blob: 9b14b05b52116034dd9a1937f59329f403e42322 [file] [log] [blame]
//===- llvm/Support/Parallel.cpp - Parallel algorithms --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Parallel.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Threading.h"
#include <atomic>
#include <deque>
#include <future>
#include <thread>
#include <vector>
llvm::ThreadPoolStrategy llvm::parallel::strategy;
namespace llvm {
namespace parallel {
#if LLVM_ENABLE_THREADS
#ifdef _WIN32
static thread_local unsigned threadIndex = UINT_MAX;
unsigned getThreadIndex() { GET_THREAD_INDEX_IMPL; }
#else
thread_local unsigned threadIndex = UINT_MAX;
#endif
namespace detail {
namespace {
/// An abstract class that takes closures and runs them asynchronously.
class Executor {
public:
virtual ~Executor() = default;
virtual void add(std::function<void()> func, bool Sequential = false) = 0;
virtual size_t getThreadCount() const = 0;
static Executor *getDefaultExecutor();
};
/// An implementation of an Executor that runs closures on a thread pool
/// in filo order.
class ThreadPoolExecutor : public Executor {
public:
explicit ThreadPoolExecutor(ThreadPoolStrategy S = hardware_concurrency()) {
ThreadCount = S.compute_thread_count();
// Spawn all but one of the threads in another thread as spawning threads
// can take a while.
Threads.reserve(ThreadCount);
Threads.resize(1);
std::lock_guard<std::mutex> Lock(Mutex);
// Use operator[] before creating the thread to avoid data race in .size()
// in “safe libc++” mode.
auto &Thread0 = Threads[0];
Thread0 = std::thread([this, S] {
for (unsigned I = 1; I < ThreadCount; ++I) {
Threads.emplace_back([=] { work(S, I); });
if (Stop)
break;
}
ThreadsCreated.set_value();
work(S, 0);
});
}
void stop() {
{
std::lock_guard<std::mutex> Lock(Mutex);
if (Stop)
return;
Stop = true;
}
Cond.notify_all();
ThreadsCreated.get_future().wait();
}
~ThreadPoolExecutor() override {
stop();
std::thread::id CurrentThreadId = std::this_thread::get_id();
for (std::thread &T : Threads)
if (T.get_id() == CurrentThreadId)
T.detach();
else
T.join();
}
struct Creator {
static void *call() { return new ThreadPoolExecutor(strategy); }
};
struct Deleter {
static void call(void *Ptr) { ((ThreadPoolExecutor *)Ptr)->stop(); }
};
void add(std::function<void()> F, bool Sequential = false) override {
{
std::lock_guard<std::mutex> Lock(Mutex);
if (Sequential)
WorkQueueSequential.emplace_front(std::move(F));
else
WorkQueue.emplace_back(std::move(F));
}
Cond.notify_one();
}
size_t getThreadCount() const override { return ThreadCount; }
private:
bool hasSequentialTasks() const {
return !WorkQueueSequential.empty() && !SequentialQueueIsLocked;
}
bool hasGeneralTasks() const { return !WorkQueue.empty(); }
void work(ThreadPoolStrategy S, unsigned ThreadID) {
threadIndex = ThreadID;
S.apply_thread_strategy(ThreadID);
while (true) {
std::unique_lock<std::mutex> Lock(Mutex);
Cond.wait(Lock, [&] {
return Stop || hasGeneralTasks() || hasSequentialTasks();
});
if (Stop)
break;
bool Sequential = hasSequentialTasks();
if (Sequential)
SequentialQueueIsLocked = true;
else
assert(hasGeneralTasks());
auto &Queue = Sequential ? WorkQueueSequential : WorkQueue;
auto Task = std::move(Queue.back());
Queue.pop_back();
Lock.unlock();
Task();
if (Sequential)
SequentialQueueIsLocked = false;
}
}
std::atomic<bool> Stop{false};
std::atomic<bool> SequentialQueueIsLocked{false};
std::deque<std::function<void()>> WorkQueue;
std::deque<std::function<void()>> WorkQueueSequential;
std::mutex Mutex;
std::condition_variable Cond;
std::promise<void> ThreadsCreated;
std::vector<std::thread> Threads;
unsigned ThreadCount;
};
Executor *Executor::getDefaultExecutor() {
// The ManagedStatic enables the ThreadPoolExecutor to be stopped via
// llvm_shutdown() which allows a "clean" fast exit, e.g. via _exit(). This
// stops the thread pool and waits for any worker thread creation to complete
// but does not wait for the threads to finish. The wait for worker thread
// creation to complete is important as it prevents intermittent crashes on
// Windows due to a race condition between thread creation and process exit.
//
// The ThreadPoolExecutor will only be destroyed when the static unique_ptr to
// it is destroyed, i.e. in a normal full exit. The ThreadPoolExecutor
// destructor ensures it has been stopped and waits for worker threads to
// finish. The wait is important as it prevents intermittent crashes on
// Windows when the process is doing a full exit.
//
// The Windows crashes appear to only occur with the MSVC static runtimes and
// are more frequent with the debug static runtime.
//
// This also prevents intermittent deadlocks on exit with the MinGW runtime.
static ManagedStatic<ThreadPoolExecutor, ThreadPoolExecutor::Creator,
ThreadPoolExecutor::Deleter>
ManagedExec;
static std::unique_ptr<ThreadPoolExecutor> Exec(&(*ManagedExec));
return Exec.get();
}
} // namespace
} // namespace detail
size_t getThreadCount() {
return detail::Executor::getDefaultExecutor()->getThreadCount();
}
#endif
// Latch::sync() called by the dtor may cause one thread to block. If is a dead
// lock if all threads in the default executor are blocked. To prevent the dead
// lock, only allow the root TaskGroup to run tasks parallelly. In the scenario
// of nested parallel_for_each(), only the outermost one runs parallelly.
TaskGroup::TaskGroup()
#if LLVM_ENABLE_THREADS
: Parallel((parallel::strategy.ThreadsRequested != 1) &&
(threadIndex == UINT_MAX)) {}
#else
: Parallel(false) {}
#endif
TaskGroup::~TaskGroup() {
// We must ensure that all the workloads have finished before decrementing the
// instances count.
L.sync();
}
void TaskGroup::spawn(std::function<void()> F, bool Sequential) {
#if LLVM_ENABLE_THREADS
if (Parallel) {
L.inc();
detail::Executor::getDefaultExecutor()->add(
[&, F = std::move(F)] {
F();
L.dec();
},
Sequential);
return;
}
#endif
F();
}
} // namespace parallel
} // namespace llvm
void llvm::parallelFor(size_t Begin, size_t End,
llvm::function_ref<void(size_t)> Fn) {
#if LLVM_ENABLE_THREADS
if (parallel::strategy.ThreadsRequested != 1) {
auto NumItems = End - Begin;
// Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
// overhead on large inputs.
auto TaskSize = NumItems / parallel::detail::MaxTasksPerGroup;
if (TaskSize == 0)
TaskSize = 1;
parallel::TaskGroup TG;
for (; Begin + TaskSize < End; Begin += TaskSize) {
TG.spawn([=, &Fn] {
for (size_t I = Begin, E = Begin + TaskSize; I != E; ++I)
Fn(I);
});
}
if (Begin != End) {
TG.spawn([=, &Fn] {
for (size_t I = Begin; I != End; ++I)
Fn(I);
});
}
return;
}
#endif
for (; Begin != End; ++Begin)
Fn(Begin);
}