| //===- IRBuilder.cpp - Builder for LLVM Instrs ----------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the IRBuilder class, which is used as a convenient way |
| // to create LLVM instructions with a consistent and simplified interface. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/NoFolder.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/Statepoint.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Casting.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <optional> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| /// CreateGlobalString - Make a new global variable with an initializer that |
| /// has array of i8 type filled in with the nul terminated string value |
| /// specified. If Name is specified, it is the name of the global variable |
| /// created. |
| GlobalVariable *IRBuilderBase::CreateGlobalString(StringRef Str, |
| const Twine &Name, |
| unsigned AddressSpace, |
| Module *M) { |
| Constant *StrConstant = ConstantDataArray::getString(Context, Str); |
| if (!M) |
| M = BB->getParent()->getParent(); |
| auto *GV = new GlobalVariable( |
| *M, StrConstant->getType(), true, GlobalValue::PrivateLinkage, |
| StrConstant, Name, nullptr, GlobalVariable::NotThreadLocal, AddressSpace); |
| GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); |
| GV->setAlignment(Align(1)); |
| return GV; |
| } |
| |
| Type *IRBuilderBase::getCurrentFunctionReturnType() const { |
| assert(BB && BB->getParent() && "No current function!"); |
| return BB->getParent()->getReturnType(); |
| } |
| |
| DebugLoc IRBuilderBase::getCurrentDebugLocation() const { |
| for (auto &KV : MetadataToCopy) |
| if (KV.first == LLVMContext::MD_dbg) |
| return {cast<DILocation>(KV.second)}; |
| |
| return {}; |
| } |
| void IRBuilderBase::SetInstDebugLocation(Instruction *I) const { |
| for (const auto &KV : MetadataToCopy) |
| if (KV.first == LLVMContext::MD_dbg) { |
| I->setDebugLoc(DebugLoc(KV.second)); |
| return; |
| } |
| } |
| |
| CallInst * |
| IRBuilderBase::createCallHelper(Function *Callee, ArrayRef<Value *> Ops, |
| const Twine &Name, Instruction *FMFSource, |
| ArrayRef<OperandBundleDef> OpBundles) { |
| CallInst *CI = CreateCall(Callee, Ops, OpBundles, Name); |
| if (FMFSource) |
| CI->copyFastMathFlags(FMFSource); |
| return CI; |
| } |
| |
| Value *IRBuilderBase::CreateVScale(Constant *Scaling, const Twine &Name) { |
| assert(isa<ConstantInt>(Scaling) && "Expected constant integer"); |
| if (cast<ConstantInt>(Scaling)->isZero()) |
| return Scaling; |
| Module *M = GetInsertBlock()->getParent()->getParent(); |
| Function *TheFn = |
| Intrinsic::getDeclaration(M, Intrinsic::vscale, {Scaling->getType()}); |
| CallInst *CI = CreateCall(TheFn, {}, {}, Name); |
| return cast<ConstantInt>(Scaling)->isOne() ? CI : CreateMul(CI, Scaling); |
| } |
| |
| Value *IRBuilderBase::CreateElementCount(Type *DstType, ElementCount EC) { |
| Constant *MinEC = ConstantInt::get(DstType, EC.getKnownMinValue()); |
| return EC.isScalable() ? CreateVScale(MinEC) : MinEC; |
| } |
| |
| Value *IRBuilderBase::CreateTypeSize(Type *DstType, TypeSize Size) { |
| Constant *MinSize = ConstantInt::get(DstType, Size.getKnownMinValue()); |
| return Size.isScalable() ? CreateVScale(MinSize) : MinSize; |
| } |
| |
| Value *IRBuilderBase::CreateStepVector(Type *DstType, const Twine &Name) { |
| Type *STy = DstType->getScalarType(); |
| if (isa<ScalableVectorType>(DstType)) { |
| Type *StepVecType = DstType; |
| // TODO: We expect this special case (element type < 8 bits) to be |
| // temporary - once the intrinsic properly supports < 8 bits this code |
| // can be removed. |
| if (STy->getScalarSizeInBits() < 8) |
| StepVecType = |
| VectorType::get(getInt8Ty(), cast<ScalableVectorType>(DstType)); |
| Value *Res = CreateIntrinsic(Intrinsic::experimental_stepvector, |
| {StepVecType}, {}, nullptr, Name); |
| if (StepVecType != DstType) |
| Res = CreateTrunc(Res, DstType); |
| return Res; |
| } |
| |
| unsigned NumEls = cast<FixedVectorType>(DstType)->getNumElements(); |
| |
| // Create a vector of consecutive numbers from zero to VF. |
| SmallVector<Constant *, 8> Indices; |
| for (unsigned i = 0; i < NumEls; ++i) |
| Indices.push_back(ConstantInt::get(STy, i)); |
| |
| // Add the consecutive indices to the vector value. |
| return ConstantVector::get(Indices); |
| } |
| |
| CallInst *IRBuilderBase::CreateMemSet(Value *Ptr, Value *Val, Value *Size, |
| MaybeAlign Align, bool isVolatile, |
| MDNode *TBAATag, MDNode *ScopeTag, |
| MDNode *NoAliasTag) { |
| Value *Ops[] = {Ptr, Val, Size, getInt1(isVolatile)}; |
| Type *Tys[] = { Ptr->getType(), Size->getType() }; |
| Module *M = BB->getParent()->getParent(); |
| Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys); |
| |
| CallInst *CI = CreateCall(TheFn, Ops); |
| |
| if (Align) |
| cast<MemSetInst>(CI)->setDestAlignment(*Align); |
| |
| // Set the TBAA info if present. |
| if (TBAATag) |
| CI->setMetadata(LLVMContext::MD_tbaa, TBAATag); |
| |
| if (ScopeTag) |
| CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag); |
| |
| if (NoAliasTag) |
| CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag); |
| |
| return CI; |
| } |
| |
| CallInst *IRBuilderBase::CreateMemSetInline(Value *Dst, MaybeAlign DstAlign, |
| Value *Val, Value *Size, |
| bool IsVolatile, MDNode *TBAATag, |
| MDNode *ScopeTag, |
| MDNode *NoAliasTag) { |
| Value *Ops[] = {Dst, Val, Size, getInt1(IsVolatile)}; |
| Type *Tys[] = {Dst->getType(), Size->getType()}; |
| Module *M = BB->getParent()->getParent(); |
| Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset_inline, Tys); |
| |
| CallInst *CI = CreateCall(TheFn, Ops); |
| |
| if (DstAlign) |
| cast<MemSetInlineInst>(CI)->setDestAlignment(*DstAlign); |
| |
| // Set the TBAA info if present. |
| if (TBAATag) |
| CI->setMetadata(LLVMContext::MD_tbaa, TBAATag); |
| |
| if (ScopeTag) |
| CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag); |
| |
| if (NoAliasTag) |
| CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag); |
| |
| return CI; |
| } |
| |
| CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemSet( |
| Value *Ptr, Value *Val, Value *Size, Align Alignment, uint32_t ElementSize, |
| MDNode *TBAATag, MDNode *ScopeTag, MDNode *NoAliasTag) { |
| |
| Value *Ops[] = {Ptr, Val, Size, getInt32(ElementSize)}; |
| Type *Tys[] = {Ptr->getType(), Size->getType()}; |
| Module *M = BB->getParent()->getParent(); |
| Function *TheFn = Intrinsic::getDeclaration( |
| M, Intrinsic::memset_element_unordered_atomic, Tys); |
| |
| CallInst *CI = CreateCall(TheFn, Ops); |
| |
| cast<AtomicMemSetInst>(CI)->setDestAlignment(Alignment); |
| |
| // Set the TBAA info if present. |
| if (TBAATag) |
| CI->setMetadata(LLVMContext::MD_tbaa, TBAATag); |
| |
| if (ScopeTag) |
| CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag); |
| |
| if (NoAliasTag) |
| CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag); |
| |
| return CI; |
| } |
| |
| CallInst *IRBuilderBase::CreateMemTransferInst( |
| Intrinsic::ID IntrID, Value *Dst, MaybeAlign DstAlign, Value *Src, |
| MaybeAlign SrcAlign, Value *Size, bool isVolatile, MDNode *TBAATag, |
| MDNode *TBAAStructTag, MDNode *ScopeTag, MDNode *NoAliasTag) { |
| assert((IntrID == Intrinsic::memcpy || IntrID == Intrinsic::memcpy_inline || |
| IntrID == Intrinsic::memmove) && |
| "Unexpected intrinsic ID"); |
| Value *Ops[] = {Dst, Src, Size, getInt1(isVolatile)}; |
| Type *Tys[] = { Dst->getType(), Src->getType(), Size->getType() }; |
| Module *M = BB->getParent()->getParent(); |
| Function *TheFn = Intrinsic::getDeclaration(M, IntrID, Tys); |
| |
| CallInst *CI = CreateCall(TheFn, Ops); |
| |
| auto* MCI = cast<MemTransferInst>(CI); |
| if (DstAlign) |
| MCI->setDestAlignment(*DstAlign); |
| if (SrcAlign) |
| MCI->setSourceAlignment(*SrcAlign); |
| |
| // Set the TBAA info if present. |
| if (TBAATag) |
| CI->setMetadata(LLVMContext::MD_tbaa, TBAATag); |
| |
| // Set the TBAA Struct info if present. |
| if (TBAAStructTag) |
| CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag); |
| |
| if (ScopeTag) |
| CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag); |
| |
| if (NoAliasTag) |
| CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag); |
| |
| return CI; |
| } |
| |
| CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemCpy( |
| Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size, |
| uint32_t ElementSize, MDNode *TBAATag, MDNode *TBAAStructTag, |
| MDNode *ScopeTag, MDNode *NoAliasTag) { |
| assert(DstAlign >= ElementSize && |
| "Pointer alignment must be at least element size"); |
| assert(SrcAlign >= ElementSize && |
| "Pointer alignment must be at least element size"); |
| Value *Ops[] = {Dst, Src, Size, getInt32(ElementSize)}; |
| Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()}; |
| Module *M = BB->getParent()->getParent(); |
| Function *TheFn = Intrinsic::getDeclaration( |
| M, Intrinsic::memcpy_element_unordered_atomic, Tys); |
| |
| CallInst *CI = CreateCall(TheFn, Ops); |
| |
| // Set the alignment of the pointer args. |
| auto *AMCI = cast<AtomicMemCpyInst>(CI); |
| AMCI->setDestAlignment(DstAlign); |
| AMCI->setSourceAlignment(SrcAlign); |
| |
| // Set the TBAA info if present. |
| if (TBAATag) |
| CI->setMetadata(LLVMContext::MD_tbaa, TBAATag); |
| |
| // Set the TBAA Struct info if present. |
| if (TBAAStructTag) |
| CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag); |
| |
| if (ScopeTag) |
| CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag); |
| |
| if (NoAliasTag) |
| CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag); |
| |
| return CI; |
| } |
| |
| /// isConstantOne - Return true only if val is constant int 1 |
| static bool isConstantOne(const Value *Val) { |
| assert(Val && "isConstantOne does not work with nullptr Val"); |
| const ConstantInt *CVal = dyn_cast<ConstantInt>(Val); |
| return CVal && CVal->isOne(); |
| } |
| |
| CallInst *IRBuilderBase::CreateMalloc(Type *IntPtrTy, Type *AllocTy, |
| Value *AllocSize, Value *ArraySize, |
| ArrayRef<OperandBundleDef> OpB, |
| Function *MallocF, const Twine &Name) { |
| // malloc(type) becomes: |
| // i8* malloc(typeSize) |
| // malloc(type, arraySize) becomes: |
| // i8* malloc(typeSize*arraySize) |
| if (!ArraySize) |
| ArraySize = ConstantInt::get(IntPtrTy, 1); |
| else if (ArraySize->getType() != IntPtrTy) |
| ArraySize = CreateIntCast(ArraySize, IntPtrTy, false); |
| |
| if (!isConstantOne(ArraySize)) { |
| if (isConstantOne(AllocSize)) { |
| AllocSize = ArraySize; // Operand * 1 = Operand |
| } else { |
| // Multiply type size by the array size... |
| AllocSize = CreateMul(ArraySize, AllocSize, "mallocsize"); |
| } |
| } |
| |
| assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); |
| // Create the call to Malloc. |
| Module *M = BB->getParent()->getParent(); |
| Type *BPTy = PointerType::getUnqual(Context); |
| FunctionCallee MallocFunc = MallocF; |
| if (!MallocFunc) |
| // prototype malloc as "void *malloc(size_t)" |
| MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy); |
| CallInst *MCall = CreateCall(MallocFunc, AllocSize, OpB, Name); |
| |
| MCall->setTailCall(); |
| if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) { |
| MCall->setCallingConv(F->getCallingConv()); |
| F->setReturnDoesNotAlias(); |
| } |
| |
| assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); |
| |
| return MCall; |
| } |
| |
| CallInst *IRBuilderBase::CreateMalloc(Type *IntPtrTy, Type *AllocTy, |
| Value *AllocSize, Value *ArraySize, |
| Function *MallocF, const Twine &Name) { |
| |
| return CreateMalloc(IntPtrTy, AllocTy, AllocSize, ArraySize, std::nullopt, |
| MallocF, Name); |
| } |
| |
| /// CreateFree - Generate the IR for a call to the builtin free function. |
| CallInst *IRBuilderBase::CreateFree(Value *Source, |
| ArrayRef<OperandBundleDef> Bundles) { |
| assert(Source->getType()->isPointerTy() && |
| "Can not free something of nonpointer type!"); |
| |
| Module *M = BB->getParent()->getParent(); |
| |
| Type *VoidTy = Type::getVoidTy(M->getContext()); |
| Type *VoidPtrTy = PointerType::getUnqual(M->getContext()); |
| // prototype free as "void free(void*)" |
| FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, VoidPtrTy); |
| CallInst *Result = CreateCall(FreeFunc, Source, Bundles, ""); |
| Result->setTailCall(); |
| if (Function *F = dyn_cast<Function>(FreeFunc.getCallee())) |
| Result->setCallingConv(F->getCallingConv()); |
| |
| return Result; |
| } |
| |
| CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemMove( |
| Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size, |
| uint32_t ElementSize, MDNode *TBAATag, MDNode *TBAAStructTag, |
| MDNode *ScopeTag, MDNode *NoAliasTag) { |
| assert(DstAlign >= ElementSize && |
| "Pointer alignment must be at least element size"); |
| assert(SrcAlign >= ElementSize && |
| "Pointer alignment must be at least element size"); |
| Value *Ops[] = {Dst, Src, Size, getInt32(ElementSize)}; |
| Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()}; |
| Module *M = BB->getParent()->getParent(); |
| Function *TheFn = Intrinsic::getDeclaration( |
| M, Intrinsic::memmove_element_unordered_atomic, Tys); |
| |
| CallInst *CI = CreateCall(TheFn, Ops); |
| |
| // Set the alignment of the pointer args. |
| CI->addParamAttr(0, Attribute::getWithAlignment(CI->getContext(), DstAlign)); |
| CI->addParamAttr(1, Attribute::getWithAlignment(CI->getContext(), SrcAlign)); |
| |
| // Set the TBAA info if present. |
| if (TBAATag) |
| CI->setMetadata(LLVMContext::MD_tbaa, TBAATag); |
| |
| // Set the TBAA Struct info if present. |
| if (TBAAStructTag) |
| CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag); |
| |
| if (ScopeTag) |
| CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag); |
| |
| if (NoAliasTag) |
| CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag); |
| |
| return CI; |
| } |
| |
| CallInst *IRBuilderBase::getReductionIntrinsic(Intrinsic::ID ID, Value *Src) { |
| Module *M = GetInsertBlock()->getParent()->getParent(); |
| Value *Ops[] = {Src}; |
| Type *Tys[] = { Src->getType() }; |
| auto Decl = Intrinsic::getDeclaration(M, ID, Tys); |
| return CreateCall(Decl, Ops); |
| } |
| |
| CallInst *IRBuilderBase::CreateFAddReduce(Value *Acc, Value *Src) { |
| Module *M = GetInsertBlock()->getParent()->getParent(); |
| Value *Ops[] = {Acc, Src}; |
| auto Decl = Intrinsic::getDeclaration(M, Intrinsic::vector_reduce_fadd, |
| {Src->getType()}); |
| return CreateCall(Decl, Ops); |
| } |
| |
| CallInst *IRBuilderBase::CreateFMulReduce(Value *Acc, Value *Src) { |
| Module *M = GetInsertBlock()->getParent()->getParent(); |
| Value *Ops[] = {Acc, Src}; |
| auto Decl = Intrinsic::getDeclaration(M, Intrinsic::vector_reduce_fmul, |
| {Src->getType()}); |
| return CreateCall(Decl, Ops); |
| } |
| |
| CallInst *IRBuilderBase::CreateAddReduce(Value *Src) { |
| return getReductionIntrinsic(Intrinsic::vector_reduce_add, Src); |
| } |
| |
| CallInst *IRBuilderBase::CreateMulReduce(Value *Src) { |
| return getReductionIntrinsic(Intrinsic::vector_reduce_mul, Src); |
| } |
| |
| CallInst *IRBuilderBase::CreateAndReduce(Value *Src) { |
| return getReductionIntrinsic(Intrinsic::vector_reduce_and, Src); |
| } |
| |
| CallInst *IRBuilderBase::CreateOrReduce(Value *Src) { |
| return getReductionIntrinsic(Intrinsic::vector_reduce_or, Src); |
| } |
| |
| CallInst *IRBuilderBase::CreateXorReduce(Value *Src) { |
| return getReductionIntrinsic(Intrinsic::vector_reduce_xor, Src); |
| } |
| |
| CallInst *IRBuilderBase::CreateIntMaxReduce(Value *Src, bool IsSigned) { |
| auto ID = |
| IsSigned ? Intrinsic::vector_reduce_smax : Intrinsic::vector_reduce_umax; |
| return getReductionIntrinsic(ID, Src); |
| } |
| |
| CallInst *IRBuilderBase::CreateIntMinReduce(Value *Src, bool IsSigned) { |
| auto ID = |
| IsSigned ? Intrinsic::vector_reduce_smin : Intrinsic::vector_reduce_umin; |
| return getReductionIntrinsic(ID, Src); |
| } |
| |
| CallInst *IRBuilderBase::CreateFPMaxReduce(Value *Src) { |
| return getReductionIntrinsic(Intrinsic::vector_reduce_fmax, Src); |
| } |
| |
| CallInst *IRBuilderBase::CreateFPMinReduce(Value *Src) { |
| return getReductionIntrinsic(Intrinsic::vector_reduce_fmin, Src); |
| } |
| |
| CallInst *IRBuilderBase::CreateFPMaximumReduce(Value *Src) { |
| return getReductionIntrinsic(Intrinsic::vector_reduce_fmaximum, Src); |
| } |
| |
| CallInst *IRBuilderBase::CreateFPMinimumReduce(Value *Src) { |
| return getReductionIntrinsic(Intrinsic::vector_reduce_fminimum, Src); |
| } |
| |
| CallInst *IRBuilderBase::CreateLifetimeStart(Value *Ptr, ConstantInt *Size) { |
| assert(isa<PointerType>(Ptr->getType()) && |
| "lifetime.start only applies to pointers."); |
| if (!Size) |
| Size = getInt64(-1); |
| else |
| assert(Size->getType() == getInt64Ty() && |
| "lifetime.start requires the size to be an i64"); |
| Value *Ops[] = { Size, Ptr }; |
| Module *M = BB->getParent()->getParent(); |
| Function *TheFn = |
| Intrinsic::getDeclaration(M, Intrinsic::lifetime_start, {Ptr->getType()}); |
| return CreateCall(TheFn, Ops); |
| } |
| |
| CallInst *IRBuilderBase::CreateLifetimeEnd(Value *Ptr, ConstantInt *Size) { |
| assert(isa<PointerType>(Ptr->getType()) && |
| "lifetime.end only applies to pointers."); |
| if (!Size) |
| Size = getInt64(-1); |
| else |
| assert(Size->getType() == getInt64Ty() && |
| "lifetime.end requires the size to be an i64"); |
| Value *Ops[] = { Size, Ptr }; |
| Module *M = BB->getParent()->getParent(); |
| Function *TheFn = |
| Intrinsic::getDeclaration(M, Intrinsic::lifetime_end, {Ptr->getType()}); |
| return CreateCall(TheFn, Ops); |
| } |
| |
| CallInst *IRBuilderBase::CreateInvariantStart(Value *Ptr, ConstantInt *Size) { |
| |
| assert(isa<PointerType>(Ptr->getType()) && |
| "invariant.start only applies to pointers."); |
| if (!Size) |
| Size = getInt64(-1); |
| else |
| assert(Size->getType() == getInt64Ty() && |
| "invariant.start requires the size to be an i64"); |
| |
| Value *Ops[] = {Size, Ptr}; |
| // Fill in the single overloaded type: memory object type. |
| Type *ObjectPtr[1] = {Ptr->getType()}; |
| Module *M = BB->getParent()->getParent(); |
| Function *TheFn = |
| Intrinsic::getDeclaration(M, Intrinsic::invariant_start, ObjectPtr); |
| return CreateCall(TheFn, Ops); |
| } |
| |
| static MaybeAlign getAlign(Value *Ptr) { |
| if (auto *O = dyn_cast<GlobalObject>(Ptr)) |
| return O->getAlign(); |
| if (auto *A = dyn_cast<GlobalAlias>(Ptr)) |
| return A->getAliaseeObject()->getAlign(); |
| return {}; |
| } |
| |
| CallInst *IRBuilderBase::CreateThreadLocalAddress(Value *Ptr) { |
| #ifndef NDEBUG |
| // Handle specially for constexpr cast. This is possible when |
| // opaque pointers not enabled since constant could be sinked |
| // directly by the design of llvm. This could be eliminated |
| // after we eliminate the abuse of constexpr. |
| auto *V = Ptr; |
| if (auto *CE = dyn_cast<ConstantExpr>(V)) |
| if (CE->isCast()) |
| V = CE->getOperand(0); |
| |
| assert(isa<GlobalValue>(V) && cast<GlobalValue>(V)->isThreadLocal() && |
| "threadlocal_address only applies to thread local variables."); |
| #endif |
| CallInst *CI = CreateIntrinsic(llvm::Intrinsic::threadlocal_address, |
| {Ptr->getType()}, {Ptr}); |
| if (MaybeAlign A = getAlign(Ptr)) { |
| CI->addParamAttr(0, Attribute::getWithAlignment(CI->getContext(), *A)); |
| CI->addRetAttr(Attribute::getWithAlignment(CI->getContext(), *A)); |
| } |
| return CI; |
| } |
| |
| CallInst * |
| IRBuilderBase::CreateAssumption(Value *Cond, |
| ArrayRef<OperandBundleDef> OpBundles) { |
| assert(Cond->getType() == getInt1Ty() && |
| "an assumption condition must be of type i1"); |
| |
| Value *Ops[] = { Cond }; |
| Module *M = BB->getParent()->getParent(); |
| Function *FnAssume = Intrinsic::getDeclaration(M, Intrinsic::assume); |
| return CreateCall(FnAssume, Ops, OpBundles); |
| } |
| |
| Instruction *IRBuilderBase::CreateNoAliasScopeDeclaration(Value *Scope) { |
| Module *M = BB->getModule(); |
| auto *FnIntrinsic = Intrinsic::getDeclaration( |
| M, Intrinsic::experimental_noalias_scope_decl, {}); |
| return CreateCall(FnIntrinsic, {Scope}); |
| } |
| |
| /// Create a call to a Masked Load intrinsic. |
| /// \p Ty - vector type to load |
| /// \p Ptr - base pointer for the load |
| /// \p Alignment - alignment of the source location |
| /// \p Mask - vector of booleans which indicates what vector lanes should |
| /// be accessed in memory |
| /// \p PassThru - pass-through value that is used to fill the masked-off lanes |
| /// of the result |
| /// \p Name - name of the result variable |
| CallInst *IRBuilderBase::CreateMaskedLoad(Type *Ty, Value *Ptr, Align Alignment, |
| Value *Mask, Value *PassThru, |
| const Twine &Name) { |
| auto *PtrTy = cast<PointerType>(Ptr->getType()); |
| assert(Ty->isVectorTy() && "Type should be vector"); |
| assert(Mask && "Mask should not be all-ones (null)"); |
| if (!PassThru) |
| PassThru = PoisonValue::get(Ty); |
| Type *OverloadedTypes[] = { Ty, PtrTy }; |
| Value *Ops[] = {Ptr, getInt32(Alignment.value()), Mask, PassThru}; |
| return CreateMaskedIntrinsic(Intrinsic::masked_load, Ops, |
| OverloadedTypes, Name); |
| } |
| |
| /// Create a call to a Masked Store intrinsic. |
| /// \p Val - data to be stored, |
| /// \p Ptr - base pointer for the store |
| /// \p Alignment - alignment of the destination location |
| /// \p Mask - vector of booleans which indicates what vector lanes should |
| /// be accessed in memory |
| CallInst *IRBuilderBase::CreateMaskedStore(Value *Val, Value *Ptr, |
| Align Alignment, Value *Mask) { |
| auto *PtrTy = cast<PointerType>(Ptr->getType()); |
| Type *DataTy = Val->getType(); |
| assert(DataTy->isVectorTy() && "Val should be a vector"); |
| assert(Mask && "Mask should not be all-ones (null)"); |
| Type *OverloadedTypes[] = { DataTy, PtrTy }; |
| Value *Ops[] = {Val, Ptr, getInt32(Alignment.value()), Mask}; |
| return CreateMaskedIntrinsic(Intrinsic::masked_store, Ops, OverloadedTypes); |
| } |
| |
| /// Create a call to a Masked intrinsic, with given intrinsic Id, |
| /// an array of operands - Ops, and an array of overloaded types - |
| /// OverloadedTypes. |
| CallInst *IRBuilderBase::CreateMaskedIntrinsic(Intrinsic::ID Id, |
| ArrayRef<Value *> Ops, |
| ArrayRef<Type *> OverloadedTypes, |
| const Twine &Name) { |
| Module *M = BB->getParent()->getParent(); |
| Function *TheFn = Intrinsic::getDeclaration(M, Id, OverloadedTypes); |
| return CreateCall(TheFn, Ops, {}, Name); |
| } |
| |
| /// Create a call to a Masked Gather intrinsic. |
| /// \p Ty - vector type to gather |
| /// \p Ptrs - vector of pointers for loading |
| /// \p Align - alignment for one element |
| /// \p Mask - vector of booleans which indicates what vector lanes should |
| /// be accessed in memory |
| /// \p PassThru - pass-through value that is used to fill the masked-off lanes |
| /// of the result |
| /// \p Name - name of the result variable |
| CallInst *IRBuilderBase::CreateMaskedGather(Type *Ty, Value *Ptrs, |
| Align Alignment, Value *Mask, |
| Value *PassThru, |
| const Twine &Name) { |
| auto *VecTy = cast<VectorType>(Ty); |
| ElementCount NumElts = VecTy->getElementCount(); |
| auto *PtrsTy = cast<VectorType>(Ptrs->getType()); |
| assert(NumElts == PtrsTy->getElementCount() && "Element count mismatch"); |
| |
| if (!Mask) |
| Mask = getAllOnesMask(NumElts); |
| |
| if (!PassThru) |
| PassThru = PoisonValue::get(Ty); |
| |
| Type *OverloadedTypes[] = {Ty, PtrsTy}; |
| Value *Ops[] = {Ptrs, getInt32(Alignment.value()), Mask, PassThru}; |
| |
| // We specify only one type when we create this intrinsic. Types of other |
| // arguments are derived from this type. |
| return CreateMaskedIntrinsic(Intrinsic::masked_gather, Ops, OverloadedTypes, |
| Name); |
| } |
| |
| /// Create a call to a Masked Scatter intrinsic. |
| /// \p Data - data to be stored, |
| /// \p Ptrs - the vector of pointers, where the \p Data elements should be |
| /// stored |
| /// \p Align - alignment for one element |
| /// \p Mask - vector of booleans which indicates what vector lanes should |
| /// be accessed in memory |
| CallInst *IRBuilderBase::CreateMaskedScatter(Value *Data, Value *Ptrs, |
| Align Alignment, Value *Mask) { |
| auto *PtrsTy = cast<VectorType>(Ptrs->getType()); |
| auto *DataTy = cast<VectorType>(Data->getType()); |
| ElementCount NumElts = PtrsTy->getElementCount(); |
| |
| if (!Mask) |
| Mask = getAllOnesMask(NumElts); |
| |
| Type *OverloadedTypes[] = {DataTy, PtrsTy}; |
| Value *Ops[] = {Data, Ptrs, getInt32(Alignment.value()), Mask}; |
| |
| // We specify only one type when we create this intrinsic. Types of other |
| // arguments are derived from this type. |
| return CreateMaskedIntrinsic(Intrinsic::masked_scatter, Ops, OverloadedTypes); |
| } |
| |
| /// Create a call to Masked Expand Load intrinsic |
| /// \p Ty - vector type to load |
| /// \p Ptr - base pointer for the load |
| /// \p Mask - vector of booleans which indicates what vector lanes should |
| /// be accessed in memory |
| /// \p PassThru - pass-through value that is used to fill the masked-off lanes |
| /// of the result |
| /// \p Name - name of the result variable |
| CallInst *IRBuilderBase::CreateMaskedExpandLoad(Type *Ty, Value *Ptr, |
| Value *Mask, Value *PassThru, |
| const Twine &Name) { |
| assert(Ty->isVectorTy() && "Type should be vector"); |
| assert(Mask && "Mask should not be all-ones (null)"); |
| if (!PassThru) |
| PassThru = PoisonValue::get(Ty); |
| Type *OverloadedTypes[] = {Ty}; |
| Value *Ops[] = {Ptr, Mask, PassThru}; |
| return CreateMaskedIntrinsic(Intrinsic::masked_expandload, Ops, |
| OverloadedTypes, Name); |
| } |
| |
| /// Create a call to Masked Compress Store intrinsic |
| /// \p Val - data to be stored, |
| /// \p Ptr - base pointer for the store |
| /// \p Mask - vector of booleans which indicates what vector lanes should |
| /// be accessed in memory |
| CallInst *IRBuilderBase::CreateMaskedCompressStore(Value *Val, Value *Ptr, |
| Value *Mask) { |
| Type *DataTy = Val->getType(); |
| assert(DataTy->isVectorTy() && "Val should be a vector"); |
| assert(Mask && "Mask should not be all-ones (null)"); |
| Type *OverloadedTypes[] = {DataTy}; |
| Value *Ops[] = {Val, Ptr, Mask}; |
| return CreateMaskedIntrinsic(Intrinsic::masked_compressstore, Ops, |
| OverloadedTypes); |
| } |
| |
| template <typename T0> |
| static std::vector<Value *> |
| getStatepointArgs(IRBuilderBase &B, uint64_t ID, uint32_t NumPatchBytes, |
| Value *ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs) { |
| std::vector<Value *> Args; |
| Args.push_back(B.getInt64(ID)); |
| Args.push_back(B.getInt32(NumPatchBytes)); |
| Args.push_back(ActualCallee); |
| Args.push_back(B.getInt32(CallArgs.size())); |
| Args.push_back(B.getInt32(Flags)); |
| llvm::append_range(Args, CallArgs); |
| // GC Transition and Deopt args are now always handled via operand bundle. |
| // They will be removed from the signature of gc.statepoint shortly. |
| Args.push_back(B.getInt32(0)); |
| Args.push_back(B.getInt32(0)); |
| // GC args are now encoded in the gc-live operand bundle |
| return Args; |
| } |
| |
| template<typename T1, typename T2, typename T3> |
| static std::vector<OperandBundleDef> |
| getStatepointBundles(std::optional<ArrayRef<T1>> TransitionArgs, |
| std::optional<ArrayRef<T2>> DeoptArgs, |
| ArrayRef<T3> GCArgs) { |
| std::vector<OperandBundleDef> Rval; |
| if (DeoptArgs) { |
| SmallVector<Value*, 16> DeoptValues; |
| llvm::append_range(DeoptValues, *DeoptArgs); |
| Rval.emplace_back("deopt", DeoptValues); |
| } |
| if (TransitionArgs) { |
| SmallVector<Value*, 16> TransitionValues; |
| llvm::append_range(TransitionValues, *TransitionArgs); |
| Rval.emplace_back("gc-transition", TransitionValues); |
| } |
| if (GCArgs.size()) { |
| SmallVector<Value*, 16> LiveValues; |
| llvm::append_range(LiveValues, GCArgs); |
| Rval.emplace_back("gc-live", LiveValues); |
| } |
| return Rval; |
| } |
| |
| template <typename T0, typename T1, typename T2, typename T3> |
| static CallInst *CreateGCStatepointCallCommon( |
| IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes, |
| FunctionCallee ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs, |
| std::optional<ArrayRef<T1>> TransitionArgs, |
| std::optional<ArrayRef<T2>> DeoptArgs, ArrayRef<T3> GCArgs, |
| const Twine &Name) { |
| Module *M = Builder->GetInsertBlock()->getParent()->getParent(); |
| // Fill in the one generic type'd argument (the function is also vararg) |
| Function *FnStatepoint = |
| Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_statepoint, |
| {ActualCallee.getCallee()->getType()}); |
| |
| std::vector<Value *> Args = getStatepointArgs( |
| *Builder, ID, NumPatchBytes, ActualCallee.getCallee(), Flags, CallArgs); |
| |
| CallInst *CI = Builder->CreateCall( |
| FnStatepoint, Args, |
| getStatepointBundles(TransitionArgs, DeoptArgs, GCArgs), Name); |
| CI->addParamAttr(2, |
| Attribute::get(Builder->getContext(), Attribute::ElementType, |
| ActualCallee.getFunctionType())); |
| return CI; |
| } |
| |
| CallInst *IRBuilderBase::CreateGCStatepointCall( |
| uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee, |
| ArrayRef<Value *> CallArgs, std::optional<ArrayRef<Value *>> DeoptArgs, |
| ArrayRef<Value *> GCArgs, const Twine &Name) { |
| return CreateGCStatepointCallCommon<Value *, Value *, Value *, Value *>( |
| this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None), |
| CallArgs, std::nullopt /* No Transition Args */, DeoptArgs, GCArgs, Name); |
| } |
| |
| CallInst *IRBuilderBase::CreateGCStatepointCall( |
| uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee, |
| uint32_t Flags, ArrayRef<Value *> CallArgs, |
| std::optional<ArrayRef<Use>> TransitionArgs, |
| std::optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs, |
| const Twine &Name) { |
| return CreateGCStatepointCallCommon<Value *, Use, Use, Value *>( |
| this, ID, NumPatchBytes, ActualCallee, Flags, CallArgs, TransitionArgs, |
| DeoptArgs, GCArgs, Name); |
| } |
| |
| CallInst *IRBuilderBase::CreateGCStatepointCall( |
| uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee, |
| ArrayRef<Use> CallArgs, std::optional<ArrayRef<Value *>> DeoptArgs, |
| ArrayRef<Value *> GCArgs, const Twine &Name) { |
| return CreateGCStatepointCallCommon<Use, Value *, Value *, Value *>( |
| this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None), |
| CallArgs, std::nullopt, DeoptArgs, GCArgs, Name); |
| } |
| |
| template <typename T0, typename T1, typename T2, typename T3> |
| static InvokeInst *CreateGCStatepointInvokeCommon( |
| IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes, |
| FunctionCallee ActualInvokee, BasicBlock *NormalDest, |
| BasicBlock *UnwindDest, uint32_t Flags, ArrayRef<T0> InvokeArgs, |
| std::optional<ArrayRef<T1>> TransitionArgs, |
| std::optional<ArrayRef<T2>> DeoptArgs, ArrayRef<T3> GCArgs, |
| const Twine &Name) { |
| Module *M = Builder->GetInsertBlock()->getParent()->getParent(); |
| // Fill in the one generic type'd argument (the function is also vararg) |
| Function *FnStatepoint = |
| Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_statepoint, |
| {ActualInvokee.getCallee()->getType()}); |
| |
| std::vector<Value *> Args = |
| getStatepointArgs(*Builder, ID, NumPatchBytes, ActualInvokee.getCallee(), |
| Flags, InvokeArgs); |
| |
| InvokeInst *II = Builder->CreateInvoke( |
| FnStatepoint, NormalDest, UnwindDest, Args, |
| getStatepointBundles(TransitionArgs, DeoptArgs, GCArgs), Name); |
| II->addParamAttr(2, |
| Attribute::get(Builder->getContext(), Attribute::ElementType, |
| ActualInvokee.getFunctionType())); |
| return II; |
| } |
| |
| InvokeInst *IRBuilderBase::CreateGCStatepointInvoke( |
| uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee, |
| BasicBlock *NormalDest, BasicBlock *UnwindDest, |
| ArrayRef<Value *> InvokeArgs, std::optional<ArrayRef<Value *>> DeoptArgs, |
| ArrayRef<Value *> GCArgs, const Twine &Name) { |
| return CreateGCStatepointInvokeCommon<Value *, Value *, Value *, Value *>( |
| this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest, |
| uint32_t(StatepointFlags::None), InvokeArgs, |
| std::nullopt /* No Transition Args*/, DeoptArgs, GCArgs, Name); |
| } |
| |
| InvokeInst *IRBuilderBase::CreateGCStatepointInvoke( |
| uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee, |
| BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags, |
| ArrayRef<Value *> InvokeArgs, std::optional<ArrayRef<Use>> TransitionArgs, |
| std::optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs, |
| const Twine &Name) { |
| return CreateGCStatepointInvokeCommon<Value *, Use, Use, Value *>( |
| this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest, Flags, |
| InvokeArgs, TransitionArgs, DeoptArgs, GCArgs, Name); |
| } |
| |
| InvokeInst *IRBuilderBase::CreateGCStatepointInvoke( |
| uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee, |
| BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs, |
| std::optional<ArrayRef<Value *>> DeoptArgs, ArrayRef<Value *> GCArgs, |
| const Twine &Name) { |
| return CreateGCStatepointInvokeCommon<Use, Value *, Value *, Value *>( |
| this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest, |
| uint32_t(StatepointFlags::None), InvokeArgs, std::nullopt, DeoptArgs, |
| GCArgs, Name); |
| } |
| |
| CallInst *IRBuilderBase::CreateGCResult(Instruction *Statepoint, |
| Type *ResultType, const Twine &Name) { |
| Intrinsic::ID ID = Intrinsic::experimental_gc_result; |
| Module *M = BB->getParent()->getParent(); |
| Type *Types[] = {ResultType}; |
| Function *FnGCResult = Intrinsic::getDeclaration(M, ID, Types); |
| |
| Value *Args[] = {Statepoint}; |
| return CreateCall(FnGCResult, Args, {}, Name); |
| } |
| |
| CallInst *IRBuilderBase::CreateGCRelocate(Instruction *Statepoint, |
| int BaseOffset, int DerivedOffset, |
| Type *ResultType, const Twine &Name) { |
| Module *M = BB->getParent()->getParent(); |
| Type *Types[] = {ResultType}; |
| Function *FnGCRelocate = |
| Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); |
| |
| Value *Args[] = {Statepoint, getInt32(BaseOffset), getInt32(DerivedOffset)}; |
| return CreateCall(FnGCRelocate, Args, {}, Name); |
| } |
| |
| CallInst *IRBuilderBase::CreateGCGetPointerBase(Value *DerivedPtr, |
| const Twine &Name) { |
| Module *M = BB->getParent()->getParent(); |
| Type *PtrTy = DerivedPtr->getType(); |
| Function *FnGCFindBase = Intrinsic::getDeclaration( |
| M, Intrinsic::experimental_gc_get_pointer_base, {PtrTy, PtrTy}); |
| return CreateCall(FnGCFindBase, {DerivedPtr}, {}, Name); |
| } |
| |
| CallInst *IRBuilderBase::CreateGCGetPointerOffset(Value *DerivedPtr, |
| const Twine &Name) { |
| Module *M = BB->getParent()->getParent(); |
| Type *PtrTy = DerivedPtr->getType(); |
| Function *FnGCGetOffset = Intrinsic::getDeclaration( |
| M, Intrinsic::experimental_gc_get_pointer_offset, {PtrTy}); |
| return CreateCall(FnGCGetOffset, {DerivedPtr}, {}, Name); |
| } |
| |
| CallInst *IRBuilderBase::CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, |
| Instruction *FMFSource, |
| const Twine &Name) { |
| Module *M = BB->getModule(); |
| Function *Fn = Intrinsic::getDeclaration(M, ID, {V->getType()}); |
| return createCallHelper(Fn, {V}, Name, FMFSource); |
| } |
| |
| CallInst *IRBuilderBase::CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, |
| Value *RHS, |
| Instruction *FMFSource, |
| const Twine &Name) { |
| Module *M = BB->getModule(); |
| Function *Fn = Intrinsic::getDeclaration(M, ID, { LHS->getType() }); |
| return createCallHelper(Fn, {LHS, RHS}, Name, FMFSource); |
| } |
| |
| CallInst *IRBuilderBase::CreateIntrinsic(Intrinsic::ID ID, |
| ArrayRef<Type *> Types, |
| ArrayRef<Value *> Args, |
| Instruction *FMFSource, |
| const Twine &Name) { |
| Module *M = BB->getModule(); |
| Function *Fn = Intrinsic::getDeclaration(M, ID, Types); |
| return createCallHelper(Fn, Args, Name, FMFSource); |
| } |
| |
| CallInst *IRBuilderBase::CreateIntrinsic(Type *RetTy, Intrinsic::ID ID, |
| ArrayRef<Value *> Args, |
| Instruction *FMFSource, |
| const Twine &Name) { |
| Module *M = BB->getModule(); |
| |
| SmallVector<Intrinsic::IITDescriptor> Table; |
| Intrinsic::getIntrinsicInfoTableEntries(ID, Table); |
| ArrayRef<Intrinsic::IITDescriptor> TableRef(Table); |
| |
| SmallVector<Type *> ArgTys; |
| ArgTys.reserve(Args.size()); |
| for (auto &I : Args) |
| ArgTys.push_back(I->getType()); |
| FunctionType *FTy = FunctionType::get(RetTy, ArgTys, false); |
| SmallVector<Type *> OverloadTys; |
| Intrinsic::MatchIntrinsicTypesResult Res = |
| matchIntrinsicSignature(FTy, TableRef, OverloadTys); |
| (void)Res; |
| assert(Res == Intrinsic::MatchIntrinsicTypes_Match && TableRef.empty() && |
| "Wrong types for intrinsic!"); |
| // TODO: Handle varargs intrinsics. |
| |
| Function *Fn = Intrinsic::getDeclaration(M, ID, OverloadTys); |
| return createCallHelper(Fn, Args, Name, FMFSource); |
| } |
| |
| CallInst *IRBuilderBase::CreateConstrainedFPBinOp( |
| Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource, |
| const Twine &Name, MDNode *FPMathTag, |
| std::optional<RoundingMode> Rounding, |
| std::optional<fp::ExceptionBehavior> Except) { |
| Value *RoundingV = getConstrainedFPRounding(Rounding); |
| Value *ExceptV = getConstrainedFPExcept(Except); |
| |
| FastMathFlags UseFMF = FMF; |
| if (FMFSource) |
| UseFMF = FMFSource->getFastMathFlags(); |
| |
| CallInst *C = CreateIntrinsic(ID, {L->getType()}, |
| {L, R, RoundingV, ExceptV}, nullptr, Name); |
| setConstrainedFPCallAttr(C); |
| setFPAttrs(C, FPMathTag, UseFMF); |
| return C; |
| } |
| |
| CallInst *IRBuilderBase::CreateConstrainedFPUnroundedBinOp( |
| Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource, |
| const Twine &Name, MDNode *FPMathTag, |
| std::optional<fp::ExceptionBehavior> Except) { |
| Value *ExceptV = getConstrainedFPExcept(Except); |
| |
| FastMathFlags UseFMF = FMF; |
| if (FMFSource) |
| UseFMF = FMFSource->getFastMathFlags(); |
| |
| CallInst *C = |
| CreateIntrinsic(ID, {L->getType()}, {L, R, ExceptV}, nullptr, Name); |
| setConstrainedFPCallAttr(C); |
| setFPAttrs(C, FPMathTag, UseFMF); |
| return C; |
| } |
| |
| Value *IRBuilderBase::CreateNAryOp(unsigned Opc, ArrayRef<Value *> Ops, |
| const Twine &Name, MDNode *FPMathTag) { |
| if (Instruction::isBinaryOp(Opc)) { |
| assert(Ops.size() == 2 && "Invalid number of operands!"); |
| return CreateBinOp(static_cast<Instruction::BinaryOps>(Opc), |
| Ops[0], Ops[1], Name, FPMathTag); |
| } |
| if (Instruction::isUnaryOp(Opc)) { |
| assert(Ops.size() == 1 && "Invalid number of operands!"); |
| return CreateUnOp(static_cast<Instruction::UnaryOps>(Opc), |
| Ops[0], Name, FPMathTag); |
| } |
| llvm_unreachable("Unexpected opcode!"); |
| } |
| |
| CallInst *IRBuilderBase::CreateConstrainedFPCast( |
| Intrinsic::ID ID, Value *V, Type *DestTy, |
| Instruction *FMFSource, const Twine &Name, MDNode *FPMathTag, |
| std::optional<RoundingMode> Rounding, |
| std::optional<fp::ExceptionBehavior> Except) { |
| Value *ExceptV = getConstrainedFPExcept(Except); |
| |
| FastMathFlags UseFMF = FMF; |
| if (FMFSource) |
| UseFMF = FMFSource->getFastMathFlags(); |
| |
| CallInst *C; |
| bool HasRoundingMD = false; |
| switch (ID) { |
| default: |
| break; |
| #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ |
| case Intrinsic::INTRINSIC: \ |
| HasRoundingMD = ROUND_MODE; \ |
| break; |
| #include "llvm/IR/ConstrainedOps.def" |
| } |
| if (HasRoundingMD) { |
| Value *RoundingV = getConstrainedFPRounding(Rounding); |
| C = CreateIntrinsic(ID, {DestTy, V->getType()}, {V, RoundingV, ExceptV}, |
| nullptr, Name); |
| } else |
| C = CreateIntrinsic(ID, {DestTy, V->getType()}, {V, ExceptV}, nullptr, |
| Name); |
| |
| setConstrainedFPCallAttr(C); |
| |
| if (isa<FPMathOperator>(C)) |
| setFPAttrs(C, FPMathTag, UseFMF); |
| return C; |
| } |
| |
| Value *IRBuilderBase::CreateFCmpHelper( |
| CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name, |
| MDNode *FPMathTag, bool IsSignaling) { |
| if (IsFPConstrained) { |
| auto ID = IsSignaling ? Intrinsic::experimental_constrained_fcmps |
| : Intrinsic::experimental_constrained_fcmp; |
| return CreateConstrainedFPCmp(ID, P, LHS, RHS, Name); |
| } |
| |
| if (auto *LC = dyn_cast<Constant>(LHS)) |
| if (auto *RC = dyn_cast<Constant>(RHS)) |
| return Insert(Folder.CreateFCmp(P, LC, RC), Name); |
| return Insert(setFPAttrs(new FCmpInst(P, LHS, RHS), FPMathTag, FMF), Name); |
| } |
| |
| CallInst *IRBuilderBase::CreateConstrainedFPCmp( |
| Intrinsic::ID ID, CmpInst::Predicate P, Value *L, Value *R, |
| const Twine &Name, std::optional<fp::ExceptionBehavior> Except) { |
| Value *PredicateV = getConstrainedFPPredicate(P); |
| Value *ExceptV = getConstrainedFPExcept(Except); |
| |
| CallInst *C = CreateIntrinsic(ID, {L->getType()}, |
| {L, R, PredicateV, ExceptV}, nullptr, Name); |
| setConstrainedFPCallAttr(C); |
| return C; |
| } |
| |
| CallInst *IRBuilderBase::CreateConstrainedFPCall( |
| Function *Callee, ArrayRef<Value *> Args, const Twine &Name, |
| std::optional<RoundingMode> Rounding, |
| std::optional<fp::ExceptionBehavior> Except) { |
| llvm::SmallVector<Value *, 6> UseArgs; |
| |
| append_range(UseArgs, Args); |
| bool HasRoundingMD = false; |
| switch (Callee->getIntrinsicID()) { |
| default: |
| break; |
| #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ |
| case Intrinsic::INTRINSIC: \ |
| HasRoundingMD = ROUND_MODE; \ |
| break; |
| #include "llvm/IR/ConstrainedOps.def" |
| } |
| if (HasRoundingMD) |
| UseArgs.push_back(getConstrainedFPRounding(Rounding)); |
| UseArgs.push_back(getConstrainedFPExcept(Except)); |
| |
| CallInst *C = CreateCall(Callee, UseArgs, Name); |
| setConstrainedFPCallAttr(C); |
| return C; |
| } |
| |
| Value *IRBuilderBase::CreateSelect(Value *C, Value *True, Value *False, |
| const Twine &Name, Instruction *MDFrom) { |
| if (auto *V = Folder.FoldSelect(C, True, False)) |
| return V; |
| |
| SelectInst *Sel = SelectInst::Create(C, True, False); |
| if (MDFrom) { |
| MDNode *Prof = MDFrom->getMetadata(LLVMContext::MD_prof); |
| MDNode *Unpred = MDFrom->getMetadata(LLVMContext::MD_unpredictable); |
| Sel = addBranchMetadata(Sel, Prof, Unpred); |
| } |
| if (isa<FPMathOperator>(Sel)) |
| setFPAttrs(Sel, nullptr /* MDNode* */, FMF); |
| return Insert(Sel, Name); |
| } |
| |
| Value *IRBuilderBase::CreatePtrDiff(Type *ElemTy, Value *LHS, Value *RHS, |
| const Twine &Name) { |
| assert(LHS->getType() == RHS->getType() && |
| "Pointer subtraction operand types must match!"); |
| Value *LHS_int = CreatePtrToInt(LHS, Type::getInt64Ty(Context)); |
| Value *RHS_int = CreatePtrToInt(RHS, Type::getInt64Ty(Context)); |
| Value *Difference = CreateSub(LHS_int, RHS_int); |
| return CreateExactSDiv(Difference, ConstantExpr::getSizeOf(ElemTy), |
| Name); |
| } |
| |
| Value *IRBuilderBase::CreateLaunderInvariantGroup(Value *Ptr) { |
| assert(isa<PointerType>(Ptr->getType()) && |
| "launder.invariant.group only applies to pointers."); |
| auto *PtrType = Ptr->getType(); |
| Module *M = BB->getParent()->getParent(); |
| Function *FnLaunderInvariantGroup = Intrinsic::getDeclaration( |
| M, Intrinsic::launder_invariant_group, {PtrType}); |
| |
| assert(FnLaunderInvariantGroup->getReturnType() == PtrType && |
| FnLaunderInvariantGroup->getFunctionType()->getParamType(0) == |
| PtrType && |
| "LaunderInvariantGroup should take and return the same type"); |
| |
| return CreateCall(FnLaunderInvariantGroup, {Ptr}); |
| } |
| |
| Value *IRBuilderBase::CreateStripInvariantGroup(Value *Ptr) { |
| assert(isa<PointerType>(Ptr->getType()) && |
| "strip.invariant.group only applies to pointers."); |
| |
| auto *PtrType = Ptr->getType(); |
| Module *M = BB->getParent()->getParent(); |
| Function *FnStripInvariantGroup = Intrinsic::getDeclaration( |
| M, Intrinsic::strip_invariant_group, {PtrType}); |
| |
| assert(FnStripInvariantGroup->getReturnType() == PtrType && |
| FnStripInvariantGroup->getFunctionType()->getParamType(0) == |
| PtrType && |
| "StripInvariantGroup should take and return the same type"); |
| |
| return CreateCall(FnStripInvariantGroup, {Ptr}); |
| } |
| |
| Value *IRBuilderBase::CreateVectorReverse(Value *V, const Twine &Name) { |
| auto *Ty = cast<VectorType>(V->getType()); |
| if (isa<ScalableVectorType>(Ty)) { |
| Module *M = BB->getParent()->getParent(); |
| Function *F = Intrinsic::getDeclaration( |
| M, Intrinsic::experimental_vector_reverse, Ty); |
| return Insert(CallInst::Create(F, V), Name); |
| } |
| // Keep the original behaviour for fixed vector |
| SmallVector<int, 8> ShuffleMask; |
| int NumElts = Ty->getElementCount().getKnownMinValue(); |
| for (int i = 0; i < NumElts; ++i) |
| ShuffleMask.push_back(NumElts - i - 1); |
| return CreateShuffleVector(V, ShuffleMask, Name); |
| } |
| |
| Value *IRBuilderBase::CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, |
| const Twine &Name) { |
| assert(isa<VectorType>(V1->getType()) && "Unexpected type"); |
| assert(V1->getType() == V2->getType() && |
| "Splice expects matching operand types!"); |
| |
| if (auto *VTy = dyn_cast<ScalableVectorType>(V1->getType())) { |
| Module *M = BB->getParent()->getParent(); |
| Function *F = Intrinsic::getDeclaration( |
| M, Intrinsic::experimental_vector_splice, VTy); |
| |
| Value *Ops[] = {V1, V2, getInt32(Imm)}; |
| return Insert(CallInst::Create(F, Ops), Name); |
| } |
| |
| unsigned NumElts = cast<FixedVectorType>(V1->getType())->getNumElements(); |
| assert(((-Imm <= NumElts) || (Imm < NumElts)) && |
| "Invalid immediate for vector splice!"); |
| |
| // Keep the original behaviour for fixed vector |
| unsigned Idx = (NumElts + Imm) % NumElts; |
| SmallVector<int, 8> Mask; |
| for (unsigned I = 0; I < NumElts; ++I) |
| Mask.push_back(Idx + I); |
| |
| return CreateShuffleVector(V1, V2, Mask); |
| } |
| |
| Value *IRBuilderBase::CreateVectorSplat(unsigned NumElts, Value *V, |
| const Twine &Name) { |
| auto EC = ElementCount::getFixed(NumElts); |
| return CreateVectorSplat(EC, V, Name); |
| } |
| |
| Value *IRBuilderBase::CreateVectorSplat(ElementCount EC, Value *V, |
| const Twine &Name) { |
| assert(EC.isNonZero() && "Cannot splat to an empty vector!"); |
| |
| // First insert it into a poison vector so we can shuffle it. |
| Value *Poison = PoisonValue::get(VectorType::get(V->getType(), EC)); |
| V = CreateInsertElement(Poison, V, getInt64(0), Name + ".splatinsert"); |
| |
| // Shuffle the value across the desired number of elements. |
| SmallVector<int, 16> Zeros; |
| Zeros.resize(EC.getKnownMinValue()); |
| return CreateShuffleVector(V, Zeros, Name + ".splat"); |
| } |
| |
| Value *IRBuilderBase::CreatePreserveArrayAccessIndex( |
| Type *ElTy, Value *Base, unsigned Dimension, unsigned LastIndex, |
| MDNode *DbgInfo) { |
| auto *BaseType = Base->getType(); |
| assert(isa<PointerType>(BaseType) && |
| "Invalid Base ptr type for preserve.array.access.index."); |
| |
| Value *LastIndexV = getInt32(LastIndex); |
| Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0); |
| SmallVector<Value *, 4> IdxList(Dimension, Zero); |
| IdxList.push_back(LastIndexV); |
| |
| Type *ResultType = GetElementPtrInst::getGEPReturnType(Base, IdxList); |
| |
| Module *M = BB->getParent()->getParent(); |
| Function *FnPreserveArrayAccessIndex = Intrinsic::getDeclaration( |
| M, Intrinsic::preserve_array_access_index, {ResultType, BaseType}); |
| |
| Value *DimV = getInt32(Dimension); |
| CallInst *Fn = |
| CreateCall(FnPreserveArrayAccessIndex, {Base, DimV, LastIndexV}); |
| Fn->addParamAttr( |
| 0, Attribute::get(Fn->getContext(), Attribute::ElementType, ElTy)); |
| if (DbgInfo) |
| Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo); |
| |
| return Fn; |
| } |
| |
| Value *IRBuilderBase::CreatePreserveUnionAccessIndex( |
| Value *Base, unsigned FieldIndex, MDNode *DbgInfo) { |
| assert(isa<PointerType>(Base->getType()) && |
| "Invalid Base ptr type for preserve.union.access.index."); |
| auto *BaseType = Base->getType(); |
| |
| Module *M = BB->getParent()->getParent(); |
| Function *FnPreserveUnionAccessIndex = Intrinsic::getDeclaration( |
| M, Intrinsic::preserve_union_access_index, {BaseType, BaseType}); |
| |
| Value *DIIndex = getInt32(FieldIndex); |
| CallInst *Fn = |
| CreateCall(FnPreserveUnionAccessIndex, {Base, DIIndex}); |
| if (DbgInfo) |
| Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo); |
| |
| return Fn; |
| } |
| |
| Value *IRBuilderBase::CreatePreserveStructAccessIndex( |
| Type *ElTy, Value *Base, unsigned Index, unsigned FieldIndex, |
| MDNode *DbgInfo) { |
| auto *BaseType = Base->getType(); |
| assert(isa<PointerType>(BaseType) && |
| "Invalid Base ptr type for preserve.struct.access.index."); |
| |
| Value *GEPIndex = getInt32(Index); |
| Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0); |
| Type *ResultType = |
| GetElementPtrInst::getGEPReturnType(Base, {Zero, GEPIndex}); |
| |
| Module *M = BB->getParent()->getParent(); |
| Function *FnPreserveStructAccessIndex = Intrinsic::getDeclaration( |
| M, Intrinsic::preserve_struct_access_index, {ResultType, BaseType}); |
| |
| Value *DIIndex = getInt32(FieldIndex); |
| CallInst *Fn = CreateCall(FnPreserveStructAccessIndex, |
| {Base, GEPIndex, DIIndex}); |
| Fn->addParamAttr( |
| 0, Attribute::get(Fn->getContext(), Attribute::ElementType, ElTy)); |
| if (DbgInfo) |
| Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo); |
| |
| return Fn; |
| } |
| |
| Value *IRBuilderBase::createIsFPClass(Value *FPNum, unsigned Test) { |
| ConstantInt *TestV = getInt32(Test); |
| Module *M = BB->getParent()->getParent(); |
| Function *FnIsFPClass = |
| Intrinsic::getDeclaration(M, Intrinsic::is_fpclass, {FPNum->getType()}); |
| return CreateCall(FnIsFPClass, {FPNum, TestV}); |
| } |
| |
| CallInst *IRBuilderBase::CreateAlignmentAssumptionHelper(const DataLayout &DL, |
| Value *PtrValue, |
| Value *AlignValue, |
| Value *OffsetValue) { |
| SmallVector<Value *, 4> Vals({PtrValue, AlignValue}); |
| if (OffsetValue) |
| Vals.push_back(OffsetValue); |
| OperandBundleDefT<Value *> AlignOpB("align", Vals); |
| return CreateAssumption(ConstantInt::getTrue(getContext()), {AlignOpB}); |
| } |
| |
| CallInst *IRBuilderBase::CreateAlignmentAssumption(const DataLayout &DL, |
| Value *PtrValue, |
| unsigned Alignment, |
| Value *OffsetValue) { |
| assert(isa<PointerType>(PtrValue->getType()) && |
| "trying to create an alignment assumption on a non-pointer?"); |
| assert(Alignment != 0 && "Invalid Alignment"); |
| auto *PtrTy = cast<PointerType>(PtrValue->getType()); |
| Type *IntPtrTy = getIntPtrTy(DL, PtrTy->getAddressSpace()); |
| Value *AlignValue = ConstantInt::get(IntPtrTy, Alignment); |
| return CreateAlignmentAssumptionHelper(DL, PtrValue, AlignValue, OffsetValue); |
| } |
| |
| CallInst *IRBuilderBase::CreateAlignmentAssumption(const DataLayout &DL, |
| Value *PtrValue, |
| Value *Alignment, |
| Value *OffsetValue) { |
| assert(isa<PointerType>(PtrValue->getType()) && |
| "trying to create an alignment assumption on a non-pointer?"); |
| return CreateAlignmentAssumptionHelper(DL, PtrValue, Alignment, OffsetValue); |
| } |
| |
| IRBuilderDefaultInserter::~IRBuilderDefaultInserter() = default; |
| IRBuilderCallbackInserter::~IRBuilderCallbackInserter() = default; |
| IRBuilderFolder::~IRBuilderFolder() = default; |
| void ConstantFolder::anchor() {} |
| void NoFolder::anchor() {} |