blob: 278447166fc59f4fa30de023191a67cbce4059ec [file] [log] [blame]
//===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <array>
#include <climits>
#include <cstddef>
#include <initializer_list>
#include <list>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
using namespace llvm;
using testing::ElementsAre;
namespace {
int f(rank<0>) { return 0; }
int f(rank<1>) { return 1; }
int f(rank<2>) { return 2; }
int f(rank<4>) { return 4; }
TEST(STLExtrasTest, Rank) {
// We shouldn't get ambiguities and should select the overload of the same
// rank as the argument.
EXPECT_EQ(0, f(rank<0>()));
EXPECT_EQ(1, f(rank<1>()));
EXPECT_EQ(2, f(rank<2>()));
// This overload is missing so we end up back at 2.
EXPECT_EQ(2, f(rank<3>()));
// But going past 3 should work fine.
EXPECT_EQ(4, f(rank<4>()));
// And we can even go higher and just fall back to the last overload.
EXPECT_EQ(4, f(rank<5>()));
EXPECT_EQ(4, f(rank<6>()));
}
TEST(STLExtrasTest, EnumerateLValue) {
// Test that a simple LValue can be enumerated and gives correct results with
// multiple types, including the empty container.
std::vector<char> foo = {'a', 'b', 'c'};
typedef std::pair<std::size_t, char> CharPairType;
std::vector<CharPairType> CharResults;
for (auto [index, value] : llvm::enumerate(foo)) {
CharResults.emplace_back(index, value);
}
EXPECT_THAT(CharResults,
ElementsAre(CharPairType(0u, 'a'), CharPairType(1u, 'b'),
CharPairType(2u, 'c')));
// Test a const range of a different type.
typedef std::pair<std::size_t, int> IntPairType;
std::vector<IntPairType> IntResults;
const std::vector<int> bar = {1, 2, 3};
for (auto [index, value] : llvm::enumerate(bar)) {
IntResults.emplace_back(index, value);
}
EXPECT_THAT(IntResults, ElementsAre(IntPairType(0u, 1), IntPairType(1u, 2),
IntPairType(2u, 3)));
// Test an empty range.
IntResults.clear();
const std::vector<int> baz{};
for (auto [index, value] : llvm::enumerate(baz)) {
IntResults.emplace_back(index, value);
}
EXPECT_TRUE(IntResults.empty());
}
TEST(STLExtrasTest, EnumerateModifyLValue) {
// Test that you can modify the underlying entries of an lvalue range through
// the enumeration iterator.
std::vector<char> foo = {'a', 'b', 'c'};
for (auto X : llvm::enumerate(foo)) {
++X.value();
}
EXPECT_THAT(foo, ElementsAre('b', 'c', 'd'));
// Also test if this works with structured bindings.
foo = {'a', 'b', 'c'};
for (auto [index, value] : llvm::enumerate(foo)) {
++value;
}
EXPECT_THAT(foo, ElementsAre('b', 'c', 'd'));
}
TEST(STLExtrasTest, EnumerateRValueRef) {
// Test that an rvalue can be enumerated.
typedef std::pair<std::size_t, int> PairType;
std::vector<PairType> Results;
auto Enumerator = llvm::enumerate(std::vector<int>{1, 2, 3});
for (auto X : llvm::enumerate(std::vector<int>{1, 2, 3})) {
Results.emplace_back(X.index(), X.value());
}
EXPECT_THAT(Results,
ElementsAre(PairType(0u, 1), PairType(1u, 2), PairType(2u, 3)));
// Also test if this works with structured bindings.
Results.clear();
for (auto [index, value] : llvm::enumerate(std::vector<int>{1, 2, 3})) {
Results.emplace_back(index, value);
}
EXPECT_THAT(Results,
ElementsAre(PairType(0u, 1), PairType(1u, 2), PairType(2u, 3)));
}
TEST(STLExtrasTest, EnumerateModifyRValue) {
// Test that when enumerating an rvalue, modification still works (even if
// this isn't terribly useful, it at least shows that we haven't snuck an
// extra const in there somewhere.
typedef std::pair<std::size_t, char> PairType;
std::vector<PairType> Results;
for (auto X : llvm::enumerate(std::vector<char>{'1', '2', '3'})) {
++X.value();
Results.emplace_back(X.index(), X.value());
}
EXPECT_THAT(Results, ElementsAre(PairType(0u, '2'), PairType(1u, '3'),
PairType(2u, '4')));
// Also test if this works with structured bindings.
Results.clear();
for (auto [index, value] :
llvm::enumerate(std::vector<char>{'1', '2', '3'})) {
++value;
Results.emplace_back(index, value);
}
EXPECT_THAT(Results, ElementsAre(PairType(0u, '2'), PairType(1u, '3'),
PairType(2u, '4')));
}
TEST(STLExtrasTest, EnumerateTwoRanges) {
using Tuple = std::tuple<size_t, int, bool>;
std::vector<int> Ints = {1, 2};
std::vector<bool> Bools = {true, false};
EXPECT_THAT(llvm::enumerate(Ints, Bools),
ElementsAre(Tuple(0, 1, true), Tuple(1, 2, false)));
// Check that we can modify the values when the temporary is a const
// reference.
for (const auto &[Idx, Int, Bool] : llvm::enumerate(Ints, Bools)) {
(void)Idx;
Bool = false;
Int = -1;
}
EXPECT_THAT(Ints, ElementsAre(-1, -1));
EXPECT_THAT(Bools, ElementsAre(false, false));
// Check that we can modify the values when the result gets copied.
for (auto [Idx, Bool, Int] : llvm::enumerate(Bools, Ints)) {
(void)Idx;
Int = 3;
Bool = true;
}
EXPECT_THAT(Ints, ElementsAre(3, 3));
EXPECT_THAT(Bools, ElementsAre(true, true));
// Check that we can modify the values through `.value()`.
size_t Iters = 0;
for (auto It : llvm::enumerate(Bools, Ints)) {
EXPECT_EQ(It.index(), Iters);
++Iters;
std::get<0>(It.value()) = false;
std::get<1>(It.value()) = 4;
}
EXPECT_THAT(Ints, ElementsAre(4, 4));
EXPECT_THAT(Bools, ElementsAre(false, false));
}
TEST(STLExtrasTest, EnumerateThreeRanges) {
using Tuple = std::tuple<size_t, int, bool, char>;
std::vector<int> Ints = {1, 2};
std::vector<bool> Bools = {true, false};
char Chars[] = {'X', 'D'};
EXPECT_THAT(llvm::enumerate(Ints, Bools, Chars),
ElementsAre(Tuple(0, 1, true, 'X'), Tuple(1, 2, false, 'D')));
for (auto [Idx, Int, Bool, Char] : llvm::enumerate(Ints, Bools, Chars)) {
(void)Idx;
Int = 0;
Bool = true;
Char = '!';
}
EXPECT_THAT(Ints, ElementsAre(0, 0));
EXPECT_THAT(Bools, ElementsAre(true, true));
EXPECT_THAT(Chars, ElementsAre('!', '!'));
// Check that we can modify the values through `.values()`.
size_t Iters = 0;
for (auto It : llvm::enumerate(Ints, Bools, Chars)) {
EXPECT_EQ(It.index(), Iters);
++Iters;
auto [Int, Bool, Char] = It.value();
Int = 42;
Bool = false;
Char = '$';
}
EXPECT_THAT(Ints, ElementsAre(42, 42));
EXPECT_THAT(Bools, ElementsAre(false, false));
EXPECT_THAT(Chars, ElementsAre('$', '$'));
}
TEST(STLExtrasTest, EnumerateTemporaries) {
using Tuple = std::tuple<size_t, int, bool>;
EXPECT_THAT(
llvm::enumerate(llvm::SmallVector<int>({1, 2, 3}),
std::vector<bool>({true, false, true})),
ElementsAre(Tuple(0, 1, true), Tuple(1, 2, false), Tuple(2, 3, true)));
size_t Iters = 0;
// This is fine from the point of view of range lifetimes because `zippy` will
// move all temporaries into its storage. No lifetime extension is necessary.
for (auto [Idx, Int, Bool] :
llvm::enumerate(llvm::SmallVector<int>({1, 2, 3}),
std::vector<bool>({true, false, true}))) {
EXPECT_EQ(Idx, Iters);
++Iters;
Int = 0;
Bool = true;
}
Iters = 0;
// The same thing but with the result as a const reference.
for (const auto &[Idx, Int, Bool] :
llvm::enumerate(llvm::SmallVector<int>({1, 2, 3}),
std::vector<bool>({true, false, true}))) {
EXPECT_EQ(Idx, Iters);
++Iters;
Int = 0;
Bool = true;
}
}
#if defined(GTEST_HAS_DEATH_TEST) && !defined(NDEBUG)
TEST(STLExtrasTest, EnumerateDifferentLengths) {
std::vector<int> Ints = {0, 1};
bool Bools[] = {true, false, true};
std::string Chars = "abc";
EXPECT_DEATH(llvm::enumerate(Ints, Bools, Chars),
"Ranges have different length");
EXPECT_DEATH(llvm::enumerate(Bools, Ints, Chars),
"Ranges have different length");
EXPECT_DEATH(llvm::enumerate(Bools, Chars, Ints),
"Ranges have different length");
}
#endif
template <bool B> struct CanMove {};
template <> struct CanMove<false> {
CanMove(CanMove &&) = delete;
CanMove() = default;
CanMove(const CanMove &) = default;
};
template <bool B> struct CanCopy {};
template <> struct CanCopy<false> {
CanCopy(const CanCopy &) = delete;
CanCopy() = default;
CanCopy(CanCopy &&) = default;
};
template <bool Moveable, bool Copyable>
class Counted : CanMove<Moveable>, CanCopy<Copyable> {
int &C;
int &M;
int &D;
public:
explicit Counted(int &C, int &M, int &D) : C(C), M(M), D(D) {}
Counted(const Counted &O) : CanCopy<Copyable>(O), C(O.C), M(O.M), D(O.D) {
++C;
}
Counted(Counted &&O)
: CanMove<Moveable>(std::move(O)), C(O.C), M(O.M), D(O.D) {
++M;
}
~Counted() { ++D; }
};
template <bool Moveable, bool Copyable>
struct Range : Counted<Moveable, Copyable> {
using Counted<Moveable, Copyable>::Counted;
int *begin() const { return nullptr; }
int *end() const { return nullptr; }
};
TEST(STLExtrasTest, EnumerateLifetimeSemanticsPRValue) {
int Copies = 0;
int Moves = 0;
int Destructors = 0;
{
auto E = enumerate(Range<true, false>(Copies, Moves, Destructors));
(void)E;
// Doesn't compile. rvalue ranges must be moveable.
// auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(1, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(2, Destructors);
}
TEST(STLExtrasTest, EnumerateLifetimeSemanticsRValue) {
// With an rvalue, it should not be destroyed until the end of the scope.
int Copies = 0;
int Moves = 0;
int Destructors = 0;
{
Range<true, false> R(Copies, Moves, Destructors);
{
auto E = enumerate(std::move(R));
(void)E;
// Doesn't compile. rvalue ranges must be moveable.
// auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(0, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(1, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(2, Destructors);
}
TEST(STLExtrasTest, EnumerateLifetimeSemanticsLValue) {
// With an lvalue, it should not be destroyed even after the end of the scope.
// lvalue ranges need be neither copyable nor moveable.
int Copies = 0;
int Moves = 0;
int Destructors = 0;
{
Range<false, false> R(Copies, Moves, Destructors);
{
auto E = enumerate(R);
(void)E;
EXPECT_EQ(0, Copies);
EXPECT_EQ(0, Moves);
EXPECT_EQ(0, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(0, Moves);
EXPECT_EQ(0, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(0, Moves);
EXPECT_EQ(1, Destructors);
}
namespace some_namespace {
struct some_struct {
std::vector<int> data;
std::string swap_val;
};
std::vector<int>::const_iterator begin(const some_struct &s) {
return s.data.begin();
}
std::vector<int>::const_iterator end(const some_struct &s) {
return s.data.end();
}
void swap(some_struct &lhs, some_struct &rhs) {
// make swap visible as non-adl swap would even seem to
// work with std::swap which defaults to moving
lhs.swap_val = "lhs";
rhs.swap_val = "rhs";
}
struct requires_move {};
int *begin(requires_move &&) { return nullptr; }
int *end(requires_move &&) { return nullptr; }
} // namespace some_namespace
TEST(STLExtrasTest, EnumerateCustomBeginEnd) {
// Check that `enumerate` uses ADL to find `begin`/`end` iterators
// of the enumerated type.
some_namespace::some_struct X{};
X.data = {1, 2, 3};
unsigned Iters = 0;
for (auto [Idx, Val] : enumerate(X)) {
EXPECT_EQ(Val, X.data[Idx]);
++Iters;
}
EXPECT_EQ(Iters, 3u);
}
TEST(STLExtrasTest, CountAdaptor) {
std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(1);
v.push_back(4);
v.push_back(3);
v.push_back(2);
v.push_back(1);
EXPECT_EQ(3, count(v, 1));
EXPECT_EQ(2, count(v, 2));
EXPECT_EQ(1, count(v, 3));
EXPECT_EQ(1, count(v, 4));
}
TEST(STLExtrasTest, for_each) {
std::vector<int> v{0, 1, 2, 3, 4};
int count = 0;
llvm::for_each(v, [&count](int) { ++count; });
EXPECT_EQ(5, count);
}
TEST(STLExtrasTest, ToVector) {
std::vector<char> v = {'a', 'b', 'c'};
auto Enumerated = to_vector<4>(enumerate(v));
ASSERT_EQ(3u, Enumerated.size());
for (size_t I = 0; I < v.size(); ++I) {
EXPECT_EQ(I, Enumerated[I].index());
EXPECT_EQ(v[I], Enumerated[I].value());
}
auto EnumeratedImplicitSize = to_vector(enumerate(v));
ASSERT_EQ(3u, EnumeratedImplicitSize.size());
for (size_t I = 0; I < v.size(); ++I) {
EXPECT_EQ(I, EnumeratedImplicitSize[I].index());
EXPECT_EQ(v[I], EnumeratedImplicitSize[I].value());
}
}
TEST(STLExtrasTest, ConcatRange) {
std::vector<int> Expected = {1, 2, 3, 4, 5, 6, 7, 8};
std::vector<int> Test;
std::vector<int> V1234 = {1, 2, 3, 4};
std::list<int> L56 = {5, 6};
SmallVector<int, 2> SV78 = {7, 8};
// Use concat across different sized ranges of different types with different
// iterators.
for (int &i : concat<int>(V1234, L56, SV78))
Test.push_back(i);
EXPECT_EQ(Expected, Test);
// Use concat between a temporary, an L-value, and an R-value to make sure
// complex lifetimes work well.
Test.clear();
for (int &i : concat<int>(std::vector<int>(V1234), L56, std::move(SV78)))
Test.push_back(i);
EXPECT_EQ(Expected, Test);
}
TEST(STLExtrasTest, PartitionAdaptor) {
std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
auto I = partition(V, [](int i) { return i % 2 == 0; });
ASSERT_EQ(V.begin() + 4, I);
// Sort the two halves as partition may have messed with the order.
llvm::sort(V.begin(), I);
llvm::sort(I, V.end());
EXPECT_EQ(2, V[0]);
EXPECT_EQ(4, V[1]);
EXPECT_EQ(6, V[2]);
EXPECT_EQ(8, V[3]);
EXPECT_EQ(1, V[4]);
EXPECT_EQ(3, V[5]);
EXPECT_EQ(5, V[6]);
EXPECT_EQ(7, V[7]);
}
TEST(STLExtrasTest, EraseIf) {
std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
erase_if(V, [](int i) { return i % 2 == 0; });
EXPECT_EQ(4u, V.size());
EXPECT_EQ(1, V[0]);
EXPECT_EQ(3, V[1]);
EXPECT_EQ(5, V[2]);
EXPECT_EQ(7, V[3]);
}
TEST(STLExtrasTest, AppendRange) {
std::vector<int> V = {1, 2};
auto AppendVals1 = {3};
append_range(V, AppendVals1);
EXPECT_THAT(V, ElementsAre(1, 2, 3));
int AppendVals2[] = {4, 5};
append_range(V, AppendVals2);
EXPECT_THAT(V, ElementsAre(1, 2, 3, 4, 5));
std::string Str;
append_range(Str, "abc");
EXPECT_THAT(Str, ElementsAre('a', 'b', 'c', '\0'));
append_range(Str, "def");
EXPECT_THAT(Str, ElementsAre('a', 'b', 'c', '\0', 'd', 'e', 'f', '\0'));
}
TEST(STLExtrasTest, ADLTest) {
some_namespace::some_struct s{{1, 2, 3, 4, 5}, ""};
some_namespace::some_struct s2{{2, 4, 6, 8, 10}, ""};
EXPECT_EQ(*adl_begin(s), 1);
EXPECT_EQ(*(adl_end(s) - 1), 5);
adl_swap(s, s2);
EXPECT_EQ(s.swap_val, "lhs");
EXPECT_EQ(s2.swap_val, "rhs");
int count = 0;
llvm::for_each(s, [&count](int) { ++count; });
EXPECT_EQ(count, 5);
}
TEST(STLExtrasTest, ADLTestTemporaryRange) {
EXPECT_EQ(adl_begin(some_namespace::requires_move{}), nullptr);
EXPECT_EQ(adl_end(some_namespace::requires_move{}), nullptr);
}
TEST(STLExtrasTest, ADLTestConstexpr) {
// `std::begin`/`std::end` are marked as `constexpr`; check that
// `adl_begin`/`adl_end` also work in constant-evaluated contexts.
static constexpr int c_arr[] = {7, 8, 9};
static_assert(adl_begin(c_arr) == c_arr);
static_assert(adl_end(c_arr) == c_arr + 3);
static constexpr std::array<int, 2> std_arr = {1, 2};
static_assert(adl_begin(std_arr) == std_arr.begin());
static_assert(adl_end(std_arr) == std_arr.end());
SUCCEED();
}
struct FooWithMemberSize {
size_t size() const { return 42; }
auto begin() { return Data.begin(); }
auto end() { return Data.end(); }
std::set<int> Data;
};
namespace some_namespace {
struct FooWithFreeSize {
auto begin() { return Data.begin(); }
auto end() { return Data.end(); }
std::set<int> Data;
};
size_t size(const FooWithFreeSize &) { return 13; }
} // namespace some_namespace
TEST(STLExtrasTest, ADLSizeTest) {
FooWithMemberSize foo1;
EXPECT_EQ(adl_size(foo1), 42u);
some_namespace::FooWithFreeSize foo2;
EXPECT_EQ(adl_size(foo2), 13u);
static constexpr int c_arr[] = {1, 2, 3};
static_assert(adl_size(c_arr) == 3u);
static constexpr std::array<int, 4> cpp_arr = {};
static_assert(adl_size(cpp_arr) == 4u);
}
TEST(STLExtrasTest, DropBeginTest) {
SmallVector<int, 5> vec{0, 1, 2, 3, 4};
for (int n = 0; n < 5; ++n) {
int i = n;
for (auto &v : drop_begin(vec, n)) {
EXPECT_EQ(v, i);
i += 1;
}
EXPECT_EQ(i, 5);
}
}
TEST(STLExtrasTest, DropBeginDefaultTest) {
SmallVector<int, 5> vec{0, 1, 2, 3, 4};
int i = 1;
for (auto &v : drop_begin(vec)) {
EXPECT_EQ(v, i);
i += 1;
}
EXPECT_EQ(i, 5);
}
TEST(STLExtrasTest, DropEndTest) {
SmallVector<int, 5> vec{0, 1, 2, 3, 4};
for (int n = 0; n < 5; ++n) {
int i = 0;
for (auto &v : drop_end(vec, n)) {
EXPECT_EQ(v, i);
i += 1;
}
EXPECT_EQ(i, 5 - n);
}
}
TEST(STLExtrasTest, DropEndDefaultTest) {
SmallVector<int, 5> vec{0, 1, 2, 3, 4};
int i = 0;
for (auto &v : drop_end(vec)) {
EXPECT_EQ(v, i);
i += 1;
}
EXPECT_EQ(i, 4);
}
TEST(STLExtrasTest, EarlyIncrementTest) {
std::list<int> L = {1, 2, 3, 4};
auto EIR = make_early_inc_range(L);
auto I = EIR.begin();
auto EI = EIR.end();
EXPECT_NE(I, EI);
EXPECT_EQ(1, *I);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
// Repeated dereferences are not allowed.
EXPECT_DEATH(*I, "Cannot dereference");
// Comparison after dereference is not allowed.
EXPECT_DEATH((void)(I == EI), "Cannot compare");
EXPECT_DEATH((void)(I != EI), "Cannot compare");
#endif
#endif
++I;
EXPECT_NE(I, EI);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
// You cannot increment prior to dereference.
EXPECT_DEATH(++I, "Cannot increment");
#endif
#endif
EXPECT_EQ(2, *I);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
// Repeated dereferences are not allowed.
EXPECT_DEATH(*I, "Cannot dereference");
#endif
#endif
// Inserting shouldn't break anything. We should be able to keep dereferencing
// the currrent iterator and increment. The increment to go to the "next"
// iterator from before we inserted.
L.insert(std::next(L.begin(), 2), -1);
++I;
EXPECT_EQ(3, *I);
// Erasing the front including the current doesn't break incrementing.
L.erase(L.begin(), std::prev(L.end()));
++I;
EXPECT_EQ(4, *I);
++I;
EXPECT_EQ(EIR.end(), I);
}
// A custom iterator that returns a pointer when dereferenced. This is used to
// test make_early_inc_range with iterators that do not return a reference on
// dereferencing.
struct CustomPointerIterator
: public iterator_adaptor_base<CustomPointerIterator,
std::list<int>::iterator,
std::forward_iterator_tag> {
using base_type =
iterator_adaptor_base<CustomPointerIterator, std::list<int>::iterator,
std::forward_iterator_tag>;
explicit CustomPointerIterator(std::list<int>::iterator I) : base_type(I) {}
// Retrieve a pointer to the current int.
int *operator*() const { return &*base_type::wrapped(); }
};
// Make sure make_early_inc_range works with iterators that do not return a
// reference on dereferencing. The test is similar to EarlyIncrementTest, but
// uses CustomPointerIterator.
TEST(STLExtrasTest, EarlyIncrementTestCustomPointerIterator) {
std::list<int> L = {1, 2, 3, 4};
auto CustomRange = make_range(CustomPointerIterator(L.begin()),
CustomPointerIterator(L.end()));
auto EIR = make_early_inc_range(CustomRange);
auto I = EIR.begin();
auto EI = EIR.end();
EXPECT_NE(I, EI);
EXPECT_EQ(&*L.begin(), *I);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
// Repeated dereferences are not allowed.
EXPECT_DEATH(*I, "Cannot dereference");
// Comparison after dereference is not allowed.
EXPECT_DEATH((void)(I == EI), "Cannot compare");
EXPECT_DEATH((void)(I != EI), "Cannot compare");
#endif
#endif
++I;
EXPECT_NE(I, EI);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
// You cannot increment prior to dereference.
EXPECT_DEATH(++I, "Cannot increment");
#endif
#endif
EXPECT_EQ(&*std::next(L.begin()), *I);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
// Repeated dereferences are not allowed.
EXPECT_DEATH(*I, "Cannot dereference");
#endif
#endif
// Inserting shouldn't break anything. We should be able to keep dereferencing
// the currrent iterator and increment. The increment to go to the "next"
// iterator from before we inserted.
L.insert(std::next(L.begin(), 2), -1);
++I;
EXPECT_EQ(&*std::next(L.begin(), 3), *I);
// Erasing the front including the current doesn't break incrementing.
L.erase(L.begin(), std::prev(L.end()));
++I;
EXPECT_EQ(&*L.begin(), *I);
++I;
EXPECT_EQ(EIR.end(), I);
}
TEST(STLExtrasTest, AllEqual) {
std::vector<int> V;
EXPECT_TRUE(all_equal(V));
V.push_back(1);
EXPECT_TRUE(all_equal(V));
V.push_back(1);
V.push_back(1);
EXPECT_TRUE(all_equal(V));
V.push_back(2);
EXPECT_FALSE(all_equal(V));
}
TEST(STLExtrasTest, AllEqualInitializerList) {
EXPECT_TRUE(all_equal({1}));
EXPECT_TRUE(all_equal({1, 1}));
EXPECT_FALSE(all_equal({1, 2}));
EXPECT_FALSE(all_equal({2, 1}));
EXPECT_TRUE(all_equal({1, 1, 1}));
}
TEST(STLExtrasTest, to_address) {
int *V1 = new int;
EXPECT_EQ(V1, to_address(V1));
// Check fancy pointer overload for unique_ptr
std::unique_ptr<int> V2 = std::make_unique<int>(0);
EXPECT_EQ(V2.get(), llvm::to_address(V2));
V2.reset(V1);
EXPECT_EQ(V1, llvm::to_address(V2));
V2.release();
// Check fancy pointer overload for shared_ptr
std::shared_ptr<int> V3 = std::make_shared<int>(0);
std::shared_ptr<int> V4 = V3;
EXPECT_EQ(V3.get(), V4.get());
EXPECT_EQ(V3.get(), llvm::to_address(V3));
EXPECT_EQ(V4.get(), llvm::to_address(V4));
V3.reset(V1);
EXPECT_EQ(V1, llvm::to_address(V3));
}
TEST(STLExtrasTest, partition_point) {
std::vector<int> V = {1, 3, 5, 7, 9};
// Range version.
EXPECT_EQ(V.begin() + 3,
partition_point(V, [](unsigned X) { return X < 7; }));
EXPECT_EQ(V.begin(), partition_point(V, [](unsigned X) { return X < 1; }));
EXPECT_EQ(V.end(), partition_point(V, [](unsigned X) { return X < 50; }));
}
TEST(STLExtrasTest, hasSingleElement) {
const std::vector<int> V0 = {}, V1 = {1}, V2 = {1, 2};
const std::vector<int> V10(10);
EXPECT_EQ(hasSingleElement(V0), false);
EXPECT_EQ(hasSingleElement(V1), true);
EXPECT_EQ(hasSingleElement(V2), false);
EXPECT_EQ(hasSingleElement(V10), false);
}
TEST(STLExtrasTest, hasNItems) {
const std::list<int> V0 = {}, V1 = {1}, V2 = {1, 2};
const std::list<int> V3 = {1, 3, 5};
EXPECT_TRUE(hasNItems(V0, 0));
EXPECT_FALSE(hasNItems(V0, 2));
EXPECT_TRUE(hasNItems(V1, 1));
EXPECT_FALSE(hasNItems(V1, 2));
EXPECT_TRUE(hasNItems(V3.begin(), V3.end(), 3, [](int x) { return x < 10; }));
EXPECT_TRUE(hasNItems(V3.begin(), V3.end(), 0, [](int x) { return x > 10; }));
EXPECT_TRUE(hasNItems(V3.begin(), V3.end(), 2, [](int x) { return x < 5; }));
}
TEST(STLExtras, hasNItemsOrMore) {
const std::list<int> V0 = {}, V1 = {1}, V2 = {1, 2};
const std::list<int> V3 = {1, 3, 5};
EXPECT_TRUE(hasNItemsOrMore(V1, 1));
EXPECT_FALSE(hasNItemsOrMore(V1, 2));
EXPECT_TRUE(hasNItemsOrMore(V2, 1));
EXPECT_TRUE(hasNItemsOrMore(V2, 2));
EXPECT_FALSE(hasNItemsOrMore(V2, 3));
EXPECT_TRUE(hasNItemsOrMore(V3, 3));
EXPECT_FALSE(hasNItemsOrMore(V3, 4));
EXPECT_TRUE(
hasNItemsOrMore(V3.begin(), V3.end(), 3, [](int x) { return x < 10; }));
EXPECT_FALSE(
hasNItemsOrMore(V3.begin(), V3.end(), 3, [](int x) { return x > 10; }));
EXPECT_TRUE(
hasNItemsOrMore(V3.begin(), V3.end(), 2, [](int x) { return x < 5; }));
}
TEST(STLExtras, hasNItemsOrLess) {
const std::list<int> V0 = {}, V1 = {1}, V2 = {1, 2};
const std::list<int> V3 = {1, 3, 5};
EXPECT_TRUE(hasNItemsOrLess(V0, 0));
EXPECT_TRUE(hasNItemsOrLess(V0, 1));
EXPECT_TRUE(hasNItemsOrLess(V0, 2));
EXPECT_FALSE(hasNItemsOrLess(V1, 0));
EXPECT_TRUE(hasNItemsOrLess(V1, 1));
EXPECT_TRUE(hasNItemsOrLess(V1, 2));
EXPECT_FALSE(hasNItemsOrLess(V2, 0));
EXPECT_FALSE(hasNItemsOrLess(V2, 1));
EXPECT_TRUE(hasNItemsOrLess(V2, 2));
EXPECT_TRUE(hasNItemsOrLess(V2, 3));
EXPECT_FALSE(hasNItemsOrLess(V3, 0));
EXPECT_FALSE(hasNItemsOrLess(V3, 1));
EXPECT_FALSE(hasNItemsOrLess(V3, 2));
EXPECT_TRUE(hasNItemsOrLess(V3, 3));
EXPECT_TRUE(hasNItemsOrLess(V3, 4));
EXPECT_TRUE(
hasNItemsOrLess(V3.begin(), V3.end(), 1, [](int x) { return x == 1; }));
EXPECT_TRUE(
hasNItemsOrLess(V3.begin(), V3.end(), 2, [](int x) { return x < 5; }));
EXPECT_TRUE(
hasNItemsOrLess(V3.begin(), V3.end(), 5, [](int x) { return x < 5; }));
EXPECT_FALSE(
hasNItemsOrLess(V3.begin(), V3.end(), 2, [](int x) { return x < 10; }));
}
TEST(STLExtras, MoveRange) {
class Foo {
bool A;
public:
Foo() : A(true) {}
Foo(const Foo &) = delete;
Foo(Foo &&Other) : A(Other.A) { Other.A = false; }
Foo &operator=(const Foo &) = delete;
Foo &operator=(Foo &&Other) {
if (this != &Other) {
A = Other.A;
Other.A = false;
}
return *this;
}
operator bool() const { return A; }
};
SmallVector<Foo, 4U> V1, V2, V3, V4;
auto HasVal = [](const Foo &Item) { return static_cast<bool>(Item); };
auto Build = [&] {
SmallVector<Foo, 4U> Foos;
Foos.resize(4U);
return Foos;
};
V1.resize(4U);
EXPECT_TRUE(llvm::all_of(V1, HasVal));
llvm::move(V1, std::back_inserter(V2));
// Ensure input container is same size, but its contents were moved out.
EXPECT_EQ(V1.size(), 4U);
EXPECT_TRUE(llvm::none_of(V1, HasVal));
// Ensure output container has the contents of the input container.
EXPECT_EQ(V2.size(), 4U);
EXPECT_TRUE(llvm::all_of(V2, HasVal));
llvm::move(std::move(V2), std::back_inserter(V3));
EXPECT_TRUE(llvm::none_of(V2, HasVal));
EXPECT_EQ(V3.size(), 4U);
EXPECT_TRUE(llvm::all_of(V3, HasVal));
llvm::move(Build(), std::back_inserter(V4));
EXPECT_EQ(V4.size(), 4U);
EXPECT_TRUE(llvm::all_of(V4, HasVal));
}
TEST(STLExtras, Unique) {
std::vector<int> V = {1, 5, 5, 4, 3, 3, 3};
auto I = llvm::unique(V, [](int a, int b) { return a == b; });
EXPECT_EQ(I, V.begin() + 4);
EXPECT_EQ(1, V[0]);
EXPECT_EQ(5, V[1]);
EXPECT_EQ(4, V[2]);
EXPECT_EQ(3, V[3]);
}
TEST(STLExtrasTest, MakeVisitorOneCallable) {
auto IdentityLambda = [](auto X) { return X; };
auto IdentityVisitor = makeVisitor(IdentityLambda);
EXPECT_EQ(IdentityLambda(1), IdentityVisitor(1));
EXPECT_EQ(IdentityLambda(2.0f), IdentityVisitor(2.0f));
EXPECT_TRUE((std::is_same<decltype(IdentityLambda(IdentityLambda)),
decltype(IdentityLambda)>::value));
EXPECT_TRUE((std::is_same<decltype(IdentityVisitor(IdentityVisitor)),
decltype(IdentityVisitor)>::value));
}
TEST(STLExtrasTest, MakeVisitorTwoCallables) {
auto Visitor =
makeVisitor([](int) { return 0; }, [](std::string) { return 1; });
EXPECT_EQ(Visitor(42), 0);
EXPECT_EQ(Visitor("foo"), 1);
}
TEST(STLExtrasTest, MakeVisitorCallableMultipleOperands) {
auto Second = makeVisitor([](int I, float F) { return F; },
[](float F, int I) { return I; });
EXPECT_EQ(Second(1.f, 1), 1);
EXPECT_EQ(Second(1, 1.f), 1.f);
}
TEST(STLExtrasTest, MakeVisitorDefaultCase) {
{
auto Visitor = makeVisitor([](int I) { return I + 100; },
[](float F) { return F * 2; },
[](auto) { return -1; });
EXPECT_EQ(Visitor(24), 124);
EXPECT_EQ(Visitor(2.f), 4.f);
EXPECT_EQ(Visitor(2.), -1);
EXPECT_EQ(Visitor(Visitor), -1);
}
{
auto Visitor = makeVisitor([](auto) { return -1; },
[](int I) { return I + 100; },
[](float F) { return F * 2; });
EXPECT_EQ(Visitor(24), 124);
EXPECT_EQ(Visitor(2.f), 4.f);
EXPECT_EQ(Visitor(2.), -1);
EXPECT_EQ(Visitor(Visitor), -1);
}
}
template <bool Moveable, bool Copyable>
struct Functor : Counted<Moveable, Copyable> {
using Counted<Moveable, Copyable>::Counted;
void operator()() {}
};
TEST(STLExtrasTest, MakeVisitorLifetimeSemanticsPRValue) {
int Copies = 0;
int Moves = 0;
int Destructors = 0;
{
auto V = makeVisitor(Functor<true, false>(Copies, Moves, Destructors));
(void)V;
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(1, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(2, Destructors);
}
TEST(STLExtrasTest, MakeVisitorLifetimeSemanticsRValue) {
int Copies = 0;
int Moves = 0;
int Destructors = 0;
{
Functor<true, false> F(Copies, Moves, Destructors);
{
auto V = makeVisitor(std::move(F));
(void)V;
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(0, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(1, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(2, Destructors);
}
TEST(STLExtrasTest, MakeVisitorLifetimeSemanticsLValue) {
int Copies = 0;
int Moves = 0;
int Destructors = 0;
{
Functor<true, true> F(Copies, Moves, Destructors);
{
auto V = makeVisitor(F);
(void)V;
EXPECT_EQ(1, Copies);
EXPECT_EQ(0, Moves);
EXPECT_EQ(0, Destructors);
}
EXPECT_EQ(1, Copies);
EXPECT_EQ(0, Moves);
EXPECT_EQ(1, Destructors);
}
EXPECT_EQ(1, Copies);
EXPECT_EQ(0, Moves);
EXPECT_EQ(2, Destructors);
}
TEST(STLExtrasTest, AllOfZip) {
std::vector<int> v1 = {0, 4, 2, 1};
std::vector<int> v2 = {1, 4, 3, 6};
EXPECT_TRUE(all_of_zip(v1, v2, [](int v1, int v2) { return v1 <= v2; }));
EXPECT_FALSE(all_of_zip(v1, v2, [](int L, int R) { return L < R; }));
// Triple vectors
std::vector<int> v3 = {1, 6, 5, 7};
EXPECT_EQ(true, all_of_zip(v1, v2, v3, [](int a, int b, int c) {
return a <= b && b <= c;
}));
EXPECT_EQ(false, all_of_zip(v1, v2, v3, [](int a, int b, int c) {
return a < b && b < c;
}));
// Shorter vector should fail even with an always-true predicate.
std::vector<int> v_short = {1, 4};
EXPECT_EQ(false, all_of_zip(v1, v_short, [](int, int) { return true; }));
EXPECT_EQ(false,
all_of_zip(v1, v2, v_short, [](int, int, int) { return true; }));
}
TEST(STLExtrasTest, TypesAreDistinct) {
EXPECT_TRUE((llvm::TypesAreDistinct<>::value));
EXPECT_TRUE((llvm::TypesAreDistinct<int>::value));
EXPECT_FALSE((llvm::TypesAreDistinct<int, int>::value));
EXPECT_TRUE((llvm::TypesAreDistinct<int, float>::value));
EXPECT_FALSE((llvm::TypesAreDistinct<int, float, int>::value));
EXPECT_TRUE((llvm::TypesAreDistinct<int, float, double>::value));
EXPECT_FALSE((llvm::TypesAreDistinct<int, float, double, float>::value));
EXPECT_TRUE((llvm::TypesAreDistinct<int, int *>::value));
EXPECT_TRUE((llvm::TypesAreDistinct<int, int &>::value));
EXPECT_TRUE((llvm::TypesAreDistinct<int, int &&>::value));
EXPECT_TRUE((llvm::TypesAreDistinct<int, const int>::value));
}
TEST(STLExtrasTest, FirstIndexOfType) {
EXPECT_EQ((llvm::FirstIndexOfType<int, int>::value), 0u);
EXPECT_EQ((llvm::FirstIndexOfType<int, int, int>::value), 0u);
EXPECT_EQ((llvm::FirstIndexOfType<int, float, int>::value), 1u);
EXPECT_EQ((llvm::FirstIndexOfType<int const *, float, int, int const *,
const int>::value),
2u);
}
TEST(STLExtrasTest, TypeAtIndex) {
EXPECT_TRUE((std::is_same<int, llvm::TypeAtIndex<0, int>>::value));
EXPECT_TRUE((std::is_same<int, llvm::TypeAtIndex<0, int, float>>::value));
EXPECT_TRUE((std::is_same<float, llvm::TypeAtIndex<1, int, float>>::value));
EXPECT_TRUE(
(std::is_same<float, llvm::TypeAtIndex<1, int, float, double>>::value));
EXPECT_TRUE(
(std::is_same<float, llvm::TypeAtIndex<1, int, float, double>>::value));
EXPECT_TRUE(
(std::is_same<double, llvm::TypeAtIndex<2, int, float, double>>::value));
}
enum Doggos {
Floofer,
Woofer,
SubWoofer,
Pupper,
Pupperino,
Longboi,
};
struct WooferCmp {
// Not copyable.
WooferCmp() = default;
WooferCmp(const WooferCmp &) = delete;
WooferCmp &operator=(const WooferCmp &) = delete;
friend bool operator==(const Doggos &Doggo, const WooferCmp &) {
return Doggo == Doggos::Woofer;
}
};
TEST(STLExtrasTest, IsContainedInitializerList) {
EXPECT_TRUE(is_contained({Woofer, SubWoofer}, Woofer));
EXPECT_TRUE(is_contained({Woofer, SubWoofer}, SubWoofer));
EXPECT_FALSE(is_contained({Woofer, SubWoofer}, Pupper));
// Check that the initializer list type and the element type do not have to
// match exactly.
EXPECT_TRUE(is_contained({Floofer, Woofer, SubWoofer}, WooferCmp{}));
EXPECT_FALSE(is_contained({Floofer, SubWoofer}, WooferCmp{}));
EXPECT_TRUE(is_contained({"a", "bb", "ccc", "dddd"}, llvm::StringRef("ccc")));
EXPECT_FALSE(is_contained({"a", "bb", "ccc", "dddd"}, llvm::StringRef("x")));
static_assert(is_contained({Woofer, SubWoofer}, SubWoofer), "SubWoofer!");
static_assert(!is_contained({Woofer, SubWoofer}, Pupper), "Missing Pupper!");
EXPECT_TRUE(is_contained({1, 2, 3, 4}, 3));
EXPECT_FALSE(is_contained({1, 2, 3, 4}, 5));
static_assert(is_contained({1, 2, 3, 4}, 3), "It's there!");
static_assert(!is_contained({1, 2, 3, 4}, 5), "It's not there :(");
}
TEST(STLExtrasTest, IsContainedMemberContains) {
// Check that `llvm::is_contained` uses the member `.contains()` when
// available. Check that `.contains()` is preferred over `.find()`.
struct Foo {
bool contains(int) const {
++NumContainsCalls;
return ContainsResult;
}
int *begin() { return nullptr; }
int *end() { return nullptr; }
int *find(int) { return nullptr; }
bool ContainsResult = false;
mutable unsigned NumContainsCalls = 0;
} Container;
EXPECT_EQ(Container.NumContainsCalls, 0u);
EXPECT_FALSE(is_contained(Container, 1));
EXPECT_EQ(Container.NumContainsCalls, 1u);
Container.ContainsResult = true;
EXPECT_TRUE(is_contained(Container, 1));
EXPECT_EQ(Container.NumContainsCalls, 2u);
}
TEST(STLExtrasTest, IsContainedMemberFind) {
// Check that `llvm::is_contained` uses the member `.find(x)` when available.
struct Foo {
auto begin() { return Data.begin(); }
auto end() { return Data.end(); }
auto find(int X) {
++NumFindCalls;
return std::find(begin(), end(), X);
}
std::vector<int> Data;
mutable unsigned NumFindCalls = 0;
} Container;
Container.Data = {1, 2, 3};
EXPECT_EQ(Container.NumFindCalls, 0u);
EXPECT_TRUE(is_contained(Container, 1));
EXPECT_TRUE(is_contained(Container, 3));
EXPECT_EQ(Container.NumFindCalls, 2u);
EXPECT_FALSE(is_contained(Container, 4));
EXPECT_EQ(Container.NumFindCalls, 3u);
}
TEST(STLExtrasTest, addEnumValues) {
enum A { Zero = 0, One = 1 };
enum B { IntMax = INT_MAX, ULongLongMax = ULLONG_MAX };
enum class C : unsigned { Two = 2 };
// Non-fixed underlying types, with same underlying types
static_assert(addEnumValues(Zero, One) == 1,
"addEnumValues(Zero, One) failed.");
static_assert(addEnumValues(IntMax, ULongLongMax) ==
INT_MAX + static_cast<unsigned long long>(ULLONG_MAX),
"addEnumValues(IntMax, ULongLongMax) failed.");
// Non-fixed underlying types, with different underlying types
static_assert(addEnumValues(Zero, IntMax) == INT_MAX,
"addEnumValues(Zero, IntMax) failed.");
static_assert(addEnumValues(One, ULongLongMax) ==
1 + static_cast<unsigned long long>(ULLONG_MAX),
"addEnumValues(One, ULongLongMax) failed.");
// Non-fixed underlying type enum and fixed underlying type enum, with same
// underlying types
static_assert(addEnumValues(One, C::Two) == 3,
"addEnumValues(One, C::Two) failed.");
// Non-fixed underlying type enum and fixed underlying type enum, with
// different underlying types
static_assert(addEnumValues(ULongLongMax, C::Two) ==
static_cast<unsigned long long>(ULLONG_MAX) + 2,
"addEnumValues(ULongLongMax, C::Two) failed.");
}
TEST(STLExtrasTest, LessFirst) {
{
std::pair<int, int> A(0, 1);
std::pair<int, int> B(1, 0);
EXPECT_TRUE(less_first()(A, B));
EXPECT_FALSE(less_first()(B, A));
}
{
std::tuple<int, int> A(0, 1);
std::tuple<int, int> B(1, 0);
EXPECT_TRUE(less_first()(A, B));
EXPECT_FALSE(less_first()(B, A));
}
}
TEST(STLExtrasTest, LessSecond) {
{
std::pair<int, int> A(0, 1);
std::pair<int, int> B(1, 0);
EXPECT_FALSE(less_second()(A, B));
EXPECT_TRUE(less_second()(B, A));
}
{
std::tuple<int, int> A(0, 1);
std::tuple<int, int> B(1, 0);
EXPECT_FALSE(less_second()(A, B));
EXPECT_TRUE(less_second()(B, A));
}
}
} // namespace