86_avx512_cvttsd2si:
case Intrinsic::x86_avx512_cvttsd2si64:
case Intrinsic::x86_avx512_vcvtss2usi32:
case Intrinsic::x86_avx512_vcvtss2usi64:
case Intrinsic::x86_avx512_cvttss2usi:
case Intrinsic::x86_avx512_cvttss2usi64:
case Intrinsic::x86_avx512_vcvtsd2usi32:
case Intrinsic::x86_avx512_vcvtsd2usi64:
case Intrinsic::x86_avx512_cvttsd2usi:
case Intrinsic::x86_avx512_cvttsd2usi64:
return !Call->isStrictFP();
// Sign operations are actually bitwise operations, they do not raise
// exceptions even for SNANs.
case Intrinsic::fabs:
case Intrinsic::copysign:
case Intrinsic::is_fpclass:
// Non-constrained variants of rounding operations means default FP
// environment, they can be folded in any case.
case Intrinsic::ceil:
case Intrinsic::floor:
case Intrinsic::round:
case Intrinsic::roundeven:
case Intrinsic::trunc:
case Intrinsic::nearbyint:
case Intrinsic::rint:
case Intrinsic::canonicalize:
// Constrained intrinsics can be folded if FP environment is known
// to compiler.
case Intrinsic::experimental_constrained_fma:
case Intrinsic::experimental_constrained_fmuladd:
case Intrinsic::experimental_constrained_fadd:
case Intrinsic::experimental_constrained_fsub:
case Intrinsic::experimental_constrained_fmul:
case Intrinsic::experimental_constrained_fdiv:
case Intrinsic::experimental_constrained_frem:
case Intrinsic::experimental_constrained_ceil:
case Intrinsic::experimental_constrained_floor:
case Intrinsic::experimental_constrained_round:
case Intrinsic::experimental_constrained_roundeven:
case Intrinsic::experimental_constrained_trunc:
case Intrinsic::experimental_constrained_nearbyint:
case Intrinsic::experimental_constrained_rint:
case Intrinsic::experimental_constrained_fcmp:
case Intrinsic::experimental_constrained_fcmps:
return true;
default:
return false;
case Intrinsic::not_intrinsic: break;
}
if (!F->hasName() || Call->isStrictFP())
return false;
// In these cases, the check of the length is required. We don't want to
// return true for a name like "cos\0blah" which strcmp would return equal to
// "cos", but has length 8.
StringRef Name = F->getName();
switch (Name[0]) {
default:
return false;
case 'a':
return Name == "acos" || Name == "acosf" ||
Name == "asin" || Name == "asinf" ||
Name == "atan" || Name == "atanf" ||
Name == "atan2" || Name == "atan2f";
case 'c':
return Name == "ceil" || Name == "ceilf" ||
Name == "cos" || Name == "cosf" ||
Name == "cosh" || Name == "coshf";
case 'e':
return Name == "exp" || Name == "expf" ||
Name == "exp2" || Name == "exp2f";
case 'f':
return Name == "fabs" || Name == "fabsf" ||
Name == "floor" || Name == "floorf" ||
Name == "fmod" || Name == "fmodf";
case 'l':
return Name == "log" || Name == "logf" ||
Name == "log2" || Name == "log2f" ||
Name == "log10" || Name == "log10f";
case 'n':
return Name == "nearbyint" || Name == "nearbyintf";
case 'p':
return Name == "pow" || Name == "powf";
case 'r':
return Name == "remainder" || Name == "remainderf" ||
Name == "rint" || Name == "rintf" ||
Name == "round" || Name == "roundf";
case 's':
return Name == "sin" || Name == "sinf" ||
Name == "sinh" || Name == "sinhf" ||
Name == "sqrt" || Name == "sqrtf";
case 't':
return Name == "tan" || Name == "tanf" ||
Name == "tanh" || Name == "tanhf" ||
Name == "trunc" || Name == "truncf";
case '_':
// Check for various function names that get used for the math functions
// when the header files are preprocessed with the macro
// __FINITE_MATH_ONLY__ enabled.
// The '12' here is the length of the shortest name that can match.
// We need to check the size before looking at Name[1] and Name[2]
// so we may as well check a limit that will eliminate mismatches.
if (Name.size() < 12 || Name[1] != '_')
return false;
switch (Name[2]) {
default:
return false;
case 'a':
return Name == "__acos_finite" || Name == "__acosf_finite" ||
Name == "__asin_finite" || Name == "__asinf_finite" ||
Name == "__atan2_finite" || Name == "__atan2f_finite";
case 'c':
return Name == "__cosh_finite" || Name == "__coshf_finite";
case 'e':
return Name == "__exp_finite" || Name == "__expf_finite" ||
Name == "__exp2_finite" || Name == "__exp2f_finite";
case 'l':
return Name == "__log_finite" || Name == "__logf_finite" ||
Name == "__log10_finite" || Name == "__log10f_finite";
case 'p':
return Name == "__pow_finite" || Name == "__powf_finite";
case 's':
return Name == "__sinh_finite" || Name == "__sinhf_finite";
}
}
}
namespace {
Constant *GetConstantFoldFPValue(double V, Type *Ty) {
if (Ty->isHalfTy() || Ty->isFloatTy()) {
APFloat APF(V);
bool unused;
APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
return ConstantFP::get(Ty->getContext(), APF);
}
if (Ty->isDoubleTy())
return ConstantFP::get(Ty->getContext(), APFloat(V));
llvm_unreachable("Can only constant fold half/float/double");
}
/// Clear the floating-point exception state.
inline void llvm_fenv_clearexcept() {
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
feclearexcept(FE_ALL_EXCEPT);
#endif
errno = 0;
}
/// Test if a floating-point exception was raised.
inline bool llvm_fenv_testexcept() {
int errno_val = errno;
if (errno_val == ERANGE || errno_val == EDOM)
return true;
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
return true;
#endif
return false;
}
Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
Type *Ty) {
llvm_fenv_clearexcept();
double Result = NativeFP(V.convertToDouble());
if (llvm_fenv_testexcept()) {
llvm_fenv_clearexcept();
return nullptr;
}
return GetConstantFoldFPValue(Result, Ty);
}
Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
const APFloat &V, const APFloat &W, Type *Ty) {
llvm_fenv_clearexcept();
double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
if (llvm_fenv_testexcept()) {
llvm_fenv_clearexcept();
return nullptr;
}
return GetConstantFoldFPValue(Result, Ty);
}
Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
if (!VT)
return nullptr;
// This isn't strictly necessary, but handle the special/common case of zero:
// all integer reductions of a zero input produce zero.
if (isa<ConstantAggregateZero>(Op))
return ConstantInt::get(VT->getElementType(), 0);
// This is the same as the underlying binops - poison propagates.
if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
return PoisonValue::get(VT->getElementType());
// TODO: Handle undef.
if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
return nullptr;
auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
if (!EltC)
return nullptr;
APInt Acc = EltC->getValue();
for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
return nullptr;
const APInt &X = EltC->getValue();
switch (IID) {
case Intrinsic::vector_reduce_add:
Acc = Acc + X;
break;
case Intrinsic::vector_reduce_mul:
Acc = Acc * X;
break;
case Intrinsic::vector_reduce_and:
Acc = Acc & X;
break;
case Intrinsic::vector_reduce_or:
Acc = Acc | X;
break;
case Intrinsic::vector_reduce_xor:
Acc = Acc ^ X;
break;
case Intrinsic::vector_reduce_smin:
Acc = APIntOps::smin(Acc, X);
break;
case Intrinsic::vector_reduce_smax:
Acc = APIntOps::smax(Acc, X);
break;
case Intrinsic::vector_reduce_umin:
Acc = APIntOps::umin(Acc, X);
break;
case Intrinsic::vector_reduce_umax:
Acc = APIntOps::umax(Acc, X);
break;
}
}
return ConstantInt::get(Op->getContext(), Acc);
}
/// Attempt to fold an SSE floating point to integer conversion of a constant
/// floating point. If roundTowardZero is false, the default IEEE rounding is
/// used (toward nearest, ties to even). This matches the behavior of the
/// non-truncating SSE instructions in the default rounding mode. The desired
/// integer type Ty is used to select how many bits are available for the
/// result. Returns null if the conversion cannot be performed, otherwise
/// returns the Constant value resulting from the conversion.
Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
Type *Ty, bool IsSigned) {
// All of these conversion intrinsics form an integer of at most 64bits.
unsigned ResultWidth = Ty->getIntegerBitWidth();
assert(ResultWidth <= 64 &&
"Can only constant fold conversions to 64 and 32 bit ints");
uint64_t UIntVal;
bool isExact = false;
APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
: APFloat::rmNearestTiesToEven;
APFloat::opStatus status =
Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
IsSigned, mode, &isExact);
if (status != APFloat::opOK &&
(!roundTowardZero || status != APFloat::opInexact))
return nullptr;
return ConstantInt::get(Ty, UIntVal, IsSigned);
}
double getValueAsDouble(ConstantFP *Op) {
Type *Ty = Op->getType();
if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
return Op->getValueAPF().convertToDouble();
bool unused;
APFloat APF = Op->getValueAPF();
APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
return APF.convertToDouble();
}
static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
if (auto *CI = dyn_cast<ConstantInt>(Op)) {
C = &CI->getValue();
return true;
}
if (isa<UndefValue>(Op)) {
C = nullptr;
return true;
}
return false;
}
/// Checks if the given intrinsic call, which evaluates to constant, is allowed
/// to be folded.
///
/// \param CI Constrained intrinsic call.
/// \param St Exception flags raised during constant evaluation.
static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
APFloat::opStatus St) {
std::optional<RoundingMode> ORM = CI->getRoundingMode();
std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
// If the operation does not change exception status flags, it is safe
// to fold.
if (St == APFloat::opStatus::opOK)
return true;
// If evaluation raised FP exception, the result can depend on rounding
// mode. If the latter is unknown, folding is not possible.
if (ORM && *ORM == RoundingMode::Dynamic)
return false;
// If FP exceptions are ignored, fold the call, even if such exception is
// raised.
if (EB && *EB != fp::ExceptionBehavior::ebStrict)
return true;
// Leave the calculation for runtime so that exception flags be correctly set
// in hardware.
return false;
}
/// Returns the rounding mode that should be used for constant evaluation.
static RoundingMode
getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
std::optional<RoundingMode> ORM = CI->getRoundingMode();
if (!ORM || *ORM == RoundingMode::Dynamic)
// Even if the rounding mode is unknown, try evaluating the operation.
// If it does not raise inexact exception, rounding was not applied,
// so the result is exact and does not depend on rounding mode. Whether
// other FP exceptions are raised, it does not depend on rounding mode.
return RoundingMode::NearestTiesToEven;
return *ORM;
}
/// Try to constant fold llvm.canonicalize for the given caller and value.
static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
const APFloat &Src) {
// Zero, positive and negative, is always OK to fold.
if (Src.isZero()) {
// Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
return ConstantFP::get(
CI->getContext(),
APFloat::getZero(Src.getSemantics(), Src.isNegative()));
}
if (!Ty->isIEEELikeFPTy())
return nullptr;
// Zero is always canonical and the sign must be preserved.
//
// Denorms and nans may have special encodings, but it should be OK to fold a
// totally average number.
if (Src.isNormal() || Src.isInfinity())
return ConstantFP::get(CI->getContext(), Src);
if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
DenormalMode DenormMode =
CI->getFunction()->getDenormalMode(Src.getSemantics());
if (DenormMode == DenormalMode::getIEEE())
return ConstantFP::get(CI->getContext(), Src);
if (DenormMode.Input == DenormalMode::Dynamic)
return nullptr;
// If we know if either input or output is flushed, we can fold.
if ((DenormMode.Input == DenormalMode::Dynamic &&
DenormMode.Output == DenormalMode::IEEE) ||
(DenormMode.Input == DenormalMode::IEEE &&
DenormMode.Output == DenormalMode::Dynamic))
return nullptr;
bool IsPositive =
(!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
(DenormMode.Output == DenormalMode::PositiveZero &&
DenormMode.Input == DenormalMode::IEEE));
return ConstantFP::get(CI->getContext(),
APFloat::getZero(Src.getSemantics(), !IsPositive));
}
return nullptr;
}
static Constant *ConstantFoldScalarCall1(StringRef Name,
Intrinsic::ID IntrinsicID,
Type *Ty,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI,
const CallBase *Call) {
assert(Operands.size() == 1 && "Wrong number of operands.");
if (IntrinsicID == Intrinsic::is_constant) {
// We know we have a "Constant" argument. But we want to only
// return true for manifest constants, not those that depend on
// constants with unknowable values, e.g. GlobalValue or BlockAddress.
if (Operands[0]->isManifestConstant())
return ConstantInt::getTrue(Ty->getContext());
return nullptr;
}
if (isa<PoisonValue>(Operands[0])) {
// TODO: All of these operations should probably propagate poison.
if (IntrinsicID == Intrinsic::canonicalize)
return PoisonValue::get(Ty);
}
if (isa<UndefValue>(Operands[0])) {
// cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
// ctpop() is between 0 and bitwidth, pick 0 for undef.
// fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
if (IntrinsicID == Intrinsic::cos ||
IntrinsicID == Intrinsic::ctpop ||
IntrinsicID == Intrinsic::fptoui_sat ||
IntrinsicID == Intrinsic::fptosi_sat ||
IntrinsicID == Intrinsic::canonicalize)
return Constant::getNullValue(Ty);
if (IntrinsicID == Intrinsic::bswap ||
IntrinsicID == Intrinsic::bitreverse ||
IntrinsicID == Intrinsic::launder_invariant_group ||
IntrinsicID == Intrinsic::strip_invariant_group)
return Operands[0];
}
if (isa<ConstantPointerNull>(Operands[0])) {
// launder(null) == null == strip(null) iff in addrspace 0
if (IntrinsicID == Intrinsic::launder_invariant_group ||
IntrinsicID == Intrinsic::strip_invariant_group) {
// If instruction is not yet put in a basic block (e.g. when cloning
// a function during inlining), Call's caller may not be available.
// So check Call's BB first before querying Call->getCaller.
const Function *Caller =
Call->getParent() ? Call->getCaller() : nullptr;
if (Caller &&
!NullPointerIsDefined(
Caller, Operands[0]->getType()->getPointerAddressSpace())) {
return Operands[0];
}
return nullptr;
}
}
if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
if (IntrinsicID == Intrinsic::convert_to_fp16) {
APFloat Val(Op->getValueAPF());
bool lost = false;
Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
}
APFloat U = Op->getValueAPF();
if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
if (U.isNaN())
return nullptr;
unsigned Width = Ty->getIntegerBitWidth();
APSInt Int(Width, !Signed);
bool IsExact = false;
APFloat::opStatus Status =
U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
if (Status == APFloat::opOK || Status == APFloat::opInexact)
return ConstantInt::get(Ty, Int);
return nullptr;
}
if (IntrinsicID == Intrinsic::fptoui_sat ||
IntrinsicID == Intrinsic::fptosi_sat) {
// convertToInteger() already has the desired saturation semantics.
APSInt Int(Ty->getIntegerBitWidth(),
IntrinsicID == Intrinsic::fptoui_sat);
bool IsExact;
U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
return ConstantInt::get(Ty, Int);
}
if (IntrinsicID == Intrinsic::canonicalize)
return constantFoldCanonicalize(Ty, Call, U);
if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
return nullptr;
// Use internal versions of these intrinsics.
if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
U.roundToIntegral(APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::round) {
U.roundToIntegral(APFloat::rmNearestTiesToAway);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::roundeven) {
U.roundToIntegral(APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::ceil) {
U.roundToIntegral(APFloat::rmTowardPositive);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::floor) {
U.roundToIntegral(APFloat::rmTowardNegative);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::trunc) {
U.roundToIntegral(APFloat::rmTowardZero);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::fabs) {
U.clearSign();
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::amdgcn_fract) {
// The v_fract instruction behaves like the OpenCL spec, which defines
// fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
// there to prevent fract(-small) from returning 1.0. It returns the
// largest positive floating-point number less than 1.0."
APFloat FloorU(U);
FloorU.roundToIntegral(APFloat::rmTowardNegative);
APFloat FractU(U - FloorU);
APFloat AlmostOne(U.getSemantics(), 1);
AlmostOne.next(/*nextDown*/ true);
return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
}
// Rounding operations (floor, trunc, ceil, round and nearbyint) do not
// raise FP exceptions, unless the argument is signaling NaN.
std::optional<APFloat::roundingMode> RM;
switch (IntrinsicID) {
default:
break;
case Intrinsic::experimental_constrained_nearbyint:
case Intrinsic::experimental_constrained_rint: {
auto CI = cast<ConstrainedFPIntrinsic>(Call);
RM = CI->getRoundingMode();
if (!RM || *RM == RoundingMode::Dynamic)
return nullptr;
break;
}
case Intrinsic::experimental_constrained_round:
RM = APFloat::rmNearestTiesToAway;
break;
case Intrinsic::experimental_constrained_ceil:
RM = APFloat::rmTowardPositive;
break;
case Intrinsic::experimental_constrained_floor:
RM = APFloat::rmTowardNegative;
break;
case Intrinsic::experimental_constrained_trunc:
RM = APFloat::rmTowardZero;
break;
}
if (RM) {
auto CI = cast<ConstrainedFPIntrinsic>(Call);
if (U.isFinite()) {
APFloat::opStatus St = U.roundToIntegral(*RM);
if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
St == APFloat::opInexact) {
std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
if (EB && *EB == fp::ebStrict)
return nullptr;
}
} else if (U.isSignaling()) {
std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
if (EB && *EB != fp::ebIgnore)
return nullptr;
U = APFloat::getQNaN(U.getSemantics());
}
return ConstantFP::get(Ty->getContext(), U);
}
/// We only fold functions with finite arguments. Folding NaN and inf is
/// likely to be aborted with an exception anyway, and some host libms
/// have known errors raising exceptions.
if (!U.isFinite())
return nullptr;
/// Currently APFloat versions of these functions do not exist, so we use
/// the host native double versions. Float versions are not called
/// directly but for all these it is true (float)(f((double)arg)) ==
/// f(arg). Long double not supported yet.
const APFloat &APF = Op->getValueAPF();
switch (IntrinsicID) {
default: break;
case Intrinsic::log:
return ConstantFoldFP(log, APF, Ty);
case Intrinsic::log2:
// TODO: What about hosts that lack a C99 library?
return ConstantFoldFP(log2, APF, Ty);
case Intrinsic::log10:
// TODO: What about hosts that lack a C99 library?
return ConstantFoldFP(log10, APF, Ty);
case Intrinsic::exp:
return ConstantFoldFP(exp, APF, Ty);
case Intrinsic::exp2:
// Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
case Intrinsic::exp10:
// Fold exp10(x) as pow(10, x), in case the host lacks a C99 library.
return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty);
case Intrinsic::sin:
return ConstantFoldFP(sin, APF, Ty);
case Intrinsic::cos:
return ConstantFoldFP(cos, APF, Ty);
case Intrinsic::sqrt:
return ConstantFoldFP(sqrt, APF, Ty);
case Intrinsic::amdgcn_cos:
case Intrinsic::amdgcn_sin: {
double V = getValueAsDouble(Op);
if (V < -256.0 || V > 256.0)
// The gfx8 and gfx9 architectures handle arguments outside the range
// [-256, 256] differently. This should be a rare case so bail out
// rather than trying to handle the difference.
return nullptr;
bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
double V4 = V * 4.0;
if (V4 == floor(V4)) {
// Force exact results for quarter-integer inputs.
const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
} else {
if (IsCos)
V = cos(V * 2.0 * numbers::pi);
else
V = sin(V * 2.0 * numbers::pi);
}
return GetConstantFoldFPValue(V, Ty);
}
}
if (!TLI)
return nullptr;
LibFunc Func = NotLibFunc;
if (!TLI->getLibFunc(Name, Func))
return nullptr;
switch (Func) {
default:
break;
case LibFunc_acos:
case LibFunc_acosf:
case LibFunc_acos_finite:
case LibFunc_acosf_finite:
if (TLI->has(Func))
return ConstantFoldFP(acos, APF, Ty);
break;
case LibFunc_asin:
case LibFunc_asinf:
case LibFunc_asin_finite:
case LibFunc_asinf_finite:
if (TLI->has(Func))
return ConstantFoldFP(asin, APF, Ty);
break;
case LibFunc_atan:
case LibFunc_atanf:
if (TLI->has(Func))
return ConstantFoldFP(atan, APF, Ty);
break;
case LibFunc_ceil:
case LibFunc_ceilf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmTowardPositive);
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_cos:
case LibFunc_cosf:
if (TLI->has(Func))
return ConstantFoldFP(cos, APF, Ty);
break;
case LibFunc_cosh:
case LibFunc_coshf:
case LibFunc_cosh_finite:
case LibFunc_coshf_finite:
if (TLI->has(Func))
return ConstantFoldFP(cosh, APF, Ty);
break;
case LibFunc_exp:
case LibFunc_expf:
case LibFunc_exp_finite:
case LibFunc_expf_finite:
if (TLI->has(Func))
return ConstantFoldFP(exp, APF, Ty);
break;
case LibFunc_exp2:
case LibFunc_exp2f:
case LibFunc_exp2_finite:
case LibFunc_exp2f_finite:
if (TLI->has(Func))
// Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
break;
case LibFunc_fabs:
case LibFunc_fabsf:
if (TLI->has(Func)) {
U.clearSign();
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_floor:
case LibFunc_floorf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmTowardNegative);
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_log:
case LibFunc_logf:
case LibFunc_log_finite:
case LibFunc_logf_finite:
if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
return ConstantFoldFP(log, APF, Ty);
break;
case LibFunc_log2:
case LibFunc_log2f:
case LibFunc_log2_finite:
case LibFunc_log2f_finite:
if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
// TODO: What about hosts that lack a C99 library?
return ConstantFoldFP(log2, APF, Ty);
break;
case LibFunc_log10:
case LibFunc_log10f:
case LibFunc_log10_finite:
case LibFunc_log10f_finite:
if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
// TODO: What about hosts that lack a C99 library?
return ConstantFoldFP(log10, APF, Ty);
break;
case LibFunc_nearbyint:
case LibFunc_nearbyintf:
case LibFunc_rint:
case LibFunc_rintf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_round:
case LibFunc_roundf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmNearestTiesToAway);
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_sin:
case LibFunc_sinf:
if (TLI->has(Func))
return ConstantFoldFP(sin, APF, Ty);
break;
case LibFunc_sinh:
case LibFunc_sinhf:
case LibFunc_sinh_finite:
case LibFunc_sinhf_finite:
if (TLI->has(Func))
return ConstantFoldFP(sinh, APF, Ty);
break;
case LibFunc_sqrt:
case LibFunc_sqrtf:
if (!APF.isNegative() && TLI->has(Func))
return ConstantFoldFP(sqrt, APF, Ty);
break;
case LibFunc_tan:
case LibFunc_tanf:
if (TLI->has(Func))
return ConstantFoldFP(tan, APF, Ty);
break;
case LibFunc_tanh:
case LibFunc_tanhf:
if (TLI->has(Func))
return ConstantFoldFP(tanh, APF, Ty);
break;
case LibFunc_trunc:
case LibFunc_truncf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmTowardZero);
return ConstantFP::get(Ty->getContext(), U);
}
break;
}
return nullptr;
}
if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
switch (IntrinsicID) {
case Intrinsic::bswap:
return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
case Intrinsic::ctpop:
return ConstantInt::get(Ty, Op->getValue().popcount());
case Intrinsic::bitreverse:
return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
case Intrinsic::convert_from_fp16: {
APFloat Val(APFloat::IEEEhalf(), Op->getValue());
bool lost = false;
APFloat::opStatus status = Val.convert(
Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
// Conversion is always precise.
(void)status;
assert(status != APFloat::opInexact && !lost &&
"Precision lost during fp16 constfolding");
return ConstantFP::get(Ty->getContext(), Val);
}
case Intrinsic::amdgcn_s_wqm: {
uint64_t Val = Op->getZExtValue();
Val |= (Val & 0x5555555555555555ULL) << 1 |
((Val >> 1) & 0x5555555555555555ULL);
Val |= (Val & 0x3333333333333333ULL) << 2 |
((Val >> 2) & 0x3333333333333333ULL);
return ConstantInt::get(Ty, Val);
}
case Intrinsic::amdgcn_s_quadmask: {
uint64_t Val = Op->getZExtValue();
uint64_t QuadMask = 0;
for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) {
if (!(Val & 0xF))
continue;
QuadMask |= (1ULL << I);
}
return ConstantInt::get(Ty, QuadMask);
}
case Intrinsic::amdgcn_s_bitreplicate: {
uint64_t Val = Op->getZExtValue();
Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
Val = Val | Val << 1;
return ConstantInt::get(Ty, Val);
}
default:
return nullptr;
}
}
switch (IntrinsicID) {
default: break;
case Intrinsic::vector_reduce_add:
case Intrinsic::vector_reduce_mul:
case Intrinsic::vector_reduce_and:
case Intrinsic::vector_reduce_or:
case Intrinsic::vector_reduce_xor:
case Intrinsic::vector_reduce_smin:
case Intrinsic::vector_reduce_smax:
case Intrinsic::vector_reduce_umin:
case Intrinsic::vector_reduce_umax:
if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
return C;
break;
}
// Support ConstantVector in case we have an Undef in the top.
if (isa<ConstantVector>(Operands[0]) ||
isa<ConstantDataVector>(Operands[0])) {
auto *Op = cast<Constant>(Operands[0]);
switch (IntrinsicID) {
default: break;
case Intrinsic::x86_sse_cvtss2si:
case Intrinsic::x86_sse_cvtss2si64:
case Intrinsic::x86_sse2_cvtsd2si:
case Intrinsic::x86_sse2_cvtsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/false, Ty,
/*IsSigned*/true);
break;
case Intrinsic::x86_sse_cvttss2si:
case Intrinsic::x86_sse_cvttss2si64:
case Intrinsic::x86_sse2_cvttsd2si:
case Intrinsic::x86_sse2_cvttsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/true, Ty,
/*IsSigned*/true);
break;
}
}
return nullptr;
}
static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
const ConstrainedFPIntrinsic *Call) {
APFloat::opStatus St = APFloat::opOK;
auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call);
FCmpInst::Predicate Cond = FCmp->getPredicate();
if (FCmp->isSignaling()) {
if (Op1.isNaN() || Op2.isNaN())
St = APFloat::opInvalidOp;
} else {
if (Op1.isSignaling() || Op2.isSignaling())
St = APFloat::opInvalidOp;
}
bool Result = FCmpInst::compare(Op1, Op2, Cond);
if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
return ConstantInt::get(Call->getType()->getScalarType(), Result);
return nullptr;
}
static Constant *ConstantFoldLibCall2(StringRef Name, Type *Ty,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI) {
if (!TLI)
return nullptr;
LibFunc Func = NotLibFunc;
if (!TLI->getLibFunc(Name, Func))
return nullptr;
const auto *Op1 = dyn_cast<ConstantFP>(Operands[0]);
if (!Op1)
return nullptr;
const auto *Op2 = dyn_cast<ConstantFP>(Operands[1]);
if (!Op2)
return nullptr;
const APFloat &Op1V = Op1->getValueAPF();
const APFloat &Op2V = Op2->getValueAPF();
switch (Func) {
default:
break;
case LibFunc_pow:
case LibFunc_powf:
case LibFunc_pow_finite:
case LibFunc_powf_finite:
if (TLI->has(Func))
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
break;
case LibFunc_fmod:
case LibFunc_fmodf:
if (TLI->has(Func)) {
APFloat V = Op1->getValueAPF();
if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
return ConstantFP::get(Ty->getContext(), V);
}
break;
case LibFunc_remainder:
case LibFunc_remainderf:
if (TLI->has(Func)) {
APFloat V = Op1->getValueAPF();
if (APFloat::opStatus::opOK == V.remainder(Op2-><