| //===- InstCombineCasts.cpp -----------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the visit functions for cast operations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombineInternal.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| #include <optional> |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| #define DEBUG_TYPE "instcombine" |
| |
| /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns |
| /// true for, actually insert the code to evaluate the expression. |
| Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty, |
| bool isSigned) { |
| if (Constant *C = dyn_cast<Constant>(V)) { |
| C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); |
| // If we got a constantexpr back, try to simplify it with DL info. |
| return ConstantFoldConstant(C, DL, &TLI); |
| } |
| |
| // Otherwise, it must be an instruction. |
| Instruction *I = cast<Instruction>(V); |
| Instruction *Res = nullptr; |
| unsigned Opc = I->getOpcode(); |
| switch (Opc) { |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::AShr: |
| case Instruction::LShr: |
| case Instruction::Shl: |
| case Instruction::UDiv: |
| case Instruction::URem: { |
| Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); |
| Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); |
| Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); |
| break; |
| } |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| // If the source type of the cast is the type we're trying for then we can |
| // just return the source. There's no need to insert it because it is not |
| // new. |
| if (I->getOperand(0)->getType() == Ty) |
| return I->getOperand(0); |
| |
| // Otherwise, must be the same type of cast, so just reinsert a new one. |
| // This also handles the case of zext(trunc(x)) -> zext(x). |
| Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, |
| Opc == Instruction::SExt); |
| break; |
| case Instruction::Select: { |
| Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); |
| Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); |
| Res = SelectInst::Create(I->getOperand(0), True, False); |
| break; |
| } |
| case Instruction::PHI: { |
| PHINode *OPN = cast<PHINode>(I); |
| PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); |
| for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { |
| Value *V = |
| EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); |
| NPN->addIncoming(V, OPN->getIncomingBlock(i)); |
| } |
| Res = NPN; |
| break; |
| } |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| Res = CastInst::Create( |
| static_cast<Instruction::CastOps>(Opc), I->getOperand(0), Ty); |
| break; |
| case Instruction::Call: |
| if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| switch (II->getIntrinsicID()) { |
| default: |
| llvm_unreachable("Unsupported call!"); |
| case Intrinsic::vscale: { |
| Function *Fn = |
| Intrinsic::getDeclaration(I->getModule(), Intrinsic::vscale, {Ty}); |
| Res = CallInst::Create(Fn->getFunctionType(), Fn); |
| break; |
| } |
| } |
| } |
| break; |
| default: |
| // TODO: Can handle more cases here. |
| llvm_unreachable("Unreachable!"); |
| } |
| |
| Res->takeName(I); |
| return InsertNewInstWith(Res, I->getIterator()); |
| } |
| |
| Instruction::CastOps |
| InstCombinerImpl::isEliminableCastPair(const CastInst *CI1, |
| const CastInst *CI2) { |
| Type *SrcTy = CI1->getSrcTy(); |
| Type *MidTy = CI1->getDestTy(); |
| Type *DstTy = CI2->getDestTy(); |
| |
| Instruction::CastOps firstOp = CI1->getOpcode(); |
| Instruction::CastOps secondOp = CI2->getOpcode(); |
| Type *SrcIntPtrTy = |
| SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; |
| Type *MidIntPtrTy = |
| MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; |
| Type *DstIntPtrTy = |
| DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; |
| unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, |
| DstTy, SrcIntPtrTy, MidIntPtrTy, |
| DstIntPtrTy); |
| |
| // We don't want to form an inttoptr or ptrtoint that converts to an integer |
| // type that differs from the pointer size. |
| if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || |
| (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) |
| Res = 0; |
| |
| return Instruction::CastOps(Res); |
| } |
| |
| /// Implement the transforms common to all CastInst visitors. |
| Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) { |
| Value *Src = CI.getOperand(0); |
| Type *Ty = CI.getType(); |
| |
| if (auto *SrcC = dyn_cast<Constant>(Src)) |
| if (Constant *Res = ConstantFoldCastOperand(CI.getOpcode(), SrcC, Ty, DL)) |
| return replaceInstUsesWith(CI, Res); |
| |
| // Try to eliminate a cast of a cast. |
| if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast |
| if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { |
| // The first cast (CSrc) is eliminable so we need to fix up or replace |
| // the second cast (CI). CSrc will then have a good chance of being dead. |
| auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); |
| // Point debug users of the dying cast to the new one. |
| if (CSrc->hasOneUse()) |
| replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); |
| return Res; |
| } |
| } |
| |
| if (auto *Sel = dyn_cast<SelectInst>(Src)) { |
| // We are casting a select. Try to fold the cast into the select if the |
| // select does not have a compare instruction with matching operand types |
| // or the select is likely better done in a narrow type. |
| // Creating a select with operands that are different sizes than its |
| // condition may inhibit other folds and lead to worse codegen. |
| auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); |
| if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() || |
| (CI.getOpcode() == Instruction::Trunc && |
| shouldChangeType(CI.getSrcTy(), CI.getType()))) { |
| if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { |
| replaceAllDbgUsesWith(*Sel, *NV, CI, DT); |
| return NV; |
| } |
| } |
| } |
| |
| // If we are casting a PHI, then fold the cast into the PHI. |
| if (auto *PN = dyn_cast<PHINode>(Src)) { |
| // Don't do this if it would create a PHI node with an illegal type from a |
| // legal type. |
| if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || |
| shouldChangeType(CI.getSrcTy(), CI.getType())) |
| if (Instruction *NV = foldOpIntoPhi(CI, PN)) |
| return NV; |
| } |
| |
| // Canonicalize a unary shuffle after the cast if neither operation changes |
| // the size or element size of the input vector. |
| // TODO: We could allow size-changing ops if that doesn't harm codegen. |
| // cast (shuffle X, Mask) --> shuffle (cast X), Mask |
| Value *X; |
| ArrayRef<int> Mask; |
| if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) { |
| // TODO: Allow scalable vectors? |
| auto *SrcTy = dyn_cast<FixedVectorType>(X->getType()); |
| auto *DestTy = dyn_cast<FixedVectorType>(Ty); |
| if (SrcTy && DestTy && |
| SrcTy->getNumElements() == DestTy->getNumElements() && |
| SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) { |
| Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy); |
| return new ShuffleVectorInst(CastX, Mask); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Constants and extensions/truncates from the destination type are always |
| /// free to be evaluated in that type. This is a helper for canEvaluate*. |
| static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { |
| if (isa<Constant>(V)) |
| return true; |
| Value *X; |
| if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && |
| X->getType() == Ty) |
| return true; |
| |
| return false; |
| } |
| |
| /// Filter out values that we can not evaluate in the destination type for free. |
| /// This is a helper for canEvaluate*. |
| static bool canNotEvaluateInType(Value *V, Type *Ty) { |
| assert(!isa<Constant>(V) && "Constant should already be handled."); |
| if (!isa<Instruction>(V)) |
| return true; |
| // We don't extend or shrink something that has multiple uses -- doing so |
| // would require duplicating the instruction which isn't profitable. |
| if (!V->hasOneUse()) |
| return true; |
| |
| return false; |
| } |
| |
| /// Return true if we can evaluate the specified expression tree as type Ty |
| /// instead of its larger type, and arrive with the same value. |
| /// This is used by code that tries to eliminate truncates. |
| /// |
| /// Ty will always be a type smaller than V. We should return true if trunc(V) |
| /// can be computed by computing V in the smaller type. If V is an instruction, |
| /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only |
| /// makes sense if x and y can be efficiently truncated. |
| /// |
| /// This function works on both vectors and scalars. |
| /// |
| static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC, |
| Instruction *CxtI) { |
| if (canAlwaysEvaluateInType(V, Ty)) |
| return true; |
| if (canNotEvaluateInType(V, Ty)) |
| return false; |
| |
| auto *I = cast<Instruction>(V); |
| Type *OrigTy = V->getType(); |
| switch (I->getOpcode()) { |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| // These operators can all arbitrarily be extended or truncated. |
| return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && |
| canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); |
| |
| case Instruction::UDiv: |
| case Instruction::URem: { |
| // UDiv and URem can be truncated if all the truncated bits are zero. |
| uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); |
| uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); |
| APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); |
| if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && |
| IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { |
| return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && |
| canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); |
| } |
| break; |
| } |
| case Instruction::Shl: { |
| // If we are truncating the result of this SHL, and if it's a shift of an |
| // inrange amount, we can always perform a SHL in a smaller type. |
| uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| KnownBits AmtKnownBits = |
| llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); |
| if (AmtKnownBits.getMaxValue().ult(BitWidth)) |
| return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && |
| canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); |
| break; |
| } |
| case Instruction::LShr: { |
| // If this is a truncate of a logical shr, we can truncate it to a smaller |
| // lshr iff we know that the bits we would otherwise be shifting in are |
| // already zeros. |
| // TODO: It is enough to check that the bits we would be shifting in are |
| // zero - use AmtKnownBits.getMaxValue(). |
| uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); |
| uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| KnownBits AmtKnownBits = |
| llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); |
| APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); |
| if (AmtKnownBits.getMaxValue().ult(BitWidth) && |
| IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) { |
| return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && |
| canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); |
| } |
| break; |
| } |
| case Instruction::AShr: { |
| // If this is a truncate of an arithmetic shr, we can truncate it to a |
| // smaller ashr iff we know that all the bits from the sign bit of the |
| // original type and the sign bit of the truncate type are similar. |
| // TODO: It is enough to check that the bits we would be shifting in are |
| // similar to sign bit of the truncate type. |
| uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); |
| uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| KnownBits AmtKnownBits = |
| llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); |
| unsigned ShiftedBits = OrigBitWidth - BitWidth; |
| if (AmtKnownBits.getMaxValue().ult(BitWidth) && |
| ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) |
| return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && |
| canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); |
| break; |
| } |
| case Instruction::Trunc: |
| // trunc(trunc(x)) -> trunc(x) |
| return true; |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest |
| // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest |
| return true; |
| case Instruction::Select: { |
| SelectInst *SI = cast<SelectInst>(I); |
| return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && |
| canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); |
| } |
| case Instruction::PHI: { |
| // We can change a phi if we can change all operands. Note that we never |
| // get into trouble with cyclic PHIs here because we only consider |
| // instructions with a single use. |
| PHINode *PN = cast<PHINode>(I); |
| for (Value *IncValue : PN->incoming_values()) |
| if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) |
| return false; |
| return true; |
| } |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: { |
| // If the integer type can hold the max FP value, it is safe to cast |
| // directly to that type. Otherwise, we may create poison via overflow |
| // that did not exist in the original code. |
| Type *InputTy = I->getOperand(0)->getType()->getScalarType(); |
| const fltSemantics &Semantics = InputTy->getFltSemantics(); |
| uint32_t MinBitWidth = |
| APFloatBase::semanticsIntSizeInBits(Semantics, |
| I->getOpcode() == Instruction::FPToSI); |
| return Ty->getScalarSizeInBits() >= MinBitWidth; |
| } |
| default: |
| // TODO: Can handle more cases here. |
| break; |
| } |
| |
| return false; |
| } |
| |
| /// Given a vector that is bitcast to an integer, optionally logically |
| /// right-shifted, and truncated, convert it to an extractelement. |
| /// Example (big endian): |
| /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 |
| /// ---> |
| /// extractelement <4 x i32> %X, 1 |
| static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, |
| InstCombinerImpl &IC) { |
| Value *TruncOp = Trunc.getOperand(0); |
| Type *DestType = Trunc.getType(); |
| if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) |
| return nullptr; |
| |
| Value *VecInput = nullptr; |
| ConstantInt *ShiftVal = nullptr; |
| if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), |
| m_LShr(m_BitCast(m_Value(VecInput)), |
| m_ConstantInt(ShiftVal)))) || |
| !isa<VectorType>(VecInput->getType())) |
| return nullptr; |
| |
| VectorType *VecType = cast<VectorType>(VecInput->getType()); |
| unsigned VecWidth = VecType->getPrimitiveSizeInBits(); |
| unsigned DestWidth = DestType->getPrimitiveSizeInBits(); |
| unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; |
| |
| if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) |
| return nullptr; |
| |
| // If the element type of the vector doesn't match the result type, |
| // bitcast it to a vector type that we can extract from. |
| unsigned NumVecElts = VecWidth / DestWidth; |
| if (VecType->getElementType() != DestType) { |
| VecType = FixedVectorType::get(DestType, NumVecElts); |
| VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); |
| } |
| |
| unsigned Elt = ShiftAmount / DestWidth; |
| if (IC.getDataLayout().isBigEndian()) |
| Elt = NumVecElts - 1 - Elt; |
| |
| return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); |
| } |
| |
| /// Funnel/Rotate left/right may occur in a wider type than necessary because of |
| /// type promotion rules. Try to narrow the inputs and convert to funnel shift. |
| Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) { |
| assert((isa<VectorType>(Trunc.getSrcTy()) || |
| shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && |
| "Don't narrow to an illegal scalar type"); |
| |
| // Bail out on strange types. It is possible to handle some of these patterns |
| // even with non-power-of-2 sizes, but it is not a likely scenario. |
| Type *DestTy = Trunc.getType(); |
| unsigned NarrowWidth = DestTy->getScalarSizeInBits(); |
| unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); |
| if (!isPowerOf2_32(NarrowWidth)) |
| return nullptr; |
| |
| // First, find an or'd pair of opposite shifts: |
| // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)) |
| BinaryOperator *Or0, *Or1; |
| if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) |
| return nullptr; |
| |
| Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; |
| if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) || |
| !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) || |
| Or0->getOpcode() == Or1->getOpcode()) |
| return nullptr; |
| |
| // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). |
| if (Or0->getOpcode() == BinaryOperator::LShr) { |
| std::swap(Or0, Or1); |
| std::swap(ShVal0, ShVal1); |
| std::swap(ShAmt0, ShAmt1); |
| } |
| assert(Or0->getOpcode() == BinaryOperator::Shl && |
| Or1->getOpcode() == BinaryOperator::LShr && |
| "Illegal or(shift,shift) pair"); |
| |
| // Match the shift amount operands for a funnel/rotate pattern. This always |
| // matches a subtraction on the R operand. |
| auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { |
| // The shift amounts may add up to the narrow bit width: |
| // (shl ShVal0, L) | (lshr ShVal1, Width - L) |
| // If this is a funnel shift (different operands are shifted), then the |
| // shift amount can not over-shift (create poison) in the narrow type. |
| unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth); |
| APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth); |
| if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask)) |
| if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) |
| return L; |
| |
| // The following patterns currently only work for rotation patterns. |
| // TODO: Add more general funnel-shift compatible patterns. |
| if (ShVal0 != ShVal1) |
| return nullptr; |
| |
| // The shift amount may be masked with negation: |
| // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1))) |
| Value *X; |
| unsigned Mask = Width - 1; |
| if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && |
| match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) |
| return X; |
| |
| // Same as above, but the shift amount may be extended after masking: |
| if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && |
| match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) |
| return X; |
| |
| return nullptr; |
| }; |
| |
| Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); |
| bool IsFshl = true; // Sub on LSHR. |
| if (!ShAmt) { |
| ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); |
| IsFshl = false; // Sub on SHL. |
| } |
| if (!ShAmt) |
| return nullptr; |
| |
| // The right-shifted value must have high zeros in the wide type (for example |
| // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are |
| // truncated, so those do not matter. |
| APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); |
| if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc)) |
| return nullptr; |
| |
| // We have an unnecessarily wide rotate! |
| // trunc (or (shl ShVal0, ShAmt), (lshr ShVal1, BitWidth - ShAmt)) |
| // Narrow the inputs and convert to funnel shift intrinsic: |
| // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt)) |
| Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); |
| Value *X, *Y; |
| X = Y = Builder.CreateTrunc(ShVal0, DestTy); |
| if (ShVal0 != ShVal1) |
| Y = Builder.CreateTrunc(ShVal1, DestTy); |
| Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; |
| Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy); |
| return CallInst::Create(F, {X, Y, NarrowShAmt}); |
| } |
| |
| /// Try to narrow the width of math or bitwise logic instructions by pulling a |
| /// truncate ahead of binary operators. |
| Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) { |
| Type *SrcTy = Trunc.getSrcTy(); |
| Type *DestTy = Trunc.getType(); |
| unsigned SrcWidth = SrcTy->getScalarSizeInBits(); |
| unsigned DestWidth = DestTy->getScalarSizeInBits(); |
| |
| if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) |
| return nullptr; |
| |
| BinaryOperator *BinOp; |
| if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) |
| return nullptr; |
| |
| Value *BinOp0 = BinOp->getOperand(0); |
| Value *BinOp1 = BinOp->getOperand(1); |
| switch (BinOp->getOpcode()) { |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: { |
| Constant *C; |
| if (match(BinOp0, m_Constant(C))) { |
| // trunc (binop C, X) --> binop (trunc C', X) |
| Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); |
| Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); |
| return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); |
| } |
| if (match(BinOp1, m_Constant(C))) { |
| // trunc (binop X, C) --> binop (trunc X, C') |
| Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); |
| Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); |
| return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); |
| } |
| Value *X; |
| if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { |
| // trunc (binop (ext X), Y) --> binop X, (trunc Y) |
| Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); |
| return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); |
| } |
| if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { |
| // trunc (binop Y, (ext X)) --> binop (trunc Y), X |
| Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); |
| return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); |
| } |
| break; |
| } |
| case Instruction::LShr: |
| case Instruction::AShr: { |
| // trunc (*shr (trunc A), C) --> trunc(*shr A, C) |
| Value *A; |
| Constant *C; |
| if (match(BinOp0, m_Trunc(m_Value(A))) && match(BinOp1, m_Constant(C))) { |
| unsigned MaxShiftAmt = SrcWidth - DestWidth; |
| // If the shift is small enough, all zero/sign bits created by the shift |
| // are removed by the trunc. |
| if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, |
| APInt(SrcWidth, MaxShiftAmt)))) { |
| auto *OldShift = cast<Instruction>(Trunc.getOperand(0)); |
| bool IsExact = OldShift->isExact(); |
| auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true); |
| ShAmt = Constant::mergeUndefsWith(ShAmt, C); |
| Value *Shift = |
| OldShift->getOpcode() == Instruction::AShr |
| ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact) |
| : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact); |
| return CastInst::CreateTruncOrBitCast(Shift, DestTy); |
| } |
| } |
| break; |
| } |
| default: break; |
| } |
| |
| if (Instruction *NarrowOr = narrowFunnelShift(Trunc)) |
| return NarrowOr; |
| |
| return nullptr; |
| } |
| |
| /// Try to narrow the width of a splat shuffle. This could be generalized to any |
| /// shuffle with a constant operand, but we limit the transform to avoid |
| /// creating a shuffle type that targets may not be able to lower effectively. |
| static Instruction *shrinkSplatShuffle(TruncInst &Trunc, |
| InstCombiner::BuilderTy &Builder) { |
| auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); |
| if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) && |
| all_equal(Shuf->getShuffleMask()) && |
| Shuf->getType() == Shuf->getOperand(0)->getType()) { |
| // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask |
| // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask |
| Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); |
| return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask()); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Try to narrow the width of an insert element. This could be generalized for |
| /// any vector constant, but we limit the transform to insertion into undef to |
| /// avoid potential backend problems from unsupported insertion widths. This |
| /// could also be extended to handle the case of inserting a scalar constant |
| /// into a vector variable. |
| static Instruction *shrinkInsertElt(CastInst &Trunc, |
| InstCombiner::BuilderTy &Builder) { |
| Instruction::CastOps Opcode = Trunc.getOpcode(); |
| assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && |
| "Unexpected instruction for shrinking"); |
| |
| auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); |
| if (!InsElt || !InsElt->hasOneUse()) |
| return nullptr; |
| |
| Type *DestTy = Trunc.getType(); |
| Type *DestScalarTy = DestTy->getScalarType(); |
| Value *VecOp = InsElt->getOperand(0); |
| Value *ScalarOp = InsElt->getOperand(1); |
| Value *Index = InsElt->getOperand(2); |
| |
| if (match(VecOp, m_Undef())) { |
| // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index |
| // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index |
| UndefValue *NarrowUndef = UndefValue::get(DestTy); |
| Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); |
| return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) { |
| if (Instruction *Result = commonCastTransforms(Trunc)) |
| return Result; |
| |
| Value *Src = Trunc.getOperand(0); |
| Type *DestTy = Trunc.getType(), *SrcTy = Src->getType(); |
| unsigned DestWidth = DestTy->getScalarSizeInBits(); |
| unsigned SrcWidth = SrcTy->getScalarSizeInBits(); |
| |
| // Attempt to truncate the entire input expression tree to the destination |
| // type. Only do this if the dest type is a simple type, don't convert the |
| // expression tree to something weird like i93 unless the source is also |
| // strange. |
| if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && |
| canEvaluateTruncated(Src, DestTy, *this, &Trunc)) { |
| |
| // If this cast is a truncate, evaluting in a different type always |
| // eliminates the cast, so it is always a win. |
| LLVM_DEBUG( |
| dbgs() << "ICE: EvaluateInDifferentType converting expression type" |
| " to avoid cast: " |
| << Trunc << '\n'); |
| Value *Res = EvaluateInDifferentType(Src, DestTy, false); |
| assert(Res->getType() == DestTy); |
| return replaceInstUsesWith(Trunc, Res); |
| } |
| |
| // For integer types, check if we can shorten the entire input expression to |
| // DestWidth * 2, which won't allow removing the truncate, but reducing the |
| // width may enable further optimizations, e.g. allowing for larger |
| // vectorization factors. |
| if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) { |
| if (DestWidth * 2 < SrcWidth) { |
| auto *NewDestTy = DestITy->getExtendedType(); |
| if (shouldChangeType(SrcTy, NewDestTy) && |
| canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) { |
| LLVM_DEBUG( |
| dbgs() << "ICE: EvaluateInDifferentType converting expression type" |
| " to reduce the width of operand of" |
| << Trunc << '\n'); |
| Value *Res = EvaluateInDifferentType(Src, NewDestTy, false); |
| return new TruncInst(Res, DestTy); |
| } |
| } |
| } |
| |
| // Test if the trunc is the user of a select which is part of a |
| // minimum or maximum operation. If so, don't do any more simplification. |
| // Even simplifying demanded bits can break the canonical form of a |
| // min/max. |
| Value *LHS, *RHS; |
| if (SelectInst *Sel = dyn_cast<SelectInst>(Src)) |
| if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN) |
| return nullptr; |
| |
| // See if we can simplify any instructions used by the input whose sole |
| // purpose is to compute bits we don't care about. |
| if (SimplifyDemandedInstructionBits(Trunc)) |
| return &Trunc; |
| |
| if (DestWidth == 1) { |
| Value *Zero = Constant::getNullValue(SrcTy); |
| if (DestTy->isIntegerTy()) { |
| // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only). |
| // TODO: We canonicalize to more instructions here because we are probably |
| // lacking equivalent analysis for trunc relative to icmp. There may also |
| // be codegen concerns. If those trunc limitations were removed, we could |
| // remove this transform. |
| Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1)); |
| return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); |
| } |
| |
| // For vectors, we do not canonicalize all truncs to icmp, so optimize |
| // patterns that would be covered within visitICmpInst. |
| Value *X; |
| Constant *C; |
| if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) { |
| // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 |
| Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); |
| Constant *MaskC = ConstantExpr::getShl(One, C); |
| Value *And = Builder.CreateAnd(X, MaskC); |
| return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); |
| } |
| if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_ImmConstant(C)), |
| m_Deferred(X))))) { |
| // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 |
| Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); |
| Constant *MaskC = ConstantExpr::getShl(One, C); |
| Value *And = Builder.CreateAnd(X, Builder.CreateOr(MaskC, One)); |
| return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); |
| } |
| } |
| |
| Value *A, *B; |
| Constant *C; |
| if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) { |
| unsigned AWidth = A->getType()->getScalarSizeInBits(); |
| unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth); |
| auto *OldSh = cast<Instruction>(Src); |
| bool IsExact = OldSh->isExact(); |
| |
| // If the shift is small enough, all zero bits created by the shift are |
| // removed by the trunc. |
| if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, |
| APInt(SrcWidth, MaxShiftAmt)))) { |
| auto GetNewShAmt = [&](unsigned Width) { |
| Constant *MaxAmt = ConstantInt::get(SrcTy, Width - 1, false); |
| Constant *Cmp = |
| ConstantFoldCompareInstOperands(ICmpInst::ICMP_ULT, C, MaxAmt, DL); |
| Constant *ShAmt = ConstantFoldSelectInstruction(Cmp, C, MaxAmt); |
| return ConstantFoldCastOperand(Instruction::Trunc, ShAmt, A->getType(), |
| DL); |
| }; |
| |
| // trunc (lshr (sext A), C) --> ashr A, C |
| if (A->getType() == DestTy) { |
| Constant *ShAmt = GetNewShAmt(DestWidth); |
| ShAmt = Constant::mergeUndefsWith(ShAmt, C); |
| return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt) |
| : BinaryOperator::CreateAShr(A, ShAmt); |
| } |
| // The types are mismatched, so create a cast after shifting: |
| // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C) |
| if (Src->hasOneUse()) { |
| Constant *ShAmt = GetNewShAmt(AWidth); |
| Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact); |
| return CastInst::CreateIntegerCast(Shift, DestTy, true); |
| } |
| } |
| // TODO: Mask high bits with 'and'. |
| } |
| |
| if (Instruction *I = narrowBinOp(Trunc)) |
| return I; |
| |
| if (Instruction *I = shrinkSplatShuffle(Trunc, Builder)) |
| return I; |
| |
| if (Instruction *I = shrinkInsertElt(Trunc, Builder)) |
| return I; |
| |
| if (Src->hasOneUse() && |
| (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) { |
| // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the |
| // dest type is native and cst < dest size. |
| if (match(Src, m_Shl(m_Value(A), m_Constant(C))) && |
| !match(A, m_Shr(m_Value(), m_Constant()))) { |
| // Skip shifts of shift by constants. It undoes a combine in |
| // FoldShiftByConstant and is the extend in reg pattern. |
| APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth); |
| if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) { |
| Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); |
| return BinaryOperator::Create(Instruction::Shl, NewTrunc, |
| ConstantExpr::getTrunc(C, DestTy)); |
| } |
| } |
| } |
| |
| if (Instruction *I = foldVecTruncToExtElt(Trunc, *this)) |
| return I; |
| |
| // Whenever an element is extracted from a vector, and then truncated, |
| // canonicalize by converting it to a bitcast followed by an |
| // extractelement. |
| // |
| // Example (little endian): |
| // trunc (extractelement <4 x i64> %X, 0) to i32 |
| // ---> |
| // extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0 |
| Value *VecOp; |
| ConstantInt *Cst; |
| if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) { |
| auto *VecOpTy = cast<VectorType>(VecOp->getType()); |
| auto VecElts = VecOpTy->getElementCount(); |
| |
| // A badly fit destination size would result in an invalid cast. |
| if (SrcWidth % DestWidth == 0) { |
| uint64_t TruncRatio = SrcWidth / DestWidth; |
| uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio; |
| uint64_t VecOpIdx = Cst->getZExtValue(); |
| uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1 |
| : VecOpIdx * TruncRatio; |
| assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() && |
| "overflow 32-bits"); |
| |
| auto *BitCastTo = |
| VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable()); |
| Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo); |
| return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx)); |
| } |
| } |
| |
| // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C) |
| if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)), |
| m_Value(B))))) { |
| unsigned AWidth = A->getType()->getScalarSizeInBits(); |
| if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) { |
| Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth); |
| Value *NarrowCtlz = |
| Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B}); |
| return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff); |
| } |
| } |
| |
| if (match(Src, m_VScale())) { |
| if (Trunc.getFunction() && |
| Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { |
| Attribute Attr = |
| Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange); |
| if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { |
| if (Log2_32(*MaxVScale) < DestWidth) { |
| Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); |
| return replaceInstUsesWith(Trunc, VScale); |
| } |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, |
| ZExtInst &Zext) { |
| // If we are just checking for a icmp eq of a single bit and zext'ing it |
| // to an integer, then shift the bit to the appropriate place and then |
| // cast to integer to avoid the comparison. |
| |
| // FIXME: This set of transforms does not check for extra uses and/or creates |
| // an extra instruction (an optional final cast is not included |
| // in the transform comments). We may also want to favor icmp over |
| // shifts in cases of equal instructions because icmp has better |
| // analysis in general (invert the transform). |
| |
| const APInt *Op1CV; |
| if (match(Cmp->getOperand(1), m_APInt(Op1CV))) { |
| |
| // zext (x <s 0) to i32 --> x>>u31 true if signbit set. |
| if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) { |
| Value *In = Cmp->getOperand(0); |
| Value *Sh = ConstantInt::get(In->getType(), |
| In->getType()->getScalarSizeInBits() - 1); |
| In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); |
| if (In->getType() != Zext.getType()) |
| In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/); |
| |
| return replaceInstUsesWith(Zext, In); |
| } |
| |
| // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. |
| // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. |
| // zext (X != 0) to i32 --> X iff X has only the low bit set. |
| // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. |
| if (Op1CV->isZero() && Cmp->isEquality() && |
| (Cmp->getOperand(0)->getType() == Zext.getType() || |
| Cmp->getPredicate() == ICmpInst::ICMP_NE)) { |
| // If Op1C some other power of two, convert: |
| KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext); |
| |
| // Exactly 1 possible 1? But not the high-bit because that is |
| // canonicalized to this form. |
| APInt KnownZeroMask(~Known.Zero); |
| if (KnownZeroMask.isPowerOf2() && |
| (Zext.getType()->getScalarSizeInBits() != |
| KnownZeroMask.logBase2() + 1)) { |
| uint32_t ShAmt = KnownZeroMask.logBase2(); |
| Value *In = Cmp->getOperand(0); |
| if (ShAmt) { |
| // Perform a logical shr by shiftamt. |
| // Insert the shift to put the result in the low bit. |
| In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), |
| In->getName() + ".lobit"); |
| } |
| |
| // Toggle the low bit for "X == 0". |
| if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) |
| In = Builder.CreateXor(In, ConstantInt::get(In->getType(), 1)); |
| |
| if (Zext.getType() == In->getType()) |
| return replaceInstUsesWith(Zext, In); |
| |
| Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false); |
| return replaceInstUsesWith(Zext, IntCast); |
| } |
| } |
| } |
| |
| if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) { |
| // Test if a bit is clear/set using a shifted-one mask: |
| // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1 |
| // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1 |
| Value *X, *ShAmt; |
| if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) && |
| match(Cmp->getOperand(0), |
| m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) { |
| if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) |
| X = Builder.CreateNot(X); |
| Value *Lshr = Builder.CreateLShr(X, ShAmt); |
| Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1)); |
| return replaceInstUsesWith(Zext, And1); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Determine if the specified value can be computed in the specified wider type |
| /// and produce the same low bits. If not, return false. |
| /// |
| /// If this function returns true, it can also return a non-zero number of bits |
| /// (in BitsToClear) which indicates that the value it computes is correct for |
| /// the zero extend, but that the additional BitsToClear bits need to be zero'd |
| /// out. For example, to promote something like: |
| /// |
| /// %B = trunc i64 %A to i32 |
| /// %C = lshr i32 %B, 8 |
| /// %E = zext i32 %C to i64 |
| /// |
| /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be |
| /// set to 8 to indicate that the promoted value needs to have bits 24-31 |
| /// cleared in addition to bits 32-63. Since an 'and' will be generated to |
| /// clear the top bits anyway, doing this has no extra cost. |
| /// |
| /// This function works on both vectors and scalars. |
| static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, |
| InstCombinerImpl &IC, Instruction *CxtI) { |
| BitsToClear = 0; |
| if (canAlwaysEvaluateInType(V, Ty)) |
| return true; |
| if (canNotEvaluateInType(V, Ty)) |
| return false; |
| |
| auto *I = cast<Instruction>(V); |
| unsigned Tmp; |
| switch (I->getOpcode()) { |
| case Instruction::ZExt: // zext(zext(x)) -> zext(x). |
| case Instruction::SExt: // zext(sext(x)) -> sext(x). |
| case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) |
| return true; |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || |
| !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) |
| return false; |
| // These can all be promoted if neither operand has 'bits to clear'. |
| if (BitsToClear == 0 && Tmp == 0) |
| return true; |
| |
| // If the operation is an AND/OR/XOR and the bits to clear are zero in the |
| // other side, BitsToClear is ok. |
| if (Tmp == 0 && I->isBitwiseLogicOp()) { |
| // We use MaskedValueIsZero here for generality, but the case we care |
| // about the most is constant RHS. |
| unsigned VSize = V->getType()->getScalarSizeInBits(); |
| if (IC.MaskedValueIsZero(I->getOperand(1), |
| APInt::getHighBitsSet(VSize, BitsToClear), |
| 0, CxtI)) { |
| // If this is an And instruction and all of the BitsToClear are |
| // known to be zero we can reset BitsToClear. |
| if (I->getOpcode() == Instruction::And) |
| BitsToClear = 0; |
| return true; |
| } |
| } |
| |
| // Otherwise, we don't know how to analyze this BitsToClear case yet. |
| return false; |
| |
| case Instruction::Shl: { |
| // We can promote shl(x, cst) if we can promote x. Since shl overwrites the |
| // upper bits we can reduce BitsToClear by the shift amount. |
| const APInt *Amt; |
| if (match(I->getOperand(1), m_APInt(Amt))) { |
| if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) |
| return false; |
| uint64_t ShiftAmt = Amt->getZExtValue(); |
| BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; |
| return true; |
| } |
| return false; |
| } |
| case Instruction::LShr: { |
| // We can promote lshr(x, cst) if we can promote x. This requires the |
| // ultimate 'and' to clear out the high zero bits we're clearing out though. |
| const APInt *Amt; |
| if (match(I->getOperand(1), m_APInt(Amt))) { |
| if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) |
| return false; |
| BitsToClear += Amt->getZExtValue(); |
| if (BitsToClear > V->getType()->getScalarSizeInBits()) |
| BitsToClear = V->getType()->getScalarSizeInBits(); |
| return true; |
| } |
| // Cannot promote variable LSHR. |
| return false; |
| } |
| case Instruction::Select: |
| if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || |
| !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || |
| // TODO: If important, we could handle the case when the BitsToClear are |
| // known zero in the disagreeing side. |
| Tmp != BitsToClear) |
| return false; |
| return true; |
| |
| case Instruction::PHI: { |
| // We can change a phi if we can change all operands. Note that we never |
| // get into trouble with cyclic PHIs here because we only consider |
| // instructions with a single use. |
| PHINode *PN = cast<PHINode>(I); |
| if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) |
| return false; |
| for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || |
| // TODO: If important, we could handle the case when the BitsToClear |
| // are known zero in the disagreeing input. |
| Tmp != BitsToClear) |
| return false; |
| return true; |
| } |
| case Instruction::Call: |
| // llvm.vscale() can always be executed in larger type, because the |
| // value is automatically zero-extended. |
| if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) |
| if (II->getIntrinsicID() == Intrinsic::vscale) |
| return true; |
| return false; |
| default: |
| // TODO: Can handle more cases here. |
| return false; |
| } |
| } |
| |
| Instruction *InstCombinerImpl::visitZExt(ZExtInst &Zext) { |
| // If this zero extend is only used by a truncate, let the truncate be |
| // eliminated before we try to optimize this zext. |
| if (Zext.hasOneUse() && isa<TruncInst>(Zext.user_back()) && |
| !isa<Constant>(Zext.getOperand(0))) |
| return nullptr; |
| |
| // If one of the common conversion will work, do it. |
| if (Instruction *Result = commonCastTransforms(Zext)) |
| return Result; |
| |
| Value *Src = Zext.getOperand(0); |
| Type *SrcTy = Src->getType(), *DestTy = Zext.getType(); |
| |
| // Try to extend the entire expression tree to the wide destination type. |
| unsigned BitsToClear; |
| if (shouldChangeType(SrcTy, DestTy) && |
| canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &Zext)) { |
| assert(BitsToClear <= SrcTy->getScalarSizeInBits() && |
| "Can't clear more bits than in SrcTy"); |
| |
| // Okay, we can transform this! Insert the new expression now. |
| LLVM_DEBUG( |
| dbgs() << "ICE: EvaluateInDifferentType converting expression type" |
| " to avoid zero extend: " |
| << Zext << '\n'); |
| Value *Res = EvaluateInDifferentType(Src, DestTy, false); |
| assert(Res->getType() == DestTy); |
| |
| // Preserve debug values referring to Src if the zext is its last use. |
| if (auto *SrcOp = dyn_cast<Instruction>(Src)) |
| if (SrcOp->hasOneUse()) |
| replaceAllDbgUsesWith(*SrcOp, *Res, Zext, DT); |
| |
| uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits() - BitsToClear; |
| uint32_t DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| // If the high bits are already filled with zeros, just replace this |
| // cast with the result. |
| if (MaskedValueIsZero(Res, |
| APInt::getHighBitsSet(DestBitSize, |
| DestBitSize - SrcBitsKept), |
| 0, &Zext)) |
| return replaceInstUsesWith(Zext, Res); |
| |
| // We need to emit an AND to clear the high bits. |
| Constant *C = ConstantInt::get(Res->getType(), |
| APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); |
| return BinaryOperator::CreateAnd(Res, C); |
| } |
| |
| // If this is a TRUNC followed by a ZEXT then we are dealing with integral |
| // types and if the sizes are just right we can convert this into a logical |
| // 'and' which will be much cheaper than the pair of casts. |
| if (auto *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast |
| // TODO: Subsume this into EvaluateInDifferentType. |
| |
| // Get the sizes of the types involved. We know that the intermediate type |
| // will be smaller than A or C, but don't know the relation between A and C. |
| Value *A = CSrc->getOperand(0); |
| unsigned SrcSize = A->getType()->getScalarSizeInBits(); |
| unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); |
| unsigned DstSize = DestTy->getScalarSizeInBits(); |
| // If we're actually extending zero bits, then if |
| // SrcSize < DstSize: zext(a & mask) |
| // SrcSize == DstSize: a & mask |
| // SrcSize > DstSize: trunc(a) & mask |
| if (SrcSize < DstSize) { |
| APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); |
| Constant *AndConst = ConstantInt::get(A->getType(), AndValue); |
| Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); |
| return new ZExtInst(And, DestTy); |
| } |
| |
| if (SrcSize == DstSize) { |
| APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); |
| return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), |
| AndValue)); |
| } |
| if (SrcSize > DstSize) { |
| Value *Trunc = Builder.CreateTrunc(A, DestTy); |
| APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); |
| return BinaryOperator::CreateAnd(Trunc, |
| ConstantInt::get(Trunc->getType(), |
| AndValue)); |
| } |
| } |
| |
| if (auto *Cmp = dyn_cast<ICmpInst>(Src)) |
| return transformZExtICmp(Cmp, Zext); |
| |
| // zext(trunc(X) & C) -> (X & zext(C)). |
| Constant *C; |
| Value *X; |
| if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && |
| X->getType() == DestTy) |
| return BinaryOperator::CreateAnd(X, Builder.CreateZExt(C, DestTy)); |
| |
| // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). |
| Value *And; |
| if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && |
| match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && |
| X->getType() == DestTy) { |
| Value *ZC = Builder.CreateZExt(C, DestTy); |
| return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); |
| } |
| |
| // If we are truncating, masking, and then zexting back to the original type, |
| // that's just a mask. This is not handled by canEvaluateZextd if the |
| // intermediate values have extra uses. This could be generalized further for |
| // a non-constant mask operand. |
| // zext (and (trunc X), C) --> and X, (zext C) |
| if (match(Src, m_And(m_Trunc(m_Value(X)), m_Constant(C))) && |
| X->getType() == DestTy) { |
| Value *ZextC = Builder.CreateZExt(C, DestTy); |
| return BinaryOperator::CreateAnd(X, ZextC); |
| } |
| |
| if (match(Src, m_VScale())) { |
| if (Zext.getFunction() && |
| Zext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { |
| Attribute Attr = |
| Zext.getFunction()->getFnAttribute(Attribute::VScaleRange); |
| if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { |
| unsigned TypeWidth = Src->getType()->getScalarSizeInBits(); |
| if (Log2_32(*MaxVScale) < TypeWidth) { |
| Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); |
| return replaceInstUsesWith(Zext, VScale); |
| } |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. |
| Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *Cmp, |
| SExtInst &Sext) { |
| Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); |
| ICmpInst::Predicate Pred = Cmp->getPredicate(); |
| |
| // Don't bother if Op1 isn't of vector or integer type. |
| if (!Op1->getType()->isIntOrIntVectorTy()) |
| return nullptr; |
| |
| if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) { |
| // sext (x <s 0) --> ashr x, 31 (all ones if negative) |
| Value *Sh = ConstantInt::get(Op0->getType(), |
| Op0->getType()->getScalarSizeInBits() - 1); |
| Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); |
| if (In->getType() != Sext.getType()) |
| In = Builder.CreateIntCast(In, Sext.getType(), true /*SExt*/); |
| |
| return replaceInstUsesWith(Sext, In); |
| } |
| |
| if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { |
| // If we know that only one bit of the LHS of the icmp can be set and we |
| // have an equality comparison with zero or a power of 2, we can transform |
| // the icmp and sext into bitwise/integer operations. |
| if (Cmp->hasOneUse() && |
| Cmp->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ |
| KnownBits Known = computeKnownBits(Op0, 0, &Sext); |
| |
| APInt KnownZeroMask(~Known.Zero); |
| if (KnownZeroMask.isPowerOf2()) { |
| Value *In = Cmp->getOperand(0); |
| |
| // If the icmp tests for a known zero bit we can constant fold it. |
| if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { |
| Value *V = Pred == ICmpInst::ICMP_NE ? |
| ConstantInt::getAllOnesValue(Sext.getType()) : |
| ConstantInt::getNullValue(Sext.getType()); |
| return replaceInstUsesWith(Sext, V); |
| } |
| |
| if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { |
| // sext ((x & 2^n) == 0) -> (x >> n) - 1 |
| // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 |
| unsigned ShiftAmt = KnownZeroMask.countr_zero(); |
| // Perform a right shift to place the desired bit in the LSB. |
| if (ShiftAmt) |
| In = Builder.CreateLShr(In, |
| ConstantInt::get(In->getType(), ShiftAmt)); |
| |
| // At this point "In" is either 1 or 0. Subtract 1 to turn |
| // {1, 0} -> {0, -1}. |
| In = Builder.CreateAdd(In, |
| ConstantInt::getAllOnesValue(In->getType()), |
| "sext"); |
| } else { |
| // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 |
| // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 |
| unsigned ShiftAmt = KnownZeroMask.countl_zero(); |
| // Perform a left shift to place the desired bit in the MSB. |
| if (ShiftAmt) |
| In = Builder.CreateShl(In, |
| ConstantInt::get(In->getType(), ShiftAmt)); |
| |
| // Distribute the bit over the whole bit width. |
| In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), |
| KnownZeroMask.getBitWidth() - 1), "sext"); |
| } |
| |
| if (Sext.getType() == In->getType()) |
| return replaceInstUsesWith(Sext, In); |
| return CastInst::CreateIntegerCast(In, Sext.getType(), true/*SExt*/); |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Return true if we can take the specified value and return it as type Ty |
| /// without inserting any new casts and without changing the value of the common |
| /// low bits. This is used by code that tries to promote integer operations to |
| /// a wider types will allow us to eliminate the extension. |
| /// |
| /// This function works on both vectors and scalars. |
| /// |
| static bool canEvaluateSExtd(Value *V, Type *Ty) { |
| assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && |
| "Can't sign extend type to a smaller type"); |
| if (canAlwaysEvaluateInType(V, Ty)) |
| return true; |
| if (canNotEvaluateInType(V, Ty)) |
| return false; |
| |
| auto *I = cast<Instruction>(V); |
| switch (I->getOpcode()) { |
| case Instruction::SExt: // sext(sext(x)) -> sext(x) |
| case Instruction::ZExt: // sext(zext(x)) -> zext(x) |
| case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) |
| return true; |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| // These operators can all arbitrarily be extended if their inputs can. |
| return canEvaluateSExtd(I->getOperand(0), Ty) && |
| canEvaluateSExtd(I->getOperand(1), Ty); |
| |
| //case Instruction::Shl: TODO |
| //case Instruction::LShr: TODO |
| |
| case Instruction::Select: |
| return canEvaluateSExtd(I->getOperand(1), Ty) && |
| canEvaluateSExtd(I->getOperand(2), Ty); |
| |
| case Instruction::PHI: { |
| // We can change a phi if we can change all operands. Note that we never |
| // get into trouble with cyclic PHIs here because we only consider |
| // instructions with a single use. |
| PHINode *PN = cast<PHINode>(I); |
| for (Value *IncValue : PN->incoming_values()) |
| if (!canEvaluateSExtd(IncValue, Ty)) return false; |
| return true; |
| } |
| default: |
| // TODO: Can handle more cases here. |
| break; |
| } |
| |
| return false; |
| } |
| |
| Instruction *InstCombinerImpl::visitSExt(SExtInst &Sext) { |
| // If this sign extend is only used by a truncate, let the truncate be |
| // eliminated before we try to optimize this sext. |
| if (Sext.hasOneUse() && isa<TruncInst>(Sext.user_back())) |
| return nullptr; |
| |
| if (Instruction *I = commonCastTransforms(Sext)) |
| return I; |
| |
| Value *Src = Sext.getOperand(0); |
| Type *SrcTy = Src->getType(), *DestTy = Sext.getType(); |
| unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| // If the value being extended is zero or positive, use a zext instead. |
| if (isKnownNonNegative(Src, DL, 0, &AC, &Sext, &DT)) |
| return CastInst::Create(Instruction::ZExt, Src, DestTy); |
| |
| // Try to extend the entire expression tree to the wide destination type. |
| if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) { |
| // Okay, we can transform this! Insert the new expression now. |
| LLVM_DEBUG( |
| dbgs() << "ICE: EvaluateInDifferentType converting expression type" |
| " to avoid sign extend: " |
| << Sext << '\n'); |
| Value *Res = EvaluateInDifferentType(Src, DestTy, true); |
| assert(Res->getType() == DestTy); |
| |
| // If the high bits are already filled with sign bit, just replace this |
| // cast with the result. |
| if (ComputeNumSignBits(Res, 0, &Sext) > DestBitSize - SrcBitSize) |
| return replaceInstUsesWith(Sext, Res); |
| |
| // We need to emit a shl + ashr to do the sign extend. |
| Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); |
| return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), |
| ShAmt); |
| } |
| |
| Value *X; |
| if (match(Src, m_Trunc(m_Value(X)))) { |
| // If the input has more sign bits than bits truncated, then convert |
| // directly to final type. |
| unsigned XBitSize = X->getType()->getScalarSizeInBits(); |
| if (ComputeNumSignBits(X, 0, &Sext) > XBitSize - SrcBitSize) |
| return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true); |
| |
| // If input is a trunc from the destination type, then convert into shifts. |
| if (Src->hasOneUse() && X->getType() == DestTy) { |
| // sext (trunc X) --> ashr (shl X, C), C |
| Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); |
| return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); |
| } |
| |
| // If we are replacing shifted-in high zero bits with sign bits, convert |
| // the logic shift to arithmetic shift and eliminate the cast to |
| // intermediate type: |
| // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C) |
| Value *Y; |
| if (Src->hasOneUse() && |
| match(X, m_LShr(m_Value(Y), |
| m_SpecificIntAllowUndef(XBitSize - SrcBitSize)))) { |
| Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize); |
| return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true); |
| } |
| } |
| |
| if (auto *Cmp = dyn_cast<ICmpInst>(Src)) |
| return transformSExtICmp(Cmp, Sext); |
| |
| // If the input is a shl/ashr pair of a same constant, then this is a sign |
| // extension from a smaller value. If we could trust arbitrary bitwidth |
| // integers, we could turn this into a truncate to the smaller bit and then |
| // use a sext for the whole extension. Since we don't, look deeper and check |
| // for a truncate. If the source and dest are the same type, eliminate the |
| // trunc and extend and just do shifts. For example, turn: |
| // %a = trunc i32 %i to i8 |
| // %b = shl i8 %a, C |
| // %c = ashr i8 %b, C |
| // %d = sext i8 %c to i32 |
| // into: |
| // %a = shl i32 %i, 32-(8-C) |
| // %d = ashr i32 %a, 32-(8-C) |
| Value *A = nullptr; |
| // TODO: Eventually this could be subsumed by EvaluateInDifferentType. |
| Constant *BA = nullptr, *CA = nullptr; |
| if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)), |
| m_Constant(CA))) && |
| BA->isElementWiseEqual(CA) && A->getType() == DestTy) { |
| Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy); |
| Constant *NumLowbitsLeft = ConstantExpr::getSub( |
| ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt); |
| Constant *NewShAmt = ConstantExpr::getSub( |
| ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()), |
| NumLowbitsLeft); |
| NewShAmt = |
| Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA); |
| A = Builder.CreateShl(A, NewShAmt, Sext.getName()); |
| return BinaryOperator::CreateAShr(A, NewShAmt); |
| } |
| |
| // Splatting a bit of constant-index across a value: |
| // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1 |
| // If the dest type is different, use a cast (adjust use check). |
| if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)), |
| m_SpecificInt(SrcBitSize - 1))))) { |
| Type *XTy = X->getType(); |
| unsigned XBitSize = XTy->getScalarSizeInBits(); |
| Constant *ShlAmtC = ConstantInt::get(XTy, XBitSize - SrcBitSize); |
| Constant *AshrAmtC = ConstantInt::get(XTy, XBitSize - 1); |
| if (XTy == DestTy) |
| return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShlAmtC), |
| AshrAmtC); |
| if (cast<BinaryOperator>(Src)->getOperand(0)->hasOneUse()) { |
| Value *Ashr = Builder.CreateAShr(Builder.CreateShl(X, ShlAmtC), AshrAmtC); |
| return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true); |
| } |
| } |
| |
| if (match(Src, m_VScale())) { |
| if (Sext.getFunction() && |
| Sext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { |
| Attribute Attr = |
| Sext.getFunction()->getFnAttribute(Attribute::VScaleRange); |
| if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { |
| if (Log2_32(*MaxVScale) < (SrcBitSize - 1)) { |
| Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); |
| return replaceInstUsesWith(Sext, VScale); |
| } |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Return a Constant* for the specified floating-point constant if it fits |
| /// in the specified FP type without changing its value. |
| static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { |
| bool losesInfo; |
| APFloat F = CFP->getValueAPF(); |
| (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); |
| return !losesInfo; |
| } |
| |
| static Type *shrinkFPConstant(ConstantFP *CFP) { |
| if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) |
| return nullptr; // No constant folding of this. |
| // See if the value can be truncated to half and then reextended. |
| if (fitsInFPType(CFP, APFloat::IEEEhalf())) |
| return Type::getHalfTy(CFP->getContext()); |
| // See if the value can be truncated to float and then reextended. |
| if (fitsInFPType(CFP, APFloat::IEEEsingle())) |
| return Type::getFloatTy(CFP->getContext()); |
| if (CFP->getType()->isDoubleTy()) |
| return nullptr; // Won't shrink. |
| if (fitsInFPType(CFP, APFloat::IEEEdouble())) |
| return Type::getDoubleTy(CFP->getContext()); |
| // Don't try to shrink to various long double types. |
| return nullptr; |
| } |
| |
| // Determine if this is a vector of ConstantFPs and if so, return the minimal |
| // type we can safely truncate all elements to. |
| static Type *shrinkFPConstantVector(Value *V) { |
| auto *CV = dyn_cast<Constant>(V); |
| auto *CVVTy = dyn_cast<FixedVectorType>(V->getType()); |
| if (!CV || !CVVTy) |
| return nullptr; |
| |
| Type *MinType = nullptr; |
| |
| unsigned NumElts = CVVTy->getNumElements(); |
| |
| // For fixed-width vectors we find the minimal type by looking |
| // through the constant values of the vector. |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (isa<UndefValue>(CV->getAggregateElement(i))) |
| continue; |
| |
| auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); |
| if (!CFP) |
| return nullptr; |
| |
| Type *T = shrinkFPConstant(CFP); |
| if (!T) |
| return nullptr; |
| |
| // If we haven't found a type yet or this type has a larger mantissa than |
| // our previous type, this is our new minimal type. |
| if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) |
| MinType = T; |
| } |
| |
| // Make a vector type from the minimal type. |
| return MinType ? FixedVectorType::get(MinType, NumElts) : nullptr; |
| } |
| |
| /// Find the minimum FP type we can safely truncate to. |
| static Type *getMinimumFPType(Value *V) { |
| if (auto *FPExt = dyn_cast<FPExtInst>(V)) |
| return FPExt->getOperand(0)->getType(); |
| |
| // If this value is a constant, return the constant in the smallest FP type |
| // that can accurately represent it. This allows us to turn |
| // (float)((double)X+2.0) into x+2.0f. |
| if (auto *CFP = dyn_cast<ConstantFP>(V)) |
| if (Type *T = shrinkFPConstant(CFP)) |
| return T; |
| |
| // We can only correctly find a minimum type for a scalable vector when it is |
| // a splat. For splats of constant values the fpext is wrapped up as a |
| // ConstantExpr. |
| if (auto *FPCExt = dyn_cast<ConstantExpr>(V)) |
| if (FPCExt->getOpcode() == Instruction::FPExt) |
| return FPCExt->getOperand(0)->getType(); |
| |
| // Try to shrink a vector of FP constants. This returns nullptr on scalable |
| // vectors |
| if (Type *T = shrinkFPConstantVector(V)) |
| return T; |
| |
| return V->getType(); |
| } |
| |
| /// Return true if the cast from integer to FP can be proven to be exact for all |
| /// possible inputs (the conversion does not lose any precision). |
| static bool isKnownExactCastIntToFP(CastInst &I, InstCombinerImpl &IC) { |
| CastInst::CastOps Opcode = I.getOpcode(); |
| assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) && |
| "Unexpected cast"); |
| Value *Src = I.getOperand(0); |
| Type *SrcTy = Src->getType(); |
| Type *FPTy = I.getType(); |
| bool IsSigned = Opcode == Instruction::SIToFP; |
| int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned; |
| |
| // Easy case - if the source integer type has less bits than the FP mantissa, |
| // then the cast must be exact. |
| int DestNumSigBits = FPTy->getFPMantissaWidth(); |
| if (SrcSize <= DestNumSigBits) |
| return true; |
| |
| // Cast from FP to integer and back to FP is independent of the intermediate |
| // integer width because of poison on overflow. |
| Value *F; |
| if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) { |
| // If this is uitofp (fptosi F), the source needs an extra bit to avoid |
| // potential rounding of negative FP input values. |
| int SrcNumSigBits = F->getType()->getFPMantissaWidth(); |
| if (!IsSigned && match(Src, m_FPToSI(m_Value()))) |
| SrcNumSigBits++; |
| |
| // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal |
| // significant bits than the destination (and make sure neither type is |
| // weird -- ppc_fp128). |
| if (SrcNumSigBits > 0 && DestNumSigBits > 0 && |
| SrcNumSigBits <= DestNumSigBits) |
| return true; |
| } |
| |
| // TODO: |
| // Try harder to find if the source integer type has less significant bits. |
| // For example, compute number of sign bits. |
| KnownBits SrcKnown = IC.computeKnownBits(Src, 0, &I); |
| int SigBits = (int)SrcTy->getScalarSizeInBits() - |
| SrcKnown.countMinLeadingZeros() - |
| SrcKnown.countMinTrailingZeros(); |
| if (SigBits <= DestNumSigBits) |
| return true; |
| |
| return false; |
| } |
| |
| Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) { |
| if (Instruction *I = commonCastTransforms(FPT)) |
| return I; |
| |
| // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to |
| // simplify this expression to avoid one or more of the trunc/extend |
| // operations if we can do so without changing the numerical results. |
| // |
| // The exact manner in which the widths of the operands interact to limit |
| // what we can and cannot do safely varies from operation to operation, and |
| // is explained below in the various case statements. |
| Type *Ty = FPT.getType(); |
| auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0)); |
| if (BO && BO->hasOneUse()) { |
| Type *LHSMinType = getMinimumFPType(BO->getOperand(0)); |
| Type *RHSMinType = getMinimumFPType(BO->getOperand(1)); |
| unsigned OpWidth = BO->getType()->getFPMantissaWidth(); |
| unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); |
| unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); |
| unsigned SrcWidth = std::max(LHSWidth, RHSWidth); |
| unsigned DstWidth = Ty->getFPMantissaWidth(); |
| switch (BO->getOpcode()) { |
| default: break; |
| case Instruction::FAdd: |
| case Instruction::FSub: |
| // For addition and subtraction, the infinitely precise result can |
| // essentially be arbitrarily wide; proving that double rounding |
| // will not occur because the result of OpI is exact (as we will for |
| // FMul, for example) is hopeless. However, we *can* nonetheless |
| // frequently know that double rounding cannot occur (or that it is |
| // innocuous) by taking advantage of the specific structure of |
| // infinitely-precise results that admit double rounding. |
| // |
| // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient |
| // to represent both sources, we can guarantee that the double |
| // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, |
| // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." |
| // for proof of this fact). |
| // |
| // Note: Figueroa does not consider the case where DstFormat != |
| // SrcFormat. It's possible (likely even!) that this analysis |
| // could be tightened for those cases, but they are rare (the main |
| // case of interest here is (float)((double)float + float)). |
| if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { |
| Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); |
| Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); |
| Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS); |
| RI->copyFastMathFlags(BO); |
| return RI; |
| } |
| break; |
| case Instruction::FMul: |
| // For multiplication, the infinitely precise result has at most |
| // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient |
| // that such a value can be exactly represented, then no double |
| // rounding can possibly occur; we can safely perform the operation |
| // in the destination format if it can represent both sources. |
| if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { |
| Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); |
| Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); |
| return BinaryOperator::CreateFMulFMF(LHS, RHS, BO); |
| } |
| break; |
| case Instruction::FDiv: |
| // For division, we use again use the bound from Figueroa's |
| // dissertation. I am entirely certain that this bound can be |
| // tightened in the unbalanced operand case by an analysis based on |
| // the diophantine rational approximation bound, but the well-known |
| // condition used here is a good conservative first pass. |
| // TODO: Tighten bound via rigorous analysis of the unbalanced case. |
| if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { |
| Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); |
| Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); |
| return BinaryOperator::CreateFDivFMF(LHS, RHS, BO); |
| } |
| break; |
| case Instruction::FRem: { |
| // Remainder is straightforward. Remainder is always exact, so the |
| // type of OpI doesn't enter into things at all. We simply evaluate |
| // in whichever source type is larger, then convert to the |
| // destination type. |
| if (SrcWidth == OpWidth) |
| break; |
| Value *LHS, *RHS; |
| if (LHSWidth == SrcWidth) { |
| LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType); |
| RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType); |
| } else { |
| LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType); |
| RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType); |
| } |
| |
| Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO); |
| return CastInst::CreateFPCast(ExactResult, Ty); |
| } |
| } |
| } |
| |
| // (fptrunc (fneg x)) -> (fneg (fptrunc x)) |
| Value *X; |
| Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0)); |
| if (Op && Op->hasOneUse()) { |
| // FIXME: The FMF should propagate from the fptrunc, not the source op. |
| IRBuilder<>::FastMathFlagGuard FMFG(Builder); |
| if (isa<FPMathOperator>(Op)) |
| Builder.setFastMathFlags(Op->getFastMathFlags()); |
| |
| if (match(Op, m_FNeg(m_Value(X)))) { |
| Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); |
| |
| return UnaryOperator::CreateFNegFMF(InnerTrunc, Op); |
| } |
| |
| // If we are truncating a select that has an extended operand, we can |
| // narrow the other operand and do the select as a narrow op. |
| Value *Cond, *X, *Y; |
| if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) && |
| X->getType() == Ty) { |
| // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y) |
| Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); |
| Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op); |
| return replaceInstUsesWith(FPT, Sel); |
| } |
| if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) && |
| X->getType() == Ty) { |
| // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X |
| Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); |
| Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op); |
| return replaceInstUsesWith(FPT, Sel); |
| } |
| } |
| |
| if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { |
| switch (II->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::ceil: |
| case Intrinsic::fabs: |
| case Intrinsic::floor: |
| case Intrinsic::nearbyint: |
| case Intrinsic::rint: |
| case Intrinsic::round: |
| case Intrinsic::roundeven: |
| case Intrinsic::trunc: { |
| Value *Src = II->getArgOperand(0); |
| if (!Src->hasOneUse()) |
| break; |
| |
| // Except for fabs, this transformation requires the input of the unary FP |
| // operation to be itself an fpext from the type to which we're |
| // truncating. |
| if (II->getIntrinsicID() != Intrinsic::fabs) { |
| FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); |
| if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) |
| break; |
| } |
| |
| // Do unary FP operation on smaller type. |
| // (fptrunc (fabs x)) -> (fabs (fptrunc x)) |
| Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); |
| Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), |
| II->getIntrinsicID(), Ty); |
| SmallVector<OperandBundleDef, 1> OpBundles; |
| II->getOperandBundlesAsDefs(OpBundles); |
| CallInst *NewCI = |
| CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName()); |
| NewCI->copyFastMathFlags(II); |
| return NewCI; |
| } |
| } |
| } |
| |
| if (Instruction *I = shrinkInsertElt(FPT, Builder)) |
| return I; |
| |
| Value *Src = FPT.getOperand(0); |
| if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { |
| auto *FPCast = cast<CastInst>(Src); |
| if (isKnownExactCastIntToFP(*FPCast, *this)) |
| return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) { |
| // If the source operand is a cast from integer to FP and known exact, then |
| // cast the integer operand directly to the destination type. |
| Type *Ty = FPExt.getType(); |
| Value *Src = FPExt.getOperand(0); |
| if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { |
| auto *FPCast = cast<CastInst>(Src); |
| if (isKnownExactCastIntToFP(*FPCast, *this)) |
| return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); |
| } |
| |
| return commonCastTransforms(FPExt); |
| } |
| |
| /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) |
| /// This is safe if the intermediate type has enough bits in its mantissa to |
| /// accurately represent all values of X. For example, this won't work with |
| /// i64 -> float -> i64. |
| Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) { |
| if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) |
| return nullptr; |
| |
| auto *OpI = cast<CastInst>(FI.getOperand(0)); |
| Value *X = OpI->getOperand(0); |
| Type *XType = X->getType(); |
| Type *DestType = FI.getType(); |
| bool IsOutputSigned = isa<FPToSIInst>(FI); |
| |
| // Since we can assume the conversion won't overflow, our decision as to |
| // whether the input will fit in the float should depend on the minimum |
| // of the input range and output range. |
| |
| // This means this is also safe for a signed input and unsigned output, since |
| // a negative input would lead to undefined behavior. |
| if (!isKnownExactCastIntToFP(*OpI, *this)) { |
| // The first cast may not round exactly based on the source integer width |
| // and FP width, but the overflow UB rules can still allow this to fold. |
| // If the destination type is narrow, that means the intermediate FP value |
| // must be large enough to hold the source value exactly. |
| // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior. |
| int OutputSize = (int)DestType->getScalarSizeInBits(); |
| if (OutputSize > OpI->getType()->getFPMantissaWidth()) |
| return nullptr; |
| } |
| |
| if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) { |
| bool IsInputSigned = isa<SIToFPInst>(OpI); |
| if (IsInputSigned && IsOutputSigned) |
| return new SExtInst(X, DestType); |
| return new ZExtInst(X, DestType); |
| } |
| if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits()) |
| return new TruncInst(X, DestType); |
| |
| assert(XType == DestType && "Unexpected types for int to FP to int casts"); |
| return replaceInstUsesWith(FI, X); |
| } |
| |
| Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) { |
| if (Instruction *I = foldItoFPtoI(FI)) |
| return I; |
| |
| return commonCastTransforms(FI); |
| } |
| |
| Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) { |
| if (Instruction *I = foldItoFPtoI(FI)) |
| return I; |
| |
| return commonCastTransforms(FI); |
| } |
| |
| Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) { |
| return commonCastTransforms(CI); |
| } |
| |
| Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) { |
| return commonCastTransforms(CI); |
| } |
| |
| Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) { |
| // If the source integer type is not the intptr_t type for this target, do a |
| // trunc or zext to the intptr_t type, then inttoptr of it. This allows the |
| // cast to be exposed to other transforms. |
| unsigned AS = CI.getAddressSpace(); |
| if (CI.getOperand(0)->getType()->getScalarSizeInBits() != |
| DL.getPointerSizeInBits(AS)) { |
| Type *Ty = CI.getOperand(0)->getType()->getWithNewType( |
| DL.getIntPtrType(CI.getContext(), AS)); |
| Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); |
| return new IntToPtrInst(P, CI.getType()); |
| } |
| |
| if (Instruction *I = commonCastTransforms(CI)) |
| return I; |
| |
| return nullptr; |
| } |
| |
| /// Implement the transforms for cast of pointer (bitcast/ptrtoint) |
| Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) { |
| Value *Src = CI.getOperand(0); |
| |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { |
| // If casting the result of a getelementptr instruction with no offset, turn |
| // this into a cast of the original pointer! |
| if (GEP->hasAllZeroIndices() && |
| // If CI is an addrspacecast and GEP changes the poiner type, merging |
| // GEP into CI would undo canonicalizing addrspacecast with different |
| // pointer types, causing infinite loops. |
| (!isa<AddrSpaceCastInst>(CI) || |
| GEP->getType() == GEP->getPointerOperandType())) { |
| // Changing the cast operand is usually not a good idea but it is safe |
| // here because the pointer operand is being replaced with another |
| // pointer operand so the opcode doesn't need to change. |
| return replaceOperand(CI, 0, GEP->getOperand(0)); |
| } |
| } |
| |
| return commonCastTransforms(CI); |
| } |
| |
| Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) { |
| // If the destination integer type is not the intptr_t type for this target, |
| // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast |
| // to be exposed to other transforms. |
| Value *SrcOp = CI.getPointerOperand(); |
| Type *SrcTy = SrcOp->getType(); |
| Type *Ty = CI.getType(); |
| unsigned AS = CI.getPointerAddressSpace(); |
| unsigned TySize = Ty->getScalarSizeInBits(); |
| unsigned PtrSize = DL.getPointerSizeInBits(AS); |
| if (TySize != PtrSize) { |
| Type *IntPtrTy = |
| SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS)); |
| Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy); |
| return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); |
| } |
| |
| if (auto *GEP = dyn_cast<GetElementPtrInst>(SrcOp)) { |
| // Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use. |
| // While this can increase the number of instructions it doesn't actually |
| // increase the overall complexity since the arithmetic is just part of |
| // the GEP otherwise. |
| if (GEP->hasOneUse() && |
| isa<ConstantPointerNull>(GEP->getPointerOperand())) { |
| return replaceInstUsesWith(CI, |
| Builder.CreateIntCast(EmitGEPOffset(GEP), Ty, |
| /*isSigned=*/false)); |
| } |
| } |
| |
| Value *Vec, *Scalar, *Index; |
| if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)), |
| m_Value(Scalar), m_Value(Index)))) && |
| Vec->getType() == Ty) { |
| assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type"); |
| // Convert the scalar to int followed by insert to eliminate one cast: |
| // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index |
| Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType()); |
| return InsertElementInst::Create(Vec, NewCast, Index); |
| } |
| |
| return commonPointerCastTransforms(CI); |
| } |
| |
| /// This input value (which is known to have vector type) is being zero extended |
| /// or truncated to the specified vector type. Since the zext/trunc is done |
| /// using an integer type, we have a (bitcast(cast(bitcast))) pattern, |
| /// endianness will impact which end of the vector that is extended or |
| /// truncated. |
| /// |
| /// A vector is always stored with index 0 at the lowest address, which |
| /// corresponds to the most significant bits for a big endian stored integer and |
| /// the least significant bits for little endian. A trunc/zext of an integer |
| /// impacts the big end of the integer. Thus, we need to add/remove elements at |
| /// the front of the vector for big endian targets, and the back of the vector |
| /// for little endian targets. |
| /// |
| /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. |
| /// |
| /// The source and destination vector types may have different element types. |
| static Instruction * |
| optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy, |
| InstCombinerImpl &IC) { |
| // We can only do this optimization if the output is a multiple of the input |
| // element size, or the input is a multiple of the output element size. |
| // Convert the input type to have the same element type as the output. |
| VectorType *SrcTy = cast<VectorType>(InVal->getType()); |
| |
| if (SrcTy->getElementType() != DestTy->getElementType()) { |
| // The input types don't need to be identical, but for now they must be the |
| // same size. There is no specific reason we couldn't handle things like |
| // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten |
| // there yet. |
| if (SrcTy->getElementType()->getPrimitiveSizeInBits() != |
| DestTy->getElementType()->getPrimitiveSizeInBits()) |
| return nullptr; |
| |
| SrcTy = |
| FixedVectorType::get(DestTy->getElementType(), |
| cast<FixedVectorType>(SrcTy)->getNumElements()); |
| InVal = IC.Builder.CreateBitCast(InVal, SrcTy); |
| } |
| |
| bool IsBigEndian = IC.getDataLayout().isBigEndian(); |
| unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements(); |
| unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements(); |
| |
| assert(SrcElts != DestElts && "Element counts should be different."); |
| |
| // Now that the element types match, get the shuffle mask and RHS of the |
| // shuffle to use, which depends on whether we're increasing or decreasing the |
| // size of the input. |
| auto ShuffleMaskStorage = llvm::to_vector<16>(llvm::seq<int>(0, SrcElts)); |
| ArrayRef<int> ShuffleMask; |
| Value *V2; |
| |
| if (SrcElts > DestElts) { |
| // If we're shrinking the number of elements (rewriting an integer |
| // truncate), just shuffle in the elements corresponding to the least |
| // significant bits from the input and use poison as the second shuffle |
| // input. |
| V2 = PoisonValue::get(SrcTy); |
| // Make sure the shuffle mask selects the "least significant bits" by |
| // keeping elements from back of the src vector for big endian, and from the |
| // front for little endian. |
| ShuffleMask = ShuffleMaskStorage; |
| if (IsBigEndian) |
| ShuffleMask = ShuffleMask.take_back(DestElts); |
| else |
| ShuffleMask = ShuffleMask.take_front(DestElts); |
| } else { |
| // If we're increasing the number of elements (rewriting an integer zext), |
| // shuffle in all of the elements from InVal. Fill the rest of the result |
| // elements with zeros from a constant zero. |
| V2 = Constant::getNullValue(SrcTy); |
| // Use first elt from V2 when indicating zero in the shuffle mask. |
| uint32_t NullElt = SrcElts; |
| // Extend with null values in the "most significant bits" by adding elements |
| // in front of the src vector for big endian, and at the back for little |
| // endian. |
| unsigned DeltaElts = DestElts - SrcElts; |
| if (IsBigEndian) |
| ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt); |
| else |
| ShuffleMaskStorage.append(DeltaElts, NullElt); |
| ShuffleMask = ShuffleMaskStorage; |
| } |
| |
| return new ShuffleVectorInst(InVal, V2, ShuffleMask); |
| } |
| |
| static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { |
| return Value % Ty->getPrimitiveSizeInBits() == 0; |
| } |
| |
| static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { |
| return Value / Ty->getPrimitiveSizeInBits(); |
| } |
| |
| /// V is a value which is inserted into a vector of VecEltTy. |
| /// Look through the value to see if we can decompose it into |
| /// insertions into the vector. See the example in the comment for |
| /// OptimizeIntegerToVectorInsertions for the pattern this handles. |
| /// The type of V is always a non-zero multiple of VecEltTy's size. |
| /// Shift is the number of bits between the lsb of V and the lsb of |
| /// the vector. |
| /// |
| /// This returns false if the pattern can't be matched or true if it can, |
| /// filling in Elements with the elements found here. |
| static bool collectInsertionElements(Value *V, unsigned Shift, |
| SmallVectorImpl<Value *> &Elements, |
| Type *VecEltTy, bool isBigEndian) { |
| assert(isMultipleOfTypeSize(Shift, VecEltTy) && |
| "Shift should be a multiple of the element type size"); |
| |
| // Undef values never contribute useful bits to the result. |
| if (isa<UndefValue>(V)) return true; |
| |
| // If we got down to a value of the right type, we win, try inserting into the |
| // right element. |
| if (V->getType() == VecEltTy) { |
| // Inserting null doesn't actually insert any elements. |
| if (Constant *C = dyn_cast<Constant>(V)) |
| if (C->isNullValue()) |
| return true; |
| |
| unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); |
| if (isBigEndian) |
| ElementIndex = Elements.size() - ElementIndex - 1; |
| |
| // Fail if multiple elements are inserted into this slot. |
| if (Elements[ElementIndex]) |
| return false; |
| |
| Elements[ElementIndex] = V; |
| return true; |
| } |
| |
| if (Constant *C = dyn_cast<Constant>(V)) { |
| // Figure out the # elements this provides, and bitcast it or slice it up |
| // as required. |
| unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), |
| VecEltTy); |
| // If the constant is the size of a vector element, we just need to bitcast |
| // it to the right type so it gets properly inserted. |
| if (NumElts == 1) |
| return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), |
| Shift, Elements, VecEltTy, isBigEndian); |
| |
| // Okay, this is a constant that covers multiple elements. Slice it up into |
| // pieces and insert each element-sized piece into the vector. |
| if (!isa<IntegerType>(C->getType())) |
| C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), |
| C->getType()->getPrimitiveSizeInBits())); |
| unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); |
| Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); |
| |
| for (unsigned i = 0; i != NumElts; ++i) { |
| unsigned ShiftI = Shift+i*ElementSize; |
| Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), |
| ShiftI)); |
| Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); |
| if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, |
| isBigEndian)) |
| return false; |
| } |
| return true; |
| } |
| |
| if (!V->hasOneUse()) return false; |
| |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) return false; |
| switch (I->getOpcode()) { |
| default: return false; // Unhandled case. |
| case Instruction::BitCast: |
| if (I->getOperand(0)->getType()->isVectorTy()) |
| return false; |
| return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, |
| isBigEndian); |
| case Instruction::ZExt: |
| if (!isMultipleOfTypeSize( |
| I->getOperand(0)->getType()->getPrimitiveSizeInBits(), |
| VecEltTy)) |
| return false; |
| return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, |
| isBigEndian); |
| case Instruction::Or: |
| return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, |
| isBigEndian) && |
| collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, |
| isBigEndian); |
| case Instruction::Shl: { |
| // Must be shifting by a constant that is a multiple of the element size. |
| ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); |
| if (!CI) return false; |
| Shift += CI->getZExtValue(); |
| if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; |
| return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, |
| isBigEndian); |
| } |
| |
| } |
| } |
| |
| |
| /// If the input is an 'or' instruction, we may be doing shifts and ors to |
| /// assemble the elements of the vector manually. |
| /// Try to rip the code out and replace it with insertelements. This is to |
| /// optimize code like this: |
| /// |
| /// %tmp37 = bitcast float %inc to i32 |
| /// %tmp38 = zext i32 %tmp37 to i64 |
| /// %tmp31 = bitcast float %inc5 to i32 |
| /// %tmp32 = zext i32 %tmp31 to i64 |
| /// %tmp33 = shl i64 %tmp32, 32 |
| /// %ins35 = or i64 %tmp33, %tmp38 |
| /// %tmp43 = bitcast i64 %ins35 to <2 x float> |
| /// |
| /// Into two insertelements that do "buildvector{%inc, %inc5}". |
| static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, |
| InstCombinerImpl &IC) { |
| auto *DestVecTy = cast<FixedVectorType>(CI.getType()); |
| Value *IntInput = CI.getOperand(0); |
| |
| SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); |
| if (!collectInsertionElements(IntInput, 0, Elements, |
| DestVecTy->getElementType(), |
| IC.getDataLayout().isBigEndian())) |
| return nullptr; |
| |
| // If we succeeded, we know that all of the element are specified by Elements |
| // or are zero if Elements has a null entry. Recast this as a set of |
| // insertions. |
| Value *Result = Constant::getNullValue(CI.getType()); |
| for (unsigned i = 0, e = Elements.size(); i != e; ++i) { |
| if (!Elements[i]) continue; // Unset element. |
| |
| Result = IC.Builder.CreateInsertElement(Result, Elements[i], |
| IC.Builder.getInt32(i)); |
| } |
| |
| return Result; |
| } |
| |
| /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the |
| /// vector followed by extract element. The backend tends to handle bitcasts of |
| /// vectors better than bitcasts of scalars because vector registers are |
| /// usually not type-specific like scalar integer or scalar floating-point. |
| static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, |
| InstCombinerImpl &IC) { |
| Value *VecOp, *Index; |
| if (!match(BitCast.getOperand(0), |
| m_OneUse(m_ExtractElt(m_Value(VecOp), m_Value(Index))))) |
| return nullptr; |
| |
| // The bitcast must be to a vectorizable type, otherwise we can't make a new |
| // type to extract from. |
| Type *DestType = BitCast.getType(); |
| VectorType *VecType = cast<VectorType>(VecOp->getType()); |
| if (VectorType::isValidElementType(DestType)) { |
| auto *NewVecType = VectorType::get(DestType, VecType); |
| auto *NewBC = IC.Builder.CreateBitCast(VecOp, NewVecType, "bc"); |
| return ExtractElementInst::Create(NewBC, Index); |
| } |
| |
| // Only solve DestType is vector to avoid inverse transform in visitBitCast. |
| // bitcast (extractelement <1 x elt>, dest) -> bitcast(<1 x elt>, dest) |
| auto *FixedVType = dyn_cast<FixedVectorType>(VecType); |
| if (DestType->isVectorTy() && FixedVType && FixedVType->getNumElements() == 1) |
| return CastInst::Create(Instruction::BitCast, VecOp, DestType); |
| |
| return nullptr; |
| } |
| |
| /// Change the type of a bitwise logic operation if we can eliminate a bitcast. |
| static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, |
| InstCombiner::BuilderTy &Builder) { |
| Type *DestTy = BitCast.getType(); |
| BinaryOperator *BO; |
| |
| if (!match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || |
| !BO->isBitwiseLogicOp()) |
| return nullptr; |
| |
| // FIXME: This transform is restricted to vector types to avoid backend |
| // problems caused by creating potentially illegal operations. If a fix-up is |
| // added to handle that situation, we can remove this check. |
| if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) |
| return nullptr; |
| |
| if (DestTy->isFPOrFPVectorTy()) { |
| Value *X, *Y; |
| // bitcast(logic(bitcast(X), bitcast(Y))) -> bitcast'(logic(bitcast'(X), Y)) |
| if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && |
| match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(Y))))) { |
| if (X->getType()->isFPOrFPVectorTy() && |
| Y->getType()->isIntOrIntVectorTy()) { |
| Value *CastedOp = |
| Builder.CreateBitCast(BO->getOperand(0), Y->getType()); |
| Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, Y); |
| return CastInst::CreateBitOrPointerCast(NewBO, DestTy); |
| } |
| if (X->getType()->isIntOrIntVectorTy() && |
| Y->getType()->isFPOrFPVectorTy()) { |
| Value *CastedOp = |
| Builder.CreateBitCast(BO->getOperand(1), X->getType()); |
| Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, X); |
| return CastInst::CreateBitOrPointerCast(NewBO, DestTy); |
| } |
| } |
| return nullptr; |
| } |
| |
| if (!DestTy->isIntOrIntVectorTy()) |
| return nullptr; |
| |
| Value *X; |
| if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && |
| X->getType() == DestTy && !isa<Constant>(X)) { |
| // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) |
| Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); |
| return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); |
| } |
| |
| if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && |
| X->getType() == DestTy && !isa<Constant>(X)) { |
| // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) |
| Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); |
| return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); |
| } |
| |
| // Canonicalize vector bitcasts to come before vector bitwise logic with a |
| // constant. This eases recognition of special constants for later ops. |
| // Example: |
| // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b |
| Constant *C; |
| if (match(BO->getOperand(1), m_Constant(C))) { |
| // bitcast (logic X, C) --> logic (bitcast X, C') |
| Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); |
| Value *CastedC = Builder.CreateBitCast(C, DestTy); |
| return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Change the type of a select if we can eliminate a bitcast. |
| static Instruction *foldBitCastSelect(BitCastInst &BitCast, |
| InstCombiner::BuilderTy &Builder) { |
| Value *Cond, *TVal, *FVal; |
| if (!match(BitCast.getOperand(0), |
| m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) |
| return nullptr; |
| |
| // A vector select must maintain the same number of elements in its operands. |
| Type *CondTy = Cond->getType(); |
| Type *DestTy = BitCast.getType(); |
| if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) |
| if (!DestTy->isVectorTy() || |
| CondVTy->getElementCount() != |
| cast<VectorType>(DestTy)->getElementCount()) |
| return nullptr; |
| |
| // FIXME: This transform is restricted from changing the select between |
| // scalars and vectors to avoid backend problems caused by creating |
| // potentially illegal operations. If a fix-up is added to handle that |
| // situation, we can remove this check. |
| if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) |
| return nullptr; |
| |
| auto *Sel = cast<Instruction>(BitCast.getOperand(0)); |
| Value *X; |
| if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && |
| !isa<Constant>(X)) { |
| // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) |
| Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); |
| return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); |
| } |
| |
| if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && |
| !isa<Constant>(X)) { |
| // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) |
| Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); |
| return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Check if all users of CI are StoreInsts. |
| static bool hasStoreUsersOnly(CastInst &CI) { |
| for (User *U : CI.users()) { |
| if (!isa<StoreInst>(U)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// This function handles following case |
| /// |
| /// A -> B cast |
| /// PHI |
| /// B -> A cast |
| /// |
| /// All the related PHI nodes can be replaced by new PHI nodes with type A. |
| /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. |
| Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI, |
| PHINode *PN) { |
| // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. |
| if (hasStoreUsersOnly(CI)) |
| return nullptr; |
| |
| Value *Src = CI.getOperand(0); |
| Type *SrcTy = Src->getType(); // Type B |
| Type *DestTy = CI.getType(); // Type A |
| |
| SmallVector<PHINode *, 4> PhiWorklist; |
| SmallSetVector<PHINode *, 4> OldPhiNodes; |
| |
| // Find all of the A->B casts and PHI nodes. |
| // We need to inspect all related PHI nodes, but PHIs can be cyclic, so |
| // OldPhiNodes is used to track all known PHI nodes, before adding a new |
| // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. |
| PhiWorklist.push_back(PN); |
| OldPhiNodes.insert(PN); |
| while (!PhiWorklist.empty()) { |
| auto *OldPN = PhiWorklist.pop_back_val(); |
| for (Value *IncValue : OldPN->incoming_values()) { |
| if (isa<Constant>(IncValue)) |
| continue; |
| |
| if (auto *LI = dyn_cast<LoadInst>(IncValue)) { |
| // If there is a sequence of one or more load instructions, each loaded |
| // value is used as address of later load instruction, bitcast is |
| // necessary to change the value type, don't optimize it. For |
| // simplicity we give up if the load address comes from another load. |
| Value *Addr = LI->getOperand(0); |
| if (Addr == &CI || isa<LoadInst>(Addr)) |
| return nullptr; |
| // Don't tranform "load <256 x i32>, <256 x i32>*" to |
| // "load x86_amx, x86_amx*", because x86_amx* is invalid. |
| // TODO: Remove this check when bitcast between vector and x86_amx |
| // is replaced with a specific intrinsic. |
| if (DestTy->isX86_AMXTy()) |
| return nullptr; |
| if (LI->hasOneUse() && LI->isSimple()) |
| continue; |
| // If a LoadInst has more than one use, changing the type of loaded |
| // value may create another bitcast. |
| return nullptr; |
| } |
| |
| if (auto *PNode = dyn_cast<PHINode>(IncValue)) { |
| if (OldPhiNodes.insert(PNode)) |
| PhiWorklist.push_back(PNode); |
| continue; |
| } |
| |
| auto *BCI = dyn_cast<BitCastInst>(IncValue); |
| // We can't handle other instructions. |
| if (!BCI) |
| return nullptr; |
| |
| // Verify it's a A->B cast. |
| Type *TyA = BCI->getOperand(0)->getType(); |
| Type *TyB = BCI->getType(); |
| if (TyA != DestTy || TyB != SrcTy) |
| return nullptr; |
| } |
| } |
| |
| // Check that each user of each old PHI node is something that we can |
| // rewrite, so that all of the old PHI nodes can be cleaned up afterwards. |
| for (auto *OldPN : OldPhiNodes) { |
| for (User *V : OldPN->users()) { |
| if (auto *SI = dyn_cast<StoreInst>(V)) { |
| if (!SI->isSimple() || SI->getOperand(0) != OldPN) |
| return nullptr; |
| } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { |
| // Verify it's a B->A cast. |
| Type *TyB = BCI->getOperand(0)->getType(); |
| Type *TyA = BCI->getType(); |
| if (TyA != DestTy || TyB != SrcTy) |
| return nullptr; |
| } else if (auto *PHI = dyn_cast<PHINode>(V)) { |
| // As long as the user is another old PHI node, then even if we don't |
| // rewrite it, the PHI web we're considering won't have any users |
| // outside itself, so it'll be dead. |
| if (!OldPhiNodes.contains(PHI)) |
| return nullptr; |
| } else { |
| return nullptr; |
| } |
| } |
| } |
| |
| // For each old PHI node, create a corresponding new PHI node with a type A. |
| SmallDenseMap<PHINode *, PHINode *> NewPNodes; |
| for (auto *OldPN : OldPhiNodes) { |
| Builder.SetInsertPoint(OldPN); |
| PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); |
| NewPNodes[OldPN] = NewPN; |
| } |
| |
| // Fill in the operands of new PHI nodes. |
| for (auto *OldPN : OldPhiNodes) { |
| PHINode *NewPN = NewPNodes[OldPN]; |
| for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { |
| Value *V = OldPN->getOperand(j); |
| Value *NewV = nullptr; |
| if (auto *C = dyn_cast<Constant>(V)) { |
| NewV = ConstantExpr::getBitCast(C, DestTy); |
| } else if (auto *LI = dyn_cast<LoadInst>(V)) { |
| // Explicitly perform load combine to make sure no opposing transform |
| // can remove the bitcast in the meantime and trigger an infinite loop. |
| Builder.SetInsertPoint(LI); |
| NewV = combineLoadToNewType(*LI, DestTy); |
| // Remove the old load and its use in the old phi, which itself becomes |
| // dead once the whole transform finishes. |
| replaceInstUsesWith(*LI, PoisonValue::get(LI->getType())); |
| eraseInstFromFunction(*LI); |
| } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { |
| NewV = BCI->getOperand(0); |
| } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { |
| NewV = NewPNodes[PrevPN]; |
| } |
| assert(NewV); |
| NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); |
| } |
| } |
| |
| // Traverse all accumulated PHI nodes and process its users, |
| // which are Stores and BitcCasts. Without this processing |
| // NewPHI nodes could be replicated and could lead to extra |
| // moves generated after DeSSA. |
| // If there is a store with type B, change it to type A. |
| |
| |
| // Replace users of BitCast B->A with NewPHI. These will help |
| // later to get rid off a closure formed by OldPHI nodes. |
| Instruction *RetVal = nullptr; |
| for (auto *OldPN : OldPhiNodes) { |
| PHINode *NewPN = NewPNodes[OldPN]; |
| for (User *V : make_early_inc_range(OldPN->users())) { |
| if (auto *SI = dyn_cast<StoreInst>(V)) { |
| assert(SI->isSimple() && SI->getOperand(0) == OldPN); |
| Builder.SetInsertPoint(SI); |
| auto *NewBC = |
| cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy)); |
| SI->setOperand(0, NewBC); |
| Worklist.push(SI); |
| assert(hasStoreUsersOnly(*NewBC)); |
| } |
| else if (auto *BCI = dyn_cast<BitCastInst>(V)) { |
| Type *TyB = BCI->getOperand(0)->getType(); |
| Type *TyA = BCI->getType(); |
| assert(TyA == DestTy && TyB == SrcTy); |
| (void) TyA; |
| (void) TyB; |
| Instruction *I = replaceInstUsesWith(*BCI, NewPN); |
| if (BCI == &CI) |
| RetVal = I; |
| } else if (auto *PHI = dyn_cast<PHINode>(V)) { |
| assert(OldPhiNodes.contains(PHI)); |
| (void) PHI; |
| } else { |
| llvm_unreachable("all uses should be handled"); |
| } |
| } |
| } |
| |
| return RetVal; |
| } |
| |
| Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) { |
| // If the operands are integer typed then apply the integer transforms, |
| // otherwise just apply the common ones. |
| Value *Src = CI.getOperand(0); |
| Type *SrcTy = Src->getType(); |
| Type *DestTy = CI.getType(); |
| |
| // Get rid of casts from one type to the same type. These are useless and can |
| // be replaced by the operand. |
| if (DestTy == Src->getType()) |
| return replaceInstUsesWith(CI, Src); |
| |
| if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) { |
| // Beware: messing with this target-specific oddity may cause trouble. |
| if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) { |
| Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); |
| return InsertElementInst::Create(PoisonValue::get(DestTy), Elem, |
| Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); |
| } |
| |
| if (isa<IntegerType>(SrcTy)) { |
| // If this is a cast from an integer to vector, check to see if the input |
| // is a trunc or zext of a bitcast from vector. If so, we can replace all |
| // the casts with a shuffle and (potentially) a bitcast. |
| if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { |
| CastInst *SrcCast = cast<CastInst>(Src); |
| if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) |
| if (isa<VectorType>(BCIn->getOperand(0)->getType())) |
| if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts( |
| BCIn->getOperand(0), cast<VectorType>(DestTy), *this)) |
| return I; |
| } |
| |
| // If the input is an 'or' instruction, we may be doing shifts and ors to |
| // assemble the elements of the vector manually. Try to rip the code out |
| // and replace it with insertelements. |
| if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) |
| return replaceInstUsesWith(CI, V); |
| } |
| } |
| |
| if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) { |
| if (SrcVTy->getNumElements() == 1) { |
| // If our destination is not a vector, then make this a straight |
| // scalar-scalar cast. |
| if (!DestTy->isVectorTy()) { |
| Value *Elem = |
| Builder.CreateExtractElement(Src, |
| Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); |
| return CastInst::Create(Instruction::BitCast, Elem, DestTy); |
| } |
| |
| // Otherwise, see if our source is an insert. If so, then use the scalar |
| // component directly: |
| // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m> |
| if (auto *InsElt = dyn_cast<InsertElementInst>(Src)) |
| return new BitCastInst(InsElt->getOperand(1), DestTy); |
| } |
| |
| // Convert an artificial vector insert into more analyzable bitwise logic. |
| unsigned BitWidth = DestTy->getScalarSizeInBits(); |
| Value *X, *Y; |
| uint64_t IndexC; |
| if (match(Src, m_OneUse(m_InsertElt(m_OneUse(m_BitCast(m_Value(X))), |
| m_Value(Y), m_ConstantInt(IndexC)))) && |
| DestTy->isIntegerTy() && X->getType() == DestTy && |
| Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) { |
| // Adjust for big endian - the LSBs are at the high index. |
| if (DL.isBigEndian()) |
| IndexC = SrcVTy->getNumElements() - 1 - IndexC; |
| |
| // We only handle (endian-normalized) insert to index 0. Any other insert |
| // would require a left-shift, so that is an extra instruction. |
| if (IndexC == 0) { |
| // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y) |
| unsigned EltWidth = Y->getType()->getScalarSizeInBits(); |
| APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth); |
| Value *AndX = Builder.CreateAnd(X, MaskC); |
| Value *ZextY = Builder.CreateZExt(Y, DestTy); |
| return BinaryOperator::CreateOr(AndX, ZextY); |
| } |
| } |
| } |
| |
| if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) { |
| // Okay, we have (bitcast (shuffle ..)). Check to see if this is |
| // a bitcast to a vector with the same # elts. |
| Value *ShufOp0 = Shuf->getOperand(0); |
| Value *ShufOp1 = Shuf->getOperand(1); |
| auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount(); |
| auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount(); |
| if (Shuf->hasOneUse() && DestTy->isVectorTy() && |
| cast<VectorType>(DestTy)->getElementCount() == ShufElts && |
| ShufElts == SrcVecElts) { |
| BitCastInst *Tmp; |
| // If either of the operands is a cast from CI.getType(), then |
| // evaluating the shuffle in the casted destination's type will allow |
| // us to eliminate at least one cast. |
| if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) && |
| Tmp->getOperand(0)->getType() == DestTy) || |
| ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) && |
| Tmp->getOperand(0)->getType() == DestTy)) { |
| Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy); |
| Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy); |
| // Return a new shuffle vector. Use the same element ID's, as we |
| // know the vector types match #elts. |
| return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask()); |
| } |
| } |
| |
| // A bitcasted-to-scalar and byte/bit reversing shuffle is better recognized |
| // as a byte/bit swap: |
| // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) -> bswap (bitcast X) |
| // bitcast <N x i1> (shuf X, undef, <N, N-1,...0>) -> bitreverse (bitcast X) |
| if (DestTy->isIntegerTy() && ShufElts.getKnownMinValue() % 2 == 0 && |
| Shuf->hasOneUse() && Shuf->isReverse()) { |
| unsigned IntrinsicNum = 0; |
| if (DL.isLegalInteger(DestTy->getScalarSizeInBits()) && |
| SrcTy->getScalarSizeInBits() == 8) { |
| IntrinsicNum = Intrinsic::bswap; |
| } else if (SrcTy->getScalarSizeInBits() == 1) { |
| IntrinsicNum = Intrinsic::bitreverse; |
| } |
| if (IntrinsicNum != 0) { |
| assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask"); |
| assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op"); |
| Function *BswapOrBitreverse = |
| Intrinsic::getDeclaration(CI.getModule(), IntrinsicNum, DestTy); |
| Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy); |
| return CallInst::Create(BswapOrBitreverse, {ScalarX}); |
| } |
| } |
| } |
| |
| // Handle the A->B->A cast, and there is an intervening PHI node. |
| if (PHINode *PN = dyn_cast<PHINode>(Src)) |
| if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) |
| return I; |
| |
| if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) |
| return I; |
| |
| if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) |
| return I; |
| |
| if (Instruction *I = foldBitCastSelect(CI, Builder)) |
| return I; |
| |
| if (SrcTy->isPointerTy()) |
| return commonPointerCastTransforms(CI); |
| return commonCastTransforms(CI); |
| } |
| |
| Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) { |
| return commonPointerCastTransforms(CI); |
| } |