blob: d140aa159a3eeeafb299dee90a8daa665df6e585 [file] [log] [blame]
//===- InjectorIRStrategyTest.cpp - Tests for injector strategy -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/AsmParser/SlotMapping.h"
#include "llvm/FuzzMutate/IRMutator.h"
#include "llvm/FuzzMutate/Operations.h"
#include "llvm/FuzzMutate/RandomIRBuilder.h"
#include "llvm/IR/FMF.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/SourceMgr.h"
#include <random>
#include "gtest/gtest.h"
using namespace llvm;
static constexpr int Seed = 5;
namespace {
std::unique_ptr<IRMutator> createInjectorMutator() {
std::vector<TypeGetter> Types{
Type::getInt1Ty, Type::getInt8Ty, Type::getInt16Ty, Type::getInt32Ty,
Type::getInt64Ty, Type::getFloatTy, Type::getDoubleTy};
// Add vector 1, 2, 3, 4, and 8.
int VectorLength[] = {1, 2, 3, 4, 8};
std::vector<TypeGetter> BasicTypeGetters(Types);
for (auto typeGetter : BasicTypeGetters) {
for (int length : VectorLength) {
Types.push_back([typeGetter, length](LLVMContext &C) {
return VectorType::get(typeGetter(C), length, false);
});
}
}
std::vector<std::unique_ptr<IRMutationStrategy>> Strategies;
Strategies.push_back(std::make_unique<InjectorIRStrategy>(
InjectorIRStrategy::getDefaultOps()));
return std::make_unique<IRMutator>(std::move(Types), std::move(Strategies));
}
template <class Strategy> std::unique_ptr<IRMutator> createMutator() {
std::vector<TypeGetter> Types{
Type::getInt1Ty, Type::getInt8Ty, Type::getInt16Ty, Type::getInt32Ty,
Type::getInt64Ty, Type::getFloatTy, Type::getDoubleTy};
std::vector<std::unique_ptr<IRMutationStrategy>> Strategies;
Strategies.push_back(std::make_unique<Strategy>());
return std::make_unique<IRMutator>(std::move(Types), std::move(Strategies));
}
std::unique_ptr<Module> parseAssembly(const char *Assembly,
LLVMContext &Context) {
SMDiagnostic Error;
std::unique_ptr<Module> M = parseAssemblyString(Assembly, Error, Context);
std::string ErrMsg;
raw_string_ostream OS(ErrMsg);
Error.print("", OS);
assert(M && !verifyModule(*M, &errs()));
return M;
}
void IterateOnSource(StringRef Source, IRMutator &Mutator) {
LLVMContext Ctx;
for (int i = 0; i < 10; ++i) {
auto M = parseAssembly(Source.data(), Ctx);
ASSERT_TRUE(M && !verifyModule(*M, &errs()));
Mutator.mutateModule(*M, Seed, IRMutator::getModuleSize(*M) + 100);
EXPECT_TRUE(!verifyModule(*M, &errs()));
}
}
static void mutateAndVerifyModule(StringRef Source,
std::unique_ptr<IRMutator> &Mutator,
int repeat = 100) {
LLVMContext Ctx;
auto M = parseAssembly(Source.data(), Ctx);
std::mt19937 mt(Seed);
std::uniform_int_distribution<int> RandInt(INT_MIN, INT_MAX);
for (int i = 0; i < repeat; i++) {
Mutator->mutateModule(*M, RandInt(mt), IRMutator::getModuleSize(*M) + 1024);
ASSERT_FALSE(verifyModule(*M, &errs()));
}
}
template <class Strategy>
static void mutateAndVerifyModule(StringRef Source, int repeat = 100) {
auto Mutator = createMutator<Strategy>();
ASSERT_TRUE(Mutator);
mutateAndVerifyModule(Source, Mutator, repeat);
}
TEST(InjectorIRStrategyTest, EmptyModule) {
// Test that we can inject into empty module
LLVMContext Ctx;
auto M = std::make_unique<Module>("M", Ctx);
ASSERT_TRUE(M && !verifyModule(*M, &errs()));
auto Mutator = createInjectorMutator();
ASSERT_TRUE(Mutator);
Mutator->mutateModule(*M, Seed, IRMutator::getModuleSize(*M) + 1);
EXPECT_TRUE(!verifyModule(*M, &errs()));
}
TEST(InjectorIRStrategyTest, LargeInsertion) {
StringRef Source = "";
auto Mutator = createInjectorMutator();
ASSERT_TRUE(Mutator);
mutateAndVerifyModule(Source, Mutator, 100);
}
TEST(InjectorIRStrategyTest, InsertWMustTailCall) {
StringRef Source = "\n\
define i1 @recursive() { \n\
Entry: \n\
%Ret = musttail call i1 @recursive() \n\
ret i1 %Ret \n\
}";
auto Mutator = createInjectorMutator();
ASSERT_TRUE(Mutator);
mutateAndVerifyModule(Source, Mutator, 100);
}
TEST(InjectorIRStrategyTest, InsertWTailCall) {
StringRef Source = "\n\
define i1 @recursive() { \n\
Entry: \n\
%Ret = tail call i1 @recursive() \n\
ret i1 %Ret \n\
}";
auto Mutator = createInjectorMutator();
ASSERT_TRUE(Mutator);
mutateAndVerifyModule(Source, Mutator, 100);
}
TEST(InstDeleterIRStrategyTest, EmptyFunction) {
// Test that we don't crash even if we can't remove from one of the functions.
StringRef Source = ""
"define <8 x i32> @func1() {\n"
"ret <8 x i32> undef\n"
"}\n"
"\n"
"define i32 @func2() {\n"
"%A9 = alloca i32\n"
"%L6 = load i32, i32* %A9\n"
"ret i32 %L6\n"
"}\n";
auto Mutator = createMutator<InstDeleterIRStrategy>();
ASSERT_TRUE(Mutator);
IterateOnSource(Source, *Mutator);
}
TEST(InstDeleterIRStrategyTest, PhiNodes) {
// Test that inst deleter works correctly with the phi nodes.
LLVMContext Ctx;
StringRef Source = "\n\
define i32 @earlyreturncrash(i32 %x) {\n\
entry:\n\
switch i32 %x, label %sw.epilog [\n\
i32 1, label %sw.bb1\n\
]\n\
\n\
sw.bb1:\n\
br label %sw.epilog\n\
\n\
sw.epilog:\n\
%a.0 = phi i32 [ 7, %entry ], [ 9, %sw.bb1 ]\n\
%b.0 = phi i32 [ 10, %entry ], [ 4, %sw.bb1 ]\n\
ret i32 %a.0\n\
}";
auto Mutator = createMutator<InstDeleterIRStrategy>();
ASSERT_TRUE(Mutator);
IterateOnSource(Source, *Mutator);
}
static void checkModifyNoUnsignedAndNoSignedWrap(StringRef Opc) {
LLVMContext Ctx;
std::string Source = std::string("\n\
define i32 @test(i32 %x) {\n\
%a = ") + Opc.str() +
std::string(" i32 %x, 10\n\
ret i32 %a\n\
}");
auto Mutator = createMutator<InstModificationIRStrategy>();
ASSERT_TRUE(Mutator);
auto M = parseAssembly(Source.data(), Ctx);
auto &F = *M->begin();
auto *AddI = &*F.begin()->begin();
ASSERT_TRUE(M && !verifyModule(*M, &errs()));
bool FoundNUW = false;
bool FoundNSW = false;
for (int i = 0; i < 100; ++i) {
Mutator->mutateModule(*M, Seed + i, IRMutator::getModuleSize(*M) + 100);
EXPECT_TRUE(!verifyModule(*M, &errs()));
FoundNUW |= AddI->hasNoUnsignedWrap();
FoundNSW |= AddI->hasNoSignedWrap();
}
// The mutator should have added nuw and nsw during some mutations.
EXPECT_TRUE(FoundNUW);
EXPECT_TRUE(FoundNSW);
}
TEST(InstModificationIRStrategyTest, Add) {
checkModifyNoUnsignedAndNoSignedWrap("add");
}
TEST(InstModificationIRStrategyTest, Sub) {
checkModifyNoUnsignedAndNoSignedWrap("sub");
}
TEST(InstModificationIRStrategyTest, Mul) {
checkModifyNoUnsignedAndNoSignedWrap("mul");
}
TEST(InstModificationIRStrategyTest, Shl) {
checkModifyNoUnsignedAndNoSignedWrap("shl");
}
TEST(InstModificationIRStrategyTest, ICmp) {
LLVMContext Ctx;
StringRef Source = "\n\
define i1 @test(i32 %x) {\n\
%a = icmp eq i32 %x, 10\n\
ret i1 %a\n\
}";
auto Mutator = createMutator<InstModificationIRStrategy>();
ASSERT_TRUE(Mutator);
auto M = parseAssembly(Source.data(), Ctx);
auto &F = *M->begin();
CmpInst *CI = cast<CmpInst>(&*F.begin()->begin());
ASSERT_TRUE(M && !verifyModule(*M, &errs()));
bool FoundNE = false;
for (int i = 0; i < 100; ++i) {
Mutator->mutateModule(*M, Seed + i, IRMutator::getModuleSize(*M) + 100);
EXPECT_TRUE(!verifyModule(*M, &errs()));
FoundNE |= CI->getPredicate() == CmpInst::ICMP_NE;
}
EXPECT_TRUE(FoundNE);
}
TEST(InstModificationIRStrategyTest, FCmp) {
LLVMContext Ctx;
StringRef Source = "\n\
define i1 @test(float %x) {\n\
%a = fcmp oeq float %x, 10.0\n\
ret i1 %a\n\
}";
auto Mutator = createMutator<InstModificationIRStrategy>();
ASSERT_TRUE(Mutator);
auto M = parseAssembly(Source.data(), Ctx);
auto &F = *M->begin();
CmpInst *CI = cast<CmpInst>(&*F.begin()->begin());
ASSERT_TRUE(M && !verifyModule(*M, &errs()));
bool FoundONE = false;
for (int i = 0; i < 100; ++i) {
Mutator->mutateModule(*M, Seed + i, IRMutator::getModuleSize(*M) + 100);
EXPECT_TRUE(!verifyModule(*M, &errs()));
FoundONE |= CI->getPredicate() == CmpInst::FCMP_ONE;
}
EXPECT_TRUE(FoundONE);
}
TEST(InstModificationIRStrategyTest, GEP) {
LLVMContext Ctx;
StringRef Source = "\n\
define i32* @test(i32* %ptr) {\n\
%gep = getelementptr i32, i32* %ptr, i32 10\n\
ret i32* %gep\n\
}";
auto Mutator = createMutator<InstModificationIRStrategy>();
ASSERT_TRUE(Mutator);
auto M = parseAssembly(Source.data(), Ctx);
auto &F = *M->begin();
GetElementPtrInst *GEP = cast<GetElementPtrInst>(&*F.begin()->begin());
ASSERT_TRUE(M && !verifyModule(*M, &errs()));
bool FoundInbounds = false;
for (int i = 0; i < 100; ++i) {
Mutator->mutateModule(*M, Seed + i, IRMutator::getModuleSize(*M) + 100);
EXPECT_TRUE(!verifyModule(*M, &errs()));
FoundInbounds |= GEP->isInBounds();
}
EXPECT_TRUE(FoundInbounds);
}
/// The caller has to guarantee that function argument are used in the SAME
/// place as the operand.
void VerfyOperandShuffled(StringRef Source, std::pair<int, int> ShuffleItems) {
LLVMContext Ctx;
auto Mutator = createMutator<InstModificationIRStrategy>();
ASSERT_TRUE(Mutator);
auto M = parseAssembly(Source.data(), Ctx);
auto &F = *M->begin();
Instruction *Inst = &*F.begin()->begin();
ASSERT_TRUE(M && !verifyModule(*M, &errs()));
ASSERT_TRUE(Inst->getOperand(ShuffleItems.first) ==
dyn_cast<Value>(F.getArg(ShuffleItems.first)));
ASSERT_TRUE(Inst->getOperand(ShuffleItems.second) ==
dyn_cast<Value>(F.getArg(ShuffleItems.second)));
Mutator->mutateModule(*M, 0, IRMutator::getModuleSize(*M) + 100);
ASSERT_TRUE(!verifyModule(*M, &errs()));
ASSERT_TRUE(Inst->getOperand(ShuffleItems.first) ==
dyn_cast<Value>(F.getArg(ShuffleItems.second)));
ASSERT_TRUE(Inst->getOperand(ShuffleItems.second) ==
dyn_cast<Value>(F.getArg(ShuffleItems.first)));
}
TEST(InstModificationIRStrategyTest, ShuffleAnd) {
StringRef Source = "\n\
define i32 @test(i32 %0, i32 %1) {\n\
%add = and i32 %0, %1\n\
ret i32 %add\n\
}";
VerfyOperandShuffled(Source, {0, 1});
}
TEST(InstModificationIRStrategyTest, ShuffleSelect) {
StringRef Source = "\n\
define i32 @test(i1 %0, i32 %1, i32 %2) {\n\
%select = select i1 %0, i32 %1, i32 %2\n\
ret i32 %select\n\
}";
VerfyOperandShuffled(Source, {1, 2});
}
void VerfyDivDidntShuffle(StringRef Source) {
LLVMContext Ctx;
auto Mutator = createMutator<InstModificationIRStrategy>();
ASSERT_TRUE(Mutator);
auto M = parseAssembly(Source.data(), Ctx);
auto &F = *M->begin();
Instruction *Inst = &*F.begin()->begin();
ASSERT_TRUE(M && !verifyModule(*M, &errs()));
EXPECT_TRUE(isa<Constant>(Inst->getOperand(0)));
EXPECT_TRUE(Inst->getOperand(1) == dyn_cast<Value>(F.getArg(0)));
Mutator->mutateModule(*M, Seed, IRMutator::getModuleSize(*M) + 100);
EXPECT_TRUE(!verifyModule(*M, &errs()));
// Didn't shuffle.
EXPECT_TRUE(isa<Constant>(Inst->getOperand(0)));
EXPECT_TRUE(Inst->getOperand(1) == dyn_cast<Value>(F.getArg(0)));
}
TEST(InstModificationIRStrategyTest, DidntShuffleSDiv) {
StringRef Source = "\n\
define i32 @test(i32 %0) {\n\
%div = sdiv i32 0, %0\n\
ret i32 %div\n\
}";
VerfyDivDidntShuffle(Source);
}
TEST(InstModificationIRStrategyTest, DidntShuffleFRem) {
StringRef Source = "\n\
define <2 x double> @test(<2 x double> %0) {\n\
%div = frem <2 x double> <double 0.0, double 0.0>, %0\n\
ret <2 x double> %div\n\
}";
VerfyDivDidntShuffle(Source);
}
TEST(InsertFunctionStrategy, Func) {
LLVMContext Ctx;
const char *Source = "";
auto Mutator = createMutator<InsertFunctionStrategy>();
ASSERT_TRUE(Mutator);
auto M = parseAssembly(Source, Ctx);
srand(Seed);
for (int i = 0; i < 100; i++) {
Mutator->mutateModule(*M, rand(), 1024);
EXPECT_TRUE(!verifyModule(*M, &errs()));
}
}
TEST(InsertFunctionStrategy, AvoidCallingFunctionWithSpecialParam) {
LLVMContext Ctx;
StringRef Source = "\n\
declare void @llvm.dbg.value(metadata %0, metadata %1, metadata %2)\n\
declare i1 @llvm.experimental.gc.result.i1(token %0)\n\
define i32 @test(i32 %0) gc \"statepoint-example\" {\n\
ret i32 %0 \n\
}";
auto Mutator = createMutator<InsertFunctionStrategy>();
auto M = parseAssembly(Source.data(), Ctx);
srand(Seed);
for (int i = 0; i < 100; i++) {
Mutator->mutateModule(*M, rand(), 1024);
EXPECT_TRUE(!verifyModule(*M, &errs()));
}
}
TEST(InstModificationIRStrategy, Exact) {
LLVMContext Ctx;
StringRef Source = "\n\
define i32 @test(i32 %a, i32 %b) {\n\
%c = ashr i32 %a, %b \n\
ret i32 %c\n\
}";
auto Mutator = createMutator<InstModificationIRStrategy>();
ASSERT_TRUE(Mutator);
std::unique_ptr<Module> M = parseAssembly(Source.data(), Ctx);
std::mt19937 mt(Seed);
std::uniform_int_distribution<int> RandInt(INT_MIN, INT_MAX);
auto &F = *M->begin();
BinaryOperator *AShr = cast<BinaryOperator>(&*F.begin()->begin());
bool FoundExact = false;
for (int i = 0; i < 100; ++i) {
Mutator->mutateModule(*M, RandInt(mt), IRMutator::getModuleSize(*M) + 100);
ASSERT_FALSE(verifyModule(*M, &errs()));
FoundExact |= AShr->isExact();
}
EXPECT_TRUE(FoundExact);
}
TEST(InstModificationIRStrategy, FastMath) {
LLVMContext Ctx;
StringRef Source = "\n\
declare [4 x <4 x double>] @vecdouble(double) \n\
define double @test(i1 %C, double %a, double %b) { \n\
Entry: \n\
br i1 %C, label %True, label %False \n\
True: \n\
br label %Exit \n\
False: \n\
br label %Exit \n\
Exit: \n\
%PHIi32 = phi i32 [1, %True], [2, %False] \n\
%PHIdouble = phi double [%a, %True], [%b, %False] \n\
%Call = call [4 x <4 x double>] @vecdouble(double %PHIdouble) \n\
%c = fneg double %PHIdouble \n\
%s = select i1 %C, double %a, double %b \n\
%d = fadd double %s, %c \n\
ret double %d \n\
}";
auto Mutator = createMutator<InstModificationIRStrategy>();
ASSERT_TRUE(Mutator);
std::unique_ptr<Module> M = parseAssembly(Source.data(), Ctx);
std::mt19937 mt(Seed);
std::uniform_int_distribution<int> RandInt(INT_MIN, INT_MAX);
DenseMap<Instruction *, bool> FPOpsHasFastMath;
for (auto &F : *M) {
for (auto &BB : F) {
for (auto &I : BB) {
Type *Ty = I.getType();
if (Ty->isFPOrFPVectorTy() || Ty->isArrayTy()) {
FPOpsHasFastMath[&I] = false;
}
}
}
}
ASSERT_TRUE(M && !verifyModule(*M, &errs()));
for (int i = 0; i < 300; ++i) {
Mutator->mutateModule(*M, RandInt(mt), IRMutator::getModuleSize(*M) + 100);
for (auto p : FPOpsHasFastMath)
FPOpsHasFastMath[p.first] |= p.first->getFastMathFlags().any();
ASSERT_FALSE(verifyModule(*M, &errs()));
}
for (auto p : FPOpsHasFastMath)
ASSERT_TRUE(p.second);
}
TEST(InsertCFGStrategy, CFG) {
StringRef Source = "\n\
define i32 @test(i1 %C1, i1 %C2, i1 %C3, i16 %S1, i16 %S2, i32 %I1) { \n\
Entry: \n\
%I2 = add i32 %I1, 1 \n\
%C = and i1 %C1, %C2 \n\
br label %Body \n\
Body: \n\
%IB = add i32 %I1, %I2 \n\
%CB = and i1 %C1, %C \n\
br label %Exit \n\
Exit: \n\
%IE = add i32 %IB, %I2 \n\
%CE = and i1 %CB, %C \n\
ret i32 %IE \n\
}";
mutateAndVerifyModule<InsertCFGStrategy>(Source);
}
TEST(InsertPHIStrategy, PHI) {
StringRef Source = "\n\
define void @test(i1 %C1, i1 %C2, i32 %I, double %FP) { \n\
Entry: \n\
%C = and i1 %C1, %C2 \n\
br i1 %C, label %LoopHead, label %Exit \n\
LoopHead: ; pred Entry, LoopBody \n\
switch i32 %I, label %Default [ \n\
i32 1, label %OnOne \n\
i32 2, label %OnTwo \n\
i32 3, label %OnThree \n\
] \n\
Default: \n\
br label %LoopBody \n\
OnOne: ; pred LoopHead \n\
%DFP = fmul double %FP, 2.0 \n\
%OnOneCond = fcmp ogt double %DFP, %FP \n\
br i1 %OnOneCond, label %LoopBody, label %Exit \n\
OnTwo: ; pred Entry \n\
br i1 %C1, label %OnThree, label %LoopBody \n\
OnThree: ; pred Entry, OnTwo, OnThree \n\
br i1 %C2, label %OnThree, label %LoopBody \n\
LoopBody: ; pred Default, OnOne, OnTwo, OnThree \n\
br label %LoopHead \n\
Exit: ; pred Entry, OnOne \n\
ret void \n\
}";
mutateAndVerifyModule<InsertPHIStrategy>(Source);
}
TEST(InsertPHIStrategy, PHIWithSameIncomingBlock) {
LLVMContext Ctx;
StringRef Source = "\n\
define void @test(i32 %I) { \n\
Entry: \n\
switch i32 %I, label %Exit [ \n\
i32 1, label %IdentCase \n\
i32 2, label %IdentCase \n\
i32 3, label %IdentCase \n\
i32 4, label %IdentCase \n\
] \n\
IdentCase: \n\
br label %Exit \n\
Exit: \n\
ret void \n\
}";
auto IPS = std::make_unique<InsertPHIStrategy>();
RandomIRBuilder IB(Seed, {IntegerType::getInt32Ty(Ctx)});
auto M = parseAssembly(Source.data(), Ctx);
Function &F = *M->begin();
for (auto &BB : F) {
IPS->mutate(BB, IB);
ASSERT_FALSE(verifyModule(*M, &errs()));
}
}
TEST(SinkInstructionStrategy, Operand) {
StringRef Source = "\n\
define i32 @test(i1 %C1, i1 %C2, i1 %C3, i32 %I, i32 %J) { \n\
Entry: \n\
%I100 = add i32 %I, 100 \n\
switch i32 %I100, label %BB0 [ \n\
i32 42, label %BB1 \n\
] \n\
BB0: \n\
%IAJ = add i32 %I, %J \n\
%ISJ = sub i32 %I, %J \n\
br label %Exit \n\
BB1: \n\
%IJ = mul i32 %I, %J \n\
%C = and i1 %C2, %C3 \n\
br i1 %C, label %BB0, label %Exit \n\
Exit: \n\
ret i32 %I \n\
}";
mutateAndVerifyModule<SinkInstructionStrategy>(Source);
}
TEST(SinkInstructionStrategy, DoNotSinkTokenType) {
StringRef Source = "\n\
declare ptr @fake_personality_function() \n\
declare token @llvm.experimental.gc.statepoint.p0(i64 immarg %0, i32 immarg %1, ptr %2, i32 immarg %3, i32 immarg %4, ...) \n\
define void @test() gc \"statepoint-example\" personality ptr @fake_personality_function { \n\
Entry: \n\
%token1 = call token (i64, i32, ptr, i32, i32, ...) \
@llvm.experimental.gc.statepoint.p0(i64 0, i32 0, ptr elementtype(ptr addrspace(1) ()) undef, i32 0, i32 0, i32 0, i32 0) \n\
ret void \n\
}";
mutateAndVerifyModule<SinkInstructionStrategy>(Source);
}
static void VerifyBlockShuffle(StringRef Source) {
LLVMContext Ctx;
auto Mutator = createMutator<ShuffleBlockStrategy>();
ASSERT_TRUE(Mutator);
std::unique_ptr<Module> M = parseAssembly(Source.data(), Ctx);
Function *F = &*M->begin();
DenseMap<BasicBlock *, int> PreShuffleInstCnt;
for (BasicBlock &BB : *F) {
PreShuffleInstCnt.insert({&BB, BB.size()});
}
std::mt19937 mt(Seed);
std::uniform_int_distribution<int> RandInt(INT_MIN, INT_MAX);
for (int i = 0; i < 100; i++) {
Mutator->mutateModule(*M, RandInt(mt), IRMutator::getModuleSize(*M) + 1024);
for (BasicBlock &BB : *F) {
int PostShuffleIntCnt = BB.size();
EXPECT_EQ(PostShuffleIntCnt, PreShuffleInstCnt[&BB]);
}
EXPECT_FALSE(verifyModule(*M, &errs()));
}
}
TEST(ShuffleBlockStrategy, ShuffleBlocks) {
StringRef Source = "\n\
define i64 @test(i1 %0, i1 %1, i1 %2, i32 %3, i32 %4) { \n\
Entry: \n\
%A = alloca i32, i32 8, align 4 \n\
%E.1 = and i32 %3, %4 \n\
%E.2 = add i32 %4 , 1 \n\
%A.GEP.1 = getelementptr i32, ptr %A, i32 0 \n\
%A.GEP.2 = getelementptr i32, ptr %A.GEP.1, i32 1 \n\
%L.2 = load i32, ptr %A.GEP.2 \n\
%L.1 = load i32, ptr %A.GEP.1 \n\
%E.3 = sub i32 %E.2, %L.1 \n\
%Cond.1 = icmp eq i32 %E.3, %E.2 \n\
%Cond.2 = and i1 %0, %1 \n\
%Cond = or i1 %Cond.1, %Cond.2 \n\
br i1 %Cond, label %BB0, label %BB1 \n\
BB0: \n\
%Add = add i32 %L.1, %L.2 \n\
%Sub = sub i32 %L.1, %L.2 \n\
%Sub.1 = sub i32 %Sub, 12 \n\
%Cast.1 = bitcast i32 %4 to float \n\
%Add.2 = add i32 %3, 1 \n\
%Cast.2 = bitcast i32 %Add.2 to float \n\
%FAdd = fadd float %Cast.1, %Cast.2 \n\
%Add.3 = add i32 %L.2, %L.1 \n\
%Cast.3 = bitcast float %FAdd to i32 \n\
%Sub.2 = sub i32 %Cast.3, %Sub.1 \n\
%SExt = sext i32 %Cast.3 to i64 \n\
%A.GEP.3 = getelementptr i64, ptr %A, i32 1 \n\
store i64 %SExt, ptr %A.GEP.3 \n\
br label %Exit \n\
BB1: \n\
%PHI.1 = phi i32 [0, %Entry] \n\
%SExt.1 = sext i1 %Cond.2 to i32 \n\
%SExt.2 = sext i1 %Cond.1 to i32 \n\
%E.164 = zext i32 %E.1 to i64 \n\
%E.264 = zext i32 %E.2 to i64 \n\
%E.1264 = mul i64 %E.164, %E.264 \n\
%E.12 = trunc i64 %E.1264 to i32 \n\
%A.GEP.4 = getelementptr i32, ptr %A, i32 2 \n\
%A.GEP.5 = getelementptr i32, ptr %A.GEP.4, i32 2 \n\
store i32 %E.12, ptr %A.GEP.5 \n\
br label %Exit \n\
Exit: \n\
%PHI.2 = phi i32 [%Add, %BB0], [%E.3, %BB1] \n\
%PHI.3 = phi i64 [%SExt, %BB0], [%E.1264, %BB1] \n\
%ZExt = zext i32 %PHI.2 to i64 \n\
%Add.5 = add i64 %PHI.3, 3 \n\
ret i64 %Add.5 \n\
}";
VerifyBlockShuffle(Source);
}
TEST(ShuffleBlockStrategy, ShuffleLoop) {
StringRef Source = "\n\
define i32 @foo(i32 %Left, i32 %Right) { \n\
Entry: \n\
%LPtr = alloca i32, align 4 \n\
%RPtr = alloca i32, align 4 \n\
%RetValPtr = alloca i32, align 4 \n\
store i32 %Left, ptr %LPtr, align 4 \n\
store i32 %Right, ptr %RPtr, align 4 \n\
store i32 0, ptr %RetValPtr, align 4 \n\
br label %LoopHead \n\
LoopHead: \n\
%L = load i32, ptr %LPtr, align 4 \n\
%R = load i32, ptr %RPtr, align 4 \n\
%C = icmp slt i32 %L, %R \n\
br i1 %C, label %LoopBody, label %Exit \n\
LoopBody: \n\
%OldL = load i32, ptr %LPtr, align 4 \n\
%NewL = add nsw i32 %OldL, 1 \n\
store i32 %NewL, ptr %LPtr, align 4 \n\
%OldRetVal = load i32, ptr %RetValPtr, align 4 \n\
%NewRetVal = add nsw i32 %OldRetVal, 1 \n\
store i32 %NewRetVal, ptr %RetValPtr, align 4 \n\
br label %LoopHead \n\
Exit: \n\
%RetVal = load i32, ptr %RetValPtr, align 4 \n\
ret i32 %RetVal \n\
}";
VerifyBlockShuffle(Source);
}
TEST(AllStrategies, SkipEHPad) {
StringRef Source = "\n\
define void @f(i32 %x) personality ptr @__CxxFrameHandler3 { \n\
entry: \n\
invoke void @g() to label %try.cont unwind label %catch.dispatch \n\
catch.dispatch: \n\
%0 = catchswitch within none [label %catch] unwind to caller \n\
catch: \n\
%1 = catchpad within %0 [ptr null, i32 64, ptr null] \n\
catchret from %1 to label %try.cont \n\
try.cont: \n\
ret void \n\
} \n\
declare void @g() \n\
declare i32 @__CxxFrameHandler3(...) \n\
";
mutateAndVerifyModule<ShuffleBlockStrategy>(Source);
mutateAndVerifyModule<InsertPHIStrategy>(Source);
mutateAndVerifyModule<InsertFunctionStrategy>(Source);
mutateAndVerifyModule<InsertCFGStrategy>(Source);
mutateAndVerifyModule<SinkInstructionStrategy>(Source);
mutateAndVerifyModule<InjectorIRStrategy>(Source);
mutateAndVerifyModule<InstModificationIRStrategy>(Source);
}
} // namespace