blob: b859415ff7a9e4df6adce3a426e1176377a1bcde [file] [log] [blame]
//===- X86LegalizerInfo.cpp --------------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for X86.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "X86LegalizerInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
using namespace llvm;
using namespace TargetOpcode;
using namespace LegalizeActions;
using namespace LegalityPredicates;
/// FIXME: The following static functions are SizeChangeStrategy functions
/// that are meant to temporarily mimic the behaviour of the old legalization
/// based on doubling/halving non-legal types as closely as possible. This is
/// not entirly possible as only legalizing the types that are exactly a power
/// of 2 times the size of the legal types would require specifying all those
/// sizes explicitly.
/// In practice, not specifying those isn't a problem, and the below functions
/// should disappear quickly as we add support for legalizing non-power-of-2
/// sized types further.
static void addAndInterleaveWithUnsupported(
LegacyLegalizerInfo::SizeAndActionsVec &result,
const LegacyLegalizerInfo::SizeAndActionsVec &v) {
for (unsigned i = 0; i < v.size(); ++i) {
result.push_back(v[i]);
if (i + 1 < v[i].first && i + 1 < v.size() &&
v[i + 1].first != v[i].first + 1)
result.push_back({v[i].first + 1, LegacyLegalizeActions::Unsupported});
}
}
static LegacyLegalizerInfo::SizeAndActionsVec
widen_1(const LegacyLegalizerInfo::SizeAndActionsVec &v) {
assert(v.size() >= 1);
assert(v[0].first > 1);
LegacyLegalizerInfo::SizeAndActionsVec result = {
{1, LegacyLegalizeActions::WidenScalar},
{2, LegacyLegalizeActions::Unsupported}};
addAndInterleaveWithUnsupported(result, v);
auto Largest = result.back().first;
result.push_back({Largest + 1, LegacyLegalizeActions::Unsupported});
return result;
}
X86LegalizerInfo::X86LegalizerInfo(const X86Subtarget &STI,
const X86TargetMachine &TM)
: Subtarget(STI), TM(TM) {
bool Is64Bit = Subtarget.is64Bit();
bool HasSSE2 = Subtarget.hasSSE2();
bool HasSSE41 = Subtarget.hasSSE41();
bool HasAVX = Subtarget.hasAVX();
bool HasAVX2 = Subtarget.hasAVX2();
bool HasAVX512 = Subtarget.hasAVX512();
bool HasVLX = Subtarget.hasVLX();
bool HasDQI = Subtarget.hasAVX512() && Subtarget.hasDQI();
bool HasBWI = Subtarget.hasAVX512() && Subtarget.hasBWI();
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT sMaxScalar = Subtarget.is64Bit() ? s64 : s32;
const LLT v16s8 = LLT::fixed_vector(16, 8);
const LLT v8s16 = LLT::fixed_vector(8, 16);
const LLT v4s32 = LLT::fixed_vector(4, 32);
const LLT v2s64 = LLT::fixed_vector(2, 64);
const LLT v32s8 = LLT::fixed_vector(32, 8);
const LLT v16s16 = LLT::fixed_vector(16, 16);
const LLT v8s32 = LLT::fixed_vector(8, 32);
const LLT v4s64 = LLT::fixed_vector(4, 64);
const LLT v64s8 = LLT::fixed_vector(64, 8);
const LLT v32s16 = LLT::fixed_vector(32, 16);
const LLT v16s32 = LLT::fixed_vector(16, 32);
const LLT v8s64 = LLT::fixed_vector(8, 64);
// integer addition/subtraction
getActionDefinitionsBuilder({G_ADD, G_SUB})
.legalIf([=](const LegalityQuery &Query) -> bool {
if (typeInSet(0, {s8, s16, s32})(Query))
return true;
if (Is64Bit && typeInSet(0, {s64})(Query))
return true;
if (HasSSE2 && typeInSet(0, {v16s8, v8s16, v4s32, v2s64})(Query))
return true;
if (HasAVX2 && typeInSet(0, {v32s8, v16s16, v8s32, v4s64})(Query))
return true;
if (HasAVX512 && typeInSet(0, {v16s32, v8s64})(Query))
return true;
if (HasBWI && typeInSet(0, {v64s8, v32s16})(Query))
return true;
return false;
})
.clampMinNumElements(0, s8, 16)
.clampMinNumElements(0, s16, 8)
.clampMinNumElements(0, s32, 4)
.clampMinNumElements(0, s64, 2)
.clampMaxNumElements(0, s8, HasBWI ? 64 : (HasAVX2 ? 32 : 16))
.clampMaxNumElements(0, s16, HasBWI ? 32 : (HasAVX2 ? 16 : 8))
.clampMaxNumElements(0, s32, HasAVX512 ? 16 : (HasAVX2 ? 8 : 4))
.clampMaxNumElements(0, s64, HasAVX512 ? 8 : (HasAVX2 ? 4 : 2))
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s8, sMaxScalar)
.scalarize(0);
// integer multiply
getActionDefinitionsBuilder(G_MUL)
.legalIf([=](const LegalityQuery &Query) -> bool {
if (typeInSet(0, {s8, s16, s32})(Query))
return true;
if (Is64Bit && typeInSet(0, {s64})(Query))
return true;
if (HasSSE2 && typeInSet(0, {v8s16})(Query))
return true;
if (HasSSE41 && typeInSet(0, {v4s32})(Query))
return true;
if (HasAVX2 && typeInSet(0, {v16s16, v8s32})(Query))
return true;
if (HasAVX512 && typeInSet(0, {v16s32})(Query))
return true;
if (HasDQI && typeInSet(0, {v8s64})(Query))
return true;
if (HasDQI && HasVLX && typeInSet(0, {v2s64, v4s64})(Query))
return true;
if (HasBWI && typeInSet(0, {v32s16})(Query))
return true;
return false;
})
.clampMinNumElements(0, s16, 8)
.clampMinNumElements(0, s32, 4)
.clampMinNumElements(0, s64, HasVLX ? 2 : 8)
.clampMaxNumElements(0, s16, HasBWI ? 32 : (HasAVX2 ? 16 : 8))
.clampMaxNumElements(0, s32, HasAVX512 ? 16 : (HasAVX2 ? 8 : 4))
.clampMaxNumElements(0, s64, 8)
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s8, sMaxScalar)
.scalarize(0);
// integer divisions
getActionDefinitionsBuilder({G_SDIV, G_SREM, G_UDIV, G_UREM})
.legalIf([=](const LegalityQuery &Query) -> bool {
return typeInSet(0, {s8, s16, s32})(Query) ||
(Is64Bit && typeInSet(0, {s64})(Query));
})
.clampScalar(0, s8, sMaxScalar);
// integer shifts
getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR})
.legalIf([=](const LegalityQuery &Query) -> bool {
return typePairInSet(0, 1, {{s8, s8}, {s16, s8}, {s32, s8}})(Query) ||
(Is64Bit && typePairInSet(0, 1, {{s64, s8}})(Query));
})
.clampScalar(0, s8, sMaxScalar)
.clampScalar(1, s8, s8);
// integer logic
getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
.legalIf([=](const LegalityQuery &Query) -> bool {
if (typeInSet(0, {s8, s16, s32})(Query))
return true;
if (Is64Bit && typeInSet(0, {s64})(Query))
return true;
if (HasSSE2 && typeInSet(0, {v16s8, v8s16, v4s32, v2s64})(Query))
return true;
if (HasAVX && typeInSet(0, {v32s8, v16s16, v8s32, v4s64})(Query))
return true;
if (HasAVX512 && typeInSet(0, {v64s8, v32s16, v16s32, v8s64})(Query))
return true;
return false;
})
.clampMinNumElements(0, s8, 16)
.clampMinNumElements(0, s16, 8)
.clampMinNumElements(0, s32, 4)
.clampMinNumElements(0, s64, 2)
.clampMaxNumElements(0, s8, HasAVX512 ? 64 : (HasAVX ? 32 : 16))
.clampMaxNumElements(0, s16, HasAVX512 ? 32 : (HasAVX ? 16 : 8))
.clampMaxNumElements(0, s32, HasAVX512 ? 16 : (HasAVX ? 8 : 4))
.clampMaxNumElements(0, s64, HasAVX512 ? 8 : (HasAVX ? 4 : 2))
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s8, sMaxScalar)
.scalarize(0);
// bswap
getActionDefinitionsBuilder(G_BSWAP)
.legalIf([=](const LegalityQuery &Query) {
return Query.Types[0] == s32 ||
(Subtarget.is64Bit() && Query.Types[0] == s64);
})
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s32, sMaxScalar);
// popcount
getActionDefinitionsBuilder(G_CTPOP)
.legalIf([=](const LegalityQuery &Query) -> bool {
return Subtarget.hasPOPCNT() &&
(typePairInSet(0, 1, {{s16, s16}, {s32, s32}})(Query) ||
(Is64Bit && typePairInSet(0, 1, {{s64, s64}})(Query)));
})
.widenScalarToNextPow2(1, /*Min=*/16)
.clampScalar(1, s16, sMaxScalar);
// count leading zeros (LZCNT)
getActionDefinitionsBuilder(G_CTLZ)
.legalIf([=](const LegalityQuery &Query) -> bool {
return Subtarget.hasLZCNT() &&
(typePairInSet(0, 1, {{s16, s16}, {s32, s32}})(Query) ||
(Is64Bit && typePairInSet(0, 1, {{s64, s64}})(Query)));
})
.widenScalarToNextPow2(1, /*Min=*/16)
.clampScalar(1, s16, sMaxScalar);
setLegalizerInfo32bit();
setLegalizerInfo64bit();
setLegalizerInfoSSE1();
setLegalizerInfoSSE2();
setLegalizerInfoAVX();
setLegalizerInfoAVX2();
setLegalizerInfoAVX512();
getActionDefinitionsBuilder(G_INTRINSIC_ROUNDEVEN)
.scalarize(0)
.minScalar(0, LLT::scalar(32))
.libcall();
auto &LegacyInfo = getLegacyLegalizerInfo();
LegacyInfo.setLegalizeScalarToDifferentSizeStrategy(G_PHI, 0, widen_1);
for (unsigned MemOp : {G_LOAD, G_STORE})
LegacyInfo.setLegalizeScalarToDifferentSizeStrategy(
MemOp, 0, LegacyLegalizerInfo::narrowToSmallerAndWidenToSmallest);
LegacyInfo.setLegalizeScalarToDifferentSizeStrategy(
G_PTR_ADD, 1,
LegacyLegalizerInfo::widenToLargerTypesUnsupportedOtherwise);
LegacyInfo.setLegalizeScalarToDifferentSizeStrategy(
G_CONSTANT, 0,
LegacyLegalizerInfo::widenToLargerTypesAndNarrowToLargest);
getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE, G_MEMSET}).libcall();
LegacyInfo.computeTables();
verify(*STI.getInstrInfo());
}
bool X86LegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
MachineInstr &MI) const {
return true;
}
void X86LegalizerInfo::setLegalizerInfo32bit() {
const LLT p0 = LLT::pointer(0, TM.getPointerSizeInBits(0));
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT s128 = LLT::scalar(128);
auto &LegacyInfo = getLegacyLegalizerInfo();
for (auto Ty : {p0, s1, s8, s16, s32})
LegacyInfo.setAction({G_IMPLICIT_DEF, Ty}, LegacyLegalizeActions::Legal);
for (auto Ty : {s8, s16, s32, p0})
LegacyInfo.setAction({G_PHI, Ty}, LegacyLegalizeActions::Legal);
for (unsigned Op : {G_UADDE}) {
LegacyInfo.setAction({Op, s32}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({Op, 1, s1}, LegacyLegalizeActions::Legal);
}
for (unsigned MemOp : {G_LOAD, G_STORE}) {
for (auto Ty : {s8, s16, s32, p0})
LegacyInfo.setAction({MemOp, Ty}, LegacyLegalizeActions::Legal);
// And everything's fine in addrspace 0.
LegacyInfo.setAction({MemOp, 1, p0}, LegacyLegalizeActions::Legal);
}
// Pointer-handling
LegacyInfo.setAction({G_FRAME_INDEX, p0}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_GLOBAL_VALUE, p0}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_PTR_ADD, p0}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_PTR_ADD, 1, s32}, LegacyLegalizeActions::Legal);
if (!Subtarget.is64Bit()) {
getActionDefinitionsBuilder(G_PTRTOINT)
.legalForCartesianProduct({s1, s8, s16, s32}, {p0})
.maxScalar(0, s32)
.widenScalarToNextPow2(0, /*Min*/ 8);
getActionDefinitionsBuilder(G_INTTOPTR).legalFor({{p0, s32}});
// Comparison
getActionDefinitionsBuilder(G_ICMP)
.legalForCartesianProduct({s8}, {s8, s16, s32, p0})
.clampScalar(0, s8, s8);
}
// Control-flow
LegacyInfo.setAction({G_BRCOND, s1}, LegacyLegalizeActions::Legal);
// Constants
for (auto Ty : {s8, s16, s32, p0})
LegacyInfo.setAction({TargetOpcode::G_CONSTANT, Ty},
LegacyLegalizeActions::Legal);
// Extensions
for (auto Ty : {s8, s16, s32}) {
LegacyInfo.setAction({G_ZEXT, Ty}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_SEXT, Ty}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_ANYEXT, Ty}, LegacyLegalizeActions::Legal);
}
LegacyInfo.setAction({G_ANYEXT, s128}, LegacyLegalizeActions::Legal);
getActionDefinitionsBuilder(G_SEXT_INREG).lower();
// Merge/Unmerge
for (const auto &Ty : {s16, s32, s64}) {
LegacyInfo.setAction({G_MERGE_VALUES, Ty}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_UNMERGE_VALUES, 1, Ty},
LegacyLegalizeActions::Legal);
}
for (const auto &Ty : {s8, s16, s32}) {
LegacyInfo.setAction({G_MERGE_VALUES, 1, Ty}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_UNMERGE_VALUES, Ty}, LegacyLegalizeActions::Legal);
}
}
void X86LegalizerInfo::setLegalizerInfo64bit() {
if (!Subtarget.is64Bit())
return;
const LLT p0 = LLT::pointer(0, TM.getPointerSizeInBits(0));
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT s128 = LLT::scalar(128);
auto &LegacyInfo = getLegacyLegalizerInfo();
LegacyInfo.setAction({G_IMPLICIT_DEF, s64}, LegacyLegalizeActions::Legal);
// Need to have that, as tryFoldImplicitDef will create this pattern:
// s128 = EXTEND (G_IMPLICIT_DEF s32/s64) -> s128 = G_IMPLICIT_DEF
LegacyInfo.setAction({G_IMPLICIT_DEF, s128}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_PHI, s64}, LegacyLegalizeActions::Legal);
for (unsigned MemOp : {G_LOAD, G_STORE})
LegacyInfo.setAction({MemOp, s64}, LegacyLegalizeActions::Legal);
// Pointer-handling
LegacyInfo.setAction({G_PTR_ADD, 1, s64}, LegacyLegalizeActions::Legal);
getActionDefinitionsBuilder(G_PTRTOINT)
.legalForCartesianProduct({s1, s8, s16, s32, s64}, {p0})
.maxScalar(0, s64)
.widenScalarToNextPow2(0, /*Min*/ 8);
getActionDefinitionsBuilder(G_INTTOPTR).legalFor({{p0, s64}});
// Constants
LegacyInfo.setAction({TargetOpcode::G_CONSTANT, s64},
LegacyLegalizeActions::Legal);
// Extensions
for (unsigned extOp : {G_ZEXT, G_SEXT, G_ANYEXT}) {
LegacyInfo.setAction({extOp, s64}, LegacyLegalizeActions::Legal);
}
getActionDefinitionsBuilder(G_SITOFP)
.legalForCartesianProduct({s32, s64})
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(1)
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder(G_FPTOSI)
.legalForCartesianProduct({s32, s64})
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(0)
.clampScalar(0, s32, s64)
.widenScalarToNextPow2(1);
// Comparison
getActionDefinitionsBuilder(G_ICMP)
.legalForCartesianProduct({s8}, {s8, s16, s32, s64, p0})
.clampScalar(0, s8, s8);
getActionDefinitionsBuilder(G_FCMP)
.legalForCartesianProduct({s8}, {s32, s64})
.clampScalar(0, s8, s8)
.clampScalar(1, s32, s64)
.widenScalarToNextPow2(1);
// Merge/Unmerge
LegacyInfo.setAction({G_MERGE_VALUES, s128}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_UNMERGE_VALUES, 1, s128},
LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_MERGE_VALUES, 1, s128}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_UNMERGE_VALUES, s128}, LegacyLegalizeActions::Legal);
}
void X86LegalizerInfo::setLegalizerInfoSSE1() {
if (!Subtarget.hasSSE1())
return;
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT v4s32 = LLT::fixed_vector(4, 32);
const LLT v2s64 = LLT::fixed_vector(2, 64);
auto &LegacyInfo = getLegacyLegalizerInfo();
for (unsigned BinOp : {G_FADD, G_FSUB, G_FMUL, G_FDIV})
for (auto Ty : {s32, v4s32})
LegacyInfo.setAction({BinOp, Ty}, LegacyLegalizeActions::Legal);
for (unsigned MemOp : {G_LOAD, G_STORE})
for (auto Ty : {v4s32, v2s64})
LegacyInfo.setAction({MemOp, Ty}, LegacyLegalizeActions::Legal);
// Constants
LegacyInfo.setAction({TargetOpcode::G_FCONSTANT, s32},
LegacyLegalizeActions::Legal);
// Merge/Unmerge
for (const auto &Ty : {v4s32, v2s64}) {
LegacyInfo.setAction({G_CONCAT_VECTORS, Ty}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_UNMERGE_VALUES, 1, Ty},
LegacyLegalizeActions::Legal);
}
LegacyInfo.setAction({G_MERGE_VALUES, 1, s64}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_UNMERGE_VALUES, s64}, LegacyLegalizeActions::Legal);
}
void X86LegalizerInfo::setLegalizerInfoSSE2() {
if (!Subtarget.hasSSE2())
return;
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT v16s8 = LLT::fixed_vector(16, 8);
const LLT v8s16 = LLT::fixed_vector(8, 16);
const LLT v4s32 = LLT::fixed_vector(4, 32);
const LLT v2s64 = LLT::fixed_vector(2, 64);
const LLT v32s8 = LLT::fixed_vector(32, 8);
const LLT v16s16 = LLT::fixed_vector(16, 16);
const LLT v8s32 = LLT::fixed_vector(8, 32);
const LLT v4s64 = LLT::fixed_vector(4, 64);
auto &LegacyInfo = getLegacyLegalizerInfo();
for (unsigned BinOp : {G_FADD, G_FSUB, G_FMUL, G_FDIV})
for (auto Ty : {s64, v2s64})
LegacyInfo.setAction({BinOp, Ty}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_FPEXT, s64}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_FPEXT, 1, s32}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_FPTRUNC, s32}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_FPTRUNC, 1, s64}, LegacyLegalizeActions::Legal);
// Constants
LegacyInfo.setAction({TargetOpcode::G_FCONSTANT, s64},
LegacyLegalizeActions::Legal);
// Merge/Unmerge
for (const auto &Ty :
{v16s8, v32s8, v8s16, v16s16, v4s32, v8s32, v2s64, v4s64}) {
LegacyInfo.setAction({G_CONCAT_VECTORS, Ty}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_UNMERGE_VALUES, 1, Ty},
LegacyLegalizeActions::Legal);
}
for (const auto &Ty : {v16s8, v8s16, v4s32, v2s64}) {
LegacyInfo.setAction({G_CONCAT_VECTORS, 1, Ty},
LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_UNMERGE_VALUES, Ty}, LegacyLegalizeActions::Legal);
}
}
void X86LegalizerInfo::setLegalizerInfoAVX() {
if (!Subtarget.hasAVX())
return;
const LLT v16s8 = LLT::fixed_vector(16, 8);
const LLT v8s16 = LLT::fixed_vector(8, 16);
const LLT v4s32 = LLT::fixed_vector(4, 32);
const LLT v2s64 = LLT::fixed_vector(2, 64);
const LLT v32s8 = LLT::fixed_vector(32, 8);
const LLT v64s8 = LLT::fixed_vector(64, 8);
const LLT v16s16 = LLT::fixed_vector(16, 16);
const LLT v32s16 = LLT::fixed_vector(32, 16);
const LLT v8s32 = LLT::fixed_vector(8, 32);
const LLT v16s32 = LLT::fixed_vector(16, 32);
const LLT v4s64 = LLT::fixed_vector(4, 64);
const LLT v8s64 = LLT::fixed_vector(8, 64);
auto &LegacyInfo = getLegacyLegalizerInfo();
for (unsigned MemOp : {G_LOAD, G_STORE})
for (auto Ty : {v8s32, v4s64})
LegacyInfo.setAction({MemOp, Ty}, LegacyLegalizeActions::Legal);
for (auto Ty : {v32s8, v16s16, v8s32, v4s64}) {
LegacyInfo.setAction({G_INSERT, Ty}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_EXTRACT, 1, Ty}, LegacyLegalizeActions::Legal);
}
for (auto Ty : {v16s8, v8s16, v4s32, v2s64}) {
LegacyInfo.setAction({G_INSERT, 1, Ty}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_EXTRACT, Ty}, LegacyLegalizeActions::Legal);
}
// Merge/Unmerge
for (const auto &Ty :
{v32s8, v64s8, v16s16, v32s16, v8s32, v16s32, v4s64, v8s64}) {
LegacyInfo.setAction({G_CONCAT_VECTORS, Ty}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_UNMERGE_VALUES, 1, Ty},
LegacyLegalizeActions::Legal);
}
for (const auto &Ty :
{v16s8, v32s8, v8s16, v16s16, v4s32, v8s32, v2s64, v4s64}) {
LegacyInfo.setAction({G_CONCAT_VECTORS, 1, Ty},
LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_UNMERGE_VALUES, Ty}, LegacyLegalizeActions::Legal);
}
}
void X86LegalizerInfo::setLegalizerInfoAVX2() {
if (!Subtarget.hasAVX2())
return;
const LLT v32s8 = LLT::fixed_vector(32, 8);
const LLT v16s16 = LLT::fixed_vector(16, 16);
const LLT v8s32 = LLT::fixed_vector(8, 32);
const LLT v4s64 = LLT::fixed_vector(4, 64);
const LLT v64s8 = LLT::fixed_vector(64, 8);
const LLT v32s16 = LLT::fixed_vector(32, 16);
const LLT v16s32 = LLT::fixed_vector(16, 32);
const LLT v8s64 = LLT::fixed_vector(8, 64);
auto &LegacyInfo = getLegacyLegalizerInfo();
// Merge/Unmerge
for (const auto &Ty : {v64s8, v32s16, v16s32, v8s64}) {
LegacyInfo.setAction({G_CONCAT_VECTORS, Ty}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_UNMERGE_VALUES, 1, Ty},
LegacyLegalizeActions::Legal);
}
for (const auto &Ty : {v32s8, v16s16, v8s32, v4s64}) {
LegacyInfo.setAction({G_CONCAT_VECTORS, 1, Ty},
LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_UNMERGE_VALUES, Ty}, LegacyLegalizeActions::Legal);
}
}
void X86LegalizerInfo::setLegalizerInfoAVX512() {
if (!Subtarget.hasAVX512())
return;
const LLT v16s8 = LLT::fixed_vector(16, 8);
const LLT v8s16 = LLT::fixed_vector(8, 16);
const LLT v4s32 = LLT::fixed_vector(4, 32);
const LLT v2s64 = LLT::fixed_vector(2, 64);
const LLT v32s8 = LLT::fixed_vector(32, 8);
const LLT v16s16 = LLT::fixed_vector(16, 16);
const LLT v8s32 = LLT::fixed_vector(8, 32);
const LLT v4s64 = LLT::fixed_vector(4, 64);
const LLT v64s8 = LLT::fixed_vector(64, 8);
const LLT v32s16 = LLT::fixed_vector(32, 16);
const LLT v16s32 = LLT::fixed_vector(16, 32);
const LLT v8s64 = LLT::fixed_vector(8, 64);
auto &LegacyInfo = getLegacyLegalizerInfo();
for (unsigned MemOp : {G_LOAD, G_STORE})
for (auto Ty : {v16s32, v8s64})
LegacyInfo.setAction({MemOp, Ty}, LegacyLegalizeActions::Legal);
for (auto Ty : {v64s8, v32s16, v16s32, v8s64}) {
LegacyInfo.setAction({G_INSERT, Ty}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_EXTRACT, 1, Ty}, LegacyLegalizeActions::Legal);
}
for (auto Ty : {v32s8, v16s16, v8s32, v4s64, v16s8, v8s16, v4s32, v2s64}) {
LegacyInfo.setAction({G_INSERT, 1, Ty}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_EXTRACT, Ty}, LegacyLegalizeActions::Legal);
}
}