| //===- InstructionCombining.cpp - Combine multiple instructions -----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // InstructionCombining - Combine instructions to form fewer, simple |
| // instructions. This pass does not modify the CFG. This pass is where |
| // algebraic simplification happens. |
| // |
| // This pass combines things like: |
| // %Y = add i32 %X, 1 |
| // %Z = add i32 %Y, 1 |
| // into: |
| // %Z = add i32 %X, 2 |
| // |
| // This is a simple worklist driven algorithm. |
| // |
| // This pass guarantees that the following canonicalizations are performed on |
| // the program: |
| // 1. If a binary operator has a constant operand, it is moved to the RHS |
| // 2. Bitwise operators with constant operands are always grouped so that |
| // shifts are performed first, then or's, then and's, then xor's. |
| // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible |
| // 4. All cmp instructions on boolean values are replaced with logical ops |
| // 5. add X, X is represented as (X*2) => (X << 1) |
| // 6. Multiplies with a power-of-two constant argument are transformed into |
| // shifts. |
| // ... etc. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombineInternal.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LazyBlockFrequencyInfo.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/TargetFolder.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/Utils/Local.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DIBuilder.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/EHPersonalities.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/DebugCounter.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/InstCombine/InstCombine.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <memory> |
| #include <optional> |
| #include <string> |
| #include <utility> |
| |
| #define DEBUG_TYPE "instcombine" |
| #include "llvm/Transforms/Utils/InstructionWorklist.h" |
| #include <optional> |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| STATISTIC(NumWorklistIterations, |
| "Number of instruction combining iterations performed"); |
| STATISTIC(NumOneIteration, "Number of functions with one iteration"); |
| STATISTIC(NumTwoIterations, "Number of functions with two iterations"); |
| STATISTIC(NumThreeIterations, "Number of functions with three iterations"); |
| STATISTIC(NumFourOrMoreIterations, |
| "Number of functions with four or more iterations"); |
| |
| STATISTIC(NumCombined , "Number of insts combined"); |
| STATISTIC(NumConstProp, "Number of constant folds"); |
| STATISTIC(NumDeadInst , "Number of dead inst eliminated"); |
| STATISTIC(NumSunkInst , "Number of instructions sunk"); |
| STATISTIC(NumExpand, "Number of expansions"); |
| STATISTIC(NumFactor , "Number of factorizations"); |
| STATISTIC(NumReassoc , "Number of reassociations"); |
| DEBUG_COUNTER(VisitCounter, "instcombine-visit", |
| "Controls which instructions are visited"); |
| |
| static cl::opt<bool> |
| EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), |
| cl::init(true)); |
| |
| static cl::opt<unsigned> MaxSinkNumUsers( |
| "instcombine-max-sink-users", cl::init(32), |
| cl::desc("Maximum number of undroppable users for instruction sinking")); |
| |
| static cl::opt<unsigned> |
| MaxArraySize("instcombine-maxarray-size", cl::init(1024), |
| cl::desc("Maximum array size considered when doing a combine")); |
| |
| // FIXME: Remove this flag when it is no longer necessary to convert |
| // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false |
| // increases variable availability at the cost of accuracy. Variables that |
| // cannot be promoted by mem2reg or SROA will be described as living in memory |
| // for their entire lifetime. However, passes like DSE and instcombine can |
| // delete stores to the alloca, leading to misleading and inaccurate debug |
| // information. This flag can be removed when those passes are fixed. |
| static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", |
| cl::Hidden, cl::init(true)); |
| |
| std::optional<Instruction *> |
| InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { |
| // Handle target specific intrinsics |
| if (II.getCalledFunction()->isTargetIntrinsic()) { |
| return TTI.instCombineIntrinsic(*this, II); |
| } |
| return std::nullopt; |
| } |
| |
| std::optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( |
| IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, |
| bool &KnownBitsComputed) { |
| // Handle target specific intrinsics |
| if (II.getCalledFunction()->isTargetIntrinsic()) { |
| return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, |
| KnownBitsComputed); |
| } |
| return std::nullopt; |
| } |
| |
| std::optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( |
| IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, |
| APInt &UndefElts3, |
| std::function<void(Instruction *, unsigned, APInt, APInt &)> |
| SimplifyAndSetOp) { |
| // Handle target specific intrinsics |
| if (II.getCalledFunction()->isTargetIntrinsic()) { |
| return TTI.simplifyDemandedVectorEltsIntrinsic( |
| *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, |
| SimplifyAndSetOp); |
| } |
| return std::nullopt; |
| } |
| |
| bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const { |
| return TTI.isValidAddrSpaceCast(FromAS, ToAS); |
| } |
| |
| Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { |
| return llvm::emitGEPOffset(&Builder, DL, GEP); |
| } |
| |
| /// Legal integers and common types are considered desirable. This is used to |
| /// avoid creating instructions with types that may not be supported well by the |
| /// the backend. |
| /// NOTE: This treats i8, i16 and i32 specially because they are common |
| /// types in frontend languages. |
| bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { |
| switch (BitWidth) { |
| case 8: |
| case 16: |
| case 32: |
| return true; |
| default: |
| return DL.isLegalInteger(BitWidth); |
| } |
| } |
| |
| /// Return true if it is desirable to convert an integer computation from a |
| /// given bit width to a new bit width. |
| /// We don't want to convert from a legal or desirable type (like i8) to an |
| /// illegal type or from a smaller to a larger illegal type. A width of '1' |
| /// is always treated as a desirable type because i1 is a fundamental type in |
| /// IR, and there are many specialized optimizations for i1 types. |
| /// Common/desirable widths are equally treated as legal to convert to, in |
| /// order to open up more combining opportunities. |
| bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, |
| unsigned ToWidth) const { |
| bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); |
| bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); |
| |
| // Convert to desirable widths even if they are not legal types. |
| // Only shrink types, to prevent infinite loops. |
| if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) |
| return true; |
| |
| // If this is a legal or desiable integer from type, and the result would be |
| // an illegal type, don't do the transformation. |
| if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal) |
| return false; |
| |
| // Otherwise, if both are illegal, do not increase the size of the result. We |
| // do allow things like i160 -> i64, but not i64 -> i160. |
| if (!FromLegal && !ToLegal && ToWidth > FromWidth) |
| return false; |
| |
| return true; |
| } |
| |
| /// Return true if it is desirable to convert a computation from 'From' to 'To'. |
| /// We don't want to convert from a legal to an illegal type or from a smaller |
| /// to a larger illegal type. i1 is always treated as a legal type because it is |
| /// a fundamental type in IR, and there are many specialized optimizations for |
| /// i1 types. |
| bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { |
| // TODO: This could be extended to allow vectors. Datalayout changes might be |
| // needed to properly support that. |
| if (!From->isIntegerTy() || !To->isIntegerTy()) |
| return false; |
| |
| unsigned FromWidth = From->getPrimitiveSizeInBits(); |
| unsigned ToWidth = To->getPrimitiveSizeInBits(); |
| return shouldChangeType(FromWidth, ToWidth); |
| } |
| |
| // Return true, if No Signed Wrap should be maintained for I. |
| // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", |
| // where both B and C should be ConstantInts, results in a constant that does |
| // not overflow. This function only handles the Add and Sub opcodes. For |
| // all other opcodes, the function conservatively returns false. |
| static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { |
| auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); |
| if (!OBO || !OBO->hasNoSignedWrap()) |
| return false; |
| |
| // We reason about Add and Sub Only. |
| Instruction::BinaryOps Opcode = I.getOpcode(); |
| if (Opcode != Instruction::Add && Opcode != Instruction::Sub) |
| return false; |
| |
| const APInt *BVal, *CVal; |
| if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) |
| return false; |
| |
| bool Overflow = false; |
| if (Opcode == Instruction::Add) |
| (void)BVal->sadd_ov(*CVal, Overflow); |
| else |
| (void)BVal->ssub_ov(*CVal, Overflow); |
| |
| return !Overflow; |
| } |
| |
| static bool hasNoUnsignedWrap(BinaryOperator &I) { |
| auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); |
| return OBO && OBO->hasNoUnsignedWrap(); |
| } |
| |
| static bool hasNoSignedWrap(BinaryOperator &I) { |
| auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); |
| return OBO && OBO->hasNoSignedWrap(); |
| } |
| |
| /// Conservatively clears subclassOptionalData after a reassociation or |
| /// commutation. We preserve fast-math flags when applicable as they can be |
| /// preserved. |
| static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { |
| FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); |
| if (!FPMO) { |
| I.clearSubclassOptionalData(); |
| return; |
| } |
| |
| FastMathFlags FMF = I.getFastMathFlags(); |
| I.clearSubclassOptionalData(); |
| I.setFastMathFlags(FMF); |
| } |
| |
| /// Combine constant operands of associative operations either before or after a |
| /// cast to eliminate one of the associative operations: |
| /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) |
| /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) |
| static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, |
| InstCombinerImpl &IC) { |
| auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); |
| if (!Cast || !Cast->hasOneUse()) |
| return false; |
| |
| // TODO: Enhance logic for other casts and remove this check. |
| auto CastOpcode = Cast->getOpcode(); |
| if (CastOpcode != Instruction::ZExt) |
| return false; |
| |
| // TODO: Enhance logic for other BinOps and remove this check. |
| if (!BinOp1->isBitwiseLogicOp()) |
| return false; |
| |
| auto AssocOpcode = BinOp1->getOpcode(); |
| auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); |
| if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) |
| return false; |
| |
| Constant *C1, *C2; |
| if (!match(BinOp1->getOperand(1), m_Constant(C1)) || |
| !match(BinOp2->getOperand(1), m_Constant(C2))) |
| return false; |
| |
| // TODO: This assumes a zext cast. |
| // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 |
| // to the destination type might lose bits. |
| |
| // Fold the constants together in the destination type: |
| // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) |
| const DataLayout &DL = IC.getDataLayout(); |
| Type *DestTy = C1->getType(); |
| Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL); |
| if (!CastC2) |
| return false; |
| Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL); |
| if (!FoldedC) |
| return false; |
| |
| IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); |
| IC.replaceOperand(*BinOp1, 1, FoldedC); |
| return true; |
| } |
| |
| // Simplifies IntToPtr/PtrToInt RoundTrip Cast. |
| // inttoptr ( ptrtoint (x) ) --> x |
| Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { |
| auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); |
| if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) == |
| DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { |
| auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); |
| Type *CastTy = IntToPtr->getDestTy(); |
| if (PtrToInt && |
| CastTy->getPointerAddressSpace() == |
| PtrToInt->getSrcTy()->getPointerAddressSpace() && |
| DL.getTypeSizeInBits(PtrToInt->getSrcTy()) == |
| DL.getTypeSizeInBits(PtrToInt->getDestTy())) |
| return PtrToInt->getOperand(0); |
| } |
| return nullptr; |
| } |
| |
| /// This performs a few simplifications for operators that are associative or |
| /// commutative: |
| /// |
| /// Commutative operators: |
| /// |
| /// 1. Order operands such that they are listed from right (least complex) to |
| /// left (most complex). This puts constants before unary operators before |
| /// binary operators. |
| /// |
| /// Associative operators: |
| /// |
| /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. |
| /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. |
| /// |
| /// Associative and commutative operators: |
| /// |
| /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. |
| /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. |
| /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" |
| /// if C1 and C2 are constants. |
| bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { |
| Instruction::BinaryOps Opcode = I.getOpcode(); |
| bool Changed = false; |
| |
| do { |
| // Order operands such that they are listed from right (least complex) to |
| // left (most complex). This puts constants before unary operators before |
| // binary operators. |
| if (I.isCommutative() && getComplexity(I.getOperand(0)) < |
| getComplexity(I.getOperand(1))) |
| Changed = !I.swapOperands(); |
| |
| BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); |
| BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); |
| |
| if (I.isAssociative()) { |
| // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. |
| if (Op0 && Op0->getOpcode() == Opcode) { |
| Value *A = Op0->getOperand(0); |
| Value *B = Op0->getOperand(1); |
| Value *C = I.getOperand(1); |
| |
| // Does "B op C" simplify? |
| if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { |
| // It simplifies to V. Form "A op V". |
| replaceOperand(I, 0, A); |
| replaceOperand(I, 1, V); |
| bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); |
| bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); |
| |
| // Conservatively clear all optional flags since they may not be |
| // preserved by the reassociation. Reset nsw/nuw based on the above |
| // analysis. |
| ClearSubclassDataAfterReassociation(I); |
| |
| // Note: this is only valid because SimplifyBinOp doesn't look at |
| // the operands to Op0. |
| if (IsNUW) |
| I.setHasNoUnsignedWrap(true); |
| |
| if (IsNSW) |
| I.setHasNoSignedWrap(true); |
| |
| Changed = true; |
| ++NumReassoc; |
| continue; |
| } |
| } |
| |
| // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. |
| if (Op1 && Op1->getOpcode() == Opcode) { |
| Value *A = I.getOperand(0); |
| Value *B = Op1->getOperand(0); |
| Value *C = Op1->getOperand(1); |
| |
| // Does "A op B" simplify? |
| if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { |
| // It simplifies to V. Form "V op C". |
| replaceOperand(I, 0, V); |
| replaceOperand(I, 1, C); |
| // Conservatively clear the optional flags, since they may not be |
| // preserved by the reassociation. |
| ClearSubclassDataAfterReassociation(I); |
| Changed = true; |
| ++NumReassoc; |
| continue; |
| } |
| } |
| } |
| |
| if (I.isAssociative() && I.isCommutative()) { |
| if (simplifyAssocCastAssoc(&I, *this)) { |
| Changed = true; |
| ++NumReassoc; |
| continue; |
| } |
| |
| // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. |
| if (Op0 && Op0->getOpcode() == Opcode) { |
| Value *A = Op0->getOperand(0); |
| Value *B = Op0->getOperand(1); |
| Value *C = I.getOperand(1); |
| |
| // Does "C op A" simplify? |
| if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { |
| // It simplifies to V. Form "V op B". |
| replaceOperand(I, 0, V); |
| replaceOperand(I, 1, B); |
| // Conservatively clear the optional flags, since they may not be |
| // preserved by the reassociation. |
| ClearSubclassDataAfterReassociation(I); |
| Changed = true; |
| ++NumReassoc; |
| continue; |
| } |
| } |
| |
| // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. |
| if (Op1 && Op1->getOpcode() == Opcode) { |
| Value *A = I.getOperand(0); |
| Value *B = Op1->getOperand(0); |
| Value *C = Op1->getOperand(1); |
| |
| // Does "C op A" simplify? |
| if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { |
| // It simplifies to V. Form "B op V". |
| replaceOperand(I, 0, B); |
| replaceOperand(I, 1, V); |
| // Conservatively clear the optional flags, since they may not be |
| // preserved by the reassociation. |
| ClearSubclassDataAfterReassociation(I); |
| Changed = true; |
| ++NumReassoc; |
| continue; |
| } |
| } |
| |
| // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" |
| // if C1 and C2 are constants. |
| Value *A, *B; |
| Constant *C1, *C2, *CRes; |
| if (Op0 && Op1 && |
| Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && |
| match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && |
| match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) && |
| (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) { |
| bool IsNUW = hasNoUnsignedWrap(I) && |
| hasNoUnsignedWrap(*Op0) && |
| hasNoUnsignedWrap(*Op1); |
| BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? |
| BinaryOperator::CreateNUW(Opcode, A, B) : |
| BinaryOperator::Create(Opcode, A, B); |
| |
| if (isa<FPMathOperator>(NewBO)) { |
| FastMathFlags Flags = I.getFastMathFlags() & |
| Op0->getFastMathFlags() & |
| Op1->getFastMathFlags(); |
| NewBO->setFastMathFlags(Flags); |
| } |
| InsertNewInstWith(NewBO, I.getIterator()); |
| NewBO->takeName(Op1); |
| replaceOperand(I, 0, NewBO); |
| replaceOperand(I, 1, CRes); |
| // Conservatively clear the optional flags, since they may not be |
| // preserved by the reassociation. |
| ClearSubclassDataAfterReassociation(I); |
| if (IsNUW) |
| I.setHasNoUnsignedWrap(true); |
| |
| Changed = true; |
| continue; |
| } |
| } |
| |
| // No further simplifications. |
| return Changed; |
| } while (true); |
| } |
| |
| /// Return whether "X LOp (Y ROp Z)" is always equal to |
| /// "(X LOp Y) ROp (X LOp Z)". |
| static bool leftDistributesOverRight(Instruction::BinaryOps LOp, |
| Instruction::BinaryOps ROp) { |
| // X & (Y | Z) <--> (X & Y) | (X & Z) |
| // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) |
| if (LOp == Instruction::And) |
| return ROp == Instruction::Or || ROp == Instruction::Xor; |
| |
| // X | (Y & Z) <--> (X | Y) & (X | Z) |
| if (LOp == Instruction::Or) |
| return ROp == Instruction::And; |
| |
| // X * (Y + Z) <--> (X * Y) + (X * Z) |
| // X * (Y - Z) <--> (X * Y) - (X * Z) |
| if (LOp == Instruction::Mul) |
| return ROp == Instruction::Add || ROp == Instruction::Sub; |
| |
| return false; |
| } |
| |
| /// Return whether "(X LOp Y) ROp Z" is always equal to |
| /// "(X ROp Z) LOp (Y ROp Z)". |
| static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, |
| Instruction::BinaryOps ROp) { |
| if (Instruction::isCommutative(ROp)) |
| return leftDistributesOverRight(ROp, LOp); |
| |
| // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. |
| return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); |
| |
| // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", |
| // but this requires knowing that the addition does not overflow and other |
| // such subtleties. |
| } |
| |
| /// This function returns identity value for given opcode, which can be used to |
| /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). |
| static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { |
| if (isa<Constant>(V)) |
| return nullptr; |
| |
| return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); |
| } |
| |
| /// This function predicates factorization using distributive laws. By default, |
| /// it just returns the 'Op' inputs. But for special-cases like |
| /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add |
| /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to |
| /// allow more factorization opportunities. |
| static Instruction::BinaryOps |
| getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, |
| Value *&LHS, Value *&RHS) { |
| assert(Op && "Expected a binary operator"); |
| LHS = Op->getOperand(0); |
| RHS = Op->getOperand(1); |
| if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { |
| Constant *C; |
| if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { |
| // X << C --> X * (1 << C) |
| RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); |
| return Instruction::Mul; |
| } |
| // TODO: We can add other conversions e.g. shr => div etc. |
| } |
| return Op->getOpcode(); |
| } |
| |
| /// This tries to simplify binary operations by factorizing out common terms |
| /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). |
| static Value *tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, |
| InstCombiner::BuilderTy &Builder, |
| Instruction::BinaryOps InnerOpcode, Value *A, |
| Value *B, Value *C, Value *D) { |
| assert(A && B && C && D && "All values must be provided"); |
| |
| Value *V = nullptr; |
| Value *RetVal = nullptr; |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); |
| |
| // Does "X op' Y" always equal "Y op' X"? |
| bool InnerCommutative = Instruction::isCommutative(InnerOpcode); |
| |
| // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? |
| if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) { |
| // Does the instruction have the form "(A op' B) op (A op' D)" or, in the |
| // commutative case, "(A op' B) op (C op' A)"? |
| if (A == C || (InnerCommutative && A == D)) { |
| if (A != C) |
| std::swap(C, D); |
| // Consider forming "A op' (B op D)". |
| // If "B op D" simplifies then it can be formed with no cost. |
| V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); |
| |
| // If "B op D" doesn't simplify then only go on if one of the existing |
| // operations "A op' B" and "C op' D" will be zapped as no longer used. |
| if (!V && (LHS->hasOneUse() || RHS->hasOneUse())) |
| V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); |
| if (V) |
| RetVal = Builder.CreateBinOp(InnerOpcode, A, V); |
| } |
| } |
| |
| // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? |
| if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) { |
| // Does the instruction have the form "(A op' B) op (C op' B)" or, in the |
| // commutative case, "(A op' B) op (B op' D)"? |
| if (B == D || (InnerCommutative && B == C)) { |
| if (B != D) |
| std::swap(C, D); |
| // Consider forming "(A op C) op' B". |
| // If "A op C" simplifies then it can be formed with no cost. |
| V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); |
| |
| // If "A op C" doesn't simplify then only go on if one of the existing |
| // operations "A op' B" and "C op' D" will be zapped as no longer used. |
| if (!V && (LHS->hasOneUse() || RHS->hasOneUse())) |
| V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); |
| if (V) |
| RetVal = Builder.CreateBinOp(InnerOpcode, V, B); |
| } |
| } |
| |
| if (!RetVal) |
| return nullptr; |
| |
| ++NumFactor; |
| RetVal->takeName(&I); |
| |
| // Try to add no-overflow flags to the final value. |
| if (isa<OverflowingBinaryOperator>(RetVal)) { |
| bool HasNSW = false; |
| bool HasNUW = false; |
| if (isa<OverflowingBinaryOperator>(&I)) { |
| HasNSW = I.hasNoSignedWrap(); |
| HasNUW = I.hasNoUnsignedWrap(); |
| } |
| if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { |
| HasNSW &= LOBO->hasNoSignedWrap(); |
| HasNUW &= LOBO->hasNoUnsignedWrap(); |
| } |
| |
| if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { |
| HasNSW &= ROBO->hasNoSignedWrap(); |
| HasNUW &= ROBO->hasNoUnsignedWrap(); |
| } |
| |
| if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) { |
| // We can propagate 'nsw' if we know that |
| // %Y = mul nsw i16 %X, C |
| // %Z = add nsw i16 %Y, %X |
| // => |
| // %Z = mul nsw i16 %X, C+1 |
| // |
| // iff C+1 isn't INT_MIN |
| const APInt *CInt; |
| if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) |
| cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW); |
| |
| // nuw can be propagated with any constant or nuw value. |
| cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW); |
| } |
| } |
| return RetVal; |
| } |
| |
| // (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C)) |
| // IFF |
| // 1) the logic_shifts match |
| // 2) either both binops are binops and one is `and` or |
| // BinOp1 is `and` |
| // (logic_shift (inv_logic_shift C1, C), C) == C1 or |
| // |
| // -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C) |
| // |
| // (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt)) |
| // IFF |
| // 1) the logic_shifts match |
| // 2) BinOp1 == BinOp2 (if BinOp == `add`, then also requires `shl`). |
| // |
| // -> (BinOp (logic_shift (BinOp X, Y)), Mask) |
| // |
| // (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt)) |
| // IFF |
| // 1) Binop1 is bitwise logical operator `and`, `or` or `xor` |
| // 2) Binop2 is `not` |
| // |
| // -> (arithmetic_shift Binop1((not X), Y), Amt) |
| |
| Instruction *InstCombinerImpl::foldBinOpShiftWithShift(BinaryOperator &I) { |
| auto IsValidBinOpc = [](unsigned Opc) { |
| switch (Opc) { |
| default: |
| return false; |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::Add: |
| // Skip Sub as we only match constant masks which will canonicalize to use |
| // add. |
| return true; |
| } |
| }; |
| |
| // Check if we can distribute binop arbitrarily. `add` + `lshr` has extra |
| // constraints. |
| auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2, |
| unsigned ShOpc) { |
| assert(ShOpc != Instruction::AShr); |
| return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) || |
| ShOpc == Instruction::Shl; |
| }; |
| |
| auto GetInvShift = [](unsigned ShOpc) { |
| assert(ShOpc != Instruction::AShr); |
| return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr; |
| }; |
| |
| auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2, |
| unsigned ShOpc, Constant *CMask, |
| Constant *CShift) { |
| // If the BinOp1 is `and` we don't need to check the mask. |
| if (BinOpc1 == Instruction::And) |
| return true; |
| |
| // For all other possible transfers we need complete distributable |
| // binop/shift (anything but `add` + `lshr`). |
| if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc)) |
| return false; |
| |
| // If BinOp2 is `and`, any mask works (this only really helps for non-splat |
| // vecs, otherwise the mask will be simplified and the following check will |
| // handle it). |
| if (BinOpc2 == Instruction::And) |
| return true; |
| |
| // Otherwise, need mask that meets the below requirement. |
| // (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask |
| return ConstantExpr::get( |
| ShOpc, ConstantExpr::get(GetInvShift(ShOpc), CMask, CShift), |
| CShift) == CMask; |
| }; |
| |
| auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * { |
| Constant *CMask, *CShift; |
| Value *X, *Y, *ShiftedX, *Mask, *Shift; |
| if (!match(I.getOperand(ShOpnum), |
| m_OneUse(m_Shift(m_Value(Y), m_Value(Shift))))) |
| return nullptr; |
| if (!match(I.getOperand(1 - ShOpnum), |
| m_BinOp(m_Value(ShiftedX), m_Value(Mask)))) |
| return nullptr; |
| |
| if (!match(ShiftedX, m_OneUse(m_Shift(m_Value(X), m_Specific(Shift))))) |
| return nullptr; |
| |
| // Make sure we are matching instruction shifts and not ConstantExpr |
| auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum)); |
| auto *IX = dyn_cast<Instruction>(ShiftedX); |
| if (!IY || !IX) |
| return nullptr; |
| |
| // LHS and RHS need same shift opcode |
| unsigned ShOpc = IY->getOpcode(); |
| if (ShOpc != IX->getOpcode()) |
| return nullptr; |
| |
| // Make sure binop is real instruction and not ConstantExpr |
| auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum)); |
| if (!BO2) |
| return nullptr; |
| |
| unsigned BinOpc = BO2->getOpcode(); |
| // Make sure we have valid binops. |
| if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc)) |
| return nullptr; |
| |
| if (ShOpc == Instruction::AShr) { |
| if (Instruction::isBitwiseLogicOp(I.getOpcode()) && |
| BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) { |
| Value *NotX = Builder.CreateNot(X); |
| Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX); |
| return BinaryOperator::Create( |
| static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift); |
| } |
| |
| return nullptr; |
| } |
| |
| // If BinOp1 == BinOp2 and it's bitwise or shl with add, then just |
| // distribute to drop the shift irrelevant of constants. |
| if (BinOpc == I.getOpcode() && |
| IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) { |
| Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y); |
| Value *NewBinOp1 = Builder.CreateBinOp( |
| static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift); |
| return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask); |
| } |
| |
| // Otherwise we can only distribute by constant shifting the mask, so |
| // ensure we have constants. |
| if (!match(Shift, m_ImmConstant(CShift))) |
| return nullptr; |
| if (!match(Mask, m_ImmConstant(CMask))) |
| return nullptr; |
| |
| // Check if we can distribute the binops. |
| if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift)) |
| return nullptr; |
| |
| Constant *NewCMask = ConstantExpr::get(GetInvShift(ShOpc), CMask, CShift); |
| Value *NewBinOp2 = Builder.CreateBinOp( |
| static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask); |
| Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2); |
| return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc), |
| NewBinOp1, CShift); |
| }; |
| |
| if (Instruction *R = MatchBinOp(0)) |
| return R; |
| return MatchBinOp(1); |
| } |
| |
| // (Binop (zext C), (select C, T, F)) |
| // -> (select C, (binop 1, T), (binop 0, F)) |
| // |
| // (Binop (sext C), (select C, T, F)) |
| // -> (select C, (binop -1, T), (binop 0, F)) |
| // |
| // Attempt to simplify binary operations into a select with folded args, when |
| // one operand of the binop is a select instruction and the other operand is a |
| // zext/sext extension, whose value is the select condition. |
| Instruction * |
| InstCombinerImpl::foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I) { |
| // TODO: this simplification may be extended to any speculatable instruction, |
| // not just binops, and would possibly be handled better in FoldOpIntoSelect. |
| Instruction::BinaryOps Opc = I.getOpcode(); |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| Value *A, *CondVal, *TrueVal, *FalseVal; |
| Value *CastOp; |
| |
| auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) { |
| return match(CastOp, m_ZExtOrSExt(m_Value(A))) && |
| A->getType()->getScalarSizeInBits() == 1 && |
| match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal), |
| m_Value(FalseVal))); |
| }; |
| |
| // Make sure one side of the binop is a select instruction, and the other is a |
| // zero/sign extension operating on a i1. |
| if (MatchSelectAndCast(LHS, RHS)) |
| CastOp = LHS; |
| else if (MatchSelectAndCast(RHS, LHS)) |
| CastOp = RHS; |
| else |
| return nullptr; |
| |
| auto NewFoldedConst = [&](bool IsTrueArm, Value *V) { |
| bool IsCastOpRHS = (CastOp == RHS); |
| bool IsZExt = isa<ZExtOperator>(CastOp); |
| Constant *C; |
| |
| if (IsTrueArm) { |
| C = Constant::getNullValue(V->getType()); |
| } else if (IsZExt) { |
| unsigned BitWidth = V->getType()->getScalarSizeInBits(); |
| C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1)); |
| } else { |
| C = Constant::getAllOnesValue(V->getType()); |
| } |
| |
| return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C) |
| : Builder.CreateBinOp(Opc, C, V); |
| }; |
| |
| // If the value used in the zext/sext is the select condition, or the negated |
| // of the select condition, the binop can be simplified. |
| if (CondVal == A) { |
| Value *NewTrueVal = NewFoldedConst(false, TrueVal); |
| return SelectInst::Create(CondVal, NewTrueVal, |
| NewFoldedConst(true, FalseVal)); |
| } |
| |
| if (match(A, m_Not(m_Specific(CondVal)))) { |
| Value *NewTrueVal = NewFoldedConst(true, TrueVal); |
| return SelectInst::Create(CondVal, NewTrueVal, |
| NewFoldedConst(false, FalseVal)); |
| } |
| |
| return nullptr; |
| } |
| |
| Value *InstCombinerImpl::tryFactorizationFolds(BinaryOperator &I) { |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); |
| BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); |
| Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); |
| Value *A, *B, *C, *D; |
| Instruction::BinaryOps LHSOpcode, RHSOpcode; |
| |
| if (Op0) |
| LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); |
| if (Op1) |
| RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); |
| |
| // The instruction has the form "(A op' B) op (C op' D)". Try to factorize |
| // a common term. |
| if (Op0 && Op1 && LHSOpcode == RHSOpcode) |
| if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D)) |
| return V; |
| |
| // The instruction has the form "(A op' B) op (C)". Try to factorize common |
| // term. |
| if (Op0) |
| if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) |
| if (Value *V = |
| tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident)) |
| return V; |
| |
| // The instruction has the form "(B) op (C op' D)". Try to factorize common |
| // term. |
| if (Op1) |
| if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) |
| if (Value *V = |
| tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D)) |
| return V; |
| |
| return nullptr; |
| } |
| |
| /// This tries to simplify binary operations which some other binary operation |
| /// distributes over either by factorizing out common terms |
| /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in |
| /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). |
| /// Returns the simplified value, or null if it didn't simplify. |
| Value *InstCombinerImpl::foldUsingDistributiveLaws(BinaryOperator &I) { |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); |
| BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); |
| Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); |
| |
| // Factorization. |
| if (Value *R = tryFactorizationFolds(I)) |
| return R; |
| |
| // Expansion. |
| if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { |
| // The instruction has the form "(A op' B) op C". See if expanding it out |
| // to "(A op C) op' (B op C)" results in simplifications. |
| Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; |
| Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' |
| |
| // Disable the use of undef because it's not safe to distribute undef. |
| auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); |
| Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); |
| Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive); |
| |
| // Do "A op C" and "B op C" both simplify? |
| if (L && R) { |
| // They do! Return "L op' R". |
| ++NumExpand; |
| C = Builder.CreateBinOp(InnerOpcode, L, R); |
| C->takeName(&I); |
| return C; |
| } |
| |
| // Does "A op C" simplify to the identity value for the inner opcode? |
| if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { |
| // They do! Return "B op C". |
| ++NumExpand; |
| C = Builder.CreateBinOp(TopLevelOpcode, B, C); |
| C->takeName(&I); |
| return C; |
| } |
| |
| // Does "B op C" simplify to the identity value for the inner opcode? |
| if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { |
| // They do! Return "A op C". |
| ++NumExpand; |
| C = Builder.CreateBinOp(TopLevelOpcode, A, C); |
| C->takeName(&I); |
| return C; |
| } |
| } |
| |
| if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { |
| // The instruction has the form "A op (B op' C)". See if expanding it out |
| // to "(A op B) op' (A op C)" results in simplifications. |
| Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); |
| Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' |
| |
| // Disable the use of undef because it's not safe to distribute undef. |
| auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); |
| Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive); |
| Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); |
| |
| // Do "A op B" and "A op C" both simplify? |
| if (L && R) { |
| // They do! Return "L op' R". |
| ++NumExpand; |
| A = Builder.CreateBinOp(InnerOpcode, L, R); |
| A->takeName(&I); |
| return A; |
| } |
| |
| // Does "A op B" simplify to the identity value for the inner opcode? |
| if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { |
| // They do! Return "A op C". |
| ++NumExpand; |
| A = Builder.CreateBinOp(TopLevelOpcode, A, C); |
| A->takeName(&I); |
| return A; |
| } |
| |
| // Does "A op C" simplify to the identity value for the inner opcode? |
| if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { |
| // They do! Return "A op B". |
| ++NumExpand; |
| A = Builder.CreateBinOp(TopLevelOpcode, A, B); |
| A->takeName(&I); |
| return A; |
| } |
| } |
| |
| return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); |
| } |
| |
| Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, |
| Value *LHS, |
| Value *RHS) { |
| Value *A, *B, *C, *D, *E, *F; |
| bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); |
| bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); |
| if (!LHSIsSelect && !RHSIsSelect) |
| return nullptr; |
| |
| FastMathFlags FMF; |
| BuilderTy::FastMathFlagGuard Guard(Builder); |
| if (isa<FPMathOperator>(&I)) { |
| FMF = I.getFastMathFlags(); |
| Builder.setFastMathFlags(FMF); |
| } |
| |
| Instruction::BinaryOps Opcode = I.getOpcode(); |
| SimplifyQuery Q = SQ.getWithInstruction(&I); |
| |
| Value *Cond, *True = nullptr, *False = nullptr; |
| |
| // Special-case for add/negate combination. Replace the zero in the negation |
| // with the trailing add operand: |
| // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N) |
| // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False |
| auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * { |
| // We need an 'add' and exactly 1 arm of the select to have been simplified. |
| if (Opcode != Instruction::Add || (!True && !False) || (True && False)) |
| return nullptr; |
| |
| Value *N; |
| if (True && match(FVal, m_Neg(m_Value(N)))) { |
| Value *Sub = Builder.CreateSub(Z, N); |
| return Builder.CreateSelect(Cond, True, Sub, I.getName()); |
| } |
| if (False && match(TVal, m_Neg(m_Value(N)))) { |
| Value *Sub = Builder.CreateSub(Z, N); |
| return Builder.CreateSelect(Cond, Sub, False, I.getName()); |
| } |
| return nullptr; |
| }; |
| |
| if (LHSIsSelect && RHSIsSelect && A == D) { |
| // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) |
| Cond = A; |
| True = simplifyBinOp(Opcode, B, E, FMF, Q); |
| False = simplifyBinOp(Opcode, C, F, FMF, Q); |
| |
| if (LHS->hasOneUse() && RHS->hasOneUse()) { |
| if (False && !True) |
| True = Builder.CreateBinOp(Opcode, B, E); |
| else if (True && !False) |
| False = Builder.CreateBinOp(Opcode, C, F); |
| } |
| } else if (LHSIsSelect && LHS->hasOneUse()) { |
| // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) |
| Cond = A; |
| True = simplifyBinOp(Opcode, B, RHS, FMF, Q); |
| False = simplifyBinOp(Opcode, C, RHS, FMF, Q); |
| if (Value *NewSel = foldAddNegate(B, C, RHS)) |
| return NewSel; |
| } else if (RHSIsSelect && RHS->hasOneUse()) { |
| // X op (D ? E : F) -> D ? (X op E) : (X op F) |
| Cond = D; |
| True = simplifyBinOp(Opcode, LHS, E, FMF, Q); |
| False = simplifyBinOp(Opcode, LHS, F, FMF, Q); |
| if (Value *NewSel = foldAddNegate(E, F, LHS)) |
| return NewSel; |
| } |
| |
| if (!True || !False) |
| return nullptr; |
| |
| Value *SI = Builder.CreateSelect(Cond, True, False); |
| SI->takeName(&I); |
| return SI; |
| } |
| |
| /// Freely adapt every user of V as-if V was changed to !V. |
| /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. |
| void InstCombinerImpl::freelyInvertAllUsersOf(Value *I, Value *IgnoredUser) { |
| assert(!isa<Constant>(I) && "Shouldn't invert users of constant"); |
| for (User *U : make_early_inc_range(I->users())) { |
| if (U == IgnoredUser) |
| continue; // Don't consider this user. |
| switch (cast<Instruction>(U)->getOpcode()) { |
| case Instruction::Select: { |
| auto *SI = cast<SelectInst>(U); |
| SI->swapValues(); |
| SI->swapProfMetadata(); |
| break; |
| } |
| case Instruction::Br: |
| cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too |
| break; |
| case Instruction::Xor: |
| replaceInstUsesWith(cast<Instruction>(*U), I); |
| break; |
| default: |
| llvm_unreachable("Got unexpected user - out of sync with " |
| "canFreelyInvertAllUsersOf() ?"); |
| } |
| } |
| } |
| |
| /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a |
| /// constant zero (which is the 'negate' form). |
| Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { |
| Value *NegV; |
| if (match(V, m_Neg(m_Value(NegV)))) |
| return NegV; |
| |
| // Constants can be considered to be negated values if they can be folded. |
| if (ConstantInt *C = dyn_cast<ConstantInt>(V)) |
| return ConstantExpr::getNeg(C); |
| |
| if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) |
| if (C->getType()->getElementType()->isIntegerTy()) |
| return ConstantExpr::getNeg(C); |
| |
| if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { |
| for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { |
| Constant *Elt = CV->getAggregateElement(i); |
| if (!Elt) |
| return nullptr; |
| |
| if (isa<UndefValue>(Elt)) |
| continue; |
| |
| if (!isa<ConstantInt>(Elt)) |
| return nullptr; |
| } |
| return ConstantExpr::getNeg(CV); |
| } |
| |
| // Negate integer vector splats. |
| if (auto *CV = dyn_cast<Constant>(V)) |
| if (CV->getType()->isVectorTy() && |
| CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) |
| return ConstantExpr::getNeg(CV); |
| |
| return nullptr; |
| } |
| |
| /// A binop with a constant operand and a sign-extended boolean operand may be |
| /// converted into a select of constants by applying the binary operation to |
| /// the constant with the two possible values of the extended boolean (0 or -1). |
| Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { |
| // TODO: Handle non-commutative binop (constant is operand 0). |
| // TODO: Handle zext. |
| // TODO: Peek through 'not' of cast. |
| Value *BO0 = BO.getOperand(0); |
| Value *BO1 = BO.getOperand(1); |
| Value *X; |
| Constant *C; |
| if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || |
| !X->getType()->isIntOrIntVectorTy(1)) |
| return nullptr; |
| |
| // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) |
| Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); |
| Constant *Zero = ConstantInt::getNullValue(BO.getType()); |
| Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C); |
| Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C); |
| return SelectInst::Create(X, TVal, FVal); |
| } |
| |
| static Constant *constantFoldOperationIntoSelectOperand(Instruction &I, |
| SelectInst *SI, |
| bool IsTrueArm) { |
| SmallVector<Constant *> ConstOps; |
| for (Value *Op : I.operands()) { |
| CmpInst::Predicate Pred; |
| Constant *C = nullptr; |
| if (Op == SI) { |
| C = dyn_cast<Constant>(IsTrueArm ? SI->getTrueValue() |
| : SI->getFalseValue()); |
| } else if (match(SI->getCondition(), |
| m_ICmp(Pred, m_Specific(Op), m_Constant(C))) && |
| Pred == (IsTrueArm ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && |
| isGuaranteedNotToBeUndefOrPoison(C)) { |
| // Pass |
| } else { |
| C = dyn_cast<Constant>(Op); |
| } |
| if (C == nullptr) |
| return nullptr; |
| |
| ConstOps.push_back(C); |
| } |
| |
| return ConstantFoldInstOperands(&I, ConstOps, I.getModule()->getDataLayout()); |
| } |
| |
| static Value *foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, |
| Value *NewOp, InstCombiner &IC) { |
| Instruction *Clone = I.clone(); |
| Clone->replaceUsesOfWith(SI, NewOp); |
| IC.InsertNewInstBefore(Clone, SI->getIterator()); |
| return Clone; |
| } |
| |
| Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI, |
| bool FoldWithMultiUse) { |
| // Don't modify shared select instructions unless set FoldWithMultiUse |
| if (!SI->hasOneUse() && !FoldWithMultiUse) |
| return nullptr; |
| |
| Value *TV = SI->getTrueValue(); |
| Value *FV = SI->getFalseValue(); |
| if (!(isa<Constant>(TV) || isa<Constant>(FV))) |
| return nullptr; |
| |
| // Bool selects with constant operands can be folded to logical ops. |
| if (SI->getType()->isIntOrIntVectorTy(1)) |
| return nullptr; |
| |
| // If it's a bitcast involving vectors, make sure it has the same number of |
| // elements on both sides. |
| if (auto *BC = dyn_cast<BitCastInst>(&Op)) { |
| VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); |
| VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); |
| |
| // Verify that either both or neither are vectors. |
| if ((SrcTy == nullptr) != (DestTy == nullptr)) |
| return nullptr; |
| |
| // If vectors, verify that they have the same number of elements. |
| if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) |
| return nullptr; |
| } |
| |
| // Test if a FCmpInst instruction is used exclusively by a select as |
| // part of a minimum or maximum operation. If so, refrain from doing |
| // any other folding. This helps out other analyses which understand |
| // non-obfuscated minimum and maximum idioms. And in this case, at |
| // least one of the comparison operands has at least one user besides |
| // the compare (the select), which would often largely negate the |
| // benefit of folding anyway. |
| if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) { |
| if (CI->hasOneUse()) { |
| Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); |
| if ((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1)) |
| return nullptr; |
| } |
| } |
| |
| // Make sure that one of the select arms constant folds successfully. |
| Value *NewTV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ true); |
| Value *NewFV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ false); |
| if (!NewTV && !NewFV) |
| return nullptr; |
| |
| // Create an instruction for the arm that did not fold. |
| if (!NewTV) |
| NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this); |
| if (!NewFV) |
| NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this); |
| return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); |
| } |
| |
| static Value *simplifyInstructionWithPHI(Instruction &I, PHINode *PN, |
| Value *InValue, BasicBlock *InBB, |
| const DataLayout &DL, |
| const SimplifyQuery SQ) { |
| // NB: It is a precondition of this transform that the operands be |
| // phi translatable! This is usually trivially satisfied by limiting it |
| // to constant ops, and for selects we do a more sophisticated check. |
| SmallVector<Value *> Ops; |
| for (Value *Op : I.operands()) { |
| if (Op == PN) |
| Ops.push_back(InValue); |
| else |
| Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB)); |
| } |
| |
| // Don't consider the simplification successful if we get back a constant |
| // expression. That's just an instruction in hiding. |
| // Also reject the case where we simplify back to the phi node. We wouldn't |
| // be able to remove it in that case. |
| Value *NewVal = simplifyInstructionWithOperands( |
| &I, Ops, SQ.getWithInstruction(InBB->getTerminator())); |
| if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr())) |
| return NewVal; |
| |
| // Check if incoming PHI value can be replaced with constant |
| // based on implied condition. |
| BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator()); |
| const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I); |
| if (TerminatorBI && TerminatorBI->isConditional() && |
| TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) { |
| bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent(); |
| std::optional<bool> ImpliedCond = |
| isImpliedCondition(TerminatorBI->getCondition(), ICmp->getPredicate(), |
| Ops[0], Ops[1], DL, LHSIsTrue); |
| if (ImpliedCond) |
| return ConstantInt::getBool(I.getType(), ImpliedCond.value()); |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { |
| unsigned NumPHIValues = PN->getNumIncomingValues(); |
| if (NumPHIValues == 0) |
| return nullptr; |
| |
| // We normally only transform phis with a single use. However, if a PHI has |
| // multiple uses and they are all the same operation, we can fold *all* of the |
| // uses into the PHI. |
| if (!PN->hasOneUse()) { |
| // Walk the use list for the instruction, comparing them to I. |
| for (User *U : PN->users()) { |
| Instruction *UI = cast<Instruction>(U); |
| if (UI != &I && !I.isIdenticalTo(UI)) |
| return nullptr; |
| } |
| // Otherwise, we can replace *all* users with the new PHI we form. |
| } |
| |
| // Check to see whether the instruction can be folded into each phi operand. |
| // If there is one operand that does not fold, remember the BB it is in. |
| // If there is more than one or if *it* is a PHI, bail out. |
| SmallVector<Value *> NewPhiValues; |
| BasicBlock *NonSimplifiedBB = nullptr; |
| Value *NonSimplifiedInVal = nullptr; |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| Value *InVal = PN->getIncomingValue(i); |
| BasicBlock *InBB = PN->getIncomingBlock(i); |
| |
| if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) { |
| NewPhiValues.push_back(NewVal); |
| continue; |
| } |
| |
| if (NonSimplifiedBB) return nullptr; // More than one non-simplified value. |
| |
| NonSimplifiedBB = InBB; |
| NonSimplifiedInVal = InVal; |
| NewPhiValues.push_back(nullptr); |
| |
| // If the InVal is an invoke at the end of the pred block, then we can't |
| // insert a computation after it without breaking the edge. |
| if (isa<InvokeInst>(InVal)) |
| if (cast<Instruction>(InVal)->getParent() == NonSimplifiedBB) |
| return nullptr; |
| |
| // If the incoming non-constant value is reachable from the phis block, |
| // we'll push the operation across a loop backedge. This could result in |
| // an infinite combine loop, and is generally non-profitable (especially |
| // if the operation was originally outside the loop). |
| if (isPotentiallyReachable(PN->getParent(), NonSimplifiedBB, nullptr, &DT, |
| LI)) |
| return nullptr; |
| } |
| |
| // If there is exactly one non-simplified value, we can insert a copy of the |
| // operation in that block. However, if this is a critical edge, we would be |
| // inserting the computation on some other paths (e.g. inside a loop). Only |
| // do this if the pred block is unconditionally branching into the phi block. |
| // Also, make sure that the pred block is not dead code. |
| if (NonSimplifiedBB != nullptr) { |
| BranchInst *BI = dyn_cast<BranchInst>(NonSimplifiedBB->getTerminator()); |
| if (!BI || !BI->isUnconditional() || |
| !DT.isReachableFromEntry(NonSimplifiedBB)) |
| return nullptr; |
| } |
| |
| // Okay, we can do the transformation: create the new PHI node. |
| PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); |
| InsertNewInstBefore(NewPN, PN->getIterator()); |
| NewPN->takeName(PN); |
| NewPN->setDebugLoc(PN->getDebugLoc()); |
| |
| // If we are going to have to insert a new computation, do so right before the |
| // predecessor's terminator. |
| Instruction *Clone = nullptr; |
| if (NonSimplifiedBB) { |
| Clone = I.clone(); |
| for (Use &U : Clone->operands()) { |
| if (U == PN) |
| U = NonSimplifiedInVal; |
| else |
| U = U->DoPHITranslation(PN->getParent(), NonSimplifiedBB); |
| } |
| InsertNewInstBefore(Clone, NonSimplifiedBB->getTerminator()->getIterator()); |
| } |
| |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| if (NewPhiValues[i]) |
| NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i)); |
| else |
| NewPN->addIncoming(Clone, PN->getIncomingBlock(i)); |
| } |
| |
| for (User *U : make_early_inc_range(PN->users())) { |
| Instruction *User = cast<Instruction>(U); |
| if (User == &I) continue; |
| replaceInstUsesWith(*User, NewPN); |
| eraseInstFromFunction(*User); |
| } |
| |
| replaceAllDbgUsesWith(const_cast<PHINode &>(*PN), |
| const_cast<PHINode &>(*NewPN), |
| const_cast<PHINode &>(*PN), DT); |
| return replaceInstUsesWith(I, NewPN); |
| } |
| |
| Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) { |
| // TODO: This should be similar to the incoming values check in foldOpIntoPhi: |
| // we are guarding against replicating the binop in >1 predecessor. |
| // This could miss matching a phi with 2 constant incoming values. |
| auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0)); |
| auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1)); |
| if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() || |
| Phi0->getNumOperands() != Phi1->getNumOperands()) |
| return nullptr; |
| |
| // TODO: Remove the restriction for binop being in the same block as the phis. |
| if (BO.getParent() != Phi0->getParent() || |
| BO.getParent() != Phi1->getParent()) |
| return nullptr; |
| |
| // Fold if there is at least one specific constant value in phi0 or phi1's |
| // incoming values that comes from the same block and this specific constant |
| // value can be used to do optimization for specific binary operator. |
| // For example: |
| // %phi0 = phi i32 [0, %bb0], [%i, %bb1] |
| // %phi1 = phi i32 [%j, %bb0], [0, %bb1] |
| // %add = add i32 %phi0, %phi1 |
| // ==> |
| // %add = phi i32 [%j, %bb0], [%i, %bb1] |
| Constant *C = ConstantExpr::getBinOpIdentity(BO.getOpcode(), BO.getType(), |
| /*AllowRHSConstant*/ false); |
| if (C) { |
| SmallVector<Value *, 4> NewIncomingValues; |
| auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) { |
| auto &Phi0Use = std::get<0>(T); |
| auto &Phi1Use = std::get<1>(T); |
| if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use)) |
| return false; |
| Value *Phi0UseV = Phi0Use.get(); |
| Value *Phi1UseV = Phi1Use.get(); |
| if (Phi0UseV == C) |
| NewIncomingValues.push_back(Phi1UseV); |
| else if (Phi1UseV == C) |
| NewIncomingValues.push_back(Phi0UseV); |
| else |
| return false; |
| return true; |
| }; |
| |
| if (all_of(zip(Phi0->operands(), Phi1->operands()), |
| CanFoldIncomingValuePair)) { |
| PHINode *NewPhi = |
| PHINode::Create(Phi0->getType(), Phi0->getNumOperands()); |
| assert(NewIncomingValues.size() == Phi0->getNumOperands() && |
| "The number of collected incoming values should equal the number " |
| "of the original PHINode operands!"); |
| for (unsigned I = 0; I < Phi0->getNumOperands(); I++) |
| NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I)); |
| return NewPhi; |
| } |
| } |
| |
| if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2) |
| return nullptr; |
| |
| // Match a pair of incoming constants for one of the predecessor blocks. |
| BasicBlock *ConstBB, *OtherBB; |
| Constant *C0, *C1; |
| if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) { |
| ConstBB = Phi0->getIncomingBlock(0); |
| OtherBB = Phi0->getIncomingBlock(1); |
| } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) { |
| ConstBB = Phi0->getIncomingBlock(1); |
| OtherBB = Phi0->getIncomingBlock(0); |
| } else { |
| return nullptr; |
| } |
| if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1))) |
| return nullptr; |
| |
| // The block that we are hoisting to must reach here unconditionally. |
| // Otherwise, we could be speculatively executing an expensive or |
| // non-speculative op. |
| auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator()); |
| if (!PredBlockBranch || PredBlockBranch->isConditional() || |
| !DT.isReachableFromEntry(OtherBB)) |
| return nullptr; |
| |
| // TODO: This check could be tightened to only apply to binops (div/rem) that |
| // are not safe to speculatively execute. But that could allow hoisting |
| // potentially expensive instructions (fdiv for example). |
| for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter) |
| if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter)) |
| return nullptr; |
| |
| // Fold constants for the predecessor block with constant incoming values. |
| Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL); |
| if (!NewC) |
| return nullptr; |
| |
| // Make a new binop in the predecessor block with the non-constant incoming |
| // values. |
| Builder.SetInsertPoint(PredBlockBranch); |
| Value *NewBO = Builder.CreateBinOp(BO.getOpcode(), |
| Phi0->getIncomingValueForBlock(OtherBB), |
| Phi1->getIncomingValueForBlock(OtherBB)); |
| if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO)) |
| NotFoldedNewBO->copyIRFlags(&BO); |
| |
| // Replace the binop with a phi of the new values. The old phis are dead. |
| PHINode *NewPhi = PHINode::Create(BO.getType(), 2); |
| NewPhi->addIncoming(NewBO, OtherBB); |
| NewPhi->addIncoming(NewC, ConstBB); |
| return NewPhi; |
| } |
| |
| Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { |
| if (!isa<Constant>(I.getOperand(1))) |
| return nullptr; |
| |
| if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { |
| if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) |
| return NewSel; |
| } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { |
| if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) |
| return NewPhi; |
| } |
| return nullptr; |
| } |
| |
| static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { |
| // If this GEP has only 0 indices, it is the same pointer as |
| // Src. If Src is not a trivial GEP too, don't combine |
| // the indices. |
| if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && |
| !Src.hasOneUse()) |
| return false; |
| return true; |
| } |
| |
| Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { |
| if (!isa<VectorType>(Inst.getType())) |
| return nullptr; |
| |
| BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); |
| Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); |
| assert(cast<VectorType>(LHS->getType())->getElementCount() == |
| cast<VectorType>(Inst.getType())->getElementCount()); |
| assert(cast<VectorType>(RHS->getType())->getElementCount() == |
| cast<VectorType>(Inst.getType())->getElementCount()); |
| |
| // If both operands of the binop are vector concatenations, then perform the |
| // narrow binop on each pair of the source operands followed by concatenation |
| // of the results. |
| Value *L0, *L1, *R0, *R1; |
| ArrayRef<int> Mask; |
| if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && |
| match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && |
| LHS->hasOneUse() && RHS->hasOneUse() && |
| cast<ShuffleVectorInst>(LHS)->isConcat() && |
| cast<ShuffleVectorInst>(RHS)->isConcat()) { |
| // This transform does not have the speculative execution constraint as |
| // below because the shuffle is a concatenation. The new binops are |
| // operating on exactly the same elements as the existing binop. |
| // TODO: We could ease the mask requirement to allow different undef lanes, |
| // but that requires an analysis of the binop-with-undef output value. |
| Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); |
| if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) |
| BO->copyIRFlags(&Inst); |
| Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); |
| if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) |
| BO->copyIRFlags(&Inst); |
| return new ShuffleVectorInst(NewBO0, NewBO1, Mask); |
| } |
| |
| auto createBinOpReverse = [&](Value *X, Value *Y) { |
| Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName()); |
| if (auto *BO = dyn_cast<BinaryOperator>(V)) |
| BO->copyIRFlags(&Inst); |
| Module *M = Inst.getModule(); |
| Function *F = Intrinsic::getDeclaration( |
| M, Intrinsic::experimental_vector_reverse, V->getType()); |
| return CallInst::Create(F, V); |
| }; |
| |
| // NOTE: Reverse shuffles don't require the speculative execution protection |
| // below because they don't affect which lanes take part in the computation. |
| |
| Value *V1, *V2; |
| if (match(LHS, m_VecReverse(m_Value(V1)))) { |
| // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2)) |
| if (match(RHS, m_VecReverse(m_Value(V2))) && |
| (LHS->hasOneUse() || RHS->hasOneUse() || |
| (LHS == RHS && LHS->hasNUses(2)))) |
| return createBinOpReverse(V1, V2); |
| |
| // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat)) |
| if (LHS->hasOneUse() && isSplatValue(RHS)) |
| return createBinOpReverse(V1, RHS); |
| } |
| // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2)) |
| else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2))))) |
| return createBinOpReverse(LHS, V2); |
| |
| // It may not be safe to reorder shuffles and things like div, urem, etc. |
| // because we may trap when executing those ops on unknown vector elements. |
| // See PR20059. |
| if (!isSafeToSpeculativelyExecute(&Inst)) |
| return nullptr; |
| |
| auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { |
| Value *XY = Builder.CreateBinOp(Opcode, X, Y); |
| if (auto *BO = dyn_cast<BinaryOperator>(XY)) |
| BO->copyIRFlags(&Inst); |
| return new ShuffleVectorInst(XY, M); |
| }; |
| |
| // If both arguments of the binary operation are shuffles that use the same |
| // mask and shuffle within a single vector, move the shuffle after the binop. |
| if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && |
| match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && |
| V1->getType() == V2->getType() && |
| (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { |
| // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) |
| return createBinOpShuffle(V1, V2, Mask); |
| } |
| |
| // If both arguments of a commutative binop are select-shuffles that use the |
| // same mask with commuted operands, the shuffles are unnecessary. |
| if (Inst.isCommutative() && |
| match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && |
| match(RHS, |
| m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { |
| auto *LShuf = cast<ShuffleVectorInst>(LHS); |
| auto *RShuf = cast<ShuffleVectorInst>(RHS); |
| // TODO: Allow shuffles that contain undefs in the mask? |
| // That is legal, but it reduces undef knowledge. |
| // TODO: Allow arbitrary shuffles by shuffling after binop? |
| // That might be legal, but we have to deal with poison. |
| if (LShuf->isSelect() && |
| !is_contained(LShuf->getShuffleMask(), PoisonMaskElem) && |
| RShuf->isSelect() && |
| !is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) { |
| // Example: |
| // LHS = shuffle V1, V2, <0, 5, 6, 3> |
| // RHS = shuffle V2, V1, <0, 5, 6, 3> |
| // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 |
| Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); |
| NewBO->copyIRFlags(&Inst); |
| return NewBO; |
| } |
| } |
| |
| // If one argument is a shuffle within one vector and the other is a constant, |
| // try moving the shuffle after the binary operation. This canonicalization |
| // intends to move shuffles closer to other shuffles and binops closer to |
| // other binops, so they can be folded. It may also enable demanded elements |
| // transforms. |
| Constant *C; |
| auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); |
| if (InstVTy && |
| match(&Inst, |
| m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), |
| m_ImmConstant(C))) && |
| cast<FixedVectorType>(V1->getType())->getNumElements() <= |
| InstVTy->getNumElements()) { |
| assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && |
| "Shuffle should not change scalar type"); |
| |
| // Find constant NewC that has property: |
| // shuffle(NewC, ShMask) = C |
| // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) |
| // reorder is not possible. A 1-to-1 mapping is not required. Example: |
| // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> |
| bool ConstOp1 = isa<Constant>(RHS); |
| ArrayRef<int> ShMask = Mask; |
| unsigned SrcVecNumElts = |
| cast<FixedVectorType>(V1->getType())->getNumElements(); |
| UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); |
| SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); |
| bool MayChange = true; |
| unsigned NumElts = InstVTy->getNumElements(); |
| for (unsigned I = 0; I < NumElts; ++I) { |
| Constant *CElt = C->getAggregateElement(I); |
| if (ShMask[I] >= 0) { |
| assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); |
| Constant *NewCElt = NewVecC[ShMask[I]]; |
| // Bail out if: |
| // 1. The constant vector contains a constant expression. |
| // 2. The shuffle needs an element of the constant vector that can't |
| // be mapped to a new constant vector. |
| // 3. This is a widening shuffle that copies elements of V1 into the |
| // extended elements (extending with undef is allowed). |
| if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || |
| I >= SrcVecNumElts) { |
| MayChange = false; |
| break; |
| } |
| NewVecC[ShMask[I]] = CElt; |
| } |
| // If this is a widening shuffle, we must be able to extend with undef |
| // elements. If the original binop does not produce an undef in the high |
| // lanes, then this transform is not safe. |
| // Similarly for undef lanes due to the shuffle mask, we can only |
| // transform binops that preserve undef. |
| // TODO: We could shuffle those non-undef constant values into the |
| // result by using a constant vector (rather than an undef vector) |
| // as operand 1 of the new binop, but that might be too aggressive |
| // for target-independent shuffle creation. |
| if (I >= SrcVecNumElts || ShMask[I] < 0) { |
| Constant *MaybeUndef = |
| ConstOp1 |
| ? ConstantFoldBinaryOpOperands(Opcode, UndefScalar, CElt, DL) |
| : ConstantFoldBinaryOpOperands(Opcode, CElt, UndefScalar, DL); |
| if (!MaybeUndef || !match(MaybeUndef, m_Undef())) { |
| MayChange = false; |
| break; |
| } |
| } |
| } |
| if (MayChange) { |
| Constant *NewC = ConstantVector::get(NewVecC); |
| // It may not be safe to execute a binop on a vector with undef elements |
| // because the entire instruction can be folded to undef or create poison |
| // that did not exist in the original code. |
| if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) |
| NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); |
| |
| // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) |
| // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) |
| Value *NewLHS = ConstOp1 ? V1 : NewC; |
| Value *NewRHS = ConstOp1 ? NewC : V1; |
| return createBinOpShuffle(NewLHS, NewRHS, Mask); |
| } |
| } |
| |
| // Try to reassociate to sink a splat shuffle after a binary operation. |
| if (Inst.isAssociative() && Inst.isCommutative()) { |
| // Canonicalize shuffle operand as LHS. |
| if (isa<ShuffleVectorInst>(RHS)) |
| std::swap(LHS, RHS); |
| |
| Value *X; |
| ArrayRef<int> MaskC; |
| int SplatIndex; |
| Value *Y, *OtherOp; |
| if (!match(LHS, |
| m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || |
| !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || |
| X->getType() != Inst.getType() || |
| !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) |
| return nullptr; |
| |
| // FIXME: This may not be safe if the analysis allows undef elements. By |
| // moving 'Y' before the splat shuffle, we are implicitly assuming |
| // that it is not undef/poison at the splat index. |
| if (isSplatValue(OtherOp, SplatIndex)) { |
| std::swap(Y, OtherOp); |
| } else if (!isSplatValue(Y, SplatIndex)) { |
| return nullptr; |
| } |
| |
| // X and Y are splatted values, so perform the binary operation on those |
| // values followed by a splat followed by the 2nd binary operation: |
| // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp |
| Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); |
| SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); |
| Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); |
| Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); |
| |
| // Intersect FMF on both new binops. Other (poison-generating) flags are |
| // dropped to be safe. |
| if (isa<FPMathOperator>(R)) { |
| R->copyFastMathFlags(&Inst); |
| R->andIRFlags(RHS); |
| } |
| if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) |
| NewInstBO->copyIRFlags(R); |
| return R; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Try to narrow the width of a binop if at least 1 operand is an extend of |
| /// of a value. This requires a potentially expensive known bits check to make |
| /// sure the narrow op does not overflow. |
| Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { |
| // We need at least one extended operand. |
| Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); |
| |
| // If this is a sub, we swap the operands since we always want an extension |
| // on the RHS. The LHS can be an extension or a constant. |
| if (BO.getOpcode() == Instruction::Sub) |
| std::swap(Op0, Op1); |
| |
| Value *X; |
| bool IsSext = match(Op0, m_SExt(m_Value(X))); |
| if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) |
| return nullptr; |
| |
| // If both operands are the same extension from the same source type and we |
| // can eliminate at least one (hasOneUse), this might work. |
| CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; |
| Value *Y; |
| if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && |
| cast<Operator>(Op1)->getOpcode() == CastOpc && |
| (Op0->hasOneUse() || Op1->hasOneUse()))) { |
| // If that did not match, see if we have a suitable constant operand. |
| // Truncating and extending must produce the same constant. |
| Constant *WideC; |
| if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) |
| return nullptr; |
| Constant *NarrowC = getLosslessTrunc(WideC, X->getType(), CastOpc); |
| if (!NarrowC) |
| return nullptr; |
| Y = NarrowC; |
| } |
| |
| // Swap back now that we found our operands. |
| if (BO.getOpcode() == Instruction::Sub) |
| std::swap(X, Y); |
| |
| // Both operands have narrow versions. Last step: the math must not overflow |
| // in the narrow width. |
| if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) |
| return nullptr; |
| |
| // bo (ext X), (ext Y) --> ext (bo X, Y) |
| // bo (ext X), C --> ext (bo X, C') |
| Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); |
| if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { |
| if (IsSext) |
| NewBinOp->setHasNoSignedWrap(); |
| else |
| NewBinOp->setHasNoUnsignedWrap(); |
| } |
| return CastInst::Create(CastOpc, NarrowBO, BO.getType()); |
| } |
| |
| static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { |
| // At least one GEP must be inbounds. |
| if (!GEP1.isInBounds() && !GEP2.isInBounds()) |
| return false; |
| |
| return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && |
| (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); |
| } |
| |
| /// Thread a GEP operation with constant indices through the constant true/false |
| /// arms of a select. |
| static Instruction *foldSelectGEP(GetElementPtrInst &GEP, |
| InstCombiner::BuilderTy &Builder) { |
| if (!GEP.hasAllConstantIndices()) |
| return nullptr; |
| |
| Instruction *Sel; |
| Value *Cond; |
| Constant *TrueC, *FalseC; |
| if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || |
| !match(Sel, |
| m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) |
| return nullptr; |
| |
| // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' |
| // Propagate 'inbounds' and metadata from existing instructions. |
| // Note: using IRBuilder to create the constants for efficiency. |
| SmallVector<Value *, 4> IndexC(GEP.indices()); |
| bool IsInBounds = GEP.isInBounds(); |
| Type *Ty = GEP.getSourceElementType(); |
| Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", IsInBounds); |
| Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", IsInBounds); |
| return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); |
| } |
| |
| Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, |
| GEPOperator *Src) { |
| // Combine Indices - If the source pointer to this getelementptr instruction |
| // is a getelementptr instruction with matching element type, combine the |
| // indices of the two getelementptr instructions into a single instruction. |
| if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) |
| return nullptr; |
| |
| // For constant GEPs, use a more general offset-based folding approach. |
| Type *PtrTy = Src->getType()->getScalarType(); |
| if (GEP.hasAllConstantIndices() && |
| (Src->hasOneUse() || Src->hasAllConstantIndices())) { |
| // Split Src into a variable part and a constant suffix. |
| gep_type_iterator GTI = gep_type_begin(*Src); |
| Type *BaseType = GTI.getIndexedType(); |
| bool IsFirstType = true; |
| unsigned NumVarIndices = 0; |
| for (auto Pair : enumerate(Src->indices())) { |
| if (!isa<ConstantInt>(Pair.value())) { |
| BaseType = GTI.getIndexedType(); |
| IsFirstType = false; |
| NumVarIndices = Pair.index() + 1; |
| } |
| ++GTI; |
| } |
| |
| // Determine the offset for the constant suffix of Src. |
| APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0); |
| if (NumVarIndices != Src->getNumIndices()) { |
| // FIXME: getIndexedOffsetInType() does not handled scalable vectors. |
| if (BaseType->isScalableTy()) |
| return nullptr; |
| |
| SmallVector<Value *> ConstantIndices; |
| if (!IsFirstType) |
| ConstantIndices.push_back( |
| Constant::getNullValue(Type::getInt32Ty(GEP.getContext()))); |
| append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices)); |
| Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices); |
| } |
| |
| // Add the offset for GEP (which is fully constant). |
| if (!GEP.accumulateConstantOffset(DL, Offset)) |
| return nullptr; |
| |
| APInt OffsetOld = Offset; |
| // Convert the total offset back into indices. |
| SmallVector<APInt> ConstIndices = |
| DL.getGEPIndicesForOffset(BaseType, Offset); |
| if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) { |
| // If both GEP are constant-indexed, and cannot be merged in either way, |
| // convert them to a GEP of i8. |
| if (Src->hasAllConstantIndices()) |
| return replaceInstUsesWith( |
| GEP, Builder.CreateGEP( |
| Builder.getInt8Ty(), Src->getOperand(0), |
| Builder.getInt(OffsetOld), "", |
| isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)))); |
| return nullptr; |
| } |
| |
| bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)); |
| SmallVector<Value *> Indices; |
| append_range(Indices, drop_end(Src->indices(), |
| Src->getNumIndices() - NumVarIndices)); |
| for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) { |
| Indices.push_back(ConstantInt::get(GEP.getContext(), Idx)); |
| // Even if the total offset is inbounds, we may end up representing it |
| // by first performing a larger negative offset, and then a smaller |
| // positive one. The large negative offset might go out of bounds. Only |
| // preserve inbounds if all signs are the same. |
| IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative(); |
| } |
| |
| return replaceInstUsesWith( |
| GEP, Builder.CreateGEP(Src->getSourceElementType(), Src->getOperand(0), |
| Indices, "", IsInBounds)); |
| } |
| |
| if (Src->getResultElementType() != GEP.getSourceElementType()) |
| return nullptr; |
| |
| SmallVector<Value*, 8> Indices; |
| |
| // Find out whether the last index in the source GEP is a sequential idx. |
| bool EndsWithSequential = false; |
| for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); |
| I != E; ++I) |
| EndsWithSequential = I.isSequential(); |
| |
| // Can we combine the two pointer arithmetics offsets? |
| if (EndsWithSequential) { |
| // Replace: gep (gep %P, long B), long A, ... |
| // With: T = long A+B; gep %P, T, ... |
| Value *SO1 = Src->getOperand(Src->getNumOperands()-1); |
| Value *GO1 = GEP.getOperand(1); |
| |
| // If they aren't the same type, then the input hasn't been processed |
| // by the loop above yet (which canonicalizes sequential index types to |
| // intptr_t). Just avoid transforming this until the input has been |
| // normalized. |
| if (SO1->getType() != GO1->getType()) |
| return nullptr; |
| |
| Value *Sum = |
| simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); |
| // Only do the combine when we are sure the cost after the |
| // merge is never more than that before the merge. |
| if (Sum == nullptr) |
| return nullptr; |
| |
| // Update the GEP in place if possible. |
| if (Src->getNumOperands() == 2) { |
| GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); |
| replaceOperand(GEP, 0, Src->getOperand(0)); |
| replaceOperand(GEP, 1, Sum); |
| return &GEP; |
| } |
| Indices.append(Src->op_begin()+1, Src->op_end()-1); |
| Indices.push_back(Sum); |
| Indices.append(GEP.op_begin()+2, GEP.op_end()); |
| } else if (isa<Constant>(*GEP.idx_begin()) && |
| cast<Constant>(*GEP.idx_begin())->isNullValue() && |
| Src->getNumOperands() != 1) { |
| // Otherwise we can do the fold if the first index of the GEP is a zero |
| Indices.append(Src->op_begin()+1, Src->op_end()); |
| Indices.append(GEP.idx_begin()+1, GEP.idx_end()); |
| } |
| |
| if (!Indices.empty()) |
| return replaceInstUsesWith( |
| GEP, Builder.CreateGEP( |
| Src->getSourceElementType(), Src->getOperand(0), Indices, "", |
| isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)))); |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { |
| Value *PtrOp = GEP.getOperand(0); |
| SmallVector<Value *, 8> Indices(GEP.indices()); |
| Type *GEPType = GEP.getType(); |
| Type *GEPEltType = GEP.getSourceElementType(); |
| bool IsGEPSrcEleScalable = GEPEltType->isScalableTy(); |
| if (Value *V = simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(), |
| SQ.getWithInstruction(&GEP))) |
| return replaceInstUsesWith(GEP, V); |
| |
| // For vector geps, use the generic demanded vector support. |
| // Skip if GEP return type is scalable. The number of elements is unknown at |
| // compile-time. |
| if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { |
| auto VWidth = GEPFVTy->getNumElements(); |
| APInt UndefElts(VWidth, 0); |
| APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); |
| if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, |
| UndefElts)) { |
| if (V != &GEP) |
| return replaceInstUsesWith(GEP, V); |
| return &GEP; |
| } |
| |
| // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if |
| // possible (decide on canonical form for pointer broadcast), 3) exploit |
| // undef elements to decrease demanded bits |
| } |
| |
| // Eliminate unneeded casts for indices, and replace indices which displace |
| // by multiples of a zero size type with zero. |
| bool MadeChange = false; |
| |
| // Index width may not be the same width as pointer width. |
| // Data layout chooses the right type based on supported integer types. |
| Type *NewScalarIndexTy = |
| DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); |
| |
| gep_type_iterator GTI = gep_type_begin(GEP); |
| for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; |
| ++I, ++GTI) { |
| // Skip indices into struct types. |
| if (GTI.isStruct()) |
| continue; |
| |
| Type *IndexTy = (*I)->getType(); |
| Type *NewIndexType = |
| IndexTy->isVectorTy() |
| ? VectorType::get(NewScalarIndexTy, |
| cast<VectorType>(IndexTy)->getElementCount()) |
| : NewScalarIndexTy; |
| |
| // If the element type has zero size then any index over it is equivalent |
| // to an index of zero, so replace it with zero if it is not zero already. |
| Type *EltTy = GTI.getIndexedType(); |
| if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) |
| if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { |
| *I = Constant::getNullValue(NewIndexType); |
| MadeChange = true; |
| } |
| |
| if (IndexTy != NewIndexType) { |
| // If we are using a wider index than needed for this platform, shrink |
| // it to what we need. If narrower, sign-extend it to what we need. |
| // This explicit cast can make subsequent optimizations more obvious. |
| *I = Builder.CreateIntCast(*I, NewIndexType, true); |
| MadeChange = true; |
| } |
| } |
| if (MadeChange) |
| return &GEP; |
| |
| // Check to see if the inputs to the PHI node are getelementptr instructions. |
| if (auto *PN = dyn_cast<PHINode>(PtrOp)) { |
| auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); |
| if (!Op1) |
| return nullptr; |
| |
| // Don't fold a GEP into itself through a PHI node. This can only happen |
| // through the back-edge of a loop. Folding a GEP into itself means that |
| // the value of the previous iteration needs to be stored in the meantime, |
| // thus requiring an additional register variable to be live, but not |
| // actually achieving anything (the GEP still needs to be executed once per |
| // loop iteration). |
| if (Op1 == &GEP) |
| return nullptr; |
| |
| int DI = -1; |
| |
| for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { |
| auto *Op2 = dyn_cast<GetElementPtrInst>(*I); |
| if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() || |
| Op1->getSourceElementType() != Op2->getSourceElementType()) |
| return nullptr; |
| |
| // As for Op1 above, don't try to fold a GEP into itself. |
| if (Op2 == &GEP) |
| return nullptr; |
| |
| // Keep track of the type as we walk the GEP. |
| Type *CurTy = nullptr; |
| |
| for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { |
| if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) |
| return nullptr; |
| |
| if (Op1->getOperand(J) != Op2->getOperand(J)) { |
| if (DI == -1) { |
| // We have not seen any differences yet in the GEPs feeding the |
| // PHI yet, so we record this one if it is allowed to be a |
| // variable. |
| |
| // The first two arguments can vary for any GEP, the rest have to be |
| // static for struct slots |
| if (J > 1) { |
| assert(CurTy && "No current type?"); |
| if (CurTy->isStructTy()) |
| return nullptr; |
| } |
| |
| DI = J; |
| } else { |
| // The GEP is different by more than one input. While this could be |
| // extended to support GEPs that vary by more than one variable it |
| // doesn't make sense since it greatly increases the complexity and |
| // would result in an R+R+R addressing mode which no backend |
| // directly supports and would need to be broken into several |
| // simpler instructions anyway. |
| return nullptr; |
| } |
| } |
| |
| // Sink down a layer of the type for the next iteration. |
| if (J > 0) { |
| if (J == 1) { |
| CurTy = Op1->getSourceElementType(); |
| } else { |
| CurTy = |
| GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); |
| } |
| } |
| } |
| } |
| |
| // If not all GEPs are identical we'll have to create a new PHI node. |
| // Check that the old PHI node has only one use so that it will get |
| // removed. |
| if (DI != -1 && !PN->hasOneUse()) |
| return nullptr; |
| |
| auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); |
| if (DI == -1) { |
| // All the GEPs feeding the PHI are identical. Clone one down into our |
| // BB so that it can be merged with the current GEP. |
| } else { |
| // All the GEPs feeding the PHI differ at a single offset. Clone a GEP |
| // into the current block so it can be merged, and create a new PHI to |
| // set that index. |
| PHINode *NewPN; |
| { |
| IRBuilderBase::InsertPointGuard Guard(Builder); |
| Builder.SetInsertPoint(PN); |
| NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), |
| PN->getNumOperands()); |
| } |
| |
| for (auto &I : PN->operands()) |
| NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), |
| PN->getIncomingBlock(I)); |
| |
| NewGEP->setOperand(DI, NewPN); |
| } |
| |
| NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt()); |
| return replaceOperand(GEP, 0, NewGEP); |
| } |
| |
| if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) |
| if (Instruction *I = visitGEPOfGEP(GEP, Src)) |
| return I; |
| |
| // Skip if GEP source element type is scalable. The type alloc size is unknown |
| // at compile-time. |
| if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { |
| unsigned AS = GEP.getPointerAddressSpace(); |
| if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == |
| DL.getIndexSizeInBits(AS)) { |
| uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue(); |
| |
| bool Matched = false; |
| uint64_t C; |
| Value *V = nullptr; |
| if (TyAllocSize == 1) { |
| V = GEP.getOperand(1); |
| Matched = true; |
| } else if (match(GEP.getOperand(1), |
| m_AShr(m_Value(V), m_ConstantInt(C)))) { |
| if (TyAllocSize == 1ULL << C) |
| Matched = true; |
| } else if (match(GEP.getOperand(1), |
| m_SDiv(m_Value(V), m_ConstantInt(C)))) { |
| if (TyAllocSize == C) |
| Matched = true; |
| } |
| |
| // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but |
| // only if both point to the same underlying object (otherwise provenance |
| // is not necessarily retained). |
| Value *Y; |
| Value *X = GEP.getOperand(0); |
| if (Matched && |
| match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && |
| getUnderlyingObject(X) == getUnderlyingObject(Y)) |
| return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); |
| } |
| } |
| |
| // We do not handle pointer-vector geps here. |
| if (GEPType->isVectorTy()) |
| return nullptr; |
| |
| if (!GEP.isInBounds()) { |
| unsigned IdxWidth = |
| DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); |
| APInt BasePtrOffset(IdxWidth, 0); |
| Value *UnderlyingPtrOp = |
| PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, |
| BasePtrOffset); |
| bool CanBeNull, CanBeFreed; |
| uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes( |
| DL, CanBeNull, CanBeFreed); |
| if (!CanBeNull && !CanBeFreed && DerefBytes != 0) { |
| if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && |
| BasePtrOffset.isNonNegative()) { |
| APInt AllocSize(IdxWidth, DerefBytes); |
| if (BasePtrOffset.ule(AllocSize)) { |
| return GetElementPtrInst::CreateInBounds( |
| GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); |
| } |
| } |
| } |
| } |
| |
| if (Instruction *R = foldSelectGEP(GEP, Builder)) |
| return R; |
| |
| return nullptr; |
| } |
| |
| static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, |
| Instruction *AI) { |
| if (isa<ConstantPointerNull>(V)) |
| return true; |
| if (auto *LI = dyn_cast<LoadInst>(V)) |
| return isa<GlobalVariable>(LI->getPointerOperand()); |
| // Two distinct allocations will never be equal. |
| return isAllocLikeFn(V, &TLI) && V != AI; |
| } |
| |
| /// Given a call CB which uses an address UsedV, return true if we can prove the |
| /// call's only possible effect is storing to V. |
| static bool isRemovableWrite(CallBase &CB, Value *UsedV, |
| const TargetLibraryInfo &TLI) { |
| if (!CB.use_empty()) |
| // TODO: add recursion if returned attribute is present |
| return false; |
| |
| if (CB.isTerminator()) |
| // TODO: remove implementation restriction |
| return false; |
| |
| if (!CB.willReturn() || !CB.doesNotThrow()) |
| return false; |
| |
| // If the only possible side effect of the call is writing to the alloca, |
| // and the result isn't used, we can safely remove any reads implied by the |
| // call including those which might read the alloca itself. |
| std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); |
| return Dest && Dest->Ptr == UsedV; |
| } |
| |
| static bool isAllocSiteRemovable(Instruction *AI, |
| SmallVectorImpl<WeakTrackingVH> &Users, |
| const TargetLibraryInfo &TLI) { |
| SmallVector<Instruction*, 4> Worklist; |
| const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI); |
| Worklist.push_back(AI); |
| |
| do { |
| Instruction *PI = Worklist.pop_back_val(); |
| for (User *U : PI->users()) { |
| Instruction *I = cast<Instruction>(U); |
| switch (I->getOpcode()) { |
| default: |
| // Give up the moment we see something we can't handle. |
| return false; |
| |
| case Instruction::AddrSpaceCast: |
| case Instruction::BitCast: |
| case Instruction::GetElementPtr: |
| Users.emplace_back(I); |
| Worklist.push_back(I); |
| continue; |
| |
| case Instruction::ICmp: { |
| ICmpInst *ICI = cast<ICmpInst>(I); |
| // We can fold eq/ne comparisons with null to false/true, respectively. |
| // We also fold comparisons in some conditions provided the alloc has |
| // not escaped (see isNeverEqualToUnescapedAlloc). |
| if (!ICI->isEquality()) |
| return false; |
| unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; |
| if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) |
| return false; |
| Users.emplace_back(I); |
| continue; |
| } |
| |
| case Instruction::Call: |
| // Ignore no-op and store intrinsics. |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| switch (II->getIntrinsicID()) { |
| default: |
| return false; |
| |
| case Intrinsic::memmove: |
| case Intrinsic::memcpy: |
| case Intrinsic::memset: { |
| MemIntrinsic *MI = cast<MemIntrinsic>(II); |
| if (MI->isVolatile() || MI->getRawDest() != PI) |
| return false; |
| [[fallthrough]]; |
| } |
| case Intrinsic::assume: |
| case Intrinsic::invariant_start: |
| case Intrinsic::invariant_end: |
| case Intrinsic::lifetime_start: |
| case Intrinsic::lifetime_end: |
| case Intrinsic::objectsize: |
| Users.emplace_back(I); |
| continue; |
| case Intrinsic::launder_invariant_group: |
| case Intrinsic::strip_invariant_group: |
| Users.emplace_back(I); |
| Worklist.push_back(I); |
| continue; |
| } |
| } |
| |
| if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { |
| Users.emplace_back(I); |
| continue; |
| } |
| |
| if (getFreedOperand(cast<CallBase>(I), &TLI) == PI && |
| getAllocationFamily(I, &TLI) == Family) { |
| assert(Family); |
| Users.emplace_back(I); |
| continue; |
| } |
| |
| if (getReallocatedOperand(cast<CallBase>(I)) == PI && |
| getAllocationFamily(I, &TLI) == Family) { |
| assert(Family); |
| Users.emplace_back(I); |
| Worklist.push_back(I); |
| continue; |
| } |
| |
| return false; |
| |
| case Instruction::Store: { |
| StoreInst *SI = cast<StoreInst>(I); |
| if (SI->isVolatile() || SI->getPointerOperand() != PI) |
| return false; |
| Users.emplace_back(I); |
| continue; |
| } |
| } |
| llvm_unreachable("missing a return?"); |
| } |
| } while (!Worklist.empty()); |
| return true; |
| } |
| |
| Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { |
| assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI)); |
| |
| // If we have a malloc call which is only used in any amount of comparisons to |
| // null and free calls, delete the calls and replace the comparisons with true |
| // or false as appropriate. |
| |
| // This is based on the principle that we can substitute our own allocation |
| // function (which will never return null) rather than knowledge of the |
| // specific function being called. In some sense this can change the permitted |
| // outputs of a program (when we convert a malloc to an alloca, the fact that |
| // the allocation is now on the stack is potentially visible, for example), |
| // but we believe in a permissible manner. |
| SmallVector<WeakTrackingVH, 64> Users; |
| |
| // If we are removing an alloca with a dbg.declare, insert dbg.value calls |
| // before each store. |
| SmallVector<DbgVariableIntrinsic *, 8> DVIs; |
| std::unique_ptr<DIBuilder> DIB; |
| if (isa<AllocaInst>(MI)) { |
| findDbgUsers(DVIs, &MI); |
| DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); |
| } |
| |
| if (isAllocSiteRemovable(&MI, Users, TLI)) { |
| for (unsigned i = 0, e = Users.size(); i != e; ++i) { |
| // Lowering all @llvm.objectsize calls first because they may |
| // use a bitcast/GEP of the alloca we are removing. |
| if (!Users[i]) |
| continue; |
| |
| Instruction *I = cast<Instruction>(&*Users[i]); |
| |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| if (II->getIntrinsicID() == Intrinsic::objectsize) { |
| SmallVector<Instruction *> InsertedInstructions; |
| Value *Result = lowerObjectSizeCall( |
| II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions); |
| for (Instruction *Inserted : InsertedInstructions) |
| Worklist.add(Inserted); |
| replaceInstUsesWith(*I, Result); |
| eraseInstFromFunction(*I); |
| Users[i] = nullptr; // Skip examining in the next loop. |
| } |
| } |
| } |
| for (unsigned i = 0, e = Users.size(); i != e; ++i) { |
| if (!Users[i]) |
| continue; |
| |
| Instruction *I = cast<Instruction>(&*Users[i]); |
| |
| if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { |
| replaceInstUsesWith(*C, |
| ConstantInt::get(Type::getInt1Ty(C->getContext()), |
| C->isFalseWhenEqual())); |
| } else if (auto *SI = dyn_cast<StoreInst>(I)) { |
| for (auto *DVI : DVIs) |
| if (DVI->isAddressOfVariable()) |
| ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); |
| } else { |
| // Casts, GEP, or anything else: we're about to delete this instruction, |
| // so it can not have any valid uses. |
| replaceInstUsesWith(*I, PoisonValue::get(I->getType())); |
| } |
| eraseInstFromFunction(*I); |
| } |
| |
| if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { |
| // Replace invoke with a NOP intrinsic to maintain the original CFG |
| Module *M = II->getModule(); |
| Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); |
| InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), |
| std::nullopt, "", II->getParent()); |
| } |
| |
| // Remove debug intrinsics which describe the value contained within the |
| // alloca. In addition to removing dbg.{declare,addr} which simply point to |
| // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: |
| // |
| // ``` |
| // define void @foo(i32 %0) { |
| // %a = alloca i32 ; Deleted. |
| // store i32 %0, i32* %a |
| // dbg.value(i32 %0, "arg0") ; Not deleted. |
| // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. |
| // call void @trivially_inlinable_no_op(i32* %a) |
| // ret void |
| // } |
| // ``` |
| // |
| // This may not be required if we stop describing the contents of allocas |
| // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in |
| // the LowerDbgDeclare utility. |
| // |
| // If there is a dead store to `%a` in @trivially_inlinable_no_op, the |
| // "arg0" dbg.value may be stale after the call. However, failing to remove |
| // the DW_OP_deref dbg.value causes large gaps in location coverage. |
| for (auto *DVI : DVIs) |
| if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) |
| DVI->eraseFromParent(); |
| |
| return eraseInstFromFunction(MI); |
| } |
| return nullptr; |
| } |
| |
| /// Move the call to free before a NULL test. |
| /// |
| /// Check if this free is accessed after its argument has been test |
| /// against NULL (property 0). |
| /// If yes, it is legal to move this call in its predecessor block. |
| /// |
| /// The move is performed only if the block containing the call to free |
| /// will be removed, i.e.: |
| /// 1. it has only one predecessor P, and P has two successors |
| /// 2. it contains the call, noops, and an unconditional branch |
| /// 3. its successor is the same as its predecessor's successor |
| /// |
| /// The profitability is out-of concern here and this function should |
| /// be called only if the caller knows this transformation would be |
| /// profitable (e.g., for code size). |
| static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, |
| const DataLayout &DL) { |
| Value *Op = FI.getArgOperand(0); |
| BasicBlock *FreeInstrBB = FI.getParent(); |
| BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); |
| |
| // Validate part of constraint #1: Only one predecessor |
| // FIXME: We can extend the number of predecessor, but in that case, we |
| // would duplicate the call to free in each predecessor and it may |
| // not be profitable even for code size. |
| if (!PredBB) |
| return nullptr; |
| |
| // Validate constraint #2: Does this block contains only the call to |
| // free, noops, and an unconditional branch? |
| BasicBlock *SuccBB; |
| Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); |
| if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) |
| return nullptr; |
| |
| // If there are only 2 instructions in the block, at this point, |
| // this is the call to free and unconditional. |
| // If there are more than 2 instructions, check that they are noops |
| // i.e., they won't hurt the performance of the generated code. |
| if (FreeInstrBB->size() != 2) { |
| for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { |
| if (&Inst == &FI || &Inst == FreeInstrBBTerminator) |
| continue; |
| auto *Cast = dyn_cast<CastInst>(&Inst); |
| if (!Cast || !Cast->isNoopCast(DL)) |
| return nullptr; |
| } |
| } |
| // Validate the rest of constraint #1 by matching on the pred branch. |
| Instruction *TI = PredBB->getTerminator(); |
| BasicBlock *TrueBB, *FalseBB; |
| ICmpInst::Predicate Pred; |
| if (!match(TI, m_Br(m_ICmp(Pred, |
| m_CombineOr(m_Specific(Op), |
| m_Specific(Op->stripPointerCasts())), |
| m_Zero()), |
| TrueBB, FalseBB))) |
| return nullptr; |
| if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) |
| return nullptr; |
| |
| // Validate constraint #3: Ensure the null case just falls through. |
| if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) |
| return nullptr; |
| assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && |
| "Broken CFG: missing edge from predecessor to successor"); |
| |
| // At this point, we know that everything in FreeInstrBB can be moved |
| // before TI. |
| for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { |
| if (&Instr == FreeInstrBBTerminator) |
| break; |
| Instr.moveBeforePreserving(TI); |
| } |
| assert(FreeInstrBB->size() == 1 && |
| "Only the branch instruction should remain"); |
| |
| // Now that we've moved the call to free before the NULL check, we have to |
| // remove any attributes on its parameter that imply it's non-null, because |
| // those attributes might have only been valid because of the NULL check, and |
| // we can get miscompiles if we keep them. This is conservative if non-null is |
| // also implied by something other than the NULL check, but it's guaranteed to |
| // be correct, and the conservativeness won't matter in practice, since the |
| // attributes are irrelevant for the call to free itself and the pointer |
| // shouldn't be used after the call. |
| AttributeList Attrs = FI.getAttributes(); |
| Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); |
| Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); |
| if (Dereferenceable.isValid()) { |
| uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); |
| Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, |
| Attribute::Dereferenceable); |
| Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); |
| } |
| FI.setAttributes(Attrs); |
| |
| return &FI; |
| } |
| |
| Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) { |
| // free undef -> unreachable. |
| if (isa<UndefValue>(Op)) { |
| // Leave a marker since we can't modify the CFG here. |
| CreateNonTerminatorUnreachable(&FI); |
| return eraseInstFromFunction(FI); |
| } |
| |
| // If we have 'free null' delete the instruction. This can happen in stl code |
| // when lots of inlining happens. |
| if (isa<ConstantPointerNull>(Op)) |
| return eraseInstFromFunction(FI); |
| |
| // If we had free(realloc(...)) with no intervening uses, then eliminate the |
| // realloc() entirely. |
| CallInst *CI = dyn_cast<CallInst>(Op); |
| if (CI && CI->hasOneUse()) |
| if (Value *ReallocatedOp = getReallocatedOperand(CI)) |
| return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp)); |
| |
| // If we optimize for code size, try to move the call to free before the null |
| // test so that simplify cfg can remove the empty block and dead code |
| // elimination the branch. I.e., helps to turn something like: |
| // if (foo) free(foo); |
| // into |
| // free(foo); |
| // |
| // Note that we can only do this for 'free' and not for any flavor of |
| // 'operator delete'; there is no 'operator delete' symbol for which we are |
| // permitted to invent a call, even if we're passing in a null pointer. |
| if (MinimizeSize) { |
| LibFunc Func; |
| if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) |
| if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) |
| return I; |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { |
| // Nothing for now. |
| return nullptr; |
| } |
| |
| // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! |
| bool InstCombinerImpl::removeInstructionsBeforeUnreachable(Instruction &I) { |
| // Try to remove the previous instruction if it must lead to unreachable. |
| // This includes instructions like stores and "llvm.assume" that may not get |
| // removed by simple dead code elimination. |
| bool Changed = false; |
| while (Instruction *Prev = I.getPrevNonDebugInstruction()) { |
| // While we theoretically can erase EH, that would result in a block that |
| // used to start with an EH no longer starting with EH, which is invalid. |
| // To make it valid, we'd need to fixup predecessors to no longer refer to |
| // this block, but that changes CFG, which is not allowed in InstCombine. |
| if (Prev->isEHPad()) |
| break; // Can not drop any more instructions. We're done here. |
| |
| if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) |
| break; // Can not drop any more instructions. We're done here. |
| // Otherwise, this instruction can be freely erased, |
| // even if it is not side-effect free. |
| |
| // A value may still have uses before we process it here (for example, in |
| // another unreachable block), so convert those to poison. |
| replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); |
| eraseInstFromFunction(*Prev); |
| Changed = true; |
| } |
| return Changed; |
| } |
| |
| Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { |
| removeInstructionsBeforeUnreachable(I); |
| return nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { |
| assert(BI.isUnconditional() && "Only for unconditional branches."); |
| |
| // If this store is the second-to-last instruction in the basic block |
| // (excluding debug info and bitcasts of pointers) and if the block ends with |
| // an unconditional branch, try to move the store to the successor block. |
| |
| auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { |
| auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { |
| return BBI->isDebugOrPseudoInst() || |
| (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); |
| }; |
| |
| BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); |
| do { |
| if (BBI != FirstInstr) |
| --BBI; |
| } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); |
| |
| return dyn_cast<StoreInst>(BBI); |
| }; |
| |
| if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) |
| if (mergeStoreIntoSuccessor(*SI)) |
| return &BI; |
| |
| return nullptr; |
| } |
| |
| void InstCombinerImpl::addDeadEdge(BasicBlock *From, BasicBlock *To, |
| SmallVectorImpl<BasicBlock *> &Worklist) { |
| if (!DeadEdges.insert({From, To}).second) |
| return; |
| |
| // Replace phi node operands in successor with poison. |
| for (PHINode &PN : To->phis()) |
| for (Use &U : PN.incoming_values()) |
| if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) { |
| replaceUse(U, PoisonValue::get(PN.getType())); |
| addToWorklist(&PN); |
| MadeIRChange = true; |
| } |
| |
| Worklist.push_back(To); |
| } |
| |
| // Under the assumption that I is unreachable, remove it and following |
| // instructions. Changes are reported directly to MadeIRChange. |
| void InstCombinerImpl::handleUnreachableFrom( |
| Instruction *I, SmallVectorImpl<BasicBlock *> &Worklist) { |
| BasicBlock *BB = I->getParent(); |
| for (Instruction &Inst : make_early_inc_range( |
| make_range(std::next(BB->getTerminator()->getReverseIterator()), |
| std::next(I->getReverseIterator())))) { |
| if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) { |
| replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType())); |
| MadeIRChange = true; |
| } |
| if (Inst.isEHPad() || Inst.getType()->isTokenTy()) |
| continue; |
| eraseInstFromFunction(Inst); |
| MadeIRChange = true; |
| } |
| |
| // Handle potentially dead successors. |
| for (BasicBlock *Succ : successors(BB)) |
| addDeadEdge(BB, Succ, Worklist); |
| } |
| |
| void InstCombinerImpl::handlePotentiallyDeadBlocks( |
| SmallVectorImpl<BasicBlock *> &Worklist) { |
| while (!Worklist.empty()) { |
| BasicBlock *BB = Worklist.pop_back_val(); |
| if (!all_of(predecessors(BB), [&](BasicBlock *Pred) { |
| return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred); |
| })) |
| continue; |
| |
| handleUnreachableFrom(&BB->front(), Worklist); |
| } |
| } |
| |
| void InstCombinerImpl::handlePotentiallyDeadSuccessors(BasicBlock *BB, |
| BasicBlock *LiveSucc) { |
| SmallVector<BasicBlock *> Worklist; |
| for (BasicBlock *Succ : successors(BB)) { |
| // The live successor isn't dead. |
| if (Succ == LiveSucc) |
| continue; |
| |
| addDeadEdge(BB, Succ, Worklist); |
| } |
| |
| handlePotentiallyDeadBlocks(Worklist); |
| } |
| |
| Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { |
| if (BI.isUnconditional()) |
| return visitUnconditionalBranchInst(BI); |
| |
| // Change br (not X), label True, label False to: br X, label False, True |
| Value *Cond = BI.getCondition(); |
| Value *X; |
| if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) { |
| // Swap Destinations and condition... |
| BI.swapSuccessors(); |
| return replaceOperand(BI, 0, X); |
| } |
| |
| // Canonicalize logical-and-with-invert as logical-or-with-invert. |
| // This is done by inverting the condition and swapping successors: |
| // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T |
| Value *Y; |
| if (isa<SelectInst>(Cond) && |
| match(Cond, |
| m_OneUse(m_LogicalAnd(m_Value(X), m_OneUse(m_Not(m_Value(Y))))))) { |
| Value *NotX = Builder.CreateNot(X, "not." + X->getName()); |
| Value *Or = Builder.CreateLogicalOr(NotX, Y); |
| BI.swapSuccessors(); |
| return replaceOperand(BI, 0, Or); |
| } |
| |
| // If the condition is irrelevant, remove the use so that other |
| // transforms on the condition become more effective. |
| if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1)) |
| return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType())); |
| |
| // Canonicalize, for example, fcmp_one -> fcmp_oeq. |
| CmpInst::Predicate Pred; |
| if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) && |
| !isCanonicalPredicate(Pred)) { |
| // Swap destinations and condition. |
| auto *Cmp = cast<CmpInst>(Cond); |
| Cmp->setPredicate(CmpInst::getInversePredicate(Pred)); |
| BI.swapSuccessors(); |
| Worklist.push(Cmp); |
| return &BI; |
| } |
| |
| if (isa<UndefValue>(Cond)) { |
| handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr); |
| return nullptr; |
| } |
| if (auto *CI = dyn_cast<ConstantInt>(Cond)) { |
| handlePotentiallyDeadSuccessors(BI.getParent(), |
| BI.getSuccessor(!CI->getZExtValue())); |
| return nullptr; |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { |
| Value *Cond = SI.getCondition(); |
| Value *Op0; |
| ConstantInt *AddRHS; |
| if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { |
| // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. |
| for (auto Case : SI.cases()) { |
| Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); |
| assert(isa<ConstantInt>(NewCase) && |
| "Result of expression should be constant"); |
| Case.setValue(cast<ConstantInt>(NewCase)); |
| } |
| return replaceOperand(SI, 0, Op0); |
| } |
| |
| KnownBits Known = computeKnownBits(Cond, 0, &SI); |
| unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); |
| unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); |
| |
| // Compute the number of leading bits we can ignore. |
| // TODO: A better way to determine this would use ComputeNumSignBits(). |
| for (const auto &C : SI.cases()) { |
| LeadingKnownZeros = |
| std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero()); |
| LeadingKnownOnes = |
| std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one()); |
| } |
| |
| unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); |
| |
| // Shrink the condition operand if the new type is smaller than the old type. |
| // But do not shrink to a non-standard type, because backend can't generate |
| // good code for that yet. |
| // TODO: We can make it aggressive again after fixing PR39569. |
| if (NewWidth > 0 && NewWidth < Known.getBitWidth() && |
| shouldChangeType(Known.getBitWidth(), NewWidth)) { |
| IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); |
| Builder.SetInsertPoint(&SI); |
| Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); |
| |
| for (auto Case : SI.cases()) { |
| APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); |
| Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); |
| } |
| return replaceOperand(SI, 0, NewCond); |
| } |
| |
| if (isa<UndefValue>(Cond)) { |
| handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr); |
| return nullptr; |
| } |
| if (auto *CI = dyn_cast<ConstantInt>(Cond)) { |
| handlePotentiallyDeadSuccessors(SI.getParent(), |
| SI.findCaseValue(CI)->getCaseSuccessor()); |
| return nullptr; |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction * |
| InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) { |
| auto *WO = dyn_cast<WithOverflowInst>(EV.getAggregateOperand()); |
| if (!WO) |
| return nullptr; |
| |
| Intrinsic::ID OvID = WO->getIntrinsicID(); |
| const APInt *C = nullptr; |
| if (match(WO->getRHS(), m_APIntAllowUndef(C))) { |
| if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow || |
| OvID == Intrinsic::umul_with_overflow)) { |
| // extractvalue (any_mul_with_overflow X, -1), 0 --> -X |
| if (C->isAllOnes()) |
| return BinaryOperator::CreateNeg(WO->getLHS()); |
| // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n |
| if (C->isPowerOf2()) { |
| return BinaryOperator::CreateShl( |
| WO->getLHS(), |
| ConstantInt::get(WO->getLHS()->getType(), C->logBase2())); |
| } |
| } |
| } |
| |
| // We're extracting from an overflow intrinsic. See if we're the only user. |
| // That allows us to simplify multiple result intrinsics to simpler things |
| // that just get one value. |
| if (!WO->hasOneUse()) |
| return nullptr; |
| |
| // Check if we're grabbing only the result of a 'with overflow' intrinsic |
| // and replace it with a traditional binary instruction. |
| if (*EV.idx_begin() == 0) { |
| Instruction::BinaryOps BinOp = WO->getBinaryOp(); |
| Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); |
| // Replace the old instruction's uses with poison. |
| replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); |
| eraseInstFromFunction(*WO); |
| return BinaryOperator::Create(BinOp, LHS, RHS); |
| } |
| |
| assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst"); |
| |
| // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS. |
| if (OvID == Intrinsic::usub_with_overflow) |
| return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS()); |
| |
| // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but |
| // +1 is not possible because we assume signed values. |
| if (OvID == Intrinsic::smul_with_overflow && |
| WO->getLHS()->getType()->isIntOrIntVectorTy(1)) |
| return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS()); |
| |
| // If only the overflow result is used, and the right hand side is a |
| // constant (or constant splat), we can remove the intrinsic by directly |
| // checking for overflow. |
| if (C) { |
| // Compute the no-wrap range for LHS given RHS=C, then construct an |
| // equivalent icmp, potentially using an offset. |
| ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( |
| WO->getBinaryOp(), *C, WO->getNoWrapKind()); |
| |
| CmpInst::Predicate Pred; |
| APInt NewRHSC, Offset; |
| NWR.getEquivalentICmp(Pred, NewRHSC, Offset); |
| auto *OpTy = WO->getRHS()->getType(); |
| auto *NewLHS = WO->getLHS(); |
| if (Offset != 0) |
| NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); |
| return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, |
| ConstantInt::get(OpTy, NewRHSC)); |
| } |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { |
| Value *Agg = EV.getAggregateOperand(); |
| |
| if (!EV.hasIndices()) |
| return replaceInstUsesWith(EV, Agg); |
| |
| if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(), |
| SQ.getWithInstruction(&EV))) |
| return replaceInstUsesWith(EV, V); |
| |
| if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { |
| // We're extracting from an insertvalue instruction, compare the indices |
| const unsigned *exti, *exte, *insi, *inse; |
| for (exti = EV.idx_begin(), insi = IV->idx_begin(), |
| exte = EV.idx_end(), inse = IV->idx_end(); |
| exti != exte && insi != inse; |
| ++exti, ++insi) { |
| if (*insi != *exti) |
| // The insert and extract both reference distinctly different elements. |
| // This means the extract is not influenced by the insert, and we can |
| // replace the aggregate operand of the extract with the aggregate |
| // operand of the insert. i.e., replace |
| // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 |
| // %E = extractvalue { i32, { i32 } } %I, 0 |
| // with |
| // %E = extractvalue { i32, { i32 } } %A, 0 |
| return ExtractValueInst::Create(IV->getAggregateOperand(), |
| EV.getIndices()); |
| } |
| if (exti == exte && insi == inse) |
| // Both iterators are at the end: Index lists are identical. Replace |
| // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 |
| // %C = extractvalue { i32, { i32 } } %B, 1, 0 |
| // with "i32 42" |
| return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); |
| if (exti == exte) { |
| // The extract list is a prefix of the insert list. i.e. replace |
| // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 |
| // %E = extractvalue { i32, { i32 } } %I, 1 |
| // with |
| // %X = extractvalue { i32, { i32 } } %A, 1 |
| // %E = insertvalue { i32 } %X, i32 42, 0 |
| // by switching the order of the insert and extract (though the |
| // insertvalue should be left in, since it may have other uses). |
| Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), |
| EV.getIndices()); |
| return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), |
| ArrayRef(insi, inse)); |
| } |
| if (insi == inse) |
| // The insert list is a prefix of the extract list |
| // We can simply remove the common indices from the extract and make it |
| // operate on the inserted value instead of the insertvalue result. |
| // i.e., replace |
| // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 |
| // %E = extractvalue { i32, { i32 } } %I, 1, 0 |
| // with |
| // %E extractvalue { i32 } { i32 42 }, 0 |
| return ExtractValueInst::Create(IV->getInsertedValueOperand(), |
| ArrayRef(exti, exte)); |
| } |
| |
| if (Instruction *R = foldExtractOfOverflowIntrinsic(EV)) |
| return R; |
| |
| if (LoadInst *L = dyn_cast<LoadInst>(Agg)) { |
| // Bail out if the aggregate contains scalable vector type |
| if (auto *STy = dyn_cast<StructType>(Agg->getType()); |
| STy && STy->containsScalableVectorType()) |
| return nullptr; |
| |
| // If the (non-volatile) load only has one use, we can rewrite this to a |
| // load from a GEP. This reduces the size of the load. If a load is used |
| // only by extractvalue instructions then this either must have been |
| // optimized before, or it is a struct with padding, in which case we |
| // don't want to do the transformation as it loses padding knowledge. |
| if (L->isSimple() && L->hasOneUse()) { |
| // extractvalue has integer indices, getelementptr has Value*s. Convert. |
| SmallVector<Value*, 4> Indices; |
| // Prefix an i32 0 since we need the first element. |
| Indices.push_back(Builder.getInt32(0)); |
| for (unsigned Idx : EV.indices()) |
| Indices.push_back(Builder.getInt32(Idx)); |
| |
| // We need to insert these at the location of the old load, not at that of |
| // the extractvalue. |
| Builder.SetInsertPoint(L); |
| Value *GEP = Builder.CreateInBoundsGEP(L->getType(), |
| L->getPointerOperand(), Indices); |
| Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); |
| // Whatever aliasing information we had for the orignal load must also |
| // hold for the smaller load, so propagate the annotations. |
| NL->setAAMetadata(L->getAAMetadata()); |
| // Returning the load directly will cause the main loop to insert it in |
| // the wrong spot, so use replaceInstUsesWith(). |
| return replaceInstUsesWith(EV, NL); |
| } |
| } |
| |
| if (auto *PN = dyn_cast<PHINode>(Agg)) |
| if (Instruction *Res = foldOpIntoPhi(EV, PN)) |
| return Res; |
| |
| // We could simplify extracts from other values. Note that nested extracts may |
| // already be simplified implicitly by the above: extract (extract (insert) ) |
| // will be translated into extract ( insert ( extract ) ) first and then just |
| // the value inserted, if appropriate. Similarly for extracts from single-use |
| // loads: extract (extract (load)) will be translated to extract (load (gep)) |
| // and if again single-use then via load (gep (gep)) to load (gep). |
| // However, double extracts from e.g. function arguments or return values |
| // aren't handled yet. |
| return nullptr; |
| } |
| |
| /// Return 'true' if the given typeinfo will match anything. |
| static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { |
| switch (Personality) { |
| case EHPersonality::GNU_C: |
| case EHPersonality::GNU_C_SjLj: |
| case EHPersonality::Rust: |
| // The GCC C EH and Rust personality only exists to support cleanups, so |
| // it's not clear what the semantics of catch clauses are. |
| return false; |
| case EHPersonality::Unknown: |
| return false; |
| case EHPersonality::GNU_Ada: |
| // While __gnat_all_others_value will match any Ada exception, it doesn't |
| // match foreign exceptions (or didn't, before gcc-4.7). |
| return false; |
| case EHPersonality::GNU_CXX: |
| case EHPersonality::GNU_CXX_SjLj: |
| case EHPersonality::GNU_ObjC: |
| case EHPersonality::MSVC_X86SEH: |
| case EHPersonality::MSVC_TableSEH: |
| case EHPersonality::MSVC_CXX: |
| case EHPersonality::CoreCLR: |
| case EHPersonality::Wasm_CXX: |
| case EHPersonality::XL_CXX: |
| return TypeInfo->isNullValue(); |
| } |
| llvm_unreachable("invalid enum"); |
| } |
| |
| static bool shorter_filter(const Value *LHS, const Value *RHS) { |
| return |
| cast<ArrayType>(LHS->getType())->getNumElements() |
| < |
| cast<ArrayType>(RHS->getType())->getNumElements(); |
| } |
| |
| Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { |
| // The logic here should be correct for any real-world personality function. |
| // However if that turns out not to be true, the offending logic can always |
| // be conditioned on the personality function, like the catch-all logic is. |
| EHPersonality Personality = |
| classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); |
| |
| // Simplify the list of clauses, eg by removing repeated catch clauses |
| // (these are often created by inlining). |
| bool MakeNewInstruction = false; // If true, recreate using the following: |
| SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; |
| bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. |
| |
| SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. |
| for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { |
| bool isLastClause = i + 1 == e; |
| if (LI.isCatch(i)) { |
| // A catch clause. |
| Constant *CatchClause = LI.getClause(i); |
| Constant *TypeInfo = CatchClause->stripPointerCasts(); |
| |
| // If we already saw this clause, there is no point in having a second |
| // copy of it. |
| if (AlreadyCaught.insert(TypeInfo).second) { |
| // This catch clause was not already seen. |
| NewClauses.push_back(CatchClause); |
| } else { |
| // Repeated catch clause - drop the redundant copy. |
| MakeNewInstruction = true; |
| } |
| |
| // If this is a catch-all then there is no point in keeping any following |
| // clauses or marking the landingpad as having a cleanup. |
| if (isCatchAll(Personality, TypeInfo)) { |
| if (!isLastClause) |
| MakeNewInstruction = true; |
| CleanupFlag = false; |
| break; |
| } |
| } else { |
| // A filter clause. If any of the filter elements were already caught |
| // then they can be dropped from the filter. It is tempting to try to |
| // exploit the filter further by saying that any typeinfo that does not |
| // occur in the filter can't be caught later (and thus can be dropped). |
| // However this would be wrong, since typeinfos can match without being |
| // equal (for example if one represents a C++ class, and the other some |
| // class derived from it). |
| assert(LI.isFilter(i) && "Unsupported landingpad clause!"); |
| Constant *FilterClause = LI.getClause(i); |
| ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); |
| unsigned NumTypeInfos = FilterType->getNumElements(); |
| |
| // An empty filter catches everything, so there is no point in keeping any |
| // following clauses or marking the landingpad as having a cleanup. By |
| // dealing with this case here the following code is made a bit simpler. |
| if (!NumTypeInfos) { |
| NewClauses.push_back(FilterClause); |
| if (!isLastClause) |
| MakeNewInstruction = true; |
| CleanupFlag = false; |
| break; |
| } |
| |
| bool MakeNewFilter = false; // If true, make a new filter. |
| SmallVector<Constant *, 16> NewFilterElts; // New elements. |
| if (isa<ConstantAggregateZero>(FilterClause)) { |
| // Not an empty filter - it contains at least one null typeinfo. |
| assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); |
| Constant *TypeInfo = |
| Constant::getNullValue(FilterType->getElementType()); |
| // If this typeinfo is a catch-all then the filter can never match. |
| if (isCatchAll(Personality, TypeInfo)) { |
| // Throw the filter away. |
| MakeNewInstruction = true; |
| continue; |
| } |
| |
| // There is no point in having multiple copies of this typeinfo, so |
| // discard all but the first copy if there is more than one. |
| NewFilterElts.push_back(TypeInfo); |
| if (NumTypeInfos > 1) |
| MakeNewFilter = true; |
| } else { |
| ConstantArray *Filter = cast<ConstantArray>(FilterClause); |
| SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. |
| NewFilterElts.reserve(NumTypeInfos); |
| |
| // Remove any filter elements that were already caught or that already |
| // occurred in the filter. While there, see if any of the elements are |
| // catch-alls. If so, the filter can be discarded. |
| bool SawCatchAll = false; |
| for (unsigned j = 0; j != NumTypeInfos; ++j) { |
| Constant *Elt = Filter->getOperand(j); |
| Constant *TypeInfo = Elt->stripPointerCasts(); |
| if (isCatchAll(Personality, TypeInfo)) { |
| // This element is a catch-all. Bail out, noting this fact. |
| SawCatchAll = true; |
| break; |
| } |
| |
| // Even if we've seen a type in a catch clause, we don't want to |
| // remove it from the filter. An unexpected type handler may be |
| // set up for a call site which throws an exception of the same |
| // type caught. In order for the exception thrown by the unexpected |
| // handler to propagate correctly, the filter must be correctly |
| // described for the call site. |
| // |
| // Example: |
| // |
| // void unexpected() { throw 1;} |
| // void foo() throw (int) { |
| // std::set_unexpected(unexpected); |
| // try { |
| // throw 2.0; |
| // } catch (int i) {} |
| // } |
| |
| // There is no point in having multiple copies of the same typeinfo in |
| // a filter, so only add it if we didn't already. |
| if (SeenInFilter.insert(TypeInfo).second) |
| NewFilterElts.push_back(cast<Constant>(Elt)); |
| } |
| // A filter containing a catch-all cannot match anything by definition. |
| if (SawCatchAll) { |
| // Throw the filter away. |
| MakeNewInstruction = true; |
| continue; |
| } |
| |
| // If we dropped something from the filter, make a new one. |
| if (NewFilterElts.size() < NumTypeInfos) |
| MakeNewFilter = true; |
| } |
| if (MakeNewFilter) { |
| FilterType = ArrayType::get(FilterType->getElementType(), |
| NewFilterElts.size()); |
| FilterClause = ConstantArray::get(FilterType, NewFilterElts); |
| MakeNewInstruction = true; |
| } |
| |
| NewClauses.push_back(FilterClause); |
| |
| // If the new filter is empty then it will catch everything so there is |
| // no point in keeping any following clauses or marking the landingpad |
| // as having a cleanup. The case of the original filter being empty was |
| // already handled above. |
| if (MakeNewFilter && !NewFilterElts.size()) { |
| assert(MakeNewInstruction && "New filter but not a new instruction!"); |
| CleanupFlag = false; |
| break; |
| } |
| } |
| } |
| |
| // If several filters occur in a row then reorder them so that the shortest |
| // filters come first (those with the smallest number of elements). This is |
| // advantageous because shorter filters are more likely to match, speeding up |
| // unwinding, but mostly because it increases the effectiveness of the other |
| // filter optimizations below. |
| for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { |
| unsigned j; |
| // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. |
| for (j = i; j != e; ++j) |
| if (!isa<ArrayType>(NewClauses[j]->getType())) |
| break; |
| |
| // Check whether the filters are already sorted by length. We need to know |
| // if sorting them is actually going to do anything so that we only make a |
| // new landingpad instruction if it does. |
| for (unsigned k = i; k + 1 < j; ++k) |
| if (shorter_filter(NewClauses[k+1], NewClauses[k])) { |
| // Not sorted, so sort the filters now. Doing an unstable sort would be |
| // correct too but reordering filters pointlessly might confuse users. |
| std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, |
| shorter_filter); |
| MakeNewInstruction = true; |
| break; |
| } |
| |
| // Look for the next batch of filters. |
| i = j + 1; |
| } |
| |
| // If typeinfos matched if and only if equal, then the elements of a filter L |
| // that occurs later than a filter F could be replaced by the intersection of |
| // the elements of F and L. In reality two typeinfos can match without being |
| // equal (for example if one represents a C++ class, and the other some class |
| // derived from it) so it would be wrong to perform this transform in general. |
| // However the transform is correct and useful if F is a subset of L. In that |
| // case L can be replaced by F, and thus removed altogether since repeating a |
| // filter is pointless. So here we look at all pairs of filters F and L where |
| // L follows F in the list of clauses, and remove L if every element of F is |
| // an element of L. This can occur when inlining C++ functions with exception |
| // specifications. |
| for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { |
| // Examine each filter in turn. |
| Value *Filter = NewClauses[i]; |
| ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); |
| if (!FTy) |
| // Not a filter - skip it. |
| continue; |
| unsigned FElts = FTy->getNumElements(); |
| // Examine each filter following this one. Doing this backwards means that |
| // we don't have to worry about filters disappearing under us when removed. |
| for (unsigned j = NewClauses.size() - 1; j != i; --j) { |
| Value *LFilter = NewClauses[j]; |
| ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); |
| if (!LTy) |
| // Not a filter - skip it. |
| continue; |
| // If Filter is a subset of LFilter, i.e. every element of Filter is also |
| // an element of LFilter, then discard LFilter. |
| SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; |
| // If Filter is empty then it is a subset of LFilter. |
| if (!FElts) { |
| // Discard LFilter. |
| NewClauses.erase(J); |
| MakeNewInstruction = true; |
| // Move on to the next filter. |
| continue; |
| } |
| unsigned LElts = LTy->getNumElements(); |
| // If Filter is longer than LFilter then it cannot be a subset of it. |
| if (FElts > LElts) |
| // Move on to the next filter. |
| continue; |
| // At this point we know that LFilter has at least one element. |
| if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. |
| // Filter is a subset of LFilter iff Filter contains only zeros (as we |
| // already know that Filter is not longer than LFilter). |
| if (isa<ConstantAggregateZero>(Filter)) { |
| assert(FElts <= LElts && "Should have handled this case earlier!"); |
| // Discard LFilter. |
| NewClauses.erase(J); |
| MakeNewInstruction = true; |
| } |
| // Move on to the next filter. |
| continue; |
| } |
| ConstantArray *LArray = cast<ConstantArray>(LFilter); |
| if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. |
| // Since Filter is non-empty and contains only zeros, it is a subset of |
| // LFilter iff LFilter contains a zero. |
| assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); |
| for (unsigned l = 0; l != LElts; ++l) |
| if (LArray->getOperand(l)->isNullValue()) { |
| // LFilter contains a zero - discard it. |
| NewClauses.erase(J); |
| MakeNewInstruction = true; |
| break; |
| } |
| // Move on to the next filter. |
| continue; |
| } |
| // At this point we know that both filters are ConstantArrays. Loop over |
| // operands to see whether every element of Filter is also an element of |
| // LFilter. Since filters tend to be short this is probably faster than |
| // using a method that scales nicely. |
| ConstantArray *FArray = cast<ConstantArray>(Filter); |
| bool AllFound = true; |
| for (unsigned f = 0; f != FElts; ++f) { |
| Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); |
| AllFound = false; |
| for (unsigned l = 0; l != LElts; ++l) { |
| Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); |
| if (LTypeInfo == FTypeInfo) { |
| AllFound = true; |
| break; |
| } |
| } |
| if (!AllFound) |
| break; |
| } |
| if (AllFound) { |
| // Discard LFilter. |
| NewClauses.erase(J); |
| MakeNewInstruction = true; |
| } |
| // Move on to the next filter. |
| } |
| } |
| |
| // If we changed any of the clauses, replace the old landingpad instruction |
| // with a new one. |
| if (MakeNewInstruction) { |
| LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), |
| NewClauses.size()); |
| for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) |
| NLI->addClause(NewClauses[i]); |
| // A landing pad with no clauses must have the cleanup flag set. It is |
| // theoretically possible, though highly unlikely, that we eliminated all |
| // clauses. If so, force the cleanup flag to true. |
| if (NewClauses.empty()) |
| CleanupFlag = true; |
| NLI->setCleanup(CleanupFlag); |
| return NLI; |
| } |
| |
| // Even if none of the clauses changed, we may nonetheless have understood |
| // that the cleanup flag is pointless. Clear it if so. |
| if (LI.isCleanup() != CleanupFlag) { |
| assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); |
| LI.setCleanup(CleanupFlag); |
| return &LI; |
| } |
| |
| return nullptr; |
| } |
| |
| Value * |
| InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { |
| // Try to push freeze through instructions that propagate but don't produce |
| // poison as far as possible. If an operand of freeze follows three |
| // conditions 1) one-use, 2) does not produce poison, and 3) has all but one |
| // guaranteed-non-poison operands then push the freeze through to the one |
| // operand that is not guaranteed non-poison. The actual transform is as |
| // follows. |
| // Op1 = ... ; Op1 can be posion |
| // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have |
| // ; single guaranteed-non-poison operands |
| // ... = Freeze(Op0) |
| // => |
| // Op1 = ... |
| // Op1.fr = Freeze(Op1) |
| // ... = Inst(Op1.fr, NonPoisonOps...) |
| auto *OrigOp = OrigFI.getOperand(0); |
| auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); |
| |
| // While we could change the other users of OrigOp to use freeze(OrigOp), that |
| // potentially reduces their optimization potential, so let's only do this iff |
| // the OrigOp is only used by the freeze. |
| if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) |
| return nullptr; |
| |
| // We can't push the freeze through an instruction which can itself create |
| // poison. If the only source of new poison is flags, we can simply |
| // strip them (since we know the only use is the freeze and nothing can |
| // benefit from them.) |
| if (canCreateUndefOrPoison(cast<Operator>(OrigOp), |
| /*ConsiderFlagsAndMetadata*/ false)) |
| return nullptr; |
| |
| // If operand is guaranteed not to be poison, there is no need to add freeze |
| // to the operand. So we first find the operand that is not guaranteed to be |
| // poison. |
| Use *MaybePoisonOperand = nullptr; |
| for (Use &U : OrigOpInst->operands()) { |
| if (isa<MetadataAsValue>(U.get()) || |
| isGuaranteedNotToBeUndefOrPoison(U.get())) |
| continue; |
| if (!MaybePoisonOperand) |
| MaybePoisonOperand = &U; |
| else |
| return nullptr; |
| } |
| |
| OrigOpInst->dropPoisonGeneratingFlagsAndMetadata(); |
| |
| // If all operands are guaranteed to be non-poison, we can drop freeze. |
| if (!MaybePoisonOperand) |
| return OrigOp; |
| |
| Builder.SetInsertPoint(OrigOpInst); |
| auto *FrozenMaybePoisonOperand = Builder.CreateFreeze( |
| MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); |
| |
| replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); |
| return OrigOp; |
| } |
| |
| Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI, |
| PHINode *PN) { |
| // Detect whether this is a recurrence with a start value and some number of |
| // backedge values. We'll check whether we can push the freeze through the |
| // backedge values (possibly dropping poison flags along the way) until we |
| // reach the phi again. In that case, we can move the freeze to the start |
| // value. |
| Use *StartU = nullptr; |
| SmallVector<Value *> Worklist; |
| for (Use &U : PN->incoming_values()) { |
| if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) { |
| // Add backedge value to worklist. |
| Worklist.push_back(U.get()); |
| continue; |
| } |
| |
| // Don't bother handling multiple start values. |
| if (StartU) |
| return nullptr; |
| StartU = &U; |
| } |
| |
| if (!StartU || Worklist.empty()) |
| return nullptr; // Not a recurrence. |
| |
| Value *StartV = StartU->get(); |
| BasicBlock *StartBB = PN->getIncomingBlock(*StartU); |
| bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV); |
| // We can't insert freeze if the start value is the result of the |
| // terminator (e.g. an invoke). |
| if (StartNeedsFreeze && StartBB->getTerminator() == StartV) |
| return nullptr; |
| |
| SmallPtrSet<Value *, 32> Visited; |
| SmallVector<Instruction *> DropFlags; |
| while (!Worklist.empty()) { |
| Value *V = Worklist.pop_back_val(); |
| if (!Visited.insert(V).second) |
| continue; |
| |
| if (Visited.size() > 32) |
| return nullptr; // Limit the total number of values we inspect. |
| |
| // Assume that PN is non-poison, because it will be after the transform. |
| if (V == PN || isGuaranteedNotToBeUndefOrPoison(V)) |
| continue; |
| |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I || canCreateUndefOrPoison(cast<Operator>(I), |
| /*ConsiderFlagsAndMetadata*/ false)) |
| return nullptr; |
| |
| DropFlags.push_back(I); |
| append_range(Worklist, I->operands()); |
| } |
| |
| for (Instruction *I : DropFlags) |
| I->dropPoisonGeneratingFlagsAndMetadata(); |
| |
| if (StartNeedsFreeze) { |
| Builder.SetInsertPoint(StartBB->getTerminator()); |
| Value *FrozenStartV = Builder.CreateFreeze(StartV, |
| StartV->getName() + ".fr"); |
| replaceUse(*StartU, FrozenStartV); |
| } |
| return replaceInstUsesWith(FI, PN); |
| } |
| |
| bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) { |
| Value *Op = FI.getOperand(0); |
| |
| if (isa<Constant>(Op) || Op->hasOneUse()) |
| return false; |
| |
| // Move the freeze directly after the definition of its operand, so that |
| // it dominates the maximum number of uses. Note that it may not dominate |
| // *all* uses if the operand is an invoke/callbr and the use is in a phi on |
| // the normal/default destination. This is why the domination check in the |
| // replacement below is still necessary. |
| Instruction *MoveBefore; |
| if (isa<Argument>(Op)) { |
| MoveBefore = |
| &*FI.getFunction()->getEntryBlock().getFirstNonPHIOrDbgOrAlloca(); |
| } else { |
| MoveBefore = cast<Instruction>(Op)->getInsertionPointAfterDef(); |
| if (!MoveBefore) |
| return false; |
| } |
| |
| bool Changed = false; |
| if (&FI != MoveBefore) { |
| FI.moveBefore(*MoveBefore->getParent(), MoveBefore->getIterator()); |
| Changed = true; |
| } |
| |
| Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { |
| bool Dominates = DT.dominates(&FI, U); |
| Changed |= Dominates; |
| return Dominates; |
| }); |
| |
| return Changed; |
| } |
| |
| // Check if any direct or bitcast user of this value is a shuffle instruction. |
| static bool isUsedWithinShuffleVector(Value *V) { |
| for (auto *U : V->users()) { |
| if (isa<ShuffleVectorInst>(U)) |
| return true; |
| else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U)) |
| return true; |
| } |
| return false; |
| } |
| |
| Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { |
| Value *Op0 = I.getOperand(0); |
| |
| if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| // freeze (phi const, x) --> phi const, (freeze x) |
| if (auto *PN = dyn_cast<PHINode>(Op0)) { |
| if (Instruction *NV = foldOpIntoPhi(I, PN)) |
| return NV; |
| if (Instruction *NV = foldFreezeIntoRecurrence(I, PN)) |
| return NV; |
| } |
| |
| if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) |
| return replaceInstUsesWith(I, NI); |
| |
| // If I is freeze(undef), check its uses and fold it to a fixed constant. |
| // - or: pick -1 |
| // - select's condition: if the true value is constant, choose it by making |
| // the condition true. |
| // - default: pick 0 |
| // |
| // Note that this transform is intentionally done here rather than |
| // via an analysis in InstSimplify or at individual user sites. That is |
| // because we must produce the same value for all uses of the freeze - |
| // it's the reason "freeze" exists! |
| // |
| // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid |
| // duplicating logic for binops at least. |
| auto getUndefReplacement = [&I](Type *Ty) { |
| Constant *BestValue = nullptr; |
| Constant *NullValue = Constant::getNullValue(Ty); |
| for (const auto *U : I.users()) { |
| Constant *C = NullValue; |
| if (match(U, m_Or(m_Value(), m_Value()))) |
| C = ConstantInt::getAllOnesValue(Ty); |
| else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value()))) |
| C = ConstantInt::getTrue(Ty); |
| |
| if (!BestValue) |
| BestValue = C; |
| else if (BestValue != C) |
| BestValue = NullValue; |
| } |
| assert(BestValue && "Must have at least one use"); |
| return BestValue; |
| }; |
| |
| if (match(Op0, m_Undef())) { |
| // Don't fold freeze(undef/poison) if it's used as a vector operand in |
| // a shuffle. This may improve codegen for shuffles that allow |
| // unspecified inputs. |
| if (isUsedWithinShuffleVector(&I)) |
| return nullptr; |
| return replaceInstUsesWith(I, getUndefReplacement(I.getType())); |
| } |
| |
| Constant *C; |
| if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) { |
| Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType()); |
| return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC)); |
| } |
| |
| // Replace uses of Op with freeze(Op). |
| if (freezeOtherUses(I)) |
| return &I; |
| |
| return nullptr; |
| } |
| |
| /// Check for case where the call writes to an otherwise dead alloca. This |
| /// shows up for unused out-params in idiomatic C/C++ code. Note that this |
| /// helper *only* analyzes the write; doesn't check any other legality aspect. |
| static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { |
| auto *CB = dyn_cast<CallBase>(I); |
| if (!CB) |
| // TODO: handle e.g. store to alloca here - only worth doing if we extend |
| // to allow reload along used path as described below. Otherwise, this |
| // is simply a store to a dead allocation which will be removed. |
| return false; |
| std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI); |
| if (!Dest) |
| return false; |
| auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr)); |
| if (!AI) |
| // TODO: allow malloc? |
| return false; |
| // TODO: allow memory access dominated by move point? Note that since AI |
| // could have a reference to itself captured by the call, we would need to |
| // account for cycles in doing so. |
| SmallVector<const User *> AllocaUsers; |
| SmallPtrSet<const User *, 4> Visited; |
| auto pushUsers = [&](const Instruction &I) { |
| for (const User *U : I.users()) { |
| if (Visited.insert(U).second) |
| AllocaUsers.push_back(U); |
| } |
| }; |
| pushUsers(*AI); |
| while (!AllocaUsers.empty()) { |
| auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val()); |
| if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) || |
| isa<AddrSpaceCastInst>(UserI)) { |
| pushUsers(*UserI); |
| continue; |
| } |
| if (UserI == CB) |
| continue; |
| // TODO: support lifetime.start/end here |
| return false; |
| } |
| return true; |
| } |
| |
| /// Try to move the specified instruction from its current block into the |
| /// beginning of DestBlock, which can only happen if it's safe to move the |
| /// instruction past all of the instructions between it and the end of its |
| /// block. |
| bool InstCombinerImpl::tryToSinkInstruction(Instruction *I, |
| BasicBlock *DestBlock) { |
| BasicBlock *SrcBlock = I->getParent(); |
| |
| // Cannot move control-flow-involving, volatile loads, vaarg, etc. |
| if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || |
| I->isTerminator()) |
| return false; |
| |
| // Do not sink static or dynamic alloca instructions. Static allocas must |
| // remain in the entry block, and dynamic allocas must not be sunk in between |
| // a stacksave / stackrestore pair, which would incorrectly shorten its |
| // lifetime. |
| if (isa<AllocaInst>(I)) |
| return false; |
| |
| // Do not sink into catchswitch blocks. |
| if (isa<CatchSwitchInst>(DestBlock->getTerminator())) |
| return false; |
| |
| // Do not sink convergent call instructions. |
| if (auto *CI = dyn_cast<CallInst>(I)) { |
| if (CI->isConvergent()) |
| return false; |
| } |
| |
| // Unless we can prove that the memory write isn't visibile except on the |
| // path we're sinking to, we must bail. |
| if (I->mayWriteToMemory()) { |
| if (!SoleWriteToDeadLocal(I, TLI)) |
| return false; |
| } |
| |
| // We can only sink load instructions if there is nothing between the load and |
| // the end of block that could change the value. |
| if (I->mayReadFromMemory()) { |
| // We don't want to do any sophisticated alias analysis, so we only check |
| // the instructions after I in I's parent block if we try to sink to its |
| // successor block. |
| if (DestBlock->getUniquePredecessor() != I->getParent()) |
| return false; |
| for (BasicBlock::iterator Scan = std::next(I->getIterator()), |
| E = I->getParent()->end(); |
| Scan != E; ++Scan) |
| if (Scan->mayWriteToMemory()) |
| return false; |
| } |
| |
| I->dropDroppableUses([&](const Use *U) { |
| auto *I = dyn_cast<Instruction>(U->getUser()); |
| if (I && I->getParent() != DestBlock) { |
| Worklist.add(I); |
| return true; |
| } |
| return false; |
| }); |
| /// FIXME: We could remove droppable uses that are not dominated by |
| /// the new position. |
| |
| BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); |
| I->moveBefore(*DestBlock, InsertPos); |
| ++NumSunkInst; |
| |
| // Also sink all related debug uses from the source basic block. Otherwise we |
| // get debug use before the def. Attempt to salvage debug uses first, to |
| // maximise the range variables have location for. If we cannot salvage, then |
| // mark the location undef: we know it was supposed to receive a new location |
| // here, but that computation has been sunk. |
| SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; |
| findDbgUsers(DbgUsers, I); |
| |
| // For all debug values in the destination block, the sunk instruction |
| // will still be available, so they do not need to be dropped. |
| SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSalvage; |
| for (auto &DbgUser : DbgUsers) |
| if (DbgUser->getParent() != DestBlock) |
| DbgUsersToSalvage.push_back(DbgUser); |
| |
| // Process the sinking DbgUsersToSalvage in reverse order, as we only want |
| // to clone the last appearing debug intrinsic for each given variable. |
| SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; |
| for (DbgVariableIntrinsic *DVI : DbgUsersToSalvage) |
| if (DVI->getParent() == SrcBlock) |
| DbgUsersToSink.push_back(DVI); |
| llvm::sort(DbgUsersToSink, |
| [](auto *A, auto *B) { return B->comesBefore(A); }); |
| |
| SmallVector<DbgVariableIntrinsic *, 2> DIIClones; |
| SmallSet<DebugVariable, 4> SunkVariables; |
| for (auto *User : DbgUsersToSink) { |
| // A dbg.declare instruction should not be cloned, since there can only be |
| // one per variable fragment. It should be left in the original place |
| // because the sunk instruction is not an alloca (otherwise we could not be |
| // here). |
| if (isa<DbgDeclareInst>(User)) |
| continue; |
| |
| DebugVariable DbgUserVariable = |
| DebugVariable(User->getVariable(), User->getExpression(), |
| User->getDebugLoc()->getInlinedAt()); |
| |
| if (!SunkVariables.insert(DbgUserVariable).second) |
| continue; |
| |
| // Leave dbg.assign intrinsics in their original positions and there should |
| // be no need to insert a clone. |
| if (isa<DbgAssignIntrinsic>(User)) |
| continue; |
| |
| DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); |
| if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) |
| DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); |
| LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); |
| } |
| |
| // Perform salvaging without the clones, then sink the clones. |
| if (!DIIClones.empty()) { |
| salvageDebugInfoForDbgValues(*I, DbgUsersToSalvage); |
| // The clones are in reverse order of original appearance, reverse again to |
| // maintain the original order. |
| for (auto &DIIClone : llvm::reverse(DIIClones)) { |
| DIIClone->insertBefore(&*InsertPos); |
| LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); |
| } |
| } |
| |
| return true; |
| } |
| |
| bool InstCombinerImpl::run() { |
| while (!Worklist.isEmpty()) { |
| // Walk deferred instructions in reverse order, and push them to the |
| // worklist, which means they'll end up popped from the worklist in-order. |
| while (Instruction *I = Worklist.popDeferred()) { |
| // Check to see if we can DCE the instruction. We do this already here to |
| // reduce the number of uses and thus allow other folds to trigger. |
| // Note that eraseInstFromFunction() may push additional instructions on |
| // the deferred worklist, so this will DCE whole instruction chains. |
| if (isInstructionTriviallyDead(I, &TLI)) { |
| eraseInstFromFunction(*I); |
| ++NumDeadInst; |
| continue; |
| } |
| |
| Worklist.push(I); |
| } |
| |
| Instruction *I = Worklist.removeOne(); |
| if (I == nullptr) continue; // skip null values. |
| |
| // Check to see if we can DCE the instruction. |
| if (isInstructionTriviallyDead(I, &TLI)) { |
| eraseInstFromFunction(*I); |
| ++NumDeadInst; |
| continue; |
| } |
| |
| if (!DebugCounter::shouldExecute(VisitCounter)) |
| continue; |
| |
| // See if we can trivially sink this instruction to its user if we can |
| // prove that the successor is not executed more frequently than our block. |
| // Return the UserBlock if successful. |
| auto getOptionalSinkBlockForInst = |
| [this](Instruction *I) -> std::optional<BasicBlock *> { |
| if (!EnableCodeSinking) |
| return std::nullopt; |
| |
| BasicBlock *BB = I->getParent(); |
| BasicBlock *UserParent = nullptr; |
| unsigned NumUsers = 0; |
| |
| for (auto *U : I->users()) { |
| if (U->isDroppable()) |
| continue; |
| if (NumUsers > MaxSinkNumUsers) |
| return std::nullopt; |
| |
| Instruction *UserInst = cast<Instruction>(U); |
| // Special handling for Phi nodes - get the block the use occurs in. |
| if (PHINode *PN = dyn_cast<PHINode>(UserInst)) { |
| for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { |
| if (PN->getIncomingValue(i) == I) { |
| // Bail out if we have uses in different blocks. We don't do any |
| // sophisticated analysis (i.e finding NearestCommonDominator of |
| // these use blocks). |
| if (UserParent && UserParent != PN->getIncomingBlock(i)) |
| return std::nullopt; |
| UserParent = PN->getIncomingBlock(i); |
| } |
| } |
| assert(UserParent && "expected to find user block!"); |
| } else { |
| if (UserParent && UserParent != UserInst->getParent()) |
| return std::nullopt; |
| UserParent = UserInst->getParent(); |
| } |
| |
| // Make sure these checks are done only once, naturally we do the checks |
| // the first time we get the userparent, this will save compile time. |
| if (NumUsers == 0) { |
| // Try sinking to another block. If that block is unreachable, then do |
| // not bother. SimplifyCFG should handle it. |
| if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) |
| return std::nullopt; |
| |
| auto *Term = UserParent->getTerminator(); |
| // See if the user is one of our successors that has only one |
| // predecessor, so that we don't have to split the critical edge. |
| // Another option where we can sink is a block that ends with a |
| // terminator that does not pass control to other block (such as |
| // return or unreachable or resume). In this case: |
| // - I dominates the User (by SSA form); |
| // - the User will be executed at most once. |
| // So sinking I down to User is always profitable or neutral. |
| if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term)) |
| return std::nullopt; |
| |
| assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); |
| } |
| |
| NumUsers++; |
| } |
| |
| // No user or only has droppable users. |
| if (!UserParent) |
| return std::nullopt; |
| |
| return UserParent; |
| }; |
| |
| auto OptBB = getOptionalSinkBlockForInst(I); |
| if (OptBB) { |
| auto *UserParent = *OptBB; |
| // Okay, the CFG is simple enough, try to sink this instruction. |
| if (tryToSinkInstruction(I, UserParent)) { |
| LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); |
| MadeIRChange = true; |
| // We'll add uses of the sunk instruction below, but since |
| // sinking can expose opportunities for it's *operands* add |
| // them to the worklist |
| for (Use &U : I->operands()) |
| if (Instruction *OpI = dyn_cast<Instruction>(U.get())) |
| Worklist.push(OpI); |
| } |
| } |
| |
| // Now that we have an instruction, try combining it to simplify it. |
| Builder.SetInsertPoint(I); |
| Builder.CollectMetadataToCopy( |
| I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); |
| |
| #ifndef NDEBUG |
| std::string OrigI; |
| #endif |
| LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); |
| LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); |
| |
| if (Instruction *Result = visit(*I)) { |
| ++NumCombined; |
| // Should we replace the old instruction with a new one? |
| if (Result != I) { |
| LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' |
| << " New = " << *Result << '\n'); |
| |
| Result->copyMetadata(*I, |
| {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); |
| // Everything uses the new instruction now. |
| I->replaceAllUsesWith(Result); |
| |
| // Move the name to the new instruction first. |
| Result->takeName(I); |
| |
| // Insert the new instruction into the basic block... |
| BasicBlock *InstParent = I->getParent(); |
| BasicBlock::iterator InsertPos = I->getIterator(); |
| |
| // Are we replace a PHI with something that isn't a PHI, or vice versa? |
| if (isa<PHINode>(Result) != isa<PHINode>(I)) { |
| // We need to fix up the insertion point. |
| if (isa<PHINode>(I)) // PHI -> Non-PHI |
| InsertPos = InstParent->getFirstInsertionPt(); |
| else // Non-PHI -> PHI |
| InsertPos = InstParent->getFirstNonPHI()->getIterator(); |
| } |
| |
| Result->insertInto(InstParent, InsertPos); |
| |
| // Push the new instruction and any users onto the worklist. |
| Worklist.pushUsersToWorkList(*Result); |
| Worklist.push(Result); |
| |
| eraseInstFromFunction(*I); |
| } else { |
| LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' |
| << " New = " << *I << '\n'); |
| |
| // If the instruction was modified, it's possible that it is now dead. |
| // if so, remove it. |
| if (isInstructionTriviallyDead(I, &TLI)) { |
| eraseInstFromFunction(*I); |
| } else { |
| Worklist.pushUsersToWorkList(*I); |
| Worklist.push(I); |
| } |
| } |
| MadeIRChange = true; |
| } |
| } |
| |
| Worklist.zap(); |
| return MadeIRChange; |
| } |
| |
| // Track the scopes used by !alias.scope and !noalias. In a function, a |
| // @llvm.experimental.noalias.scope.decl is only useful if that scope is used |
| // by both sets. If not, the declaration of the scope can be safely omitted. |
| // The MDNode of the scope can be omitted as well for the instructions that are |
| // part of this function. We do not do that at this point, as this might become |
| // too time consuming to do. |
| class AliasScopeTracker { |
| SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; |
| SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; |
| |
| public: |
| void analyse(Instruction *I) { |
| // This seems to be faster than checking 'mayReadOrWriteMemory()'. |
| if (!I->hasMetadataOtherThanDebugLoc()) |
| return; |
| |
| auto Track = [](Metadata *ScopeList, auto &Container) { |
| const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); |
| if (!MDScopeList || !Container.insert(MDScopeList).second) |
| return; |
| for (const auto &MDOperand : MDScopeList->operands()) |
| if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) |
| Container.insert(MDScope); |
| }; |
| |
| Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); |
| Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); |
| } |
| |
| bool isNoAliasScopeDeclDead(Instruction *Inst) { |
| NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); |
| if (!Decl) |
| return false; |
| |
| assert(Decl->use_empty() && |
| "llvm.experimental.noalias.scope.decl in use ?"); |
| const MDNode *MDSL = Decl->getScopeList(); |
| assert(MDSL->getNumOperands() == 1 && |
| "llvm.experimental.noalias.scope should refer to a single scope"); |
| auto &MDOperand = MDSL->getOperand(0); |
| if (auto *MD = dyn_cast<MDNode>(MDOperand)) |
| return !UsedAliasScopesAndLists.contains(MD) || |
| !UsedNoAliasScopesAndLists.contains(MD); |
| |
| // Not an MDNode ? throw away. |
| return true; |
| } |
| }; |
| |
| /// Populate the IC worklist from a function, by walking it in reverse |
| /// post-order and adding all reachable code to the worklist. |
| /// |
| /// This has a couple of tricks to make the code faster and more powerful. In |
| /// particular, we constant fold and DCE instructions as we go, to avoid adding |
| /// them to the worklist (this significantly speeds up instcombine on code where |
| /// many instructions are dead or constant). Additionally, if we find a branch |
| /// whose condition is a known constant, we only visit the reachable successors. |
| bool InstCombinerImpl::prepareWorklist( |
| Function &F, ReversePostOrderTraversal<BasicBlock *> &RPOT) { |
| bool MadeIRChange = false; |
| SmallPtrSet<BasicBlock *, 32> LiveBlocks; |
| SmallVector<Instruction *, 128> InstrsForInstructionWorklist; |
| DenseMap<Constant *, Constant *> FoldedConstants; |
| AliasScopeTracker SeenAliasScopes; |
| |
| auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) { |
| for (BasicBlock *Succ : successors(BB)) |
| if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second) |
| for (PHINode &PN : Succ->phis()) |
| for (Use &U : PN.incoming_values()) |
| if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) { |
| U.set(PoisonValue::get(PN.getType())); |
| MadeIRChange = true; |
| } |
| }; |
| |
| for (BasicBlock *BB : RPOT) { |
| if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) { |
| return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred); |
| })) { |
| HandleOnlyLiveSuccessor(BB, nullptr); |
| continue; |
| } |
| LiveBlocks.insert(BB); |
| |
| for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { |
| // ConstantProp instruction if trivially constant. |
| if (!Inst.use_empty() && |
| (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) |
| if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) { |
| LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst |
| << '\n'); |
| Inst.replaceAllUsesWith(C); |
| ++NumConstProp; |
| if (isInstructionTriviallyDead(&Inst, &TLI)) |
| Inst.eraseFromParent(); |
| MadeIRChange = true; |
| continue; |
| } |
| |
| // See if we can constant fold its operands. |
| for (Use &U : Inst.operands()) { |
| if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) |
| continue; |
| |
| auto *C = cast<Constant>(U); |
| Constant *&FoldRes = FoldedConstants[C]; |
| if (!FoldRes) |
| FoldRes = ConstantFoldConstant(C, DL, &TLI); |
| |
| if (FoldRes != C) { |
| LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst |
| << "\n Old = " << *C |
| << "\n New = " << *FoldRes << '\n'); |
| U = FoldRes; |
| MadeIRChange = true; |
| } |
| } |
| |
| // Skip processing debug and pseudo intrinsics in InstCombine. Processing |
| // these call instructions consumes non-trivial amount of time and |
| // provides no value for the optimization. |
| if (!Inst.isDebugOrPseudoInst()) { |
| InstrsForInstructionWorklist.push_back(&Inst); |
| SeenAliasScopes.analyse(&Inst); |
| } |
| } |
| |
| // If this is a branch or switch on a constant, mark only the single |
| // live successor. Otherwise assume all successors are live. |
| Instruction *TI = BB->getTerminator(); |
| if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) { |
| if (isa<UndefValue>(BI->getCondition())) { |
| // Branch on undef is UB. |
| HandleOnlyLiveSuccessor(BB, nullptr); |
| continue; |
| } |
| if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { |
| bool CondVal = Cond->getZExtValue(); |
| HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal)); |
| continue; |
| } |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { |
| if (isa<UndefValue>(SI->getCondition())) { |
| // Switch on undef is UB. |
| HandleOnlyLiveSuccessor(BB, nullptr); |
| continue; |
| } |
| if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { |
| HandleOnlyLiveSuccessor(BB, |
| SI->findCaseValue(Cond)->getCaseSuccessor()); |
| continue; |
| } |
| } |
| } |
| |
| // Remove instructions inside unreachable blocks. This prevents the |
| // instcombine code from having to deal with some bad special cases, and |
| // reduces use counts of instructions. |
| for (BasicBlock &BB : F) { |
| if (LiveBlocks.count(&BB)) |
| continue; |
| |
| unsigned NumDeadInstInBB; |
| unsigned NumDeadDbgInstInBB; |
| std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = |
| removeAllNonTerminatorAndEHPadInstructions(&BB); |
| |
| MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; |
| NumDeadInst += NumDeadInstInBB; |
| } |
| |
| // Once we've found all of the instructions to add to instcombine's worklist, |
| // add them in reverse order. This way instcombine will visit from the top |
| // of the function down. This jives well with the way that it adds all uses |
| // of instructions to the worklist after doing a transformation, thus avoiding |
| // some N^2 behavior in pathological cases. |
| Worklist.reserve(InstrsForInstructionWorklist.size()); |
| for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { |
| // DCE instruction if trivially dead. As we iterate in reverse program |
| // order here, we will clean up whole chains of dead instructions. |
| if (isInstructionTriviallyDead(Inst, &TLI) || |
| SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { |
| ++NumDeadInst; |
| LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); |
| salvageDebugInfo(*Inst); |
| Inst->eraseFromParent(); |
| MadeIRChange = true; |
| continue; |
| } |
| |
| Worklist.push(Inst); |
| } |
| |
| return MadeIRChange; |
| } |
| |
| static bool combineInstructionsOverFunction( |
| Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, |
| AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, |
| DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, |
| ProfileSummaryInfo *PSI, unsigned MaxIterations, bool VerifyFixpoint, |
| LoopInfo *LI) { |
| auto &DL = F.getParent()->getDataLayout(); |
| |
| /// Builder - This is an IRBuilder that automatically inserts new |
| /// instructions into the worklist when they are created. |
| IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( |
| F.getContext(), TargetFolder(DL), |
| IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { |
| Worklist.add(I); |
| if (auto *Assume = dyn_cast<AssumeInst>(I)) |
| AC.registerAssumption(Assume); |
| })); |
| |
| ReversePostOrderTraversal<BasicBlock *> RPOT(&F.front()); |
| |
| // Lower dbg.declare intrinsics otherwise their value may be clobbered |
| // by instcombiner. |
| bool MadeIRChange = false; |
| if (ShouldLowerDbgDeclare) |
| MadeIRChange = LowerDbgDeclare(F); |
| |
| // Iterate while there is work to do. |
| unsigned Iteration = 0; |
| while (true) { |
| ++Iteration; |
| |
| if (Iteration > MaxIterations && !VerifyFixpoint) { |
| LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations |
| << " on " << F.getName() |
| << " reached; stopping without verifying fixpoint\n"); |
| break; |
| } |
| |
| ++NumWorklistIterations; |
| LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " |
| << F.getName() << "\n"); |
| |
| InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, |
| ORE, BFI, PSI, DL, LI); |
| IC.MaxArraySizeForCombine = MaxArraySize; |
| bool MadeChangeInThisIteration = IC.prepareWorklist(F, RPOT); |
| MadeChangeInThisIteration |= IC.run(); |
| if (!MadeChangeInThisIteration) |
| break; |
| |
| MadeIRChange = true; |
| if (Iteration > MaxIterations) { |
| report_fatal_error( |
| "Instruction Combining did not reach a fixpoint after " + |
| Twine(MaxIterations) + " iterations"); |
| } |
| } |
| |
| if (Iteration == 1) |
| ++NumOneIteration; |
| else if (Iteration == 2) |
| ++NumTwoIterations; |
| else if (Iteration == 3) |
| ++NumThreeIterations; |
| else |
| ++NumFourOrMoreIterations; |
| |
| return MadeIRChange; |
| } |
| |
| InstCombinePass::InstCombinePass(InstCombineOptions Opts) : Options(Opts) {} |
| |
| void InstCombinePass::printPipeline( |
| raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
| static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline( |
| OS, MapClassName2PassName); |
| OS << '<'; |
| OS << "max-iterations=" << Options.MaxIterations << ";"; |
| OS << (Options.UseLoopInfo ? "" : "no-") << "use-loop-info;"; |
| OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint"; |
| OS << '>'; |
| } |
| |
| PreservedAnalyses InstCombinePass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| auto &AC = AM.getResult<AssumptionAnalysis>(F); |
| auto &DT = AM.getResult<DominatorTreeAnalysis>(F); |
| auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); |
| auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); |
| auto &TTI = AM.getResult<TargetIRAnalysis>(F); |
| |
| // TODO: Only use LoopInfo when the option is set. This requires that the |
| // callers in the pass pipeline explicitly set the option. |
| auto *LI = AM.getCachedResult<LoopAnalysis>(F); |
| if (!LI && Options.UseLoopInfo) |
| LI = &AM.getResult<LoopAnalysis>(F); |
| |
| auto *AA = &AM.getResult<AAManager>(F); |
| auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); |
| ProfileSummaryInfo *PSI = |
| MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); |
| auto *BFI = (PSI && PSI->hasProfileSummary()) ? |
| &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; |
| |
| if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, |
| BFI, PSI, Options.MaxIterations, |
| Options.VerifyFixpoint, LI)) |
| // No changes, all analyses are preserved. |
| return PreservedAnalyses::all(); |
| |
| // Mark all the analyses that instcombine updates as preserved. |
| PreservedAnalyses PA; |
| PA.preserveSet<CFGAnalyses>(); |
| return PA; |
| } |
| |
| void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| AU.addPreserved<AAResultsWrapperPass>(); |
| AU.addPreserved<BasicAAWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); |
| } |
| |
| bool InstructionCombiningPass::runOnFunction(Function &F) { |
| if (skipFunction(F)) |
| return false; |
| |
| // Required analyses. |
| auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); |
| |
| // Optional analyses. |
| auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); |
| auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; |
| ProfileSummaryInfo *PSI = |
| &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| BlockFrequencyInfo *BFI = |
| (PSI && PSI->hasProfileSummary()) ? |
| &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : |
| nullptr; |
| |
| return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, |
| BFI, PSI, |
| InstCombineDefaultMaxIterations, |
| /*VerifyFixpoint */ false, LI); |
| } |
| |
| char InstructionCombiningPass::ID = 0; |
| |
| InstructionCombiningPass::InstructionCombiningPass() : FunctionPass(ID) { |
| initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", |
| "Combine redundant instructions", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) |
| INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) |
| INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", |
| "Combine redundant instructions", false, false) |
| |
| // Initialization Routines |
| void llvm::initializeInstCombine(PassRegistry &Registry) { |
| initializeInstructionCombiningPassPass(Registry); |
| } |
| |
| FunctionPass *llvm::createInstructionCombiningPass() { |
| return new InstructionCombiningPass(); |
| } |