blob: 076f4176c02195ab2dbba21237ec190fbf499010 [file] [log] [blame]
//===--- CaptureTracking.cpp - Determine whether a pointer is captured ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains routines that help determine which pointers are captured.
// A pointer value is captured if the function makes a copy of any part of the
// pointer that outlives the call. Not being captured means, more or less, that
// the pointer is only dereferenced and not stored in a global. Returning part
// of the pointer as the function return value may or may not count as capturing
// the pointer, depending on the context.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
#define DEBUG_TYPE "capture-tracking"
STATISTIC(NumCaptured, "Number of pointers maybe captured");
STATISTIC(NumNotCaptured, "Number of pointers not captured");
STATISTIC(NumCapturedBefore, "Number of pointers maybe captured before");
STATISTIC(NumNotCapturedBefore, "Number of pointers not captured before");
/// The default value for MaxUsesToExplore argument. It's relatively small to
/// keep the cost of analysis reasonable for clients like BasicAliasAnalysis,
/// where the results can't be cached.
/// TODO: we should probably introduce a caching CaptureTracking analysis and
/// use it where possible. The caching version can use much higher limit or
/// don't have this cap at all.
static cl::opt<unsigned>
DefaultMaxUsesToExplore("capture-tracking-max-uses-to-explore", cl::Hidden,
cl::desc("Maximal number of uses to explore."),
cl::init(100));
unsigned llvm::getDefaultMaxUsesToExploreForCaptureTracking() {
return DefaultMaxUsesToExplore;
}
CaptureTracker::~CaptureTracker() = default;
bool CaptureTracker::shouldExplore(const Use *U) { return true; }
namespace {
struct SimpleCaptureTracker : public CaptureTracker {
explicit SimpleCaptureTracker(bool ReturnCaptures, CaptureComponents Mask,
function_ref<bool(CaptureComponents)> StopFn)
: ReturnCaptures(ReturnCaptures), Mask(Mask), StopFn(StopFn) {}
void tooManyUses() override {
LLVM_DEBUG(dbgs() << "Captured due to too many uses\n");
CC = Mask;
}
Action captured(const Use *U, UseCaptureInfo CI) override {
if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures)
return ContinueIgnoringReturn;
if (capturesNothing(CI.UseCC & Mask))
return Continue;
LLVM_DEBUG(dbgs() << "Captured by: " << *U->getUser() << "\n");
CC |= CI.UseCC & Mask;
return StopFn(CC) ? Stop : Continue;
}
bool ReturnCaptures;
CaptureComponents Mask;
function_ref<bool(CaptureComponents)> StopFn;
CaptureComponents CC = CaptureComponents::None;
};
/// Only find pointer captures which happen before the given instruction. Uses
/// the dominator tree to determine whether one instruction is before another.
/// Only support the case where the Value is defined in the same basic block
/// as the given instruction and the use.
struct CapturesBefore : public CaptureTracker {
CapturesBefore(bool ReturnCaptures, const Instruction *I,
const DominatorTree *DT, bool IncludeI, const LoopInfo *LI,
CaptureComponents Mask,
function_ref<bool(CaptureComponents)> StopFn)
: BeforeHere(I), DT(DT), ReturnCaptures(ReturnCaptures),
IncludeI(IncludeI), LI(LI), Mask(Mask), StopFn(StopFn) {}
void tooManyUses() override { CC = Mask; }
bool isSafeToPrune(Instruction *I) {
if (BeforeHere == I)
return !IncludeI;
// We explore this usage only if the usage can reach "BeforeHere".
// If use is not reachable from entry, there is no need to explore.
if (!DT->isReachableFromEntry(I->getParent()))
return true;
// Check whether there is a path from I to BeforeHere.
return !isPotentiallyReachable(I, BeforeHere, nullptr, DT, LI);
}
Action captured(const Use *U, UseCaptureInfo CI) override {
Instruction *I = cast<Instruction>(U->getUser());
if (isa<ReturnInst>(I) && !ReturnCaptures)
return ContinueIgnoringReturn;
// Check isSafeToPrune() here rather than in shouldExplore() to avoid
// an expensive reachability query for every instruction we look at.
// Instead we only do one for actual capturing candidates.
if (isSafeToPrune(I))
// If the use is not reachable, the instruction result isn't either.
return ContinueIgnoringReturn;
if (capturesNothing(CI.UseCC & Mask))
return Continue;
CC |= CI.UseCC & Mask;
return StopFn(CC) ? Stop : Continue;
}
const Instruction *BeforeHere;
const DominatorTree *DT;
bool ReturnCaptures;
bool IncludeI;
CaptureComponents CC = CaptureComponents::None;
const LoopInfo *LI;
CaptureComponents Mask;
function_ref<bool(CaptureComponents)> StopFn;
};
/// Find the 'earliest' instruction before which the pointer is known not to
/// be captured. Here an instruction A is considered earlier than instruction
/// B, if A dominates B. If 2 escapes do not dominate each other, the
/// terminator of the common dominator is chosen. If not all uses cannot be
/// analyzed, the earliest escape is set to the first instruction in the
/// function entry block.
// NOTE: Users have to make sure instructions compared against the earliest
// escape are not in a cycle.
struct EarliestCaptures : public CaptureTracker {
EarliestCaptures(bool ReturnCaptures, Function &F, const DominatorTree &DT,
CaptureComponents Mask)
: DT(DT), ReturnCaptures(ReturnCaptures), F(F), Mask(Mask) {}
void tooManyUses() override {
CC = Mask;
EarliestCapture = &*F.getEntryBlock().begin();
}
Action captured(const Use *U, UseCaptureInfo CI) override {
Instruction *I = cast<Instruction>(U->getUser());
if (isa<ReturnInst>(I) && !ReturnCaptures)
return ContinueIgnoringReturn;
if (capturesAnything(CI.UseCC & Mask)) {
if (!EarliestCapture)
EarliestCapture = I;
else
EarliestCapture = DT.findNearestCommonDominator(EarliestCapture, I);
CC |= CI.UseCC & Mask;
}
// Continue analysis, as we need to see all potential captures.
return Continue;
}
const DominatorTree &DT;
bool ReturnCaptures;
Function &F;
CaptureComponents Mask;
Instruction *EarliestCapture = nullptr;
CaptureComponents CC = CaptureComponents::None;
};
} // namespace
CaptureComponents llvm::PointerMayBeCaptured(
const Value *V, bool ReturnCaptures, CaptureComponents Mask,
function_ref<bool(CaptureComponents)> StopFn, unsigned MaxUsesToExplore) {
assert(!isa<GlobalValue>(V) &&
"It doesn't make sense to ask whether a global is captured.");
LLVM_DEBUG(dbgs() << "Captured?: " << *V << " = ");
SimpleCaptureTracker SCT(ReturnCaptures, Mask, StopFn);
PointerMayBeCaptured(V, &SCT, MaxUsesToExplore);
if (capturesAnything(SCT.CC))
++NumCaptured;
else {
++NumNotCaptured;
LLVM_DEBUG(dbgs() << "not captured\n");
}
return SCT.CC;
}
bool llvm::PointerMayBeCaptured(const Value *V, bool ReturnCaptures,
unsigned MaxUsesToExplore) {
return capturesAnything(
PointerMayBeCaptured(V, ReturnCaptures, CaptureComponents::All,
capturesAnything, MaxUsesToExplore));
}
CaptureComponents llvm::PointerMayBeCapturedBefore(
const Value *V, bool ReturnCaptures, const Instruction *I,
const DominatorTree *DT, bool IncludeI, CaptureComponents Mask,
function_ref<bool(CaptureComponents)> StopFn, const LoopInfo *LI,
unsigned MaxUsesToExplore) {
assert(!isa<GlobalValue>(V) &&
"It doesn't make sense to ask whether a global is captured.");
if (!DT)
return PointerMayBeCaptured(V, ReturnCaptures, Mask, StopFn,
MaxUsesToExplore);
CapturesBefore CB(ReturnCaptures, I, DT, IncludeI, LI, Mask, StopFn);
PointerMayBeCaptured(V, &CB, MaxUsesToExplore);
if (capturesAnything(CB.CC))
++NumCapturedBefore;
else
++NumNotCapturedBefore;
return CB.CC;
}
bool llvm::PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures,
const Instruction *I,
const DominatorTree *DT, bool IncludeI,
unsigned MaxUsesToExplore,
const LoopInfo *LI) {
return capturesAnything(PointerMayBeCapturedBefore(
V, ReturnCaptures, I, DT, IncludeI, CaptureComponents::All,
capturesAnything, LI, MaxUsesToExplore));
}
std::pair<Instruction *, CaptureComponents>
llvm::FindEarliestCapture(const Value *V, Function &F, bool ReturnCaptures,
const DominatorTree &DT, CaptureComponents Mask,
unsigned MaxUsesToExplore) {
assert(!isa<GlobalValue>(V) &&
"It doesn't make sense to ask whether a global is captured.");
EarliestCaptures CB(ReturnCaptures, F, DT, Mask);
PointerMayBeCaptured(V, &CB, MaxUsesToExplore);
if (capturesAnything(CB.CC))
++NumCapturedBefore;
else
++NumNotCapturedBefore;
return {CB.EarliestCapture, CB.CC};
}
UseCaptureInfo llvm::DetermineUseCaptureKind(const Use &U, const Value *Base) {
Instruction *I = dyn_cast<Instruction>(U.getUser());
// TODO: Investigate non-instruction uses.
if (!I)
return CaptureComponents::All;
switch (I->getOpcode()) {
case Instruction::Call:
case Instruction::Invoke: {
auto *Call = cast<CallBase>(I);
// Not captured if the callee is readonly, doesn't return a copy through
// its return value and doesn't unwind or diverge (a readonly function can
// leak bits by throwing an exception or not depending on the input value).
if (Call->onlyReadsMemory() && Call->doesNotThrow() && Call->willReturn() &&
Call->getType()->isVoidTy())
return CaptureComponents::None;
// The pointer is not captured if returned pointer is not captured.
// NOTE: CaptureTracking users should not assume that only functions
// marked with nocapture do not capture. This means that places like
// getUnderlyingObject in ValueTracking or DecomposeGEPExpression
// in BasicAA also need to know about this property.
if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call, true))
return UseCaptureInfo::passthrough();
// Volatile operations effectively capture the memory location that they
// load and store to.
if (auto *MI = dyn_cast<MemIntrinsic>(Call))
if (MI->isVolatile())
return CaptureComponents::All;
// Calling a function pointer does not in itself cause the pointer to
// be captured. This is a subtle point considering that (for example)
// the callee might return its own address. It is analogous to saying
// that loading a value from a pointer does not cause the pointer to be
// captured, even though the loaded value might be the pointer itself
// (think of self-referential objects).
if (Call->isCallee(&U))
return CaptureComponents::None;
// Not captured if only passed via 'nocapture' arguments.
assert(Call->isDataOperand(&U) && "Non-callee must be data operand");
CaptureInfo CI = Call->getCaptureInfo(Call->getDataOperandNo(&U));
return UseCaptureInfo(CI.getOtherComponents(), CI.getRetComponents());
}
case Instruction::Load:
// Volatile loads make the address observable.
if (cast<LoadInst>(I)->isVolatile())
return CaptureComponents::All;
return CaptureComponents::None;
case Instruction::VAArg:
// "va-arg" from a pointer does not cause it to be captured.
return CaptureComponents::None;
case Instruction::Store:
// Stored the pointer - conservatively assume it may be captured.
// Volatile stores make the address observable.
if (U.getOperandNo() == 0 || cast<StoreInst>(I)->isVolatile())
return CaptureComponents::All;
return CaptureComponents::None;
case Instruction::AtomicRMW: {
// atomicrmw conceptually includes both a load and store from
// the same location.
// As with a store, the location being accessed is not captured,
// but the value being stored is.
// Volatile stores make the address observable.
auto *ARMWI = cast<AtomicRMWInst>(I);
if (U.getOperandNo() == 1 || ARMWI->isVolatile())
return CaptureComponents::All;
return CaptureComponents::None;
}
case Instruction::AtomicCmpXchg: {
// cmpxchg conceptually includes both a load and store from
// the same location.
// As with a store, the location being accessed is not captured,
// but the value being stored is.
// Volatile stores make the address observable.
auto *ACXI = cast<AtomicCmpXchgInst>(I);
if (U.getOperandNo() == 1 || U.getOperandNo() == 2 || ACXI->isVolatile())
return CaptureComponents::All;
return CaptureComponents::None;
}
case Instruction::GetElementPtr:
// AA does not support pointers of vectors, so GEP vector splats need to
// be considered as captures.
if (I->getType()->isVectorTy())
return CaptureComponents::All;
return UseCaptureInfo::passthrough();
case Instruction::BitCast:
case Instruction::PHI:
case Instruction::Select:
case Instruction::AddrSpaceCast:
// The original value is not captured via this if the new value isn't.
return UseCaptureInfo::passthrough();
case Instruction::ICmp: {
unsigned Idx = U.getOperandNo();
unsigned OtherIdx = 1 - Idx;
if (isa<ConstantPointerNull>(I->getOperand(OtherIdx)) &&
cast<ICmpInst>(I)->isEquality()) {
// TODO(captures): Remove these special cases once we make use of
// captures(address_is_null).
// Don't count comparisons of a no-alias return value against null as
// captures. This allows us to ignore comparisons of malloc results
// with null, for example.
if (U->getType()->getPointerAddressSpace() == 0)
if (isNoAliasCall(U.get()->stripPointerCasts()))
return CaptureComponents::None;
// Check whether this is a comparison of the base pointer against
// null.
if (U.get() == Base)
return CaptureComponents::AddressIsNull;
}
// Otherwise, be conservative. There are crazy ways to capture pointers
// using comparisons. However, only the address is captured, not the
// provenance.
return CaptureComponents::Address;
}
default:
// Something else - be conservative and say it is captured.
return CaptureComponents::All;
}
}
void llvm::PointerMayBeCaptured(const Value *V, CaptureTracker *Tracker,
unsigned MaxUsesToExplore) {
assert(V->getType()->isPointerTy() && "Capture is for pointers only!");
if (MaxUsesToExplore == 0)
MaxUsesToExplore = DefaultMaxUsesToExplore;
SmallVector<const Use *, 20> Worklist;
Worklist.reserve(getDefaultMaxUsesToExploreForCaptureTracking());
SmallSet<const Use *, 20> Visited;
auto AddUses = [&](const Value *V) {
for (const Use &U : V->uses()) {
// If there are lots of uses, conservatively say that the value
// is captured to avoid taking too much compile time.
if (Visited.size() >= MaxUsesToExplore) {
Tracker->tooManyUses();
return false;
}
if (!Visited.insert(&U).second)
continue;
if (!Tracker->shouldExplore(&U))
continue;
Worklist.push_back(&U);
}
return true;
};
if (!AddUses(V))
return;
while (!Worklist.empty()) {
const Use *U = Worklist.pop_back_val();
UseCaptureInfo CI = DetermineUseCaptureKind(*U, V);
if (capturesAnything(CI.UseCC)) {
switch (Tracker->captured(U, CI)) {
case CaptureTracker::Stop:
return;
case CaptureTracker::ContinueIgnoringReturn:
continue;
case CaptureTracker::Continue:
// Fall through to passthrough handling, but only if ResultCC contains
// additional components that UseCC does not. We assume that a
// capture at this point will be strictly more constraining than a
// later capture from following the return value.
if (capturesNothing(CI.ResultCC & ~CI.UseCC))
continue;
break;
}
}
// TODO(captures): We could keep track of ResultCC for the users.
if (capturesAnything(CI.ResultCC) && !AddUses(U->getUser()))
return;
}
// All uses examined.
}