blob: 071a27a79506422d42317a77140e0d27d1cad609 [file] [log] [blame]
//==--------------- llvm/CodeGen/SDPatternMatch.h ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// Contains matchers for matching SelectionDAG nodes and values.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SDPATTERNMATCH_H
#define LLVM_CODEGEN_SDPATTERNMATCH_H
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetLowering.h"
namespace llvm {
namespace SDPatternMatch {
/// MatchContext can repurpose existing patterns to behave differently under
/// a certain context. For instance, `m_Opc(ISD::ADD)` matches plain ADD nodes
/// in normal circumstances, but matches VP_ADD nodes under a custom
/// VPMatchContext. This design is meant to facilitate code / pattern reusing.
class BasicMatchContext {
const SelectionDAG *DAG;
const TargetLowering *TLI;
public:
explicit BasicMatchContext(const SelectionDAG *DAG)
: DAG(DAG), TLI(DAG ? &DAG->getTargetLoweringInfo() : nullptr) {}
explicit BasicMatchContext(const TargetLowering *TLI)
: DAG(nullptr), TLI(TLI) {}
// A valid MatchContext has to implement the following functions.
const SelectionDAG *getDAG() const { return DAG; }
const TargetLowering *getTLI() const { return TLI; }
/// Return true if N effectively has opcode Opcode.
bool match(SDValue N, unsigned Opcode) const {
return N->getOpcode() == Opcode;
}
};
template <typename Pattern, typename MatchContext>
[[nodiscard]] bool sd_context_match(SDValue N, const MatchContext &Ctx,
Pattern &&P) {
return P.match(Ctx, N);
}
template <typename Pattern, typename MatchContext>
[[nodiscard]] bool sd_context_match(SDNode *N, const MatchContext &Ctx,
Pattern &&P) {
return sd_context_match(SDValue(N, 0), Ctx, P);
}
template <typename Pattern>
[[nodiscard]] bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P) {
return sd_context_match(N, BasicMatchContext(DAG), P);
}
template <typename Pattern>
[[nodiscard]] bool sd_match(SDValue N, const SelectionDAG *DAG, Pattern &&P) {
return sd_context_match(N, BasicMatchContext(DAG), P);
}
template <typename Pattern>
[[nodiscard]] bool sd_match(SDNode *N, Pattern &&P) {
return sd_match(N, nullptr, P);
}
template <typename Pattern>
[[nodiscard]] bool sd_match(SDValue N, Pattern &&P) {
return sd_match(N, nullptr, P);
}
// === Utilities ===
struct Value_match {
SDValue MatchVal;
Value_match() = default;
explicit Value_match(SDValue Match) : MatchVal(Match) {}
template <typename MatchContext> bool match(const MatchContext &, SDValue N) {
if (MatchVal)
return MatchVal == N;
return N.getNode();
}
};
/// Match any valid SDValue.
inline Value_match m_Value() { return Value_match(); }
inline Value_match m_Specific(SDValue N) {
assert(N);
return Value_match(N);
}
struct DeferredValue_match {
SDValue &MatchVal;
explicit DeferredValue_match(SDValue &Match) : MatchVal(Match) {}
template <typename MatchContext> bool match(const MatchContext &, SDValue N) {
return N == MatchVal;
}
};
/// Similar to m_Specific, but the specific value to match is determined by
/// another sub-pattern in the same sd_match() expression. For instance,
/// We cannot match `(add V, V)` with `m_Add(m_Value(X), m_Specific(X))` since
/// `X` is not initialized at the time it got copied into `m_Specific`. Instead,
/// we should use `m_Add(m_Value(X), m_Deferred(X))`.
inline DeferredValue_match m_Deferred(SDValue &V) {
return DeferredValue_match(V);
}
struct Opcode_match {
unsigned Opcode;
explicit Opcode_match(unsigned Opc) : Opcode(Opc) {}
template <typename MatchContext>
bool match(const MatchContext &Ctx, SDValue N) {
return Ctx.match(N, Opcode);
}
};
inline Opcode_match m_Opc(unsigned Opcode) { return Opcode_match(Opcode); }
template <unsigned NumUses, typename Pattern> struct NUses_match {
Pattern P;
explicit NUses_match(const Pattern &P) : P(P) {}
template <typename MatchContext>
bool match(const MatchContext &Ctx, SDValue N) {
// SDNode::hasNUsesOfValue is pretty expensive when the SDNode produces
// multiple results, hence we check the subsequent pattern here before
// checking the number of value users.
return P.match(Ctx, N) && N->hasNUsesOfValue(NumUses, N.getResNo());
}
};
template <typename Pattern>
inline NUses_match<1, Pattern> m_OneUse(const Pattern &P) {
return NUses_match<1, Pattern>(P);
}
template <unsigned N, typename Pattern>
inline NUses_match<N, Pattern> m_NUses(const Pattern &P) {
return NUses_match<N, Pattern>(P);
}
inline NUses_match<1, Value_match> m_OneUse() {
return NUses_match<1, Value_match>(m_Value());
}
template <unsigned N> inline NUses_match<N, Value_match> m_NUses() {
return NUses_match<N, Value_match>(m_Value());
}
struct Value_bind {
SDValue &BindVal;
explicit Value_bind(SDValue &N) : BindVal(N) {}
template <typename MatchContext> bool match(const MatchContext &, SDValue N) {
BindVal = N;
return true;
}
};
inline Value_bind m_Value(SDValue &N) { return Value_bind(N); }
template <typename Pattern, typename PredFuncT> struct TLI_pred_match {
Pattern P;
PredFuncT PredFunc;
TLI_pred_match(const PredFuncT &Pred, const Pattern &P)
: P(P), PredFunc(Pred) {}
template <typename MatchContext>
bool match(const MatchContext &Ctx, SDValue N) {
assert(Ctx.getTLI() && "TargetLowering is required for this pattern.");
return PredFunc(*Ctx.getTLI(), N) && P.match(Ctx, N);
}
};
// Explicit deduction guide.
template <typename PredFuncT, typename Pattern>
TLI_pred_match(const PredFuncT &Pred, const Pattern &P)
-> TLI_pred_match<Pattern, PredFuncT>;
/// Match legal SDNodes based on the information provided by TargetLowering.
template <typename Pattern> inline auto m_LegalOp(const Pattern &P) {
return TLI_pred_match{[](const TargetLowering &TLI, SDValue N) {
return TLI.isOperationLegal(N->getOpcode(),
N.getValueType());
},
P};
}
/// Switch to a different MatchContext for subsequent patterns.
template <typename NewMatchContext, typename Pattern> struct SwitchContext {
const NewMatchContext &Ctx;
Pattern P;
template <typename OrigMatchContext>
bool match(const OrigMatchContext &, SDValue N) {
return P.match(Ctx, N);
}
};
template <typename MatchContext, typename Pattern>
inline SwitchContext<MatchContext, Pattern> m_Context(const MatchContext &Ctx,
Pattern &&P) {
return SwitchContext<MatchContext, Pattern>{Ctx, std::move(P)};
}
// === Value type ===
struct ValueType_bind {
EVT &BindVT;
explicit ValueType_bind(EVT &Bind) : BindVT(Bind) {}
template <typename MatchContext> bool match(const MatchContext &, SDValue N) {
BindVT = N.getValueType();
return true;
}
};
/// Retreive the ValueType of the current SDValue.
inline ValueType_bind m_VT(EVT &VT) { return ValueType_bind(VT); }
template <typename Pattern, typename PredFuncT> struct ValueType_match {
PredFuncT PredFunc;
Pattern P;
ValueType_match(const PredFuncT &Pred, const Pattern &P)
: PredFunc(Pred), P(P) {}
template <typename MatchContext>
bool match(const MatchContext &Ctx, SDValue N) {
return PredFunc(N.getValueType()) && P.match(Ctx, N);
}
};
// Explicit deduction guide.
template <typename PredFuncT, typename Pattern>
ValueType_match(const PredFuncT &Pred, const Pattern &P)
-> ValueType_match<Pattern, PredFuncT>;
/// Match a specific ValueType.
template <typename Pattern>
inline auto m_SpecificVT(EVT RefVT, const Pattern &P) {
return ValueType_match{[=](EVT VT) { return VT == RefVT; }, P};
}
inline auto m_SpecificVT(EVT RefVT) {
return ValueType_match{[=](EVT VT) { return VT == RefVT; }, m_Value()};
}
inline auto m_Glue() { return m_SpecificVT(MVT::Glue); }
inline auto m_OtherVT() { return m_SpecificVT(MVT::Other); }
/// Match any integer ValueTypes.
template <typename Pattern> inline auto m_IntegerVT(const Pattern &P) {
return ValueType_match{[](EVT VT) { return VT.isInteger(); }, P};
}
inline auto m_IntegerVT() {
return ValueType_match{[](EVT VT) { return VT.isInteger(); }, m_Value()};
}
/// Match any floating point ValueTypes.
template <typename Pattern> inline auto m_FloatingPointVT(const Pattern &P) {
return ValueType_match{[](EVT VT) { return VT.isFloatingPoint(); }, P};
}
inline auto m_FloatingPointVT() {
return ValueType_match{[](EVT VT) { return VT.isFloatingPoint(); },
m_Value()};
}
/// Match any vector ValueTypes.
template <typename Pattern> inline auto m_VectorVT(const Pattern &P) {
return ValueType_match{[](EVT VT) { return VT.isVector(); }, P};
}
inline auto m_VectorVT() {
return ValueType_match{[](EVT VT) { return VT.isVector(); }, m_Value()};
}
/// Match fixed-length vector ValueTypes.
template <typename Pattern> inline auto m_FixedVectorVT(const Pattern &P) {
return ValueType_match{[](EVT VT) { return VT.isFixedLengthVector(); }, P};
}
inline auto m_FixedVectorVT() {
return ValueType_match{[](EVT VT) { return VT.isFixedLengthVector(); },
m_Value()};
}
/// Match scalable vector ValueTypes.
template <typename Pattern> inline auto m_ScalableVectorVT(const Pattern &P) {
return ValueType_match{[](EVT VT) { return VT.isScalableVector(); }, P};
}
inline auto m_ScalableVectorVT() {
return ValueType_match{[](EVT VT) { return VT.isScalableVector(); },
m_Value()};
}
/// Match legal ValueTypes based on the information provided by TargetLowering.
template <typename Pattern> inline auto m_LegalType(const Pattern &P) {
return TLI_pred_match{[](const TargetLowering &TLI, SDValue N) {
return TLI.isTypeLegal(N.getValueType());
},
P};
}
// === Patterns combinators ===
template <typename... Preds> struct And {
template <typename MatchContext> bool match(const MatchContext &, SDValue N) {
return true;
}
};
template <typename Pred, typename... Preds>
struct And<Pred, Preds...> : And<Preds...> {
Pred P;
And(const Pred &p, const Preds &...preds) : And<Preds...>(preds...), P(p) {}
template <typename MatchContext>
bool match(const MatchContext &Ctx, SDValue N) {
return P.match(Ctx, N) && And<Preds...>::match(Ctx, N);
}
};
template <typename... Preds> struct Or {
template <typename MatchContext> bool match(const MatchContext &, SDValue N) {
return false;
}
};
template <typename Pred, typename... Preds>
struct Or<Pred, Preds...> : Or<Preds...> {
Pred P;
Or(const Pred &p, const Preds &...preds) : Or<Preds...>(preds...), P(p) {}
template <typename MatchContext>
bool match(const MatchContext &Ctx, SDValue N) {
return P.match(Ctx, N) || Or<Preds...>::match(Ctx, N);
}
};
template <typename Pred> struct Not {
Pred P;
explicit Not(const Pred &P) : P(P) {}
template <typename MatchContext>
bool match(const MatchContext &Ctx, SDValue N) {
return !P.match(Ctx, N);
}
};
// Explicit deduction guide.
template <typename Pred> Not(const Pred &P) -> Not<Pred>;
/// Match if the inner pattern does NOT match.
template <typename Pred> inline Not<Pred> m_Unless(const Pred &P) {
return Not{P};
}
template <typename... Preds> And<Preds...> m_AllOf(const Preds &...preds) {
return And<Preds...>(preds...);
}
template <typename... Preds> Or<Preds...> m_AnyOf(const Preds &...preds) {
return Or<Preds...>(preds...);
}
template <typename... Preds> auto m_NoneOf(const Preds &...preds) {
return m_Unless(m_AnyOf(preds...));
}
// === Generic node matching ===
template <unsigned OpIdx, typename... OpndPreds> struct Operands_match {
template <typename MatchContext>
bool match(const MatchContext &Ctx, SDValue N) {
// Returns false if there are more operands than predicates;
return N->getNumOperands() == OpIdx;
}
};
template <unsigned OpIdx, typename OpndPred, typename... OpndPreds>
struct Operands_match<OpIdx, OpndPred, OpndPreds...>
: Operands_match<OpIdx + 1, OpndPreds...> {
OpndPred P;
Operands_match(const OpndPred &p, const OpndPreds &...preds)
: Operands_match<OpIdx + 1, OpndPreds...>(preds...), P(p) {}
template <typename MatchContext>
bool match(const MatchContext &Ctx, SDValue N) {
if (OpIdx < N->getNumOperands())
return P.match(Ctx, N->getOperand(OpIdx)) &&
Operands_match<OpIdx + 1, OpndPreds...>::match(Ctx, N);
// This is the case where there are more predicates than operands.
return false;
}
};
template <typename... OpndPreds>
auto m_Node(unsigned Opcode, const OpndPreds &...preds) {
return m_AllOf(m_Opc(Opcode), Operands_match<0, OpndPreds...>(preds...));
}
/// Provide number of operands that are not chain or glue, as well as the first
/// index of such operand.
template <bool ExcludeChain> struct EffectiveOperands {
unsigned Size = 0;
unsigned FirstIndex = 0;
explicit EffectiveOperands(SDValue N) {
const unsigned TotalNumOps = N->getNumOperands();
FirstIndex = TotalNumOps;
for (unsigned I = 0; I < TotalNumOps; ++I) {
// Count the number of non-chain and non-glue nodes (we ignore chain
// and glue by default) and retreive the operand index offset.
EVT VT = N->getOperand(I).getValueType();
if (VT != MVT::Glue && VT != MVT::Other) {
++Size;
if (FirstIndex == TotalNumOps)
FirstIndex = I;
}
}
}
};
template <> struct EffectiveOperands<false> {
unsigned Size = 0;
unsigned FirstIndex = 0;
explicit EffectiveOperands(SDValue N) : Size(N->getNumOperands()) {}
};
// === Binary operations ===
template <typename LHS_P, typename RHS_P, bool Commutable = false,
bool ExcludeChain = false>
struct BinaryOpc_match {
unsigned Opcode;
LHS_P LHS;
RHS_P RHS;
BinaryOpc_match(unsigned Opc, const LHS_P &L, const RHS_P &R)
: Opcode(Opc), LHS(L), RHS(R) {}
template <typename MatchContext>
bool match(const MatchContext &Ctx, SDValue N) {
if (sd_context_match(N, Ctx, m_Opc(Opcode))) {
EffectiveOperands<ExcludeChain> EO(N);
assert(EO.Size == 2);
return (LHS.match(Ctx, N->getOperand(EO.FirstIndex)) &&
RHS.match(Ctx, N->getOperand(EO.FirstIndex + 1))) ||
(Commutable && LHS.match(Ctx, N->getOperand(EO.FirstIndex + 1)) &&
RHS.match(Ctx, N->getOperand(EO.FirstIndex)));
}
return false;
}
};
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, false> m_BinOp(unsigned Opc, const LHS &L,
const RHS &R) {
return BinaryOpc_match<LHS, RHS, false>(Opc, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, true> m_c_BinOp(unsigned Opc, const LHS &L,
const RHS &R) {
return BinaryOpc_match<LHS, RHS, true>(Opc, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, false, true>
m_ChainedBinOp(unsigned Opc, const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, false, true>(Opc, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, true, true>
m_c_ChainedBinOp(unsigned Opc, const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, true, true>(Opc, L, R);
}
// Common binary operations
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, true> m_Add(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, true>(ISD::ADD, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, false> m_Sub(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, false>(ISD::SUB, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, true> m_Mul(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, true>(ISD::MUL, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, true> m_And(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, true>(ISD::AND, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, true> m_Or(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, true>(ISD::OR, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, true> m_Xor(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, true>(ISD::XOR, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, true> m_SMin(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, true>(ISD::SMIN, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, true> m_SMax(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, true>(ISD::SMAX, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, true> m_UMin(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, true>(ISD::UMIN, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, true> m_UMax(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, true>(ISD::UMAX, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, false> m_UDiv(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, false>(ISD::UDIV, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, false> m_SDiv(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, false>(ISD::SDIV, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, false> m_URem(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, false>(ISD::UREM, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, false> m_SRem(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, false>(ISD::SREM, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, false> m_Shl(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, false>(ISD::SHL, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, false> m_Sra(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, false>(ISD::SRA, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, false> m_Srl(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, false>(ISD::SRL, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, true> m_FAdd(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, true>(ISD::FADD, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, false> m_FSub(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, false>(ISD::FSUB, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, true> m_FMul(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, true>(ISD::FMUL, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, false> m_FDiv(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, false>(ISD::FDIV, L, R);
}
template <typename LHS, typename RHS>
inline BinaryOpc_match<LHS, RHS, false> m_FRem(const LHS &L, const RHS &R) {
return BinaryOpc_match<LHS, RHS, false>(ISD::FREM, L, R);
}
// === Unary operations ===
template <typename Opnd_P, bool ExcludeChain = false> struct UnaryOpc_match {
unsigned Opcode;
Opnd_P Opnd;
UnaryOpc_match(unsigned Opc, const Opnd_P &Op) : Opcode(Opc), Opnd(Op) {}
template <typename MatchContext>
bool match(const MatchContext &Ctx, SDValue N) {
if (sd_context_match(N, Ctx, m_Opc(Opcode))) {
EffectiveOperands<ExcludeChain> EO(N);
assert(EO.Size == 1);
return Opnd.match(Ctx, N->getOperand(EO.FirstIndex));
}
return false;
}
};
template <typename Opnd>
inline UnaryOpc_match<Opnd> m_UnaryOp(unsigned Opc, const Opnd &Op) {
return UnaryOpc_match<Opnd>(Opc, Op);
}
template <typename Opnd>
inline UnaryOpc_match<Opnd, true> m_ChainedUnaryOp(unsigned Opc,
const Opnd &Op) {
return UnaryOpc_match<Opnd, true>(Opc, Op);
}
template <typename Opnd>
inline UnaryOpc_match<Opnd> m_BitReverse(const Opnd &Op) {
return UnaryOpc_match<Opnd>(ISD::BITREVERSE, Op);
}
template <typename Opnd> inline UnaryOpc_match<Opnd> m_ZExt(const Opnd &Op) {
return UnaryOpc_match<Opnd>(ISD::ZERO_EXTEND, Op);
}
template <typename Opnd> inline auto m_SExt(const Opnd &Op) {
return m_AnyOf(UnaryOpc_match<Opnd>(ISD::SIGN_EXTEND, Op),
m_Node(ISD::SIGN_EXTEND_INREG, Op, m_Value()));
}
template <typename Opnd> inline UnaryOpc_match<Opnd> m_AnyExt(const Opnd &Op) {
return UnaryOpc_match<Opnd>(ISD::ANY_EXTEND, Op);
}
template <typename Opnd> inline UnaryOpc_match<Opnd> m_Trunc(const Opnd &Op) {
return UnaryOpc_match<Opnd>(ISD::TRUNCATE, Op);
}
/// Match a zext or identity
/// Allows to peek through optional extensions
template <typename Opnd> inline auto m_ZExtOrSelf(const Opnd &Op) {
return m_AnyOf(m_ZExt(Op), Op);
}
/// Match a sext or identity
/// Allows to peek through optional extensions
template <typename Opnd> inline auto m_SExtOrSelf(const Opnd &Op) {
return m_AnyOf(m_SExt(Op), Op);
}
/// Match a aext or identity
/// Allows to peek through optional extensions
template <typename Opnd>
inline Or<UnaryOpc_match<Opnd>, Opnd> m_AExtOrSelf(const Opnd &Op) {
return Or<UnaryOpc_match<Opnd>, Opnd>(m_AnyExt(Op), Op);
}
/// Match a trunc or identity
/// Allows to peek through optional truncations
template <typename Opnd>
inline Or<UnaryOpc_match<Opnd>, Opnd> m_TruncOrSelf(const Opnd &Op) {
return Or<UnaryOpc_match<Opnd>, Opnd>(m_Trunc(Op), Op);
}
// === Constants ===
struct ConstantInt_match {
APInt *BindVal;
explicit ConstantInt_match(APInt *V) : BindVal(V) {}
template <typename MatchContext> bool match(const MatchContext &, SDValue N) {
// The logics here are similar to that in
// SelectionDAG::isConstantIntBuildVectorOrConstantInt, but the latter also
// treats GlobalAddressSDNode as a constant, which is difficult to turn into
// APInt.
if (auto *C = dyn_cast_or_null<ConstantSDNode>(N.getNode())) {
if (BindVal)
*BindVal = C->getAPIntValue();
return true;
}
APInt Discard;
return ISD::isConstantSplatVector(N.getNode(),
BindVal ? *BindVal : Discard);
}
};
/// Match any interger constants or splat of an integer constant.
inline ConstantInt_match m_ConstInt() { return ConstantInt_match(nullptr); }
/// Match any interger constants or splat of an integer constant; return the
/// specific constant or constant splat value.
inline ConstantInt_match m_ConstInt(APInt &V) { return ConstantInt_match(&V); }
struct SpecificInt_match {
APInt IntVal;
explicit SpecificInt_match(APInt APV) : IntVal(std::move(APV)) {}
template <typename MatchContext>
bool match(const MatchContext &Ctx, SDValue N) {
APInt ConstInt;
if (sd_context_match(N, Ctx, m_ConstInt(ConstInt)))
return APInt::isSameValue(IntVal, ConstInt);
return false;
}
};
/// Match a specific integer constant or constant splat value.
inline SpecificInt_match m_SpecificInt(APInt V) {
return SpecificInt_match(std::move(V));
}
inline SpecificInt_match m_SpecificInt(uint64_t V) {
return SpecificInt_match(APInt(64, V));
}
inline SpecificInt_match m_Zero() { return m_SpecificInt(0U); }
inline SpecificInt_match m_One() { return m_SpecificInt(1U); }
struct AllOnes_match {
AllOnes_match() = default;
template <typename MatchContext> bool match(const MatchContext &, SDValue N) {
return isAllOnesOrAllOnesSplat(N);
}
};
inline AllOnes_match m_AllOnes() { return AllOnes_match(); }
/// Match true boolean value based on the information provided by
/// TargetLowering.
inline auto m_True() {
return TLI_pred_match{
[](const TargetLowering &TLI, SDValue N) {
APInt ConstVal;
if (sd_match(N, m_ConstInt(ConstVal)))
switch (TLI.getBooleanContents(N.getValueType())) {
case TargetLowering::ZeroOrOneBooleanContent:
return ConstVal.isOne();
case TargetLowering::ZeroOrNegativeOneBooleanContent:
return ConstVal.isAllOnes();
case TargetLowering::UndefinedBooleanContent:
return (ConstVal & 0x01) == 1;
}
return false;
},
m_Value()};
}
/// Match false boolean value based on the information provided by
/// TargetLowering.
inline auto m_False() {
return TLI_pred_match{
[](const TargetLowering &TLI, SDValue N) {
APInt ConstVal;
if (sd_match(N, m_ConstInt(ConstVal)))
switch (TLI.getBooleanContents(N.getValueType())) {
case TargetLowering::ZeroOrOneBooleanContent:
case TargetLowering::ZeroOrNegativeOneBooleanContent:
return ConstVal.isZero();
case TargetLowering::UndefinedBooleanContent:
return (ConstVal & 0x01) == 0;
}
return false;
},
m_Value()};
}
struct CondCode_match {
std::optional<ISD::CondCode> CCToMatch;
ISD::CondCode *BindCC = nullptr;
explicit CondCode_match(ISD::CondCode CC) : CCToMatch(CC) {}
explicit CondCode_match(ISD::CondCode *CC) : BindCC(CC) {}
template <typename MatchContext> bool match(const MatchContext &, SDValue N) {
if (auto *CC = dyn_cast<CondCodeSDNode>(N.getNode())) {
if (CCToMatch && *CCToMatch != CC->get())
return false;
if (BindCC)
*BindCC = CC->get();
return true;
}
return false;
}
};
/// Match any conditional code SDNode.
inline CondCode_match m_CondCode() { return CondCode_match(nullptr); }
/// Match any conditional code SDNode and return its ISD::CondCode value.
inline CondCode_match m_CondCode(ISD::CondCode &CC) {
return CondCode_match(&CC);
}
/// Match a conditional code SDNode with a specific ISD::CondCode.
inline CondCode_match m_SpecificCondCode(ISD::CondCode CC) {
return CondCode_match(CC);
}
/// Match a negate as a sub(0, v)
template <typename ValTy>
inline BinaryOpc_match<SpecificInt_match, ValTy> m_Neg(const ValTy &V) {
return m_Sub(m_Zero(), V);
}
/// Match a Not as a xor(v, -1) or xor(-1, v)
template <typename ValTy>
inline BinaryOpc_match<ValTy, AllOnes_match, true> m_Not(const ValTy &V) {
return m_Xor(V, m_AllOnes());
}
} // namespace SDPatternMatch
} // namespace llvm
#endif