blob: 3ce85f5d7be23edf363b12573e09bef560f5b950 [file] [log] [blame]
//===- RandomIRBuilderTest.cpp - Tests for injector strategy --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/FuzzMutate/RandomIRBuilder.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/AsmParser/SlotMapping.h"
#include "llvm/FuzzMutate/IRMutator.h"
#include "llvm/FuzzMutate/OpDescriptor.h"
#include "llvm/FuzzMutate/Operations.h"
#include "llvm/FuzzMutate/Random.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
using namespace llvm;
static constexpr int Seed = 5;
namespace {
std::unique_ptr<Module> parseAssembly(const char *Assembly,
LLVMContext &Context) {
SMDiagnostic Error;
std::unique_ptr<Module> M = parseAssemblyString(Assembly, Error, Context);
std::string ErrMsg;
raw_string_ostream OS(ErrMsg);
Error.print("", OS);
assert(M && !verifyModule(*M, &errs()));
return M;
}
TEST(RandomIRBuilderTest, ShuffleVectorIncorrectOperands) {
// Test that we don't create load instruction as a source for the shuffle
// vector operation.
LLVMContext Ctx;
const char *Source =
"define <2 x i32> @test(<2 x i1> %cond, <2 x i32> %a) {\n"
" %A = alloca <2 x i32>\n"
" %I = insertelement <2 x i32> %a, i32 1, i32 1\n"
" ret <2 x i32> undef\n"
"}";
auto M = parseAssembly(Source, Ctx);
fuzzerop::OpDescriptor Descr = fuzzerop::shuffleVectorDescriptor(1);
// Empty known types since we ShuffleVector descriptor doesn't care about them
RandomIRBuilder IB(Seed, {});
// Get first basic block of the first function
Function &F = *M->begin();
BasicBlock &BB = *F.begin();
SmallVector<Instruction *, 32> Insts;
for (auto I = BB.getFirstInsertionPt(), E = BB.end(); I != E; ++I)
Insts.push_back(&*I);
// Pick first and second sources
SmallVector<Value *, 2> Srcs;
ASSERT_TRUE(Descr.SourcePreds[0].matches(Srcs, Insts[1]));
Srcs.push_back(Insts[1]);
ASSERT_TRUE(Descr.SourcePreds[1].matches(Srcs, Insts[1]));
Srcs.push_back(Insts[1]);
// Create new source. Check that it always matches with the descriptor.
// Run some iterations to account for random decisions.
for (int i = 0; i < 10; ++i) {
Value *LastSrc = IB.newSource(BB, Insts, Srcs, Descr.SourcePreds[2]);
ASSERT_TRUE(Descr.SourcePreds[2].matches(Srcs, LastSrc));
}
}
TEST(RandomIRBuilderTest, InsertValueIndexes) {
// Check that we will generate correct indexes for the insertvalue operation
LLVMContext Ctx;
const char *Source = "%T = type {i8, i32, i64}\n"
"define void @test() {\n"
" %A = alloca %T\n"
" %L = load %T, ptr %A"
" ret void\n"
"}";
auto M = parseAssembly(Source, Ctx);
fuzzerop::OpDescriptor IVDescr = fuzzerop::insertValueDescriptor(1);
std::array<Type *, 3> Types = {Type::getInt8Ty(Ctx), Type::getInt32Ty(Ctx),
Type::getInt64Ty(Ctx)};
RandomIRBuilder IB(Seed, Types);
// Get first basic block of the first function
Function &F = *M->begin();
BasicBlock &BB = *F.begin();
// Pick first source
Instruction *Src = &*std::next(BB.begin());
SmallVector<Value *, 2> Srcs(2);
ASSERT_TRUE(IVDescr.SourcePreds[0].matches({}, Src));
Srcs[0] = Src;
// Generate constants for each of the types and check that we pick correct
// index for the given type
for (auto *T : Types) {
// Loop to account for possible random decisions
for (int i = 0; i < 10; ++i) {
// Create value we want to insert. Only it's type matters.
Srcs[1] = ConstantInt::get(T, 5);
// Try to pick correct index
Value *Src =
IB.findOrCreateSource(BB, &*BB.begin(), Srcs, IVDescr.SourcePreds[2]);
ASSERT_TRUE(IVDescr.SourcePreds[2].matches(Srcs, Src));
}
}
}
TEST(RandomIRBuilderTest, ShuffleVectorSink) {
// Check that we will never use shuffle vector mask as a sink from the
// unrelated operation.
LLVMContext Ctx;
const char *SourceCode =
"define void @test(<4 x i32> %a) {\n"
" %S1 = shufflevector <4 x i32> %a, <4 x i32> %a, <4 x i32> undef\n"
" %S2 = shufflevector <4 x i32> %a, <4 x i32> %a, <4 x i32> undef\n"
" ret void\n"
"}";
auto M = parseAssembly(SourceCode, Ctx);
fuzzerop::OpDescriptor IVDescr = fuzzerop::insertValueDescriptor(1);
RandomIRBuilder IB(Seed, {});
// Get first basic block of the first function
Function &F = *M->begin();
BasicBlock &BB = *F.begin();
// Source is %S1
Instruction *Source = &*BB.begin();
// Sink is %S2
SmallVector<Instruction *, 1> Sinks = {&*std::next(BB.begin())};
// Loop to account for random decisions
for (int i = 0; i < 10; ++i) {
// Try to connect S1 to S2. We should always create new sink.
IB.connectToSink(BB, Sinks, Source);
ASSERT_TRUE(!verifyModule(*M, &errs()));
}
}
TEST(RandomIRBuilderTest, InsertValueArray) {
// Check that we can generate insertvalue for the vector operations
LLVMContext Ctx;
const char *SourceCode = "define void @test() {\n"
" %A = alloca [8 x i32]\n"
" %L = load [8 x i32], ptr %A"
" ret void\n"
"}";
auto M = parseAssembly(SourceCode, Ctx);
fuzzerop::OpDescriptor Descr = fuzzerop::insertValueDescriptor(1);
std::array<Type *, 3> Types = {Type::getInt8Ty(Ctx), Type::getInt32Ty(Ctx),
Type::getInt64Ty(Ctx)};
RandomIRBuilder IB(Seed, Types);
// Get first basic block of the first function
Function &F = *M->begin();
BasicBlock &BB = *F.begin();
// Pick first source
Instruction *Source = &*std::next(BB.begin());
ASSERT_TRUE(Descr.SourcePreds[0].matches({}, Source));
SmallVector<Value *, 2> Srcs(2);
// Check that we can always pick the last two operands.
for (int i = 0; i < 10; ++i) {
Srcs[0] = Source;
Srcs[1] = IB.findOrCreateSource(BB, {Source}, Srcs, Descr.SourcePreds[1]);
IB.findOrCreateSource(BB, {}, Srcs, Descr.SourcePreds[2]);
}
}
TEST(RandomIRBuilderTest, Invokes) {
// Check that we never generate load or store after invoke instruction
LLVMContext Ctx;
const char *SourceCode =
"declare ptr @f()"
"declare i32 @personality_function()"
"define ptr @test() personality ptr @personality_function {\n"
"entry:\n"
" %val = invoke ptr @f()\n"
" to label %normal unwind label %exceptional\n"
"normal:\n"
" ret ptr %val\n"
"exceptional:\n"
" %landing_pad4 = landingpad token cleanup\n"
" ret ptr undef\n"
"}";
auto M = parseAssembly(SourceCode, Ctx);
std::array<Type *, 1> Types = {Type::getInt8Ty(Ctx)};
RandomIRBuilder IB(Seed, Types);
// Get first basic block of the test function
Function &F = *M->getFunction("test");
BasicBlock &BB = *F.begin();
Instruction *Invoke = &*BB.begin();
// Find source but never insert new load after invoke
for (int i = 0; i < 10; ++i) {
(void)IB.findOrCreateSource(BB, {Invoke}, {}, fuzzerop::anyIntType());
ASSERT_TRUE(!verifyModule(*M, &errs()));
}
}
TEST(RandomIRBuilderTest, SwiftError) {
// Check that we never pick swifterror value as a source for operation
// other than load, store and call.
LLVMContext Ctx;
const char *SourceCode = "declare void @use(ptr swifterror %err)"
"define void @test() {\n"
"entry:\n"
" %err = alloca swifterror ptr, align 8\n"
" call void @use(ptr swifterror %err)\n"
" ret void\n"
"}";
auto M = parseAssembly(SourceCode, Ctx);
std::array<Type *, 1> Types = {Type::getInt8Ty(Ctx)};
RandomIRBuilder IB(Seed, Types);
// Get first basic block of the test function
Function &F = *M->getFunction("test");
BasicBlock &BB = *F.begin();
Instruction *Alloca = &*BB.begin();
fuzzerop::OpDescriptor Descr = fuzzerop::gepDescriptor(1);
for (int i = 0; i < 10; ++i) {
Value *V = IB.findOrCreateSource(BB, {Alloca}, {}, Descr.SourcePreds[0]);
ASSERT_FALSE(isa<AllocaInst>(V));
}
}
TEST(RandomIRBuilderTest, dontConnectToSwitch) {
// Check that we never put anything into switch's case branch
// If we accidently put a variable, the module is invalid.
LLVMContext Ctx;
const char *SourceCode = "\n\
define void @test(i1 %C1, i1 %C2, i32 %I, i32 %J) { \n\
Entry: \n\
%I.1 = add i32 %I, 42 \n\
%J.1 = add i32 %J, 42 \n\
%IJ = add i32 %I, %J \n\
switch i32 %I, label %Default [ \n\
i32 1, label %OnOne \n\
] \n\
Default: \n\
%CIEqJ = icmp eq i32 %I.1, %J.1 \n\
%CISltJ = icmp slt i32 %I.1, %J.1 \n\
%CAnd = and i1 %C1, %C2 \n\
br i1 %CIEqJ, label %Default, label %Exit \n\
OnOne: \n\
br i1 %C1, label %OnOne, label %Exit \n\
Exit: \n\
ret void \n\
}";
std::array<Type *, 2> Types = {Type::getInt32Ty(Ctx), Type::getInt1Ty(Ctx)};
RandomIRBuilder IB(Seed, Types);
for (int i = 0; i < 20; i++) {
std::unique_ptr<Module> M = parseAssembly(SourceCode, Ctx);
Function &F = *M->getFunction("test");
auto RS = makeSampler(IB.Rand, make_pointer_range(F));
BasicBlock *BB = RS.getSelection();
SmallVector<Instruction *, 32> Insts;
for (auto I = BB->getFirstInsertionPt(), E = BB->end(); I != E; ++I)
Insts.push_back(&*I);
if (Insts.size() < 2)
continue;
// Choose an instruction and connect to later operations.
size_t IP = uniform<size_t>(IB.Rand, 1, Insts.size() - 1);
Instruction *Inst = Insts[IP - 1];
auto ConnectAfter = ArrayRef(Insts).slice(IP);
IB.connectToSink(*BB, ConnectAfter, Inst);
ASSERT_FALSE(verifyModule(*M, &errs()));
}
}
TEST(RandomIRBuilderTest, createStackMemory) {
LLVMContext Ctx;
const char *SourceCode = "\n\
define void @test(i1 %C1, i1 %C2, i32 %I, i32 %J) { \n\
Entry: \n\
ret void \n\
}";
Type *Int32Ty = Type::getInt32Ty(Ctx);
Constant *Int32_1 = ConstantInt::get(Int32Ty, APInt(32, 1));
Type *Int64Ty = Type::getInt64Ty(Ctx);
Constant *Int64_42 = ConstantInt::get(Int64Ty, APInt(64, 42));
Type *DoubleTy = Type::getDoubleTy(Ctx);
Constant *Double_0 =
ConstantFP::get(Ctx, APFloat::getZero(DoubleTy->getFltSemantics()));
std::array<Type *, 8> Types = {
Int32Ty,
Int64Ty,
DoubleTy,
PointerType::get(Ctx, 0),
PointerType::get(Int32Ty, 0),
VectorType::get(Int32Ty, 4, false),
StructType::create({Int32Ty, DoubleTy, Int64Ty}),
ArrayType::get(Int64Ty, 4),
};
std::array<Value *, 8> Inits = {
Int32_1,
Int64_42,
Double_0,
UndefValue::get(Types[3]),
UndefValue::get(Types[4]),
ConstantVector::get({Int32_1, Int32_1, Int32_1, Int32_1}),
ConstantStruct::get(cast<StructType>(Types[6]),
{Int32_1, Double_0, Int64_42}),
ConstantArray::get(cast<ArrayType>(Types[7]),
{Int64_42, Int64_42, Int64_42, Int64_42}),
};
ASSERT_EQ(Types.size(), Inits.size());
unsigned NumTests = Types.size();
RandomIRBuilder IB(Seed, Types);
auto CreateStackMemoryAndVerify = [&Ctx, &SourceCode, &IB](Type *Ty,
Value *Init) {
std::unique_ptr<Module> M = parseAssembly(SourceCode, Ctx);
Function &F = *M->getFunction("test");
// Create stack memory without initializer.
IB.createStackMemory(&F, Ty, nullptr);
// Create stack memory with initializer.
IB.createStackMemory(&F, Ty, Init);
EXPECT_FALSE(verifyModule(*M, &errs()));
};
for (unsigned i = 0; i < NumTests; i++) {
CreateStackMemoryAndVerify(Types[i], Inits[i]);
}
}
TEST(RandomIRBuilderTest, findOrCreateGlobalVariable) {
LLVMContext Ctx;
const char *SourceCode = "\n\
@G0 = external global i16 \n\
@G1 = global i32 1 \n\
";
std::array<Type *, 3> Types = {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx),
Type::getInt64Ty(Ctx)};
RandomIRBuilder IB(Seed, Types);
// Find external global
std::unique_ptr<Module> M0 = parseAssembly(SourceCode, Ctx);
Type *ExternalTy = M0->globals().begin()->getValueType();
ASSERT_TRUE(ExternalTy->isIntegerTy(16));
IB.findOrCreateGlobalVariable(&*M0, {}, fuzzerop::onlyType(Types[0]));
ASSERT_FALSE(verifyModule(*M0, &errs()));
unsigned NumGV0 = M0->getNumNamedValues();
auto [GV0, DidCreate0] =
IB.findOrCreateGlobalVariable(&*M0, {}, fuzzerop::onlyType(Types[0]));
ASSERT_FALSE(verifyModule(*M0, &errs()));
ASSERT_EQ(M0->getNumNamedValues(), NumGV0 + DidCreate0);
// Find existing global
std::unique_ptr<Module> M1 = parseAssembly(SourceCode, Ctx);
IB.findOrCreateGlobalVariable(&*M1, {}, fuzzerop::onlyType(Types[1]));
ASSERT_FALSE(verifyModule(*M1, &errs()));
unsigned NumGV1 = M1->getNumNamedValues();
auto [GV1, DidCreate1] =
IB.findOrCreateGlobalVariable(&*M1, {}, fuzzerop::onlyType(Types[1]));
ASSERT_FALSE(verifyModule(*M1, &errs()));
ASSERT_EQ(M1->getNumNamedValues(), NumGV1 + DidCreate1);
// Create new global
std::unique_ptr<Module> M2 = parseAssembly(SourceCode, Ctx);
auto [GV2, DidCreate2] =
IB.findOrCreateGlobalVariable(&*M2, {}, fuzzerop::onlyType(Types[2]));
ASSERT_FALSE(verifyModule(*M2, &errs()));
ASSERT_TRUE(DidCreate2);
}
/// Checks if the source and sink we find for an instruction has correct
/// domination relation.
TEST(RandomIRBuilderTest, findSourceAndSink) {
const char *Source = "\n\
define i64 @test(i1 %0, i1 %1, i1 %2, i32 %3, i32 %4) { \n\
Entry: \n\
%A = alloca i32, i32 8, align 4 \n\
%E.1 = and i32 %3, %4 \n\
%E.2 = add i32 %4 , 1 \n\
%A.GEP.1 = getelementptr i32, ptr %A, i32 0 \n\
%A.GEP.2 = getelementptr i32, ptr %A.GEP.1, i32 1 \n\
%L.2 = load i32, ptr %A.GEP.2 \n\
%L.1 = load i32, ptr %A.GEP.1 \n\
%E.3 = sub i32 %E.2, %L.1 \n\
%Cond.1 = icmp eq i32 %E.3, %E.2 \n\
%Cond.2 = and i1 %0, %1 \n\
%Cond = or i1 %Cond.1, %Cond.2 \n\
br i1 %Cond, label %BB0, label %BB1 \n\
BB0: \n\
%Add = add i32 %L.1, %L.2 \n\
%Sub = sub i32 %L.1, %L.2 \n\
%Sub.1 = sub i32 %Sub, 12 \n\
%Cast.1 = bitcast i32 %4 to float \n\
%Add.2 = add i32 %3, 1 \n\
%Cast.2 = bitcast i32 %Add.2 to float \n\
%FAdd = fadd float %Cast.1, %Cast.2 \n\
%Add.3 = add i32 %L.2, %L.1 \n\
%Cast.3 = bitcast float %FAdd to i32 \n\
%Sub.2 = sub i32 %Cast.3, %Sub.1 \n\
%SExt = sext i32 %Cast.3 to i64 \n\
%A.GEP.3 = getelementptr i64, ptr %A, i32 1 \n\
store i64 %SExt, ptr %A.GEP.3 \n\
br label %Exit \n\
BB1: \n\
%PHI.1 = phi i32 [0, %Entry] \n\
%SExt.1 = sext i1 %Cond.2 to i32 \n\
%SExt.2 = sext i1 %Cond.1 to i32 \n\
%E.164 = zext i32 %E.1 to i64 \n\
%E.264 = zext i32 %E.2 to i64 \n\
%E.1264 = mul i64 %E.164, %E.264 \n\
%E.12 = trunc i64 %E.1264 to i32 \n\
%A.GEP.4 = getelementptr i32, ptr %A, i32 2 \n\
%A.GEP.5 = getelementptr i32, ptr %A.GEP.4, i32 2 \n\
store i32 %E.12, ptr %A.GEP.5 \n\
br label %Exit \n\
Exit: \n\
%PHI.2 = phi i32 [%Add, %BB0], [%E.3, %BB1] \n\
%PHI.3 = phi i64 [%SExt, %BB0], [%E.1264, %BB1] \n\
%ZExt = zext i32 %PHI.2 to i64 \n\
%Add.5 = add i64 %PHI.3, 3 \n\
ret i64 %Add.5 \n\
}";
LLVMContext Ctx;
std::array<Type *, 3> Types = {Type::getInt1Ty(Ctx), Type::getInt32Ty(Ctx),
Type::getInt64Ty(Ctx)};
std::mt19937 mt(Seed);
std::uniform_int_distribution<int> RandInt(INT_MIN, INT_MAX);
// Get a random instruction, try to find source and sink, make sure it is
// dominated.
for (int i = 0; i < 100; i++) {
RandomIRBuilder IB(RandInt(mt), Types);
std::unique_ptr<Module> M = parseAssembly(Source, Ctx);
Function &F = *M->getFunction("test");
DominatorTree DT(F);
BasicBlock *BB = makeSampler(IB.Rand, make_pointer_range(F)).getSelection();
SmallVector<Instruction *, 32> Insts;
for (auto I = BB->getFirstInsertionPt(), E = BB->end(); I != E; ++I)
Insts.push_back(&*I);
// Choose an insertion point for our new instruction.
size_t IP = uniform<size_t>(IB.Rand, 1, Insts.size() - 2);
auto InstsBefore = ArrayRef(Insts).slice(0, IP);
auto InstsAfter = ArrayRef(Insts).slice(IP);
Value *Src = IB.findOrCreateSource(
*BB, InstsBefore, {}, fuzzerop::onlyType(Types[i % Types.size()]));
ASSERT_TRUE(DT.dominates(Src, Insts[IP + 1]));
Instruction *Sink = IB.connectToSink(*BB, InstsAfter, Insts[IP - 1]);
if (!DT.dominates(Insts[IP - 1], Sink)) {
errs() << *Insts[IP - 1] << "\n" << *Sink << "\n ";
}
ASSERT_TRUE(DT.dominates(Insts[IP - 1], Sink));
}
}
TEST(RandomIRBuilderTest, sinkToInstrinsic) {
const char *Source = "\n\
declare double @llvm.sqrt.f64(double %Val) \n\
declare void @llvm.ubsantrap(i8 immarg) cold noreturn nounwind \n\
\n\
define double @test(double %0, double %1, i64 %2, i64 %3, i64 %4, i8 %5) { \n\
Entry: \n\
%sqrt = call double @llvm.sqrt.f64(double %0) \n\
call void @llvm.ubsantrap(i8 1) \n\
ret double %sqrt \n\
}";
LLVMContext Ctx;
std::array<Type *, 3> Types = {Type::getInt8Ty(Ctx), Type::getInt64Ty(Ctx),
Type::getDoubleTy(Ctx)};
std::mt19937 mt(Seed);
std::uniform_int_distribution<int> RandInt(INT_MIN, INT_MAX);
RandomIRBuilder IB(RandInt(mt), Types);
std::unique_ptr<Module> M = parseAssembly(Source, Ctx);
Function &F = *M->getFunction("test");
BasicBlock &BB = F.getEntryBlock();
bool Modified = false;
Instruction *I = &*BB.begin();
for (int i = 0; i < 20; i++) {
Value *OldOperand = I->getOperand(0);
Value *Src = F.getArg(1);
IB.connectToSink(BB, {I}, Src);
Value *NewOperand = I->getOperand(0);
Modified |= (OldOperand != NewOperand);
ASSERT_FALSE(verifyModule(*M, &errs()));
}
ASSERT_TRUE(Modified);
Modified = false;
I = I->getNextNonDebugInstruction();
for (int i = 0; i < 20; i++) {
Value *OldOperand = I->getOperand(0);
Value *Src = F.getArg(5);
IB.connectToSink(BB, {I}, Src);
Value *NewOperand = I->getOperand(0);
Modified |= (OldOperand != NewOperand);
ASSERT_FALSE(verifyModule(*M, &errs()));
}
ASSERT_FALSE(Modified);
}
TEST(RandomIRBuilderTest, DoNotCallPointerWhenSink) {
const char *Source = "\n\
declare void @g() \n\
define void @f(ptr %ptr) { \n\
Entry: \n\
call void @g() \n\
ret void \n\
}";
LLVMContext Ctx;
std::mt19937 mt(Seed);
std::uniform_int_distribution<int> RandInt(INT_MIN, INT_MAX);
RandomIRBuilder IB(RandInt(mt), {});
std::unique_ptr<Module> M = parseAssembly(Source, Ctx);
Function &F = *M->getFunction("f");
BasicBlock &BB = F.getEntryBlock();
bool Modified = false;
Instruction *I = &*BB.begin();
for (int i = 0; i < 20; i++) {
Value *OldOperand = I->getOperand(0);
Value *Src = F.getArg(0);
IB.connectToSink(BB, {I}, Src);
Value *NewOperand = I->getOperand(0);
Modified |= (OldOperand != NewOperand);
ASSERT_FALSE(verifyModule(*M, &errs()));
}
ASSERT_FALSE(Modified);
}
TEST(RandomIRBuilderTest, SrcAndSinkWOrphanBlock) {
const char *Source = "\n\
define i1 @test(i1 %Bool, i32 %Int, i64 %Long) { \n\
Entry: \n\
%Eq0 = icmp eq i64 %Long, 0 \n\
br i1 %Eq0, label %True, label %False \n\
True: \n\
%Or = or i1 %Bool, %Eq0 \n\
ret i1 %Or \n\
False: \n\
%And = and i1 %Bool, %Eq0 \n\
ret i1 %And \n\
Orphan_1: \n\
%NotBool = sub i1 1, %Bool \n\
ret i1 %NotBool \n\
Orphan_2: \n\
%Le42 = icmp sle i32 %Int, 42 \n\
ret i1 %Le42 \n\
}";
LLVMContext Ctx;
std::mt19937 mt(Seed);
std::uniform_int_distribution<int> RandInt(INT_MIN, INT_MAX);
std::array<Type *, 3> IntTys(
{Type::getInt64Ty(Ctx), Type::getInt32Ty(Ctx), Type::getInt1Ty(Ctx)});
std::vector<Value *> Constants;
for (Type *IntTy : IntTys) {
for (size_t v : {1, 42}) {
Constants.push_back(ConstantInt::get(IntTy, v));
}
}
for (int i = 0; i < 10; i++) {
RandomIRBuilder IB(RandInt(mt), IntTys);
std::unique_ptr<Module> M = parseAssembly(Source, Ctx);
Function &F = *M->getFunction("test");
for (BasicBlock &BB : F) {
SmallVector<Instruction *, 4> Insts;
for (Instruction &I : BB) {
Insts.push_back(&I);
}
for (int j = 0; j < 10; j++) {
IB.findOrCreateSource(BB, Insts);
}
for (Value *V : Constants) {
IB.connectToSink(BB, Insts, V);
}
}
}
}
} // namespace