blob: 036932d90f7893d6d93afa5434530a7ee77090da [file] [log] [blame]
//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64TargetLowering class.
//
//===----------------------------------------------------------------------===//
#include "AArch64ISelLowering.h"
#include "AArch64CallingConvention.h"
#include "AArch64ExpandImm.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64PerfectShuffle.h"
#include "AArch64RegisterInfo.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/ObjCARCUtil.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetCallingConv.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "aarch64-lower"
STATISTIC(NumTailCalls, "Number of tail calls");
STATISTIC(NumShiftInserts, "Number of vector shift inserts");
STATISTIC(NumOptimizedImms, "Number of times immediates were optimized");
// FIXME: The necessary dtprel relocations don't seem to be supported
// well in the GNU bfd and gold linkers at the moment. Therefore, by
// default, for now, fall back to GeneralDynamic code generation.
cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
"aarch64-elf-ldtls-generation", cl::Hidden,
cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
cl::init(false));
static cl::opt<bool>
EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden,
cl::desc("Enable AArch64 logical imm instruction "
"optimization"),
cl::init(true));
// Temporary option added for the purpose of testing functionality added
// to DAGCombiner.cpp in D92230. It is expected that this can be removed
// in future when both implementations will be based off MGATHER rather
// than the GLD1 nodes added for the SVE gather load intrinsics.
static cl::opt<bool>
EnableCombineMGatherIntrinsics("aarch64-enable-mgather-combine", cl::Hidden,
cl::desc("Combine extends of AArch64 masked "
"gather intrinsics"),
cl::init(true));
/// Value type used for condition codes.
static const MVT MVT_CC = MVT::i32;
static inline EVT getPackedSVEVectorVT(EVT VT) {
switch (VT.getSimpleVT().SimpleTy) {
default:
llvm_unreachable("unexpected element type for vector");
case MVT::i8:
return MVT::nxv16i8;
case MVT::i16:
return MVT::nxv8i16;
case MVT::i32:
return MVT::nxv4i32;
case MVT::i64:
return MVT::nxv2i64;
case MVT::f16:
return MVT::nxv8f16;
case MVT::f32:
return MVT::nxv4f32;
case MVT::f64:
return MVT::nxv2f64;
case MVT::bf16:
return MVT::nxv8bf16;
}
}
// NOTE: Currently there's only a need to return integer vector types. If this
// changes then just add an extra "type" parameter.
static inline EVT getPackedSVEVectorVT(ElementCount EC) {
switch (EC.getKnownMinValue()) {
default:
llvm_unreachable("unexpected element count for vector");
case 16:
return MVT::nxv16i8;
case 8:
return MVT::nxv8i16;
case 4:
return MVT::nxv4i32;
case 2:
return MVT::nxv2i64;
}
}
static inline EVT getPromotedVTForPredicate(EVT VT) {
assert(VT.isScalableVector() && (VT.getVectorElementType() == MVT::i1) &&
"Expected scalable predicate vector type!");
switch (VT.getVectorMinNumElements()) {
default:
llvm_unreachable("unexpected element count for vector");
case 2:
return MVT::nxv2i64;
case 4:
return MVT::nxv4i32;
case 8:
return MVT::nxv8i16;
case 16:
return MVT::nxv16i8;
}
}
/// Returns true if VT's elements occupy the lowest bit positions of its
/// associated register class without any intervening space.
///
/// For example, nxv2f16, nxv4f16 and nxv8f16 are legal types that belong to the
/// same register class, but only nxv8f16 can be treated as a packed vector.
static inline bool isPackedVectorType(EVT VT, SelectionDAG &DAG) {
assert(VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
"Expected legal vector type!");
return VT.isFixedLengthVector() ||
VT.getSizeInBits().getKnownMinSize() == AArch64::SVEBitsPerBlock;
}
// Returns true for ####_MERGE_PASSTHRU opcodes, whose operands have a leading
// predicate and end with a passthru value matching the result type.
static bool isMergePassthruOpcode(unsigned Opc) {
switch (Opc) {
default:
return false;
case AArch64ISD::BITREVERSE_MERGE_PASSTHRU:
case AArch64ISD::BSWAP_MERGE_PASSTHRU:
case AArch64ISD::CTLZ_MERGE_PASSTHRU:
case AArch64ISD::CTPOP_MERGE_PASSTHRU:
case AArch64ISD::DUP_MERGE_PASSTHRU:
case AArch64ISD::ABS_MERGE_PASSTHRU:
case AArch64ISD::NEG_MERGE_PASSTHRU:
case AArch64ISD::FNEG_MERGE_PASSTHRU:
case AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU:
case AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU:
case AArch64ISD::FCEIL_MERGE_PASSTHRU:
case AArch64ISD::FFLOOR_MERGE_PASSTHRU:
case AArch64ISD::FNEARBYINT_MERGE_PASSTHRU:
case AArch64ISD::FRINT_MERGE_PASSTHRU:
case AArch64ISD::FROUND_MERGE_PASSTHRU:
case AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU:
case AArch64ISD::FTRUNC_MERGE_PASSTHRU:
case AArch64ISD::FP_ROUND_MERGE_PASSTHRU:
case AArch64ISD::FP_EXTEND_MERGE_PASSTHRU:
case AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU:
case AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU:
case AArch64ISD::FCVTZU_MERGE_PASSTHRU:
case AArch64ISD::FCVTZS_MERGE_PASSTHRU:
case AArch64ISD::FSQRT_MERGE_PASSTHRU:
case AArch64ISD::FRECPX_MERGE_PASSTHRU:
case AArch64ISD::FABS_MERGE_PASSTHRU:
return true;
}
}
AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
const AArch64Subtarget &STI)
: TargetLowering(TM), Subtarget(&STI) {
// AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
// we have to make something up. Arbitrarily, choose ZeroOrOne.
setBooleanContents(ZeroOrOneBooleanContent);
// When comparing vectors the result sets the different elements in the
// vector to all-one or all-zero.
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
// Set up the register classes.
addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
if (Subtarget->hasFPARMv8()) {
addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
addRegisterClass(MVT::bf16, &AArch64::FPR16RegClass);
addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
}
if (Subtarget->hasNEON()) {
addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
// Someone set us up the NEON.
addDRTypeForNEON(MVT::v2f32);
addDRTypeForNEON(MVT::v8i8);
addDRTypeForNEON(MVT::v4i16);
addDRTypeForNEON(MVT::v2i32);
addDRTypeForNEON(MVT::v1i64);
addDRTypeForNEON(MVT::v1f64);
addDRTypeForNEON(MVT::v4f16);
if (Subtarget->hasBF16())
addDRTypeForNEON(MVT::v4bf16);
addQRTypeForNEON(MVT::v4f32);
addQRTypeForNEON(MVT::v2f64);
addQRTypeForNEON(MVT::v16i8);
addQRTypeForNEON(MVT::v8i16);
addQRTypeForNEON(MVT::v4i32);
addQRTypeForNEON(MVT::v2i64);
addQRTypeForNEON(MVT::v8f16);
if (Subtarget->hasBF16())
addQRTypeForNEON(MVT::v8bf16);
}
if (Subtarget->hasSVE()) {
// Add legal sve predicate types
addRegisterClass(MVT::nxv2i1, &AArch64::PPRRegClass);
addRegisterClass(MVT::nxv4i1, &AArch64::PPRRegClass);
addRegisterClass(MVT::nxv8i1, &AArch64::PPRRegClass);
addRegisterClass(MVT::nxv16i1, &AArch64::PPRRegClass);
// Add legal sve data types
addRegisterClass(MVT::nxv16i8, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv8i16, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv4i32, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv2i64, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv2f16, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv4f16, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv8f16, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv2f32, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv4f32, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv2f64, &AArch64::ZPRRegClass);
if (Subtarget->hasBF16()) {
addRegisterClass(MVT::nxv2bf16, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv4bf16, &AArch64::ZPRRegClass);
addRegisterClass(MVT::nxv8bf16, &AArch64::ZPRRegClass);
}
if (Subtarget->useSVEForFixedLengthVectors()) {
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
if (useSVEForFixedLengthVectorVT(VT))
addRegisterClass(VT, &AArch64::ZPRRegClass);
for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
if (useSVEForFixedLengthVectorVT(VT))
addRegisterClass(VT, &AArch64::ZPRRegClass);
}
for (auto VT : { MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64 }) {
setOperationAction(ISD::SADDSAT, VT, Legal);
setOperationAction(ISD::UADDSAT, VT, Legal);
setOperationAction(ISD::SSUBSAT, VT, Legal);
setOperationAction(ISD::USUBSAT, VT, Legal);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::SDIVREM, VT, Expand);
setOperationAction(ISD::UDIVREM, VT, Expand);
}
for (auto VT :
{ MVT::nxv2i8, MVT::nxv2i16, MVT::nxv2i32, MVT::nxv2i64, MVT::nxv4i8,
MVT::nxv4i16, MVT::nxv4i32, MVT::nxv8i8, MVT::nxv8i16 })
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Legal);
for (auto VT :
{ MVT::nxv2f16, MVT::nxv4f16, MVT::nxv8f16, MVT::nxv2f32, MVT::nxv4f32,
MVT::nxv2f64 }) {
setCondCodeAction(ISD::SETO, VT, Expand);
setCondCodeAction(ISD::SETOLT, VT, Expand);
setCondCodeAction(ISD::SETLT, VT, Expand);
setCondCodeAction(ISD::SETOLE, VT, Expand);
setCondCodeAction(ISD::SETLE, VT, Expand);
setCondCodeAction(ISD::SETULT, VT, Expand);
setCondCodeAction(ISD::SETULE, VT, Expand);
setCondCodeAction(ISD::SETUGE, VT, Expand);
setCondCodeAction(ISD::SETUGT, VT, Expand);
setCondCodeAction(ISD::SETUEQ, VT, Expand);
setCondCodeAction(ISD::SETUNE, VT, Expand);
}
}
// Compute derived properties from the register classes
computeRegisterProperties(Subtarget->getRegisterInfo());
// Provide all sorts of operation actions
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
setOperationAction(ISD::SETCC, MVT::i32, Custom);
setOperationAction(ISD::SETCC, MVT::i64, Custom);
setOperationAction(ISD::SETCC, MVT::f16, Custom);
setOperationAction(ISD::SETCC, MVT::f32, Custom);
setOperationAction(ISD::SETCC, MVT::f64, Custom);
setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom);
setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
setOperationAction(ISD::BR_CC, MVT::i64, Custom);
setOperationAction(ISD::BR_CC, MVT::f16, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
setOperationAction(ISD::SELECT, MVT::i32, Custom);
setOperationAction(ISD::SELECT, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::f16, Custom);
setOperationAction(ISD::SELECT, MVT::f32, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
setOperationAction(ISD::FREM, MVT::f32, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f80, Expand);
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
// Custom lowering hooks are needed for XOR
// to fold it into CSINC/CSINV.
setOperationAction(ISD::XOR, MVT::i32, Custom);
setOperationAction(ISD::XOR, MVT::i64, Custom);
// Virtually no operation on f128 is legal, but LLVM can't expand them when
// there's a valid register class, so we need custom operations in most cases.
setOperationAction(ISD::FABS, MVT::f128, Expand);
setOperationAction(ISD::FADD, MVT::f128, LibCall);
setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
setOperationAction(ISD::FCOS, MVT::f128, Expand);
setOperationAction(ISD::FDIV, MVT::f128, LibCall);
setOperationAction(ISD::FMA, MVT::f128, Expand);
setOperationAction(ISD::FMUL, MVT::f128, LibCall);
setOperationAction(ISD::FNEG, MVT::f128, Expand);
setOperationAction(ISD::FPOW, MVT::f128, Expand);
setOperationAction(ISD::FREM, MVT::f128, Expand);
setOperationAction(ISD::FRINT, MVT::f128, Expand);
setOperationAction(ISD::FSIN, MVT::f128, Expand);
setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
setOperationAction(ISD::FSQRT, MVT::f128, Expand);
setOperationAction(ISD::FSUB, MVT::f128, LibCall);
setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
setOperationAction(ISD::SETCC, MVT::f128, Custom);
setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
setOperationAction(ISD::BR_CC, MVT::f128, Custom);
setOperationAction(ISD::SELECT, MVT::f128, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
// Lowering for many of the conversions is actually specified by the non-f128
// type. The LowerXXX function will be trivial when f128 isn't involved.
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Custom);
// Variable arguments.
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Custom);
setOperationAction(ISD::VACOPY, MVT::Other, Custom);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
// Variable-sized objects.
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
if (Subtarget->isTargetWindows())
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
else
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
// Constant pool entries
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
// BlockAddress
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
// Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
setOperationAction(ISD::ADDC, MVT::i32, Custom);
setOperationAction(ISD::ADDE, MVT::i32, Custom);
setOperationAction(ISD::SUBC, MVT::i32, Custom);
setOperationAction(ISD::SUBE, MVT::i32, Custom);
setOperationAction(ISD::ADDC, MVT::i64, Custom);
setOperationAction(ISD::ADDE, MVT::i64, Custom);
setOperationAction(ISD::SUBC, MVT::i64, Custom);
setOperationAction(ISD::SUBE, MVT::i64, Custom);
// AArch64 lacks both left-rotate and popcount instructions.
setOperationAction(ISD::ROTL, MVT::i32, Expand);
setOperationAction(ISD::ROTL, MVT::i64, Expand);
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
setOperationAction(ISD::ROTL, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
}
// AArch64 doesn't have i32 MULH{S|U}.
setOperationAction(ISD::MULHU, MVT::i32, Expand);
setOperationAction(ISD::MULHS, MVT::i32, Expand);
// AArch64 doesn't have {U|S}MUL_LOHI.
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Custom);
setOperationAction(ISD::CTPOP, MVT::i64, Custom);
setOperationAction(ISD::CTPOP, MVT::i128, Custom);
setOperationAction(ISD::ABS, MVT::i32, Custom);
setOperationAction(ISD::ABS, MVT::i64, Custom);
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
setOperationAction(ISD::SDIVREM, VT, Expand);
setOperationAction(ISD::UDIVREM, VT, Expand);
}
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
// Custom lower Add/Sub/Mul with overflow.
setOperationAction(ISD::SADDO, MVT::i32, Custom);
setOperationAction(ISD::SADDO, MVT::i64, Custom);
setOperationAction(ISD::UADDO, MVT::i32, Custom);
setOperationAction(ISD::UADDO, MVT::i64, Custom);
setOperationAction(ISD::SSUBO, MVT::i32, Custom);
setOperationAction(ISD::SSUBO, MVT::i64, Custom);
setOperationAction(ISD::USUBO, MVT::i32, Custom);
setOperationAction(ISD::USUBO, MVT::i64, Custom);
setOperationAction(ISD::SMULO, MVT::i32, Custom);
setOperationAction(ISD::SMULO, MVT::i64, Custom);
setOperationAction(ISD::UMULO, MVT::i32, Custom);
setOperationAction(ISD::UMULO, MVT::i64, Custom);
setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FPOW, MVT::f32, Expand);
setOperationAction(ISD::FPOW, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
if (Subtarget->hasFullFP16())
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom);
else
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
setOperationAction(ISD::FREM, MVT::f16, Promote);
setOperationAction(ISD::FREM, MVT::v4f16, Expand);
setOperationAction(ISD::FREM, MVT::v8f16, Expand);
setOperationAction(ISD::FPOW, MVT::f16, Promote);
setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
setOperationAction(ISD::FPOWI, MVT::f16, Promote);
setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
setOperationAction(ISD::FCOS, MVT::f16, Promote);
setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
setOperationAction(ISD::FSIN, MVT::f16, Promote);
setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
setOperationAction(ISD::FEXP, MVT::f16, Promote);
setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
setOperationAction(ISD::FEXP2, MVT::f16, Promote);
setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
setOperationAction(ISD::FLOG, MVT::f16, Promote);
setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
setOperationAction(ISD::FLOG2, MVT::f16, Promote);
setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
setOperationAction(ISD::FLOG10, MVT::f16, Promote);
setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
if (!Subtarget->hasFullFP16()) {
setOperationAction(ISD::SELECT, MVT::f16, Promote);
setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
setOperationAction(ISD::SETCC, MVT::f16, Promote);
setOperationAction(ISD::BR_CC, MVT::f16, Promote);
setOperationAction(ISD::FADD, MVT::f16, Promote);
setOperationAction(ISD::FSUB, MVT::f16, Promote);
setOperationAction(ISD::FMUL, MVT::f16, Promote);
setOperationAction(ISD::FDIV, MVT::f16, Promote);
setOperationAction(ISD::FMA, MVT::f16, Promote);
setOperationAction(ISD::FNEG, MVT::f16, Promote);
setOperationAction(ISD::FABS, MVT::f16, Promote);
setOperationAction(ISD::FCEIL, MVT::f16, Promote);
setOperationAction(ISD::FSQRT, MVT::f16, Promote);
setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
setOperationAction(ISD::FRINT, MVT::f16, Promote);
setOperationAction(ISD::FROUND, MVT::f16, Promote);
setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
// promote v4f16 to v4f32 when that is known to be safe.
setOperationAction(ISD::FADD, MVT::v4f16, Promote);
setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
setOperationAction(ISD::FABS, MVT::v4f16, Expand);
setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
setOperationAction(ISD::FMA, MVT::v4f16, Expand);
setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
setOperationAction(ISD::FABS, MVT::v8f16, Expand);
setOperationAction(ISD::FADD, MVT::v8f16, Expand);
setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
setOperationAction(ISD::FMA, MVT::v8f16, Expand);
setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
}
// AArch64 has implementations of a lot of rounding-like FP operations.
for (MVT Ty : {MVT::f32, MVT::f64}) {
setOperationAction(ISD::FFLOOR, Ty, Legal);
setOperationAction(ISD::FNEARBYINT, Ty, Legal);
setOperationAction(ISD::FCEIL, Ty, Legal);
setOperationAction(ISD::FRINT, Ty, Legal);
setOperationAction(ISD::FTRUNC, Ty, Legal);
setOperationAction(ISD::FROUND, Ty, Legal);
setOperationAction(ISD::FMINNUM, Ty, Legal);
setOperationAction(ISD::FMAXNUM, Ty, Legal);
setOperationAction(ISD::FMINIMUM, Ty, Legal);
setOperationAction(ISD::FMAXIMUM, Ty, Legal);
setOperationAction(ISD::LROUND, Ty, Legal);
setOperationAction(ISD::LLROUND, Ty, Legal);
setOperationAction(ISD::LRINT, Ty, Legal);
setOperationAction(ISD::LLRINT, Ty, Legal);
}
if (Subtarget->hasFullFP16()) {
setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal);
setOperationAction(ISD::FFLOOR, MVT::f16, Legal);
setOperationAction(ISD::FCEIL, MVT::f16, Legal);
setOperationAction(ISD::FRINT, MVT::f16, Legal);
setOperationAction(ISD::FTRUNC, MVT::f16, Legal);
setOperationAction(ISD::FROUND, MVT::f16, Legal);
setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
}
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
// Generate outline atomics library calls only if LSE was not specified for
// subtarget
if (Subtarget->outlineAtomics() && !Subtarget->hasLSE()) {
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, LibCall);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, LibCall);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, LibCall);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, LibCall);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, LibCall);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i8, LibCall);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i16, LibCall);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, LibCall);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i8, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i16, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i8, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i16, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i8, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i16, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i32, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i64, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i8, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i16, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, LibCall);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, LibCall);
#define LCALLNAMES(A, B, N) \
setLibcallName(A##N##_RELAX, #B #N "_relax"); \
setLibcallName(A##N##_ACQ, #B #N "_acq"); \
setLibcallName(A##N##_REL, #B #N "_rel"); \
setLibcallName(A##N##_ACQ_REL, #B #N "_acq_rel");
#define LCALLNAME4(A, B) \
LCALLNAMES(A, B, 1) \
LCALLNAMES(A, B, 2) LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8)
#define LCALLNAME5(A, B) \
LCALLNAMES(A, B, 1) \
LCALLNAMES(A, B, 2) \
LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8) LCALLNAMES(A, B, 16)
LCALLNAME5(RTLIB::OUTLINE_ATOMIC_CAS, __aarch64_cas)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_SWP, __aarch64_swp)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDADD, __aarch64_ldadd)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDSET, __aarch64_ldset)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDCLR, __aarch64_ldclr)
LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDEOR, __aarch64_ldeor)
#undef LCALLNAMES
#undef LCALLNAME4
#undef LCALLNAME5
}
// 128-bit loads and stores can be done without expanding
setOperationAction(ISD::LOAD, MVT::i128, Custom);
setOperationAction(ISD::STORE, MVT::i128, Custom);
// 256 bit non-temporal stores can be lowered to STNP. Do this as part of the
// custom lowering, as there are no un-paired non-temporal stores and
// legalization will break up 256 bit inputs.
setOperationAction(ISD::STORE, MVT::v32i8, Custom);
setOperationAction(ISD::STORE, MVT::v16i16, Custom);
setOperationAction(ISD::STORE, MVT::v16f16, Custom);
setOperationAction(ISD::STORE, MVT::v8i32, Custom);
setOperationAction(ISD::STORE, MVT::v8f32, Custom);
setOperationAction(ISD::STORE, MVT::v4f64, Custom);
setOperationAction(ISD::STORE, MVT::v4i64, Custom);
// Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
// This requires the Performance Monitors extension.
if (Subtarget->hasPerfMon())
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
// Issue __sincos_stret if available.
setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
} else {
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
}
if (Subtarget->getTargetTriple().isOSMSVCRT()) {
// MSVCRT doesn't have powi; fall back to pow
setLibcallName(RTLIB::POWI_F32, nullptr);
setLibcallName(RTLIB::POWI_F64, nullptr);
}
// Make floating-point constants legal for the large code model, so they don't
// become loads from the constant pool.
if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
}
// AArch64 does not have floating-point extending loads, i1 sign-extending
// load, floating-point truncating stores, or v2i32->v2i16 truncating store.
for (MVT VT : MVT::fp_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
}
for (MVT VT : MVT::integer_valuetypes())
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f128, MVT::f80, Expand);
setTruncStoreAction(MVT::f128, MVT::f64, Expand);
setTruncStoreAction(MVT::f128, MVT::f32, Expand);
setTruncStoreAction(MVT::f128, MVT::f16, Expand);
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
setOperationAction(ISD::BITCAST, MVT::f16, Custom);
setOperationAction(ISD::BITCAST, MVT::bf16, Custom);
// Indexed loads and stores are supported.
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
setIndexedLoadAction(im, MVT::i8, Legal);
setIndexedLoadAction(im, MVT::i16, Legal);
setIndexedLoadAction(im, MVT::i32, Legal);
setIndexedLoadAction(im, MVT::i64, Legal);
setIndexedLoadAction(im, MVT::f64, Legal);
setIndexedLoadAction(im, MVT::f32, Legal);
setIndexedLoadAction(im, MVT::f16, Legal);
setIndexedLoadAction(im, MVT::bf16, Legal);
setIndexedStoreAction(im, MVT::i8, Legal);
setIndexedStoreAction(im, MVT::i16, Legal);
setIndexedStoreAction(im, MVT::i32, Legal);
setIndexedStoreAction(im, MVT::i64, Legal);
setIndexedStoreAction(im, MVT::f64, Legal);
setIndexedStoreAction(im, MVT::f32, Legal);
setIndexedStoreAction(im, MVT::f16, Legal);
setIndexedStoreAction(im, MVT::bf16, Legal);
}
// Trap.
setOperationAction(ISD::TRAP, MVT::Other, Legal);
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
setOperationAction(ISD::UBSANTRAP, MVT::Other, Legal);
// We combine OR nodes for bitfield operations.
setTargetDAGCombine(ISD::OR);
// Try to create BICs for vector ANDs.
setTargetDAGCombine(ISD::AND);
// Vector add and sub nodes may conceal a high-half opportunity.
// Also, try to fold ADD into CSINC/CSINV..
setTargetDAGCombine(ISD::ADD);
setTargetDAGCombine(ISD::ABS);
setTargetDAGCombine(ISD::SUB);
setTargetDAGCombine(ISD::SRL);
setTargetDAGCombine(ISD::XOR);
setTargetDAGCombine(ISD::SINT_TO_FP);
setTargetDAGCombine(ISD::UINT_TO_FP);
setTargetDAGCombine(ISD::FP_TO_SINT);
setTargetDAGCombine(ISD::FP_TO_UINT);
setTargetDAGCombine(ISD::FDIV);
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
setTargetDAGCombine(ISD::ANY_EXTEND);
setTargetDAGCombine(ISD::ZERO_EXTEND);
setTargetDAGCombine(ISD::SIGN_EXTEND);
setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
setTargetDAGCombine(ISD::TRUNCATE);
setTargetDAGCombine(ISD::CONCAT_VECTORS);
setTargetDAGCombine(ISD::STORE);
if (Subtarget->supportsAddressTopByteIgnored())
setTargetDAGCombine(ISD::LOAD);
setTargetDAGCombine(ISD::MUL);
setTargetDAGCombine(ISD::SELECT);
setTargetDAGCombine(ISD::VSELECT);
setTargetDAGCombine(ISD::INTRINSIC_VOID);
setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
setTargetDAGCombine(ISD::VECREDUCE_ADD);
setTargetDAGCombine(ISD::GlobalAddress);
// In case of strict alignment, avoid an excessive number of byte wide stores.
MaxStoresPerMemsetOptSize = 8;
MaxStoresPerMemset = Subtarget->requiresStrictAlign()
? MaxStoresPerMemsetOptSize : 32;
MaxGluedStoresPerMemcpy = 4;
MaxStoresPerMemcpyOptSize = 4;
MaxStoresPerMemcpy = Subtarget->requiresStrictAlign()
? MaxStoresPerMemcpyOptSize : 16;
MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4;
MaxLoadsPerMemcmpOptSize = 4;
MaxLoadsPerMemcmp = Subtarget->requiresStrictAlign()
? MaxLoadsPerMemcmpOptSize : 8;
setStackPointerRegisterToSaveRestore(AArch64::SP);
setSchedulingPreference(Sched::Hybrid);
EnableExtLdPromotion = true;
// Set required alignment.
setMinFunctionAlignment(Align(4));
// Set preferred alignments.
setPrefLoopAlignment(Align(1ULL << STI.getPrefLoopLogAlignment()));
setPrefFunctionAlignment(Align(1ULL << STI.getPrefFunctionLogAlignment()));
// Only change the limit for entries in a jump table if specified by
// the sub target, but not at the command line.
unsigned MaxJT = STI.getMaximumJumpTableSize();
if (MaxJT && getMaximumJumpTableSize() == UINT_MAX)
setMaximumJumpTableSize(MaxJT);
setHasExtractBitsInsn(true);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
if (Subtarget->hasNEON()) {
// FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
// silliness like this:
setOperationAction(ISD::FABS, MVT::v1f64, Expand);
setOperationAction(ISD::FADD, MVT::v1f64, Expand);
setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
setOperationAction(ISD::FMA, MVT::v1f64, Expand);
setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
setOperationAction(ISD::FREM, MVT::v1f64, Expand);
setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
setOperationAction(ISD::MUL, MVT::v1i64, Expand);
// AArch64 doesn't have a direct vector ->f32 conversion instructions for
// elements smaller than i32, so promote the input to i32 first.
setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32);
setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32);
// i8 vector elements also need promotion to i32 for v8i8
setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32);
setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32);
// Similarly, there is no direct i32 -> f64 vector conversion instruction.
setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
// Or, direct i32 -> f16 vector conversion. Set it so custom, so the
// conversion happens in two steps: v4i32 -> v4f32 -> v4f16
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
if (Subtarget->hasFullFP16()) {
setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
} else {
// when AArch64 doesn't have fullfp16 support, promote the input
// to i32 first.
setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32);
setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32);
setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32);
setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32);
}
setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
// AArch64 doesn't have MUL.2d:
setOperationAction(ISD::MUL, MVT::v2i64, Expand);
// Custom handling for some quad-vector types to detect MULL.
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
// Saturates
for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32,
MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
setOperationAction(ISD::SADDSAT, VT, Legal);
setOperationAction(ISD::UADDSAT, VT, Legal);
setOperationAction(ISD::SSUBSAT, VT, Legal);
setOperationAction(ISD::USUBSAT, VT, Legal);
}
// Vector reductions
for (MVT VT : { MVT::v4f16, MVT::v2f32,
MVT::v8f16, MVT::v4f32, MVT::v2f64 }) {
setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
if (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16())
setOperationAction(ISD::VECREDUCE_FADD, VT, Legal);
}
for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32,
MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
}
setOperationAction(ISD::VECREDUCE_ADD, MVT::v2i64, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
// Likewise, narrowing and extending vector loads/stores aren't handled
// directly.
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) {
setOperationAction(ISD::MULHS, VT, Legal);
setOperationAction(ISD::MULHU, VT, Legal);
} else {
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
}
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
setOperationAction(ISD::CTTZ, VT, Expand);
for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
setTruncStoreAction(VT, InnerVT, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
}
}
// AArch64 has implementations of a lot of rounding-like FP operations.
for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
setOperationAction(ISD::FFLOOR, Ty, Legal);
setOperationAction(ISD::FNEARBYINT, Ty, Legal);
setOperationAction(ISD::FCEIL, Ty, Legal);
setOperationAction(ISD::FRINT, Ty, Legal);
setOperationAction(ISD::FTRUNC, Ty, Legal);
setOperationAction(ISD::FROUND, Ty, Legal);
}
if (Subtarget->hasFullFP16()) {
for (MVT Ty : {MVT::v4f16, MVT::v8f16}) {
setOperationAction(ISD::FFLOOR, Ty, Legal);
setOperationAction(ISD::FNEARBYINT, Ty, Legal);
setOperationAction(ISD::FCEIL, Ty, Legal);
setOperationAction(ISD::FRINT, Ty, Legal);
setOperationAction(ISD::FTRUNC, Ty, Legal);
setOperationAction(ISD::FROUND, Ty, Legal);
}
}
if (Subtarget->hasSVE())
setOperationAction(ISD::VSCALE, MVT::i32, Custom);
setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom);
}
if (Subtarget->hasSVE()) {
// FIXME: Add custom lowering of MLOAD to handle different passthrus (not a
// splat of 0 or undef) once vector selects supported in SVE codegen. See
// D68877 for more details.
for (auto VT : {MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64}) {
setOperationAction(ISD::BITREVERSE, VT, Custom);
setOperationAction(ISD::BSWAP, VT, Custom);
setOperationAction(ISD::CTLZ, VT, Custom);
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::CTTZ, VT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
setOperationAction(ISD::UINT_TO_FP, VT, Custom);
setOperationAction(ISD::SINT_TO_FP, VT, Custom);
setOperationAction(ISD::FP_TO_UINT, VT, Custom);
setOperationAction(ISD::FP_TO_SINT, VT, Custom);
setOperationAction(ISD::MGATHER, VT, Custom);
setOperationAction(ISD::MSCATTER, VT, Custom);
setOperationAction(ISD::MUL, VT, Custom);
setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
setOperationAction(ISD::SELECT, VT, Custom);
setOperationAction(ISD::SDIV, VT, Custom);
setOperationAction(ISD::UDIV, VT, Custom);
setOperationAction(ISD::SMIN, VT, Custom);
setOperationAction(ISD::UMIN, VT, Custom);
setOperationAction(ISD::SMAX, VT, Custom);
setOperationAction(ISD::UMAX, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::ABS, VT, Custom);
setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
}
// Illegal unpacked integer vector types.
for (auto VT : {MVT::nxv8i8, MVT::nxv4i16, MVT::nxv2i32}) {
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
}
for (auto VT : {MVT::nxv16i1, MVT::nxv8i1, MVT::nxv4i1, MVT::nxv2i1}) {
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
setOperationAction(ISD::SELECT, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
setOperationAction(ISD::TRUNCATE, VT, Custom);
setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
// There are no legal MVT::nxv16f## based types.
if (VT != MVT::nxv16i1) {
setOperationAction(ISD::SINT_TO_FP, VT, Custom);
setOperationAction(ISD::UINT_TO_FP, VT, Custom);
}
}
for (auto VT : {MVT::nxv2f16, MVT::nxv4f16, MVT::nxv8f16, MVT::nxv2f32,
MVT::nxv4f32, MVT::nxv2f64}) {
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
setOperationAction(ISD::MGATHER, VT, Custom);
setOperationAction(ISD::MSCATTER, VT, Custom);
setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
setOperationAction(ISD::SELECT, VT, Custom);
setOperationAction(ISD::FADD, VT, Custom);
setOperationAction(ISD::FDIV, VT, Custom);
setOperationAction(ISD::FMA, VT, Custom);
setOperationAction(ISD::FMAXNUM, VT, Custom);
setOperationAction(ISD::FMINNUM, VT, Custom);
setOperationAction(ISD::FMUL, VT, Custom);
setOperationAction(ISD::FNEG, VT, Custom);
setOperationAction(ISD::FSUB, VT, Custom);
setOperationAction(ISD::FCEIL, VT, Custom);
setOperationAction(ISD::FFLOOR, VT, Custom);
setOperationAction(ISD::FNEARBYINT, VT, Custom);
setOperationAction(ISD::FRINT, VT, Custom);
setOperationAction(ISD::FROUND, VT, Custom);
setOperationAction(ISD::FROUNDEVEN, VT, Custom);
setOperationAction(ISD::FTRUNC, VT, Custom);
setOperationAction(ISD::FSQRT, VT, Custom);
setOperationAction(ISD::FABS, VT, Custom);
setOperationAction(ISD::FP_EXTEND, VT, Custom);
setOperationAction(ISD::FP_ROUND, VT, Custom);
setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
}
for (auto VT : {MVT::nxv2bf16, MVT::nxv4bf16, MVT::nxv8bf16}) {
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
setOperationAction(ISD::MGATHER, VT, Custom);
setOperationAction(ISD::MSCATTER, VT, Custom);
}
setOperationAction(ISD::SPLAT_VECTOR, MVT::nxv8bf16, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
// NOTE: Currently this has to happen after computeRegisterProperties rather
// than the preferred option of combining it with the addRegisterClass call.
if (Subtarget->useSVEForFixedLengthVectors()) {
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
if (useSVEForFixedLengthVectorVT(VT))
addTypeForFixedLengthSVE(VT);
for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
if (useSVEForFixedLengthVectorVT(VT))
addTypeForFixedLengthSVE(VT);
// 64bit results can mean a bigger than NEON input.
for (auto VT : {MVT::v8i8, MVT::v4i16})
setOperationAction(ISD::TRUNCATE, VT, Custom);
setOperationAction(ISD::FP_ROUND, MVT::v4f16, Custom);
// 128bit results imply a bigger than NEON input.
for (auto VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
setOperationAction(ISD::TRUNCATE, VT, Custom);
for (auto VT : {MVT::v8f16, MVT::v4f32})
setOperationAction(ISD::FP_ROUND, VT, Expand);
// These operations are not supported on NEON but SVE can do them.
setOperationAction(ISD::BITREVERSE, MVT::v1i64, Custom);
setOperationAction(ISD::CTLZ, MVT::v1i64, Custom);
setOperationAction(ISD::CTLZ, MVT::v2i64, Custom);
setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
setOperationAction(ISD::MUL, MVT::v1i64, Custom);
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
setOperationAction(ISD::SDIV, MVT::v16i8, Custom);
setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
setOperationAction(ISD::SDIV, MVT::v8i16, Custom);
setOperationAction(ISD::SDIV, MVT::v2i32, Custom);
setOperationAction(ISD::SDIV, MVT::v4i32, Custom);
setOperationAction(ISD::SDIV, MVT::v1i64, Custom);
setOperationAction(ISD::SDIV, MVT::v2i64, Custom);
setOperationAction(ISD::SMAX, MVT::v1i64, Custom);
setOperationAction(ISD::SMAX, MVT::v2i64, Custom);
setOperationAction(ISD::SMIN, MVT::v1i64, Custom);
setOperationAction(ISD::SMIN, MVT::v2i64, Custom);
setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
setOperationAction(ISD::UDIV, MVT::v16i8, Custom);
setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
setOperationAction(ISD::UDIV, MVT::v8i16, Custom);
setOperationAction(ISD::UDIV, MVT::v2i32, Custom);
setOperationAction(ISD::UDIV, MVT::v4i32, Custom);
setOperationAction(ISD::UDIV, MVT::v1i64, Custom);
setOperationAction(ISD::UDIV, MVT::v2i64, Custom);
setOperationAction(ISD::UMAX, MVT::v1i64, Custom);
setOperationAction(ISD::UMAX, MVT::v2i64, Custom);
setOperationAction(ISD::UMIN, MVT::v1i64, Custom);
setOperationAction(ISD::UMIN, MVT::v2i64, Custom);
setOperationAction(ISD::VECREDUCE_SMAX, MVT::v2i64, Custom);
setOperationAction(ISD::VECREDUCE_SMIN, MVT::v2i64, Custom);
setOperationAction(ISD::VECREDUCE_UMAX, MVT::v2i64, Custom);
setOperationAction(ISD::VECREDUCE_UMIN, MVT::v2i64, Custom);
// Int operations with no NEON support.
for (auto VT : {MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16,
MVT::v2i32, MVT::v4i32, MVT::v2i64}) {
setOperationAction(ISD::BITREVERSE, VT, Custom);
setOperationAction(ISD::CTTZ, VT, Custom);
setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
}
// FP operations with no NEON support.
for (auto VT : {MVT::v4f16, MVT::v8f16, MVT::v2f32, MVT::v4f32,
MVT::v1f64, MVT::v2f64})
setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
// Use SVE for vectors with more than 2 elements.
for (auto VT : {MVT::v4f16, MVT::v8f16, MVT::v4f32})
setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
}
}
PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
}
void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
assert(VT.isVector() && "VT should be a vector type");
if (VT.isFloatingPoint()) {
MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT();
setOperationPromotedToType(ISD::LOAD, VT, PromoteTo);
setOperationPromotedToType(ISD::STORE, VT, PromoteTo);
}
// Mark vector float intrinsics as expand.
if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::FLOG, VT, Expand);
setOperationAction(ISD::FLOG2, VT, Expand);
setOperationAction(ISD::FLOG10, VT, Expand);
setOperationAction(ISD::FEXP, VT, Expand);
setOperationAction(ISD::FEXP2, VT, Expand);
// But we do support custom-lowering for FCOPYSIGN.
setOperationAction(ISD::FCOPYSIGN, VT, Custom);
}
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::OR, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
setOperationAction(ISD::SELECT, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
setOperationAction(ISD::VSELECT, VT, Expand);
for (MVT InnerVT : MVT::all_valuetypes())
setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
// CNT supports only B element sizes, then use UADDLP to widen.
if (VT != MVT::v8i8 && VT != MVT::v16i8)
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::FP_TO_SINT, VT, Custom);
setOperationAction(ISD::FP_TO_UINT, VT, Custom);
if (!VT.isFloatingPoint())
setOperationAction(ISD::ABS, VT, Legal);
// [SU][MIN|MAX] are available for all NEON types apart from i64.
if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
setOperationAction(Opcode, VT, Legal);
// F[MIN|MAX][NUM|NAN] are available for all FP NEON types.
if (VT.isFloatingPoint() &&
VT.getVectorElementType() != MVT::bf16 &&
(VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()))
for (unsigned Opcode :
{ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM})
setOperationAction(Opcode, VT, Legal);
if (Subtarget->isLittleEndian()) {
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
setIndexedLoadAction(im, VT, Legal);
setIndexedStoreAction(im, VT, Legal);
}
}
}
void AArch64TargetLowering::addTypeForFixedLengthSVE(MVT VT) {
assert(VT.isFixedLengthVector() && "Expected fixed length vector type!");
// By default everything must be expanded.
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
setOperationAction(Op, VT, Expand);
// We use EXTRACT_SUBVECTOR to "cast" a scalable vector to a fixed length one.
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
// Lower fixed length vector operations to scalable equivalents.
setOperationAction(ISD::ABS, VT, Custom);
setOperationAction(ISD::ADD, VT, Custom);
setOperationAction(ISD::AND, VT, Custom);
setOperationAction(ISD::ANY_EXTEND, VT, Custom);
setOperationAction(ISD::BITREVERSE, VT, Custom);
setOperationAction(ISD::BSWAP, VT, Custom);
setOperationAction(ISD::CTLZ, VT, Custom);
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::CTTZ, VT, Custom);
setOperationAction(ISD::FADD, VT, Custom);
setOperationAction(ISD::FCEIL, VT, Custom);
setOperationAction(ISD::FDIV, VT, Custom);
setOperationAction(ISD::FFLOOR, VT, Custom);
setOperationAction(ISD::FMA, VT, Custom);
setOperationAction(ISD::FMAXNUM, VT, Custom);
setOperationAction(ISD::FMINNUM, VT, Custom);
setOperationAction(ISD::FMUL, VT, Custom);
setOperationAction(ISD::FNEARBYINT, VT, Custom);
setOperationAction(ISD::FNEG, VT, Custom);
setOperationAction(ISD::FRINT, VT, Custom);
setOperationAction(ISD::FROUND, VT, Custom);
setOperationAction(ISD::FSQRT, VT, Custom);
setOperationAction(ISD::FSUB, VT, Custom);
setOperationAction(ISD::FTRUNC, VT, Custom);
setOperationAction(ISD::LOAD, VT, Custom);
setOperationAction(ISD::MUL, VT, Custom);
setOperationAction(ISD::OR, VT, Custom);
setOperationAction(ISD::SDIV, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Custom);
setOperationAction(ISD::SMAX, VT, Custom);
setOperationAction(ISD::SMIN, VT, Custom);
setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::STORE, VT, Custom);
setOperationAction(ISD::SUB, VT, Custom);
setOperationAction(ISD::TRUNCATE, VT, Custom);
setOperationAction(ISD::UDIV, VT, Custom);
setOperationAction(ISD::UMAX, VT, Custom);
setOperationAction(ISD::UMIN, VT, Custom);
setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Custom);
setOperationAction(ISD::XOR, VT, Custom);
setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
}
void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
addRegisterClass(VT, &AArch64::FPR64RegClass);
addTypeForNEON(VT, MVT::v2i32);
}
void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
addRegisterClass(VT, &AArch64::FPR128RegClass);
addTypeForNEON(VT, MVT::v4i32);
}
EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &,
LLVMContext &C, EVT VT) const {
if (!VT.isVector())
return MVT::i32;
if (VT.isScalableVector())
return EVT::getVectorVT(C, MVT::i1, VT.getVectorElementCount());
return VT.changeVectorElementTypeToInteger();
}
static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm,
const APInt &Demanded,
TargetLowering::TargetLoweringOpt &TLO,
unsigned NewOpc) {
uint64_t OldImm = Imm, NewImm, Enc;
uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask;
// Return if the immediate is already all zeros, all ones, a bimm32 or a
// bimm64.
if (Imm == 0 || Imm == Mask ||
AArch64_AM::isLogicalImmediate(Imm & Mask, Size))
return false;
unsigned EltSize = Size;
uint64_t DemandedBits = Demanded.getZExtValue();
// Clear bits that are not demanded.
Imm &= DemandedBits;
while (true) {
// The goal here is to set the non-demanded bits in a way that minimizes
// the number of switching between 0 and 1. In order to achieve this goal,
// we set the non-demanded bits to the value of the preceding demanded bits.
// For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
// non-demanded bit), we copy bit0 (1) to the least significant 'x',
// bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
// The final result is 0b11000011.
uint64_t NonDemandedBits = ~DemandedBits;
uint64_t InvertedImm = ~Imm & DemandedBits;
uint64_t RotatedImm =
((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) &
NonDemandedBits;
uint64_t Sum = RotatedImm + NonDemandedBits;
bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1));
uint64_t Ones = (Sum + Carry) & NonDemandedBits;
NewImm = (Imm | Ones) & Mask;
// If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
// or all-ones or all-zeros, in which case we can stop searching. Otherwise,
// we halve the element size and continue the search.
if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask)))
break;
// We cannot shrink the element size any further if it is 2-bits.
if (EltSize == 2)
return false;
EltSize /= 2;
Mask >>= EltSize;
uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize;
// Return if there is mismatch in any of the demanded bits of Imm and Hi.
if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0)
return false;
// Merge the upper and lower halves of Imm and DemandedBits.
Imm |= Hi;
DemandedBits |= DemandedBitsHi;
}
++NumOptimizedImms;
// Replicate the element across the register width.
while (EltSize < Size) {
NewImm |= NewImm << EltSize;
EltSize *= 2;
}
(void)OldImm;
assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&
"demanded bits should never be altered");
assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm");
// Create the new constant immediate node.
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue New;
// If the new constant immediate is all-zeros or all-ones, let the target
// independent DAG combine optimize this node.
if (NewImm == 0 || NewImm == OrigMask) {
New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
TLO.DAG.getConstant(NewImm, DL, VT));
// Otherwise, create a machine node so that target independent DAG combine
// doesn't undo this optimization.
} else {
Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size);
SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT);
New = SDValue(
TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0);
}
return TLO.CombineTo(Op, New);
}
bool AArch64TargetLowering::targetShrinkDemandedConstant(
SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
TargetLoweringOpt &TLO) const {
// Delay this optimization to as late as possible.
if (!TLO.LegalOps)
return false;
if (!EnableOptimizeLogicalImm)
return false;
EVT VT = Op.getValueType();
if (VT.isVector())
return false;
unsigned Size = VT.getSizeInBits();
assert((Size == 32 || Size == 64) &&
"i32 or i64 is expected after legalization.");
// Exit early if we demand all bits.
if (DemandedBits.countPopulation() == Size)
return false;
unsigned NewOpc;
switch (Op.getOpcode()) {
default:
return false;
case ISD::AND:
NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri;
break;
case ISD::OR:
NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri;
break;
case ISD::XOR:
NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri;
break;
}
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!C)
return false;
uint64_t Imm = C->getZExtValue();
return optimizeLogicalImm(Op, Size, Imm, DemandedBits, TLO, NewOpc);
}
/// computeKnownBitsForTargetNode - Determine which of the bits specified in
/// Mask are known to be either zero or one and return them Known.
void AArch64TargetLowering::computeKnownBitsForTargetNode(
const SDValue Op, KnownBits &Known,
const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
switch (Op.getOpcode()) {
default:
break;
case AArch64ISD::CSEL: {
KnownBits Known2;
Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
Known = KnownBits::commonBits(Known, Known2);
break;
}
case AArch64ISD::LOADgot:
case AArch64ISD::ADDlow: {
if (!Subtarget->isTargetILP32())
break;
// In ILP32 mode all valid pointers are in the low 4GB of the address-space.
Known.Zero = APInt::getHighBitsSet(64, 32);
break;
}
case ISD::INTRINSIC_W_CHAIN: {
ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
switch (IntID) {
default: return;
case Intrinsic::aarch64_ldaxr:
case Intrinsic::aarch64_ldxr: {
unsigned BitWidth = Known.getBitWidth();
EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
unsigned MemBits = VT.getScalarSizeInBits();
Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
return;
}
}
break;
}
case ISD::INTRINSIC_WO_CHAIN:
case ISD::INTRINSIC_VOID: {
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
switch (IntNo) {
default:
break;
case Intrinsic::aarch64_neon_umaxv:
case Intrinsic::aarch64_neon_uminv: {
// Figure out the datatype of the vector operand. The UMINV instruction
// will zero extend the result, so we can mark as known zero all the
// bits larger than the element datatype. 32-bit or larget doesn't need
// this as those are legal types and will be handled by isel directly.
MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
unsigned BitWidth = Known.getBitWidth();
if (VT == MVT::v8i8 || VT == MVT::v16i8) {
assert(BitWidth >= 8 && "Unexpected width!");
APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
Known.Zero |= Mask;
} else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
assert(BitWidth >= 16 && "Unexpected width!");
APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
Known.Zero |= Mask;
}
break;
} break;
}
}
}
}
MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
EVT) const {
return MVT::i64;
}
bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
bool *Fast) const {
if (Subtarget->requiresStrictAlign())
return false;
if (Fast) {
// Some CPUs are fine with unaligned stores except for 128-bit ones.
*Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
// See comments in performSTORECombine() for more details about
// these conditions.
// Code that uses clang vector extensions can mark that it
// wants unaligned accesses to be treated as fast by
// underspecifying alignment to be 1 or 2.
Alignment <= 2 ||
// Disregard v2i64. Memcpy lowering produces those and splitting
// them regresses performance on micro-benchmarks and olden/bh.
VT == MVT::v2i64;
}
return true;
}
// Same as above but handling LLTs instead.
bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
LLT Ty, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
bool *Fast) const {
if (Subtarget->requiresStrictAlign())
return false;
if (Fast) {
// Some CPUs are fine with unaligned stores except for 128-bit ones.
*Fast = !Subtarget->isMisaligned128StoreSlow() ||
Ty.getSizeInBytes() != 16 ||
// See comments in performSTORECombine() for more details about
// these conditions.
// Code that uses clang vector extensions can mark that it
// wants unaligned accesses to be treated as fast by
// underspecifying alignment to be 1 or 2.
Alignment <= 2 ||
// Disregard v2i64. Memcpy lowering produces those and splitting
// them regresses performance on micro-benchmarks and olden/bh.
Ty == LLT::vector(2, 64);
}
return true;
}
FastISel *
AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const {
return AArch64::createFastISel(funcInfo, libInfo);
}
const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
#define MAKE_CASE(V) \
case V: \
return #V;
switch ((AArch64ISD::NodeType)Opcode) {
case AArch64ISD::FIRST_NUMBER:
break;
MAKE_CASE(AArch64ISD::CALL)
MAKE_CASE(AArch64ISD::ADRP)
MAKE_CASE(AArch64ISD::ADR)
MAKE_CASE(AArch64ISD::ADDlow)
MAKE_CASE(AArch64ISD::LOADgot)
MAKE_CASE(AArch64ISD::RET_FLAG)
MAKE_CASE(AArch64ISD::BRCOND)
MAKE_CASE(AArch64ISD::CSEL)
MAKE_CASE(AArch64ISD::FCSEL)
MAKE_CASE(AArch64ISD::CSINV)
MAKE_CASE(AArch64ISD::CSNEG)
MAKE_CASE(AArch64ISD::CSINC)
MAKE_CASE(AArch64ISD::THREAD_POINTER)
MAKE_CASE(AArch64ISD::TLSDESC_CALLSEQ)
MAKE_CASE(AArch64ISD::ADD_PRED)
MAKE_CASE(AArch64ISD::MUL_PRED)
MAKE_CASE(AArch64ISD::SDIV_PRED)
MAKE_CASE(AArch64ISD::SHL_PRED)
MAKE_CASE(AArch64ISD::SMAX_PRED)
MAKE_CASE(AArch64ISD::SMIN_PRED)
MAKE_CASE(AArch64ISD::SRA_PRED)
MAKE_CASE(AArch64ISD::SRL_PRED)
MAKE_CASE(AArch64ISD::SUB_PRED)
MAKE_CASE(AArch64ISD::UDIV_PRED)
MAKE_CASE(AArch64ISD::UMAX_PRED)
MAKE_CASE(AArch64ISD::UMIN_PRED)
MAKE_CASE(AArch64ISD::FNEG_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FCEIL_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FFLOOR_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FNEARBYINT_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FRINT_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FROUND_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FTRUNC_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FP_ROUND_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FP_EXTEND_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FCVTZU_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FCVTZS_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FSQRT_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FRECPX_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::FABS_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::ABS_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::NEG_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::SETCC_MERGE_ZERO)
MAKE_CASE(AArch64ISD::ADC)
MAKE_CASE(AArch64ISD::SBC)
MAKE_CASE(AArch64ISD::ADDS)
MAKE_CASE(AArch64ISD::SUBS)
MAKE_CASE(AArch64ISD::ADCS)
MAKE_CASE(AArch64ISD::SBCS)
MAKE_CASE(AArch64ISD::ANDS)
MAKE_CASE(AArch64ISD::CCMP)
MAKE_CASE(AArch64ISD::CCMN)
MAKE_CASE(AArch64ISD::FCCMP)
MAKE_CASE(AArch64ISD::FCMP)
MAKE_CASE(AArch64ISD::STRICT_FCMP)
MAKE_CASE(AArch64ISD::STRICT_FCMPE)
MAKE_CASE(AArch64ISD::DUP)
MAKE_CASE(AArch64ISD::DUPLANE8)
MAKE_CASE(AArch64ISD::DUPLANE16)
MAKE_CASE(AArch64ISD::DUPLANE32)
MAKE_CASE(AArch64ISD::DUPLANE64)
MAKE_CASE(AArch64ISD::MOVI)
MAKE_CASE(AArch64ISD::MOVIshift)
MAKE_CASE(AArch64ISD::MOVIedit)
MAKE_CASE(AArch64ISD::MOVImsl)
MAKE_CASE(AArch64ISD::FMOV)
MAKE_CASE(AArch64ISD::MVNIshift)
MAKE_CASE(AArch64ISD::MVNImsl)
MAKE_CASE(AArch64ISD::BICi)
MAKE_CASE(AArch64ISD::ORRi)
MAKE_CASE(AArch64ISD::BSP)
MAKE_CASE(AArch64ISD::NEG)
MAKE_CASE(AArch64ISD::EXTR)
MAKE_CASE(AArch64ISD::ZIP1)
MAKE_CASE(AArch64ISD::ZIP2)
MAKE_CASE(AArch64ISD::UZP1)
MAKE_CASE(AArch64ISD::UZP2)
MAKE_CASE(AArch64ISD::TRN1)
MAKE_CASE(AArch64ISD::TRN2)
MAKE_CASE(AArch64ISD::REV16)
MAKE_CASE(AArch64ISD::REV32)
MAKE_CASE(AArch64ISD::REV64)
MAKE_CASE(AArch64ISD::EXT)
MAKE_CASE(AArch64ISD::VSHL)
MAKE_CASE(AArch64ISD::VLSHR)
MAKE_CASE(AArch64ISD::VASHR)
MAKE_CASE(AArch64ISD::VSLI)
MAKE_CASE(AArch64ISD::VSRI)
MAKE_CASE(AArch64ISD::CMEQ)
MAKE_CASE(AArch64ISD::CMGE)
MAKE_CASE(AArch64ISD::CMGT)
MAKE_CASE(AArch64ISD::CMHI)
MAKE_CASE(AArch64ISD::CMHS)
MAKE_CASE(AArch64ISD::FCMEQ)
MAKE_CASE(AArch64ISD::FCMGE)
MAKE_CASE(AArch64ISD::FCMGT)
MAKE_CASE(AArch64ISD::CMEQz)
MAKE_CASE(AArch64ISD::CMGEz)
MAKE_CASE(AArch64ISD::CMGTz)
MAKE_CASE(AArch64ISD::CMLEz)
MAKE_CASE(AArch64ISD::CMLTz)
MAKE_CASE(AArch64ISD::FCMEQz)
MAKE_CASE(AArch64ISD::FCMGEz)
MAKE_CASE(AArch64ISD::FCMGTz)
MAKE_CASE(AArch64ISD::FCMLEz)
MAKE_CASE(AArch64ISD::FCMLTz)
MAKE_CASE(AArch64ISD::SADDV)
MAKE_CASE(AArch64ISD::UADDV)
MAKE_CASE(AArch64ISD::SRHADD)
MAKE_CASE(AArch64ISD::URHADD)
MAKE_CASE(AArch64ISD::SHADD)
MAKE_CASE(AArch64ISD::UHADD)
MAKE_CASE(AArch64ISD::SMINV)
MAKE_CASE(AArch64ISD::UMINV)
MAKE_CASE(AArch64ISD::SMAXV)
MAKE_CASE(AArch64ISD::UMAXV)
MAKE_CASE(AArch64ISD::SADDV_PRED)
MAKE_CASE(AArch64ISD::UADDV_PRED)
MAKE_CASE(AArch64ISD::SMAXV_PRED)
MAKE_CASE(AArch64ISD::UMAXV_PRED)
MAKE_CASE(AArch64ISD::SMINV_PRED)
MAKE_CASE(AArch64ISD::UMINV_PRED)
MAKE_CASE(AArch64ISD::ORV_PRED)
MAKE_CASE(AArch64ISD::EORV_PRED)
MAKE_CASE(AArch64ISD::ANDV_PRED)
MAKE_CASE(AArch64ISD::CLASTA_N)
MAKE_CASE(AArch64ISD::CLASTB_N)
MAKE_CASE(AArch64ISD::LASTA)
MAKE_CASE(AArch64ISD::LASTB)
MAKE_CASE(AArch64ISD::REINTERPRET_CAST)
MAKE_CASE(AArch64ISD::TBL)
MAKE_CASE(AArch64ISD::FADD_PRED)
MAKE_CASE(AArch64ISD::FADDA_PRED)
MAKE_CASE(AArch64ISD::FADDV_PRED)
MAKE_CASE(AArch64ISD::FDIV_PRED)
MAKE_CASE(AArch64ISD::FMA_PRED)
MAKE_CASE(AArch64ISD::FMAXV_PRED)
MAKE_CASE(AArch64ISD::FMAXNM_PRED)
MAKE_CASE(AArch64ISD::FMAXNMV_PRED)
MAKE_CASE(AArch64ISD::FMINV_PRED)
MAKE_CASE(AArch64ISD::FMINNM_PRED)
MAKE_CASE(AArch64ISD::FMINNMV_PRED)
MAKE_CASE(AArch64ISD::FMUL_PRED)
MAKE_CASE(AArch64ISD::FSUB_PRED)
MAKE_CASE(AArch64ISD::BIT)
MAKE_CASE(AArch64ISD::CBZ)
MAKE_CASE(AArch64ISD::CBNZ)
MAKE_CASE(AArch64ISD::TBZ)
MAKE_CASE(AArch64ISD::TBNZ)
MAKE_CASE(AArch64ISD::TC_RETURN)
MAKE_CASE(AArch64ISD::PREFETCH)
MAKE_CASE(AArch64ISD::SITOF)
MAKE_CASE(AArch64ISD::UITOF)
MAKE_CASE(AArch64ISD::NVCAST)
MAKE_CASE(AArch64ISD::SQSHL_I)
MAKE_CASE(AArch64ISD::UQSHL_I)
MAKE_CASE(AArch64ISD::SRSHR_I)
MAKE_CASE(AArch64ISD::URSHR_I)
MAKE_CASE(AArch64ISD::SQSHLU_I)
MAKE_CASE(AArch64ISD::WrapperLarge)
MAKE_CASE(AArch64ISD::LD2post)
MAKE_CASE(AArch64ISD::LD3post)
MAKE_CASE(AArch64ISD::LD4post)
MAKE_CASE(AArch64ISD::ST2post)
MAKE_CASE(AArch64ISD::ST3post)
MAKE_CASE(AArch64ISD::ST4post)
MAKE_CASE(AArch64ISD::LD1x2post)
MAKE_CASE(AArch64ISD::LD1x3post)
MAKE_CASE(AArch64ISD::LD1x4post)
MAKE_CASE(AArch64ISD::ST1x2post)
MAKE_CASE(AArch64ISD::ST1x3post)
MAKE_CASE(AArch64ISD::ST1x4post)
MAKE_CASE(AArch64ISD::LD1DUPpost)
MAKE_CASE(AArch64ISD::LD2DUPpost)
MAKE_CASE(AArch64ISD::LD3DUPpost)
MAKE_CASE(AArch64ISD::LD4DUPpost)
MAKE_CASE(AArch64ISD::LD1LANEpost)
MAKE_CASE(AArch64ISD::LD2LANEpost)
MAKE_CASE(AArch64ISD::LD3LANEpost)
MAKE_CASE(AArch64ISD::LD4LANEpost)
MAKE_CASE(AArch64ISD::ST2LANEpost)
MAKE_CASE(AArch64ISD::ST3LANEpost)
MAKE_CASE(AArch64ISD::ST4LANEpost)
MAKE_CASE(AArch64ISD::SMULL)
MAKE_CASE(AArch64ISD::UMULL)
MAKE_CASE(AArch64ISD::FRECPE)
MAKE_CASE(AArch64ISD::FRECPS)
MAKE_CASE(AArch64ISD::FRSQRTE)
MAKE_CASE(AArch64ISD::FRSQRTS)
MAKE_CASE(AArch64ISD::STG)
MAKE_CASE(AArch64ISD::STZG)
MAKE_CASE(AArch64ISD::ST2G)
MAKE_CASE(AArch64ISD::STZ2G)
MAKE_CASE(AArch64ISD::SUNPKHI)
MAKE_CASE(AArch64ISD::SUNPKLO)
MAKE_CASE(AArch64ISD::UUNPKHI)
MAKE_CASE(AArch64ISD::UUNPKLO)
MAKE_CASE(AArch64ISD::INSR)
MAKE_CASE(AArch64ISD::PTEST)
MAKE_CASE(AArch64ISD::PTRUE)
MAKE_CASE(AArch64ISD::LD1_MERGE_ZERO)
MAKE_CASE(AArch64ISD::LD1S_MERGE_ZERO)
MAKE_CASE(AArch64ISD::LDNF1_MERGE_ZERO)
MAKE_CASE(AArch64ISD::LDNF1S_MERGE_ZERO)
MAKE_CASE(AArch64ISD::LDFF1_MERGE_ZERO)
MAKE_CASE(AArch64ISD::LDFF1S_MERGE_ZERO)
MAKE_CASE(AArch64ISD::LD1RQ_MERGE_ZERO)
MAKE_CASE(AArch64ISD::LD1RO_MERGE_ZERO)
MAKE_CASE(AArch64ISD::SVE_LD2_MERGE_ZERO)
MAKE_CASE(AArch64ISD::SVE_LD3_MERGE_ZERO)
MAKE_CASE(AArch64ISD::SVE_LD4_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1_SXTW_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1_UXTW_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1_IMM_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1S_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1S_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1S_SXTW_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1S_UXTW_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLD1S_IMM_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1_SXTW_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1_UXTW_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1_IMM_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1S_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1S_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1S_SXTW_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1S_UXTW_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1S_SXTW_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1S_UXTW_SCALED_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDFF1S_IMM_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDNT1_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDNT1_INDEX_MERGE_ZERO)
MAKE_CASE(AArch64ISD::GLDNT1S_MERGE_ZERO)
MAKE_CASE(AArch64ISD::ST1_PRED)
MAKE_CASE(AArch64ISD::SST1_PRED)
MAKE_CASE(AArch64ISD::SST1_SCALED_PRED)
MAKE_CASE(AArch64ISD::SST1_SXTW_PRED)
MAKE_CASE(AArch64ISD::SST1_UXTW_PRED)
MAKE_CASE(AArch64ISD::SST1_SXTW_SCALED_PRED)
MAKE_CASE(AArch64ISD::SST1_UXTW_SCALED_PRED)
MAKE_CASE(AArch64ISD::SST1_IMM_PRED)
MAKE_CASE(AArch64ISD::SSTNT1_PRED)
MAKE_CASE(AArch64ISD::SSTNT1_INDEX_PRED)
MAKE_CASE(AArch64ISD::LDP)
MAKE_CASE(AArch64ISD::STP)
MAKE_CASE(AArch64ISD::STNP)
MAKE_CASE(AArch64ISD::BITREVERSE_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::BSWAP_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::CTLZ_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::CTPOP_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::DUP_MERGE_PASSTHRU)
MAKE_CASE(AArch64ISD::INDEX_VECTOR)
MAKE_CASE(AArch64ISD::UABD)
MAKE_CASE(AArch64ISD::SABD)
MAKE_CASE(AArch64ISD::CALL_RVMARKER)
}
#undef MAKE_CASE
return nullptr;
}
MachineBasicBlock *
AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
MachineBasicBlock *MBB) const {
// We materialise the F128CSEL pseudo-instruction as some control flow and a
// phi node:
// OrigBB:
// [... previous instrs leading to comparison ...]
// b.ne TrueBB
// b EndBB
// TrueBB:
// ; Fallthrough
// EndBB:
// Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
DebugLoc DL = MI.getDebugLoc();
MachineFunction::iterator It = ++MBB->getIterator();
Register DestReg = MI.getOperand(0).getReg();
Register IfTrueReg = MI.getOperand(1).getReg();
Register IfFalseReg = MI.getOperand(2).getReg();
unsigned CondCode = MI.getOperand(3).getImm();
bool NZCVKilled = MI.getOperand(4).isKill();
MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(It, TrueBB);
MF->insert(It, EndBB);
// Transfer rest of current basic-block to EndBB
EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
MBB->end());
EndBB->transferSuccessorsAndUpdatePHIs(MBB);
BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
MBB->addSuccessor(TrueBB);
MBB->addSuccessor(EndBB);
// TrueBB falls through to the end.
TrueBB->addSuccessor(EndBB);
if (!NZCVKilled) {
TrueBB->addLiveIn(AArch64::NZCV);
EndBB->addLiveIn(AArch64::NZCV);
}
BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
.addReg(IfTrueReg)
.addMBB(TrueBB)
.addReg(IfFalseReg)
.addMBB(MBB);
MI.eraseFromParent();
return EndBB;
}
MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet(
MachineInstr &MI, MachineBasicBlock *BB) const {
assert(!isAsynchronousEHPersonality(classifyEHPersonality(
BB->getParent()->getFunction().getPersonalityFn())) &&
"SEH does not use catchret!");
return BB;
}
MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
MachineInstr &MI, MachineBasicBlock *BB) const {
switch (MI.getOpcode()) {
default:
#ifndef NDEBUG
MI.dump();
#endif
llvm_unreachable("Unexpected instruction for custom inserter!");
case AArch64::F128CSEL:
return EmitF128CSEL(MI, BB);
case TargetOpcode::STACKMAP:
case TargetOpcode::PATCHPOINT:
case TargetOpcode::STATEPOINT:
return emitPatchPoint(MI, BB);
case AArch64::CATCHRET:
return EmitLoweredCatchRet(MI, BB);
}
}
//===----------------------------------------------------------------------===//
// AArch64 Lowering private implementation.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Lowering Code
//===----------------------------------------------------------------------===//
/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
/// CC
static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
switch (CC) {
default:
llvm_unreachable("Unknown condition code!");
case ISD::SETNE:
return AArch64CC::NE;
case ISD::SETEQ:
return AArch64CC::EQ;
case ISD::SETGT:
return AArch64CC::GT;
case ISD::SETGE:
return AArch64CC::GE;
case ISD::SETLT:
return AArch64CC::LT;
case ISD::SETLE:
return AArch64CC::LE;
case ISD::SETUGT:
return AArch64CC::HI;
case ISD::SETUGE:
return AArch64CC::HS;
case ISD::SETULT:
return AArch64CC::LO;
case ISD::SETULE:
return AArch64CC::LS;
}
}
/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
static void changeFPCCToAArch64CC(ISD::CondCode CC,
AArch64CC::CondCode &CondCode,
AArch64CC::CondCode &CondCode2) {
CondCode2 = AArch64CC::AL;
switch (CC) {
default:
llvm_unreachable("Unknown FP condition!");
case ISD::SETEQ:
case ISD::SETOEQ:
CondCode = AArch64CC::EQ;
break;
case ISD::SETGT:
case ISD::SETOGT:
CondCode = AArch64CC::GT;
break;
case ISD::SETGE:
case ISD::SETOGE:
CondCode = AArch64CC::GE;
break;
case ISD::SETOLT:
CondCode = AArch64CC::MI;
break;
case ISD::SETOLE:
CondCode = AArch64CC::LS;
break;
case ISD::SETONE:
CondCode = AArch64CC::MI;
CondCode2 = AArch64CC::GT;
break;
case ISD::SETO:
CondCode = AArch64CC::VC;
break;
case ISD::SETUO:
CondCode = AArch64CC::VS;
break;
case ISD::SETUEQ:
CondCode = AArch64CC::EQ;
CondCode2 = AArch64CC::VS;
break;
case ISD::SETUGT:
CondCode = AArch64CC::HI;
break;
case ISD::SETUGE:
CondCode = AArch64CC::PL;
break;
case ISD::SETLT:
case ISD::SETULT:
CondCode = AArch64CC::LT;
break;
case ISD::SETLE:
case ISD::SETULE:
CondCode = AArch64CC::LE;
break;
case ISD::SETNE:
case ISD::SETUNE:
CondCode = AArch64CC::NE;
break;
}
}
/// Convert a DAG fp condition code to an AArch64 CC.
/// This differs from changeFPCCToAArch64CC in that it returns cond codes that
/// should be AND'ed instead of OR'ed.
static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
AArch64CC::CondCode &CondCode,
AArch64CC::CondCode &CondCode2) {
CondCode2 = AArch64CC::AL;
switch (CC) {
default:
changeFPCCToAArch64CC(CC, CondCode, CondCode2);
assert(CondCode2 == AArch64CC::AL);
break;
case ISD::SETONE:
// (a one b)
// == ((a olt b) || (a ogt b))
// == ((a ord b) && (a une b))
CondCode = AArch64CC::VC;
CondCode2 = AArch64CC::NE;
break;
case ISD::SETUEQ:
// (a ueq b)
// == ((a uno b) || (a oeq b))
// == ((a ule b) && (a uge b))
CondCode = AArch64CC::PL;
CondCode2 = AArch64CC::LE;
break;
}
}
/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
/// CC usable with the vector instructions. Fewer operations are available
/// without a real NZCV register, so we have to use less efficient combinations
/// to get the same effect.
static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
AArch64CC::CondCode &CondCode,
AArch64CC::CondCode &CondCode2,
bool &Invert) {
Invert = false;
switch (CC) {
default:
// Mostly the scalar mappings work fine.
changeFPCCToAArch64CC(CC, CondCode, CondCode2);
break;
case ISD::SETUO:
Invert = true;
LLVM_FALLTHROUGH;
case ISD::SETO:
CondCode = AArch64CC::MI;
CondCode2 = AArch64CC::GE;
break;
case ISD::SETUEQ:
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETUGT:
case ISD::SETUGE:
// All of the compare-mask comparisons are ordered, but we can switch
// between the two by a double inversion. E.g. ULE == !OGT.
Invert = true;
changeFPCCToAArch64CC(getSetCCInverse(CC, /* FP inverse */ MVT::f32),
CondCode, CondCode2);
break;
}
}
static bool isLegalArithImmed(uint64_t C) {
// Matches AArch64DAGToDAGISel::SelectArithImmed().
bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
LLVM_DEBUG(dbgs() << "Is imm " << C
<< " legal: " << (IsLegal ? "yes\n" : "no\n"));
return IsLegal;
}
// Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on
// the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags
// can be set differently by this operation. It comes down to whether
// "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
// everything is fine. If not then the optimization is wrong. Thus general
// comparisons are only valid if op2 != 0.
//
// So, finally, the only LLVM-native comparisons that don't mention C and V
// are SETEQ and SETNE. They're the only ones we can safely use CMN for in
// the absence of information about op2.