|  | //===-- Constants.cpp - Implement Constant nodes --------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the Constant* classes... | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Constants.h" | 
|  | #include "ConstantFold.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/GlobalValue.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ManagedStatic.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include <algorithm> | 
|  | #include <map> | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                              Constant Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void Constant::destroyConstantImpl() { | 
|  | // When a Constant is destroyed, there may be lingering | 
|  | // references to the constant by other constants in the constant pool.  These | 
|  | // constants are implicitly dependent on the module that is being deleted, | 
|  | // but they don't know that.  Because we only find out when the CPV is | 
|  | // deleted, we must now notify all of our users (that should only be | 
|  | // Constants) that they are, in fact, invalid now and should be deleted. | 
|  | // | 
|  | while (!use_empty()) { | 
|  | Value *V = use_back(); | 
|  | #ifndef NDEBUG      // Only in -g mode... | 
|  | if (!isa<Constant>(V)) | 
|  | DOUT << "While deleting: " << *this | 
|  | << "\n\nUse still stuck around after Def is destroyed: " | 
|  | << *V << "\n\n"; | 
|  | #endif | 
|  | assert(isa<Constant>(V) && "References remain to Constant being destroyed"); | 
|  | Constant *CV = cast<Constant>(V); | 
|  | CV->destroyConstant(); | 
|  |  | 
|  | // The constant should remove itself from our use list... | 
|  | assert((use_empty() || use_back() != V) && "Constant not removed!"); | 
|  | } | 
|  |  | 
|  | // Value has no outstanding references it is safe to delete it now... | 
|  | delete this; | 
|  | } | 
|  |  | 
|  | /// canTrap - Return true if evaluation of this constant could trap.  This is | 
|  | /// true for things like constant expressions that could divide by zero. | 
|  | bool Constant::canTrap() const { | 
|  | assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); | 
|  | // The only thing that could possibly trap are constant exprs. | 
|  | const ConstantExpr *CE = dyn_cast<ConstantExpr>(this); | 
|  | if (!CE) return false; | 
|  |  | 
|  | // ConstantExpr traps if any operands can trap. | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) | 
|  | if (getOperand(i)->canTrap()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, only specific operations can trap. | 
|  | switch (CE->getOpcode()) { | 
|  | default: | 
|  | return false; | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::FRem: | 
|  | // Div and rem can trap if the RHS is not known to be non-zero. | 
|  | if (!isa<ConstantInt>(getOperand(1)) || getOperand(1)->isNullValue()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ContaintsRelocations - Return true if the constant value contains | 
|  | /// relocations which cannot be resolved at compile time. | 
|  | bool Constant::ContainsRelocations() const { | 
|  | if (isa<GlobalValue>(this)) | 
|  | return true; | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) | 
|  | if (getOperand(i)->ContainsRelocations()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Static constructor to create a '0' constant of arbitrary type... | 
|  | Constant *Constant::getNullValue(const Type *Ty) { | 
|  | static uint64_t zero[2] = {0, 0}; | 
|  | switch (Ty->getTypeID()) { | 
|  | case Type::IntegerTyID: | 
|  | return ConstantInt::get(Ty, 0); | 
|  | case Type::FloatTyID: | 
|  | return ConstantFP::get(APFloat(APInt(32, 0))); | 
|  | case Type::DoubleTyID: | 
|  | return ConstantFP::get(APFloat(APInt(64, 0))); | 
|  | case Type::X86_FP80TyID: | 
|  | return ConstantFP::get(APFloat(APInt(80, 2, zero))); | 
|  | case Type::FP128TyID: | 
|  | return ConstantFP::get(APFloat(APInt(128, 2, zero), true)); | 
|  | case Type::PPC_FP128TyID: | 
|  | return ConstantFP::get(APFloat(APInt(128, 2, zero))); | 
|  | case Type::PointerTyID: | 
|  | return ConstantPointerNull::get(cast<PointerType>(Ty)); | 
|  | case Type::StructTyID: | 
|  | case Type::ArrayTyID: | 
|  | case Type::VectorTyID: | 
|  | return ConstantAggregateZero::get(Ty); | 
|  | default: | 
|  | // Function, Label, or Opaque type? | 
|  | assert(!"Cannot create a null constant of that type!"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | Constant *Constant::getAllOnesValue(const Type *Ty) { | 
|  | if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) | 
|  | return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth())); | 
|  | return ConstantVector::getAllOnesValue(cast<VectorType>(Ty)); | 
|  | } | 
|  |  | 
|  | // Static constructor to create an integral constant with all bits set | 
|  | ConstantInt *ConstantInt::getAllOnesValue(const Type *Ty) { | 
|  | if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) | 
|  | return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth())); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// @returns the value for a vector integer constant of the given type that | 
|  | /// has all its bits set to true. | 
|  | /// @brief Get the all ones value | 
|  | ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) { | 
|  | std::vector<Constant*> Elts; | 
|  | Elts.resize(Ty->getNumElements(), | 
|  | ConstantInt::getAllOnesValue(Ty->getElementType())); | 
|  | assert(Elts[0] && "Not a vector integer type!"); | 
|  | return cast<ConstantVector>(ConstantVector::get(Elts)); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                                ConstantInt | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V) | 
|  | : Constant(Ty, ConstantIntVal, 0, 0), Val(V) { | 
|  | assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); | 
|  | } | 
|  |  | 
|  | ConstantInt *ConstantInt::TheTrueVal = 0; | 
|  | ConstantInt *ConstantInt::TheFalseVal = 0; | 
|  |  | 
|  | namespace llvm { | 
|  | void CleanupTrueFalse(void *) { | 
|  | ConstantInt::ResetTrueFalse(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static ManagedCleanup<llvm::CleanupTrueFalse> TrueFalseCleanup; | 
|  |  | 
|  | ConstantInt *ConstantInt::CreateTrueFalseVals(bool WhichOne) { | 
|  | assert(TheTrueVal == 0 && TheFalseVal == 0); | 
|  | TheTrueVal  = get(Type::Int1Ty, 1); | 
|  | TheFalseVal = get(Type::Int1Ty, 0); | 
|  |  | 
|  | // Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal. | 
|  | TrueFalseCleanup.Register(); | 
|  |  | 
|  | return WhichOne ? TheTrueVal : TheFalseVal; | 
|  | } | 
|  |  | 
|  |  | 
|  | namespace { | 
|  | struct DenseMapAPIntKeyInfo { | 
|  | struct KeyTy { | 
|  | APInt val; | 
|  | const Type* type; | 
|  | KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {} | 
|  | KeyTy(const KeyTy& that) : val(that.val), type(that.type) {} | 
|  | bool operator==(const KeyTy& that) const { | 
|  | return type == that.type && this->val == that.val; | 
|  | } | 
|  | bool operator!=(const KeyTy& that) const { | 
|  | return !this->operator==(that); | 
|  | } | 
|  | }; | 
|  | static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); } | 
|  | static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); } | 
|  | static unsigned getHashValue(const KeyTy &Key) { | 
|  | return DenseMapInfo<void*>::getHashValue(Key.type) ^ | 
|  | Key.val.getHashValue(); | 
|  | } | 
|  | static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { | 
|  | return LHS == RHS; | 
|  | } | 
|  | static bool isPod() { return false; } | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*, | 
|  | DenseMapAPIntKeyInfo> IntMapTy; | 
|  | static ManagedStatic<IntMapTy> IntConstants; | 
|  |  | 
|  | ConstantInt *ConstantInt::get(const Type *Ty, uint64_t V, bool isSigned) { | 
|  | const IntegerType *ITy = cast<IntegerType>(Ty); | 
|  | return get(APInt(ITy->getBitWidth(), V, isSigned)); | 
|  | } | 
|  |  | 
|  | // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap | 
|  | // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the | 
|  | // operator== and operator!= to ensure that the DenseMap doesn't attempt to | 
|  | // compare APInt's of different widths, which would violate an APInt class | 
|  | // invariant which generates an assertion. | 
|  | ConstantInt *ConstantInt::get(const APInt& V) { | 
|  | // Get the corresponding integer type for the bit width of the value. | 
|  | const IntegerType *ITy = IntegerType::get(V.getBitWidth()); | 
|  | // get an existing value or the insertion position | 
|  | DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); | 
|  | ConstantInt *&Slot = (*IntConstants)[Key]; | 
|  | // if it exists, return it. | 
|  | if (Slot) | 
|  | return Slot; | 
|  | // otherwise create a new one, insert it, and return it. | 
|  | return Slot = new ConstantInt(ITy, V); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                                ConstantFP | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static const fltSemantics *TypeToFloatSemantics(const Type *Ty) { | 
|  | if (Ty == Type::FloatTy) | 
|  | return &APFloat::IEEEsingle; | 
|  | if (Ty == Type::DoubleTy) | 
|  | return &APFloat::IEEEdouble; | 
|  | if (Ty == Type::X86_FP80Ty) | 
|  | return &APFloat::x87DoubleExtended; | 
|  | else if (Ty == Type::FP128Ty) | 
|  | return &APFloat::IEEEquad; | 
|  |  | 
|  | assert(Ty == Type::PPC_FP128Ty && "Unknown FP format"); | 
|  | return &APFloat::PPCDoubleDouble; | 
|  | } | 
|  |  | 
|  | ConstantFP::ConstantFP(const Type *Ty, const APFloat& V) | 
|  | : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { | 
|  | assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && | 
|  | "FP type Mismatch"); | 
|  | } | 
|  |  | 
|  | bool ConstantFP::isNullValue() const { | 
|  | return Val.isZero() && !Val.isNegative(); | 
|  | } | 
|  |  | 
|  | ConstantFP *ConstantFP::getNegativeZero(const Type *Ty) { | 
|  | APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF(); | 
|  | apf.changeSign(); | 
|  | return ConstantFP::get(apf); | 
|  | } | 
|  |  | 
|  | bool ConstantFP::isExactlyValue(const APFloat& V) const { | 
|  | return Val.bitwiseIsEqual(V); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct DenseMapAPFloatKeyInfo { | 
|  | struct KeyTy { | 
|  | APFloat val; | 
|  | KeyTy(const APFloat& V) : val(V){} | 
|  | KeyTy(const KeyTy& that) : val(that.val) {} | 
|  | bool operator==(const KeyTy& that) const { | 
|  | return this->val.bitwiseIsEqual(that.val); | 
|  | } | 
|  | bool operator!=(const KeyTy& that) const { | 
|  | return !this->operator==(that); | 
|  | } | 
|  | }; | 
|  | static inline KeyTy getEmptyKey() { | 
|  | return KeyTy(APFloat(APFloat::Bogus,1)); | 
|  | } | 
|  | static inline KeyTy getTombstoneKey() { | 
|  | return KeyTy(APFloat(APFloat::Bogus,2)); | 
|  | } | 
|  | static unsigned getHashValue(const KeyTy &Key) { | 
|  | return Key.val.getHashValue(); | 
|  | } | 
|  | static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { | 
|  | return LHS == RHS; | 
|  | } | 
|  | static bool isPod() { return false; } | 
|  | }; | 
|  | } | 
|  |  | 
|  | //---- ConstantFP::get() implementation... | 
|  | // | 
|  | typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*, | 
|  | DenseMapAPFloatKeyInfo> FPMapTy; | 
|  |  | 
|  | static ManagedStatic<FPMapTy> FPConstants; | 
|  |  | 
|  | ConstantFP *ConstantFP::get(const APFloat &V) { | 
|  | DenseMapAPFloatKeyInfo::KeyTy Key(V); | 
|  | ConstantFP *&Slot = (*FPConstants)[Key]; | 
|  | if (Slot) return Slot; | 
|  |  | 
|  | const Type *Ty; | 
|  | if (&V.getSemantics() == &APFloat::IEEEsingle) | 
|  | Ty = Type::FloatTy; | 
|  | else if (&V.getSemantics() == &APFloat::IEEEdouble) | 
|  | Ty = Type::DoubleTy; | 
|  | else if (&V.getSemantics() == &APFloat::x87DoubleExtended) | 
|  | Ty = Type::X86_FP80Ty; | 
|  | else if (&V.getSemantics() == &APFloat::IEEEquad) | 
|  | Ty = Type::FP128Ty; | 
|  | else { | 
|  | assert(&V.getSemantics() == &APFloat::PPCDoubleDouble&&"Unknown FP format"); | 
|  | Ty = Type::PPC_FP128Ty; | 
|  | } | 
|  |  | 
|  | return Slot = new ConstantFP(Ty, V); | 
|  | } | 
|  |  | 
|  | /// get() - This returns a constant fp for the specified value in the | 
|  | /// specified type.  This should only be used for simple constant values like | 
|  | /// 2.0/1.0 etc, that are known-valid both as double and as the target format. | 
|  | ConstantFP *ConstantFP::get(const Type *Ty, double V) { | 
|  | APFloat FV(V); | 
|  | FV.convert(*TypeToFloatSemantics(Ty), APFloat::rmNearestTiesToEven); | 
|  | return get(FV); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                            ConstantXXX Classes | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  |  | 
|  | ConstantArray::ConstantArray(const ArrayType *T, | 
|  | const std::vector<Constant*> &V) | 
|  | : Constant(T, ConstantArrayVal, new Use[V.size()], V.size()) { | 
|  | assert(V.size() == T->getNumElements() && | 
|  | "Invalid initializer vector for constant array"); | 
|  | Use *OL = OperandList; | 
|  | for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end(); | 
|  | I != E; ++I, ++OL) { | 
|  | Constant *C = *I; | 
|  | assert((C->getType() == T->getElementType() || | 
|  | (T->isAbstract() && | 
|  | C->getType()->getTypeID() == T->getElementType()->getTypeID())) && | 
|  | "Initializer for array element doesn't match array element type!"); | 
|  | OL->init(C, this); | 
|  | } | 
|  | } | 
|  |  | 
|  | ConstantArray::~ConstantArray() { | 
|  | delete [] OperandList; | 
|  | } | 
|  |  | 
|  | ConstantStruct::ConstantStruct(const StructType *T, | 
|  | const std::vector<Constant*> &V) | 
|  | : Constant(T, ConstantStructVal, new Use[V.size()], V.size()) { | 
|  | assert(V.size() == T->getNumElements() && | 
|  | "Invalid initializer vector for constant structure"); | 
|  | Use *OL = OperandList; | 
|  | for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end(); | 
|  | I != E; ++I, ++OL) { | 
|  | Constant *C = *I; | 
|  | assert((C->getType() == T->getElementType(I-V.begin()) || | 
|  | ((T->getElementType(I-V.begin())->isAbstract() || | 
|  | C->getType()->isAbstract()) && | 
|  | T->getElementType(I-V.begin())->getTypeID() == | 
|  | C->getType()->getTypeID())) && | 
|  | "Initializer for struct element doesn't match struct element type!"); | 
|  | OL->init(C, this); | 
|  | } | 
|  | } | 
|  |  | 
|  | ConstantStruct::~ConstantStruct() { | 
|  | delete [] OperandList; | 
|  | } | 
|  |  | 
|  |  | 
|  | ConstantVector::ConstantVector(const VectorType *T, | 
|  | const std::vector<Constant*> &V) | 
|  | : Constant(T, ConstantVectorVal, new Use[V.size()], V.size()) { | 
|  | Use *OL = OperandList; | 
|  | for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end(); | 
|  | I != E; ++I, ++OL) { | 
|  | Constant *C = *I; | 
|  | assert((C->getType() == T->getElementType() || | 
|  | (T->isAbstract() && | 
|  | C->getType()->getTypeID() == T->getElementType()->getTypeID())) && | 
|  | "Initializer for vector element doesn't match vector element type!"); | 
|  | OL->init(C, this); | 
|  | } | 
|  | } | 
|  |  | 
|  | ConstantVector::~ConstantVector() { | 
|  | delete [] OperandList; | 
|  | } | 
|  |  | 
|  | // We declare several classes private to this file, so use an anonymous | 
|  | // namespace | 
|  | namespace { | 
|  |  | 
|  | /// UnaryConstantExpr - This class is private to Constants.cpp, and is used | 
|  | /// behind the scenes to implement unary constant exprs. | 
|  | class VISIBILITY_HIDDEN UnaryConstantExpr : public ConstantExpr { | 
|  | void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT | 
|  | Use Op; | 
|  | public: | 
|  | // allocate space for exactly one operand | 
|  | void *operator new(size_t s) { | 
|  | return User::operator new(s, 1); | 
|  | } | 
|  | UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty) | 
|  | : ConstantExpr(Ty, Opcode, &Op, 1), Op(C, this) {} | 
|  | }; | 
|  |  | 
|  | /// BinaryConstantExpr - This class is private to Constants.cpp, and is used | 
|  | /// behind the scenes to implement binary constant exprs. | 
|  | class VISIBILITY_HIDDEN BinaryConstantExpr : public ConstantExpr { | 
|  | void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT | 
|  | Use Ops[2]; | 
|  | public: | 
|  | // allocate space for exactly two operands | 
|  | void *operator new(size_t s) { | 
|  | return User::operator new(s, 2); | 
|  | } | 
|  | BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2) | 
|  | : ConstantExpr(C1->getType(), Opcode, Ops, 2) { | 
|  | Ops[0].init(C1, this); | 
|  | Ops[1].init(C2, this); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// SelectConstantExpr - This class is private to Constants.cpp, and is used | 
|  | /// behind the scenes to implement select constant exprs. | 
|  | class VISIBILITY_HIDDEN SelectConstantExpr : public ConstantExpr { | 
|  | void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT | 
|  | Use Ops[3]; | 
|  | public: | 
|  | // allocate space for exactly three operands | 
|  | void *operator new(size_t s) { | 
|  | return User::operator new(s, 3); | 
|  | } | 
|  | SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3) | 
|  | : ConstantExpr(C2->getType(), Instruction::Select, Ops, 3) { | 
|  | Ops[0].init(C1, this); | 
|  | Ops[1].init(C2, this); | 
|  | Ops[2].init(C3, this); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// ExtractElementConstantExpr - This class is private to | 
|  | /// Constants.cpp, and is used behind the scenes to implement | 
|  | /// extractelement constant exprs. | 
|  | class VISIBILITY_HIDDEN ExtractElementConstantExpr : public ConstantExpr { | 
|  | void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT | 
|  | Use Ops[2]; | 
|  | public: | 
|  | // allocate space for exactly two operands | 
|  | void *operator new(size_t s) { | 
|  | return User::operator new(s, 2); | 
|  | } | 
|  | ExtractElementConstantExpr(Constant *C1, Constant *C2) | 
|  | : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), | 
|  | Instruction::ExtractElement, Ops, 2) { | 
|  | Ops[0].init(C1, this); | 
|  | Ops[1].init(C2, this); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// InsertElementConstantExpr - This class is private to | 
|  | /// Constants.cpp, and is used behind the scenes to implement | 
|  | /// insertelement constant exprs. | 
|  | class VISIBILITY_HIDDEN InsertElementConstantExpr : public ConstantExpr { | 
|  | void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT | 
|  | Use Ops[3]; | 
|  | public: | 
|  | // allocate space for exactly three operands | 
|  | void *operator new(size_t s) { | 
|  | return User::operator new(s, 3); | 
|  | } | 
|  | InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3) | 
|  | : ConstantExpr(C1->getType(), Instruction::InsertElement, | 
|  | Ops, 3) { | 
|  | Ops[0].init(C1, this); | 
|  | Ops[1].init(C2, this); | 
|  | Ops[2].init(C3, this); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// ShuffleVectorConstantExpr - This class is private to | 
|  | /// Constants.cpp, and is used behind the scenes to implement | 
|  | /// shufflevector constant exprs. | 
|  | class VISIBILITY_HIDDEN ShuffleVectorConstantExpr : public ConstantExpr { | 
|  | void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT | 
|  | Use Ops[3]; | 
|  | public: | 
|  | // allocate space for exactly three operands | 
|  | void *operator new(size_t s) { | 
|  | return User::operator new(s, 3); | 
|  | } | 
|  | ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3) | 
|  | : ConstantExpr(C1->getType(), Instruction::ShuffleVector, | 
|  | Ops, 3) { | 
|  | Ops[0].init(C1, this); | 
|  | Ops[1].init(C2, this); | 
|  | Ops[2].init(C3, this); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is | 
|  | /// used behind the scenes to implement getelementpr constant exprs. | 
|  | class VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr { | 
|  | GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList, | 
|  | const Type *DestTy) | 
|  | : ConstantExpr(DestTy, Instruction::GetElementPtr, | 
|  | new Use[IdxList.size()+1], IdxList.size()+1) { | 
|  | OperandList[0].init(C, this); | 
|  | for (unsigned i = 0, E = IdxList.size(); i != E; ++i) | 
|  | OperandList[i+1].init(IdxList[i], this); | 
|  | } | 
|  | public: | 
|  | static GetElementPtrConstantExpr *Create(Constant *C, const std::vector<Constant*> &IdxList, | 
|  | const Type *DestTy) { | 
|  | return new(IdxList.size() + 1/*FIXME*/) GetElementPtrConstantExpr(C, IdxList, DestTy); | 
|  | } | 
|  | ~GetElementPtrConstantExpr() { | 
|  | delete [] OperandList; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // CompareConstantExpr - This class is private to Constants.cpp, and is used | 
|  | // behind the scenes to implement ICmp and FCmp constant expressions. This is | 
|  | // needed in order to store the predicate value for these instructions. | 
|  | struct VISIBILITY_HIDDEN CompareConstantExpr : public ConstantExpr { | 
|  | void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT | 
|  | // allocate space for exactly two operands | 
|  | void *operator new(size_t s) { | 
|  | return User::operator new(s, 2); | 
|  | } | 
|  | unsigned short predicate; | 
|  | Use Ops[2]; | 
|  | CompareConstantExpr(Instruction::OtherOps opc, unsigned short pred, | 
|  | Constant* LHS, Constant* RHS) | 
|  | : ConstantExpr(Type::Int1Ty, opc, Ops, 2), predicate(pred) { | 
|  | OperandList[0].init(LHS, this); | 
|  | OperandList[1].init(RHS, this); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  |  | 
|  | // Utility function for determining if a ConstantExpr is a CastOp or not. This | 
|  | // can't be inline because we don't want to #include Instruction.h into | 
|  | // Constant.h | 
|  | bool ConstantExpr::isCast() const { | 
|  | return Instruction::isCast(getOpcode()); | 
|  | } | 
|  |  | 
|  | bool ConstantExpr::isCompare() const { | 
|  | return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; | 
|  | } | 
|  |  | 
|  | /// ConstantExpr::get* - Return some common constants without having to | 
|  | /// specify the full Instruction::OPCODE identifier. | 
|  | /// | 
|  | Constant *ConstantExpr::getNeg(Constant *C) { | 
|  | return get(Instruction::Sub, | 
|  | ConstantExpr::getZeroValueForNegationExpr(C->getType()), | 
|  | C); | 
|  | } | 
|  | Constant *ConstantExpr::getNot(Constant *C) { | 
|  | assert(isa<IntegerType>(C->getType()) && "Cannot NOT a nonintegral value!"); | 
|  | return get(Instruction::Xor, C, | 
|  | ConstantInt::getAllOnesValue(C->getType())); | 
|  | } | 
|  | Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::Add, C1, C2); | 
|  | } | 
|  | Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::Sub, C1, C2); | 
|  | } | 
|  | Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::Mul, C1, C2); | 
|  | } | 
|  | Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::UDiv, C1, C2); | 
|  | } | 
|  | Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::SDiv, C1, C2); | 
|  | } | 
|  | Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::FDiv, C1, C2); | 
|  | } | 
|  | Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::URem, C1, C2); | 
|  | } | 
|  | Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::SRem, C1, C2); | 
|  | } | 
|  | Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::FRem, C1, C2); | 
|  | } | 
|  | Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::And, C1, C2); | 
|  | } | 
|  | Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::Or, C1, C2); | 
|  | } | 
|  | Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::Xor, C1, C2); | 
|  | } | 
|  | unsigned ConstantExpr::getPredicate() const { | 
|  | assert(getOpcode() == Instruction::FCmp || getOpcode() == Instruction::ICmp); | 
|  | return ((const CompareConstantExpr*)this)->predicate; | 
|  | } | 
|  | Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::Shl, C1, C2); | 
|  | } | 
|  | Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::LShr, C1, C2); | 
|  | } | 
|  | Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::AShr, C1, C2); | 
|  | } | 
|  |  | 
|  | /// getWithOperandReplaced - Return a constant expression identical to this | 
|  | /// one, but with the specified operand set to the specified value. | 
|  | Constant * | 
|  | ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { | 
|  | assert(OpNo < getNumOperands() && "Operand num is out of range!"); | 
|  | assert(Op->getType() == getOperand(OpNo)->getType() && | 
|  | "Replacing operand with value of different type!"); | 
|  | if (getOperand(OpNo) == Op) | 
|  | return const_cast<ConstantExpr*>(this); | 
|  |  | 
|  | Constant *Op0, *Op1, *Op2; | 
|  | switch (getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::PtrToInt: | 
|  | case Instruction::IntToPtr: | 
|  | case Instruction::BitCast: | 
|  | return ConstantExpr::getCast(getOpcode(), Op, getType()); | 
|  | case Instruction::Select: | 
|  | Op0 = (OpNo == 0) ? Op : getOperand(0); | 
|  | Op1 = (OpNo == 1) ? Op : getOperand(1); | 
|  | Op2 = (OpNo == 2) ? Op : getOperand(2); | 
|  | return ConstantExpr::getSelect(Op0, Op1, Op2); | 
|  | case Instruction::InsertElement: | 
|  | Op0 = (OpNo == 0) ? Op : getOperand(0); | 
|  | Op1 = (OpNo == 1) ? Op : getOperand(1); | 
|  | Op2 = (OpNo == 2) ? Op : getOperand(2); | 
|  | return ConstantExpr::getInsertElement(Op0, Op1, Op2); | 
|  | case Instruction::ExtractElement: | 
|  | Op0 = (OpNo == 0) ? Op : getOperand(0); | 
|  | Op1 = (OpNo == 1) ? Op : getOperand(1); | 
|  | return ConstantExpr::getExtractElement(Op0, Op1); | 
|  | case Instruction::ShuffleVector: | 
|  | Op0 = (OpNo == 0) ? Op : getOperand(0); | 
|  | Op1 = (OpNo == 1) ? Op : getOperand(1); | 
|  | Op2 = (OpNo == 2) ? Op : getOperand(2); | 
|  | return ConstantExpr::getShuffleVector(Op0, Op1, Op2); | 
|  | case Instruction::GetElementPtr: { | 
|  | SmallVector<Constant*, 8> Ops; | 
|  | Ops.resize(getNumOperands()); | 
|  | for (unsigned i = 1, e = getNumOperands(); i != e; ++i) | 
|  | Ops[i] = getOperand(i); | 
|  | if (OpNo == 0) | 
|  | return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size()); | 
|  | Ops[OpNo-1] = Op; | 
|  | return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size()); | 
|  | } | 
|  | default: | 
|  | assert(getNumOperands() == 2 && "Must be binary operator?"); | 
|  | Op0 = (OpNo == 0) ? Op : getOperand(0); | 
|  | Op1 = (OpNo == 1) ? Op : getOperand(1); | 
|  | return ConstantExpr::get(getOpcode(), Op0, Op1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getWithOperands - This returns the current constant expression with the | 
|  | /// operands replaced with the specified values.  The specified operands must | 
|  | /// match count and type with the existing ones. | 
|  | Constant *ConstantExpr:: | 
|  | getWithOperands(const std::vector<Constant*> &Ops) const { | 
|  | assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); | 
|  | bool AnyChange = false; | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { | 
|  | assert(Ops[i]->getType() == getOperand(i)->getType() && | 
|  | "Operand type mismatch!"); | 
|  | AnyChange |= Ops[i] != getOperand(i); | 
|  | } | 
|  | if (!AnyChange)  // No operands changed, return self. | 
|  | return const_cast<ConstantExpr*>(this); | 
|  |  | 
|  | switch (getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::PtrToInt: | 
|  | case Instruction::IntToPtr: | 
|  | case Instruction::BitCast: | 
|  | return ConstantExpr::getCast(getOpcode(), Ops[0], getType()); | 
|  | case Instruction::Select: | 
|  | return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); | 
|  | case Instruction::InsertElement: | 
|  | return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); | 
|  | case Instruction::ExtractElement: | 
|  | return ConstantExpr::getExtractElement(Ops[0], Ops[1]); | 
|  | case Instruction::ShuffleVector: | 
|  | return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); | 
|  | case Instruction::GetElementPtr: | 
|  | return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], Ops.size()-1); | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); | 
|  | default: | 
|  | assert(getNumOperands() == 2 && "Must be binary operator?"); | 
|  | return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                      isValueValidForType implementations | 
|  |  | 
|  | bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) { | 
|  | unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay | 
|  | if (Ty == Type::Int1Ty) | 
|  | return Val == 0 || Val == 1; | 
|  | if (NumBits >= 64) | 
|  | return true; // always true, has to fit in largest type | 
|  | uint64_t Max = (1ll << NumBits) - 1; | 
|  | return Val <= Max; | 
|  | } | 
|  |  | 
|  | bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) { | 
|  | unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay | 
|  | if (Ty == Type::Int1Ty) | 
|  | return Val == 0 || Val == 1 || Val == -1; | 
|  | if (NumBits >= 64) | 
|  | return true; // always true, has to fit in largest type | 
|  | int64_t Min = -(1ll << (NumBits-1)); | 
|  | int64_t Max = (1ll << (NumBits-1)) - 1; | 
|  | return (Val >= Min && Val <= Max); | 
|  | } | 
|  |  | 
|  | bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) { | 
|  | // convert modifies in place, so make a copy. | 
|  | APFloat Val2 = APFloat(Val); | 
|  | switch (Ty->getTypeID()) { | 
|  | default: | 
|  | return false;         // These can't be represented as floating point! | 
|  |  | 
|  | // FIXME rounding mode needs to be more flexible | 
|  | case Type::FloatTyID: | 
|  | return &Val2.getSemantics() == &APFloat::IEEEsingle || | 
|  | Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) == | 
|  | APFloat::opOK; | 
|  | case Type::DoubleTyID: | 
|  | return &Val2.getSemantics() == &APFloat::IEEEsingle || | 
|  | &Val2.getSemantics() == &APFloat::IEEEdouble || | 
|  | Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) == | 
|  | APFloat::opOK; | 
|  | case Type::X86_FP80TyID: | 
|  | return &Val2.getSemantics() == &APFloat::IEEEsingle || | 
|  | &Val2.getSemantics() == &APFloat::IEEEdouble || | 
|  | &Val2.getSemantics() == &APFloat::x87DoubleExtended; | 
|  | case Type::FP128TyID: | 
|  | return &Val2.getSemantics() == &APFloat::IEEEsingle || | 
|  | &Val2.getSemantics() == &APFloat::IEEEdouble || | 
|  | &Val2.getSemantics() == &APFloat::IEEEquad; | 
|  | case Type::PPC_FP128TyID: | 
|  | return &Val2.getSemantics() == &APFloat::IEEEsingle || | 
|  | &Val2.getSemantics() == &APFloat::IEEEdouble || | 
|  | &Val2.getSemantics() == &APFloat::PPCDoubleDouble; | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                      Factory Function Implementation | 
|  |  | 
|  | // ConstantCreator - A class that is used to create constants by | 
|  | // ValueMap*.  This class should be partially specialized if there is | 
|  | // something strange that needs to be done to interface to the ctor for the | 
|  | // constant. | 
|  | // | 
|  | namespace llvm { | 
|  | template<class ConstantClass, class TypeClass, class ValType> | 
|  | struct VISIBILITY_HIDDEN ConstantCreator { | 
|  | static ConstantClass *create(const TypeClass *Ty, const ValType &V) { | 
|  | unsigned FIXME = 0; // = traits<ValType>::uses(V) | 
|  | return new(FIXME) ConstantClass(Ty, V); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<class ConstantClass, class TypeClass> | 
|  | struct VISIBILITY_HIDDEN ConvertConstantType { | 
|  | static void convert(ConstantClass *OldC, const TypeClass *NewTy) { | 
|  | assert(0 && "This type cannot be converted!\n"); | 
|  | abort(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<class ValType, class TypeClass, class ConstantClass, | 
|  | bool HasLargeKey = false  /*true for arrays and structs*/ > | 
|  | class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser { | 
|  | public: | 
|  | typedef std::pair<const Type*, ValType> MapKey; | 
|  | typedef std::map<MapKey, Constant *> MapTy; | 
|  | typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy; | 
|  | typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy; | 
|  | private: | 
|  | /// Map - This is the main map from the element descriptor to the Constants. | 
|  | /// This is the primary way we avoid creating two of the same shape | 
|  | /// constant. | 
|  | MapTy Map; | 
|  |  | 
|  | /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping | 
|  | /// from the constants to their element in Map.  This is important for | 
|  | /// removal of constants from the array, which would otherwise have to scan | 
|  | /// through the map with very large keys. | 
|  | InverseMapTy InverseMap; | 
|  |  | 
|  | /// AbstractTypeMap - Map for abstract type constants. | 
|  | /// | 
|  | AbstractTypeMapTy AbstractTypeMap; | 
|  |  | 
|  | public: | 
|  | typename MapTy::iterator map_end() { return Map.end(); } | 
|  |  | 
|  | /// InsertOrGetItem - Return an iterator for the specified element. | 
|  | /// If the element exists in the map, the returned iterator points to the | 
|  | /// entry and Exists=true.  If not, the iterator points to the newly | 
|  | /// inserted entry and returns Exists=false.  Newly inserted entries have | 
|  | /// I->second == 0, and should be filled in. | 
|  | typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *> | 
|  | &InsertVal, | 
|  | bool &Exists) { | 
|  | std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal); | 
|  | Exists = !IP.second; | 
|  | return IP.first; | 
|  | } | 
|  |  | 
|  | private: | 
|  | typename MapTy::iterator FindExistingElement(ConstantClass *CP) { | 
|  | if (HasLargeKey) { | 
|  | typename InverseMapTy::iterator IMI = InverseMap.find(CP); | 
|  | assert(IMI != InverseMap.end() && IMI->second != Map.end() && | 
|  | IMI->second->second == CP && | 
|  | "InverseMap corrupt!"); | 
|  | return IMI->second; | 
|  | } | 
|  |  | 
|  | typename MapTy::iterator I = | 
|  | Map.find(MapKey((TypeClass*)CP->getRawType(), getValType(CP))); | 
|  | if (I == Map.end() || I->second != CP) { | 
|  | // FIXME: This should not use a linear scan.  If this gets to be a | 
|  | // performance problem, someone should look at this. | 
|  | for (I = Map.begin(); I != Map.end() && I->second != CP; ++I) | 
|  | /* empty */; | 
|  | } | 
|  | return I; | 
|  | } | 
|  | public: | 
|  |  | 
|  | /// getOrCreate - Return the specified constant from the map, creating it if | 
|  | /// necessary. | 
|  | ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) { | 
|  | MapKey Lookup(Ty, V); | 
|  | typename MapTy::iterator I = Map.lower_bound(Lookup); | 
|  | // Is it in the map? | 
|  | if (I != Map.end() && I->first == Lookup) | 
|  | return static_cast<ConstantClass *>(I->second); | 
|  |  | 
|  | // If no preexisting value, create one now... | 
|  | ConstantClass *Result = | 
|  | ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V); | 
|  |  | 
|  | /// FIXME: why does this assert fail when loading 176.gcc? | 
|  | //assert(Result->getType() == Ty && "Type specified is not correct!"); | 
|  | I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result)); | 
|  |  | 
|  | if (HasLargeKey)  // Remember the reverse mapping if needed. | 
|  | InverseMap.insert(std::make_pair(Result, I)); | 
|  |  | 
|  | // If the type of the constant is abstract, make sure that an entry exists | 
|  | // for it in the AbstractTypeMap. | 
|  | if (Ty->isAbstract()) { | 
|  | typename AbstractTypeMapTy::iterator TI = | 
|  | AbstractTypeMap.lower_bound(Ty); | 
|  |  | 
|  | if (TI == AbstractTypeMap.end() || TI->first != Ty) { | 
|  | // Add ourselves to the ATU list of the type. | 
|  | cast<DerivedType>(Ty)->addAbstractTypeUser(this); | 
|  |  | 
|  | AbstractTypeMap.insert(TI, std::make_pair(Ty, I)); | 
|  | } | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void remove(ConstantClass *CP) { | 
|  | typename MapTy::iterator I = FindExistingElement(CP); | 
|  | assert(I != Map.end() && "Constant not found in constant table!"); | 
|  | assert(I->second == CP && "Didn't find correct element?"); | 
|  |  | 
|  | if (HasLargeKey)  // Remember the reverse mapping if needed. | 
|  | InverseMap.erase(CP); | 
|  |  | 
|  | // Now that we found the entry, make sure this isn't the entry that | 
|  | // the AbstractTypeMap points to. | 
|  | const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first); | 
|  | if (Ty->isAbstract()) { | 
|  | assert(AbstractTypeMap.count(Ty) && | 
|  | "Abstract type not in AbstractTypeMap?"); | 
|  | typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty]; | 
|  | if (ATMEntryIt == I) { | 
|  | // Yes, we are removing the representative entry for this type. | 
|  | // See if there are any other entries of the same type. | 
|  | typename MapTy::iterator TmpIt = ATMEntryIt; | 
|  |  | 
|  | // First check the entry before this one... | 
|  | if (TmpIt != Map.begin()) { | 
|  | --TmpIt; | 
|  | if (TmpIt->first.first != Ty) // Not the same type, move back... | 
|  | ++TmpIt; | 
|  | } | 
|  |  | 
|  | // If we didn't find the same type, try to move forward... | 
|  | if (TmpIt == ATMEntryIt) { | 
|  | ++TmpIt; | 
|  | if (TmpIt == Map.end() || TmpIt->first.first != Ty) | 
|  | --TmpIt;   // No entry afterwards with the same type | 
|  | } | 
|  |  | 
|  | // If there is another entry in the map of the same abstract type, | 
|  | // update the AbstractTypeMap entry now. | 
|  | if (TmpIt != ATMEntryIt) { | 
|  | ATMEntryIt = TmpIt; | 
|  | } else { | 
|  | // Otherwise, we are removing the last instance of this type | 
|  | // from the table.  Remove from the ATM, and from user list. | 
|  | cast<DerivedType>(Ty)->removeAbstractTypeUser(this); | 
|  | AbstractTypeMap.erase(Ty); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Map.erase(I); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// MoveConstantToNewSlot - If we are about to change C to be the element | 
|  | /// specified by I, update our internal data structures to reflect this | 
|  | /// fact. | 
|  | void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) { | 
|  | // First, remove the old location of the specified constant in the map. | 
|  | typename MapTy::iterator OldI = FindExistingElement(C); | 
|  | assert(OldI != Map.end() && "Constant not found in constant table!"); | 
|  | assert(OldI->second == C && "Didn't find correct element?"); | 
|  |  | 
|  | // If this constant is the representative element for its abstract type, | 
|  | // update the AbstractTypeMap so that the representative element is I. | 
|  | if (C->getType()->isAbstract()) { | 
|  | typename AbstractTypeMapTy::iterator ATI = | 
|  | AbstractTypeMap.find(C->getType()); | 
|  | assert(ATI != AbstractTypeMap.end() && | 
|  | "Abstract type not in AbstractTypeMap?"); | 
|  | if (ATI->second == OldI) | 
|  | ATI->second = I; | 
|  | } | 
|  |  | 
|  | // Remove the old entry from the map. | 
|  | Map.erase(OldI); | 
|  |  | 
|  | // Update the inverse map so that we know that this constant is now | 
|  | // located at descriptor I. | 
|  | if (HasLargeKey) { | 
|  | assert(I->second == C && "Bad inversemap entry!"); | 
|  | InverseMap[C] = I; | 
|  | } | 
|  | } | 
|  |  | 
|  | void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { | 
|  | typename AbstractTypeMapTy::iterator I = | 
|  | AbstractTypeMap.find(cast<Type>(OldTy)); | 
|  |  | 
|  | assert(I != AbstractTypeMap.end() && | 
|  | "Abstract type not in AbstractTypeMap?"); | 
|  |  | 
|  | // Convert a constant at a time until the last one is gone.  The last one | 
|  | // leaving will remove() itself, causing the AbstractTypeMapEntry to be | 
|  | // eliminated eventually. | 
|  | do { | 
|  | ConvertConstantType<ConstantClass, | 
|  | TypeClass>::convert( | 
|  | static_cast<ConstantClass *>(I->second->second), | 
|  | cast<TypeClass>(NewTy)); | 
|  |  | 
|  | I = AbstractTypeMap.find(cast<Type>(OldTy)); | 
|  | } while (I != AbstractTypeMap.end()); | 
|  | } | 
|  |  | 
|  | // If the type became concrete without being refined to any other existing | 
|  | // type, we just remove ourselves from the ATU list. | 
|  | void typeBecameConcrete(const DerivedType *AbsTy) { | 
|  | AbsTy->removeAbstractTypeUser(this); | 
|  | } | 
|  |  | 
|  | void dump() const { | 
|  | DOUT << "Constant.cpp: ValueMap\n"; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | //---- ConstantAggregateZero::get() implementation... | 
|  | // | 
|  | namespace llvm { | 
|  | // ConstantAggregateZero does not take extra "value" argument... | 
|  | template<class ValType> | 
|  | struct ConstantCreator<ConstantAggregateZero, Type, ValType> { | 
|  | static ConstantAggregateZero *create(const Type *Ty, const ValType &V){ | 
|  | return new ConstantAggregateZero(Ty); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<> | 
|  | struct ConvertConstantType<ConstantAggregateZero, Type> { | 
|  | static void convert(ConstantAggregateZero *OldC, const Type *NewTy) { | 
|  | // Make everyone now use a constant of the new type... | 
|  | Constant *New = ConstantAggregateZero::get(NewTy); | 
|  | assert(New != OldC && "Didn't replace constant??"); | 
|  | OldC->uncheckedReplaceAllUsesWith(New); | 
|  | OldC->destroyConstant();     // This constant is now dead, destroy it. | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | static ManagedStatic<ValueMap<char, Type, | 
|  | ConstantAggregateZero> > AggZeroConstants; | 
|  |  | 
|  | static char getValType(ConstantAggregateZero *CPZ) { return 0; } | 
|  |  | 
|  | Constant *ConstantAggregateZero::get(const Type *Ty) { | 
|  | assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) && | 
|  | "Cannot create an aggregate zero of non-aggregate type!"); | 
|  | return AggZeroConstants->getOrCreate(Ty, 0); | 
|  | } | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table... | 
|  | // | 
|  | void ConstantAggregateZero::destroyConstant() { | 
|  | AggZeroConstants->remove(this); | 
|  | destroyConstantImpl(); | 
|  | } | 
|  |  | 
|  | //---- ConstantArray::get() implementation... | 
|  | // | 
|  | namespace llvm { | 
|  | template<> | 
|  | struct ConvertConstantType<ConstantArray, ArrayType> { | 
|  | static void convert(ConstantArray *OldC, const ArrayType *NewTy) { | 
|  | // Make everyone now use a constant of the new type... | 
|  | std::vector<Constant*> C; | 
|  | for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) | 
|  | C.push_back(cast<Constant>(OldC->getOperand(i))); | 
|  | Constant *New = ConstantArray::get(NewTy, C); | 
|  | assert(New != OldC && "Didn't replace constant??"); | 
|  | OldC->uncheckedReplaceAllUsesWith(New); | 
|  | OldC->destroyConstant();    // This constant is now dead, destroy it. | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | static std::vector<Constant*> getValType(ConstantArray *CA) { | 
|  | std::vector<Constant*> Elements; | 
|  | Elements.reserve(CA->getNumOperands()); | 
|  | for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) | 
|  | Elements.push_back(cast<Constant>(CA->getOperand(i))); | 
|  | return Elements; | 
|  | } | 
|  |  | 
|  | typedef ValueMap<std::vector<Constant*>, ArrayType, | 
|  | ConstantArray, true /*largekey*/> ArrayConstantsTy; | 
|  | static ManagedStatic<ArrayConstantsTy> ArrayConstants; | 
|  |  | 
|  | Constant *ConstantArray::get(const ArrayType *Ty, | 
|  | const std::vector<Constant*> &V) { | 
|  | // If this is an all-zero array, return a ConstantAggregateZero object | 
|  | if (!V.empty()) { | 
|  | Constant *C = V[0]; | 
|  | if (!C->isNullValue()) | 
|  | return ArrayConstants->getOrCreate(Ty, V); | 
|  | for (unsigned i = 1, e = V.size(); i != e; ++i) | 
|  | if (V[i] != C) | 
|  | return ArrayConstants->getOrCreate(Ty, V); | 
|  | } | 
|  | return ConstantAggregateZero::get(Ty); | 
|  | } | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table... | 
|  | // | 
|  | void ConstantArray::destroyConstant() { | 
|  | ArrayConstants->remove(this); | 
|  | destroyConstantImpl(); | 
|  | } | 
|  |  | 
|  | /// ConstantArray::get(const string&) - Return an array that is initialized to | 
|  | /// contain the specified string.  If length is zero then a null terminator is | 
|  | /// added to the specified string so that it may be used in a natural way. | 
|  | /// Otherwise, the length parameter specifies how much of the string to use | 
|  | /// and it won't be null terminated. | 
|  | /// | 
|  | Constant *ConstantArray::get(const std::string &Str, bool AddNull) { | 
|  | std::vector<Constant*> ElementVals; | 
|  | for (unsigned i = 0; i < Str.length(); ++i) | 
|  | ElementVals.push_back(ConstantInt::get(Type::Int8Ty, Str[i])); | 
|  |  | 
|  | // Add a null terminator to the string... | 
|  | if (AddNull) { | 
|  | ElementVals.push_back(ConstantInt::get(Type::Int8Ty, 0)); | 
|  | } | 
|  |  | 
|  | ArrayType *ATy = ArrayType::get(Type::Int8Ty, ElementVals.size()); | 
|  | return ConstantArray::get(ATy, ElementVals); | 
|  | } | 
|  |  | 
|  | /// isString - This method returns true if the array is an array of i8, and | 
|  | /// if the elements of the array are all ConstantInt's. | 
|  | bool ConstantArray::isString() const { | 
|  | // Check the element type for i8... | 
|  | if (getType()->getElementType() != Type::Int8Ty) | 
|  | return false; | 
|  | // Check the elements to make sure they are all integers, not constant | 
|  | // expressions. | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) | 
|  | if (!isa<ConstantInt>(getOperand(i))) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isCString - This method returns true if the array is a string (see | 
|  | /// isString) and it ends in a null byte \0 and does not contains any other | 
|  | /// null bytes except its terminator. | 
|  | bool ConstantArray::isCString() const { | 
|  | // Check the element type for i8... | 
|  | if (getType()->getElementType() != Type::Int8Ty) | 
|  | return false; | 
|  | Constant *Zero = Constant::getNullValue(getOperand(0)->getType()); | 
|  | // Last element must be a null. | 
|  | if (getOperand(getNumOperands()-1) != Zero) | 
|  | return false; | 
|  | // Other elements must be non-null integers. | 
|  | for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) { | 
|  | if (!isa<ConstantInt>(getOperand(i))) | 
|  | return false; | 
|  | if (getOperand(i) == Zero) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // getAsString - If the sub-element type of this array is i8 | 
|  | // then this method converts the array to an std::string and returns it. | 
|  | // Otherwise, it asserts out. | 
|  | // | 
|  | std::string ConstantArray::getAsString() const { | 
|  | assert(isString() && "Not a string!"); | 
|  | std::string Result; | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) | 
|  | Result += (char)cast<ConstantInt>(getOperand(i))->getZExtValue(); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  |  | 
|  | //---- ConstantStruct::get() implementation... | 
|  | // | 
|  |  | 
|  | namespace llvm { | 
|  | template<> | 
|  | struct ConvertConstantType<ConstantStruct, StructType> { | 
|  | static void convert(ConstantStruct *OldC, const StructType *NewTy) { | 
|  | // Make everyone now use a constant of the new type... | 
|  | std::vector<Constant*> C; | 
|  | for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) | 
|  | C.push_back(cast<Constant>(OldC->getOperand(i))); | 
|  | Constant *New = ConstantStruct::get(NewTy, C); | 
|  | assert(New != OldC && "Didn't replace constant??"); | 
|  |  | 
|  | OldC->uncheckedReplaceAllUsesWith(New); | 
|  | OldC->destroyConstant();    // This constant is now dead, destroy it. | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | typedef ValueMap<std::vector<Constant*>, StructType, | 
|  | ConstantStruct, true /*largekey*/> StructConstantsTy; | 
|  | static ManagedStatic<StructConstantsTy> StructConstants; | 
|  |  | 
|  | static std::vector<Constant*> getValType(ConstantStruct *CS) { | 
|  | std::vector<Constant*> Elements; | 
|  | Elements.reserve(CS->getNumOperands()); | 
|  | for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) | 
|  | Elements.push_back(cast<Constant>(CS->getOperand(i))); | 
|  | return Elements; | 
|  | } | 
|  |  | 
|  | Constant *ConstantStruct::get(const StructType *Ty, | 
|  | const std::vector<Constant*> &V) { | 
|  | // Create a ConstantAggregateZero value if all elements are zeros... | 
|  | for (unsigned i = 0, e = V.size(); i != e; ++i) | 
|  | if (!V[i]->isNullValue()) | 
|  | return StructConstants->getOrCreate(Ty, V); | 
|  |  | 
|  | return ConstantAggregateZero::get(Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantStruct::get(const std::vector<Constant*> &V, bool packed) { | 
|  | std::vector<const Type*> StructEls; | 
|  | StructEls.reserve(V.size()); | 
|  | for (unsigned i = 0, e = V.size(); i != e; ++i) | 
|  | StructEls.push_back(V[i]->getType()); | 
|  | return get(StructType::get(StructEls, packed), V); | 
|  | } | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table... | 
|  | // | 
|  | void ConstantStruct::destroyConstant() { | 
|  | StructConstants->remove(this); | 
|  | destroyConstantImpl(); | 
|  | } | 
|  |  | 
|  | //---- ConstantVector::get() implementation... | 
|  | // | 
|  | namespace llvm { | 
|  | template<> | 
|  | struct ConvertConstantType<ConstantVector, VectorType> { | 
|  | static void convert(ConstantVector *OldC, const VectorType *NewTy) { | 
|  | // Make everyone now use a constant of the new type... | 
|  | std::vector<Constant*> C; | 
|  | for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) | 
|  | C.push_back(cast<Constant>(OldC->getOperand(i))); | 
|  | Constant *New = ConstantVector::get(NewTy, C); | 
|  | assert(New != OldC && "Didn't replace constant??"); | 
|  | OldC->uncheckedReplaceAllUsesWith(New); | 
|  | OldC->destroyConstant();    // This constant is now dead, destroy it. | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | static std::vector<Constant*> getValType(ConstantVector *CP) { | 
|  | std::vector<Constant*> Elements; | 
|  | Elements.reserve(CP->getNumOperands()); | 
|  | for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) | 
|  | Elements.push_back(CP->getOperand(i)); | 
|  | return Elements; | 
|  | } | 
|  |  | 
|  | static ManagedStatic<ValueMap<std::vector<Constant*>, VectorType, | 
|  | ConstantVector> > VectorConstants; | 
|  |  | 
|  | Constant *ConstantVector::get(const VectorType *Ty, | 
|  | const std::vector<Constant*> &V) { | 
|  | // If this is an all-zero vector, return a ConstantAggregateZero object | 
|  | if (!V.empty()) { | 
|  | Constant *C = V[0]; | 
|  | if (!C->isNullValue()) | 
|  | return VectorConstants->getOrCreate(Ty, V); | 
|  | for (unsigned i = 1, e = V.size(); i != e; ++i) | 
|  | if (V[i] != C) | 
|  | return VectorConstants->getOrCreate(Ty, V); | 
|  | } | 
|  | return ConstantAggregateZero::get(Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantVector::get(const std::vector<Constant*> &V) { | 
|  | assert(!V.empty() && "Cannot infer type if V is empty"); | 
|  | return get(VectorType::get(V.front()->getType(),V.size()), V); | 
|  | } | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table... | 
|  | // | 
|  | void ConstantVector::destroyConstant() { | 
|  | VectorConstants->remove(this); | 
|  | destroyConstantImpl(); | 
|  | } | 
|  |  | 
|  | /// This function will return true iff every element in this vector constant | 
|  | /// is set to all ones. | 
|  | /// @returns true iff this constant's emements are all set to all ones. | 
|  | /// @brief Determine if the value is all ones. | 
|  | bool ConstantVector::isAllOnesValue() const { | 
|  | // Check out first element. | 
|  | const Constant *Elt = getOperand(0); | 
|  | const ConstantInt *CI = dyn_cast<ConstantInt>(Elt); | 
|  | if (!CI || !CI->isAllOnesValue()) return false; | 
|  | // Then make sure all remaining elements point to the same value. | 
|  | for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { | 
|  | if (getOperand(I) != Elt) return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getSplatValue - If this is a splat constant, where all of the | 
|  | /// elements have the same value, return that value. Otherwise return null. | 
|  | Constant *ConstantVector::getSplatValue() { | 
|  | // Check out first element. | 
|  | Constant *Elt = getOperand(0); | 
|  | // Then make sure all remaining elements point to the same value. | 
|  | for (unsigned I = 1, E = getNumOperands(); I < E; ++I) | 
|  | if (getOperand(I) != Elt) return 0; | 
|  | return Elt; | 
|  | } | 
|  |  | 
|  | //---- ConstantPointerNull::get() implementation... | 
|  | // | 
|  |  | 
|  | namespace llvm { | 
|  | // ConstantPointerNull does not take extra "value" argument... | 
|  | template<class ValType> | 
|  | struct ConstantCreator<ConstantPointerNull, PointerType, ValType> { | 
|  | static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){ | 
|  | return new ConstantPointerNull(Ty); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<> | 
|  | struct ConvertConstantType<ConstantPointerNull, PointerType> { | 
|  | static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) { | 
|  | // Make everyone now use a constant of the new type... | 
|  | Constant *New = ConstantPointerNull::get(NewTy); | 
|  | assert(New != OldC && "Didn't replace constant??"); | 
|  | OldC->uncheckedReplaceAllUsesWith(New); | 
|  | OldC->destroyConstant();     // This constant is now dead, destroy it. | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | static ManagedStatic<ValueMap<char, PointerType, | 
|  | ConstantPointerNull> > NullPtrConstants; | 
|  |  | 
|  | static char getValType(ConstantPointerNull *) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) { | 
|  | return NullPtrConstants->getOrCreate(Ty, 0); | 
|  | } | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table... | 
|  | // | 
|  | void ConstantPointerNull::destroyConstant() { | 
|  | NullPtrConstants->remove(this); | 
|  | destroyConstantImpl(); | 
|  | } | 
|  |  | 
|  |  | 
|  | //---- UndefValue::get() implementation... | 
|  | // | 
|  |  | 
|  | namespace llvm { | 
|  | // UndefValue does not take extra "value" argument... | 
|  | template<class ValType> | 
|  | struct ConstantCreator<UndefValue, Type, ValType> { | 
|  | static UndefValue *create(const Type *Ty, const ValType &V) { | 
|  | return new UndefValue(Ty); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<> | 
|  | struct ConvertConstantType<UndefValue, Type> { | 
|  | static void convert(UndefValue *OldC, const Type *NewTy) { | 
|  | // Make everyone now use a constant of the new type. | 
|  | Constant *New = UndefValue::get(NewTy); | 
|  | assert(New != OldC && "Didn't replace constant??"); | 
|  | OldC->uncheckedReplaceAllUsesWith(New); | 
|  | OldC->destroyConstant();     // This constant is now dead, destroy it. | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | static ManagedStatic<ValueMap<char, Type, UndefValue> > UndefValueConstants; | 
|  |  | 
|  | static char getValType(UndefValue *) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | UndefValue *UndefValue::get(const Type *Ty) { | 
|  | return UndefValueConstants->getOrCreate(Ty, 0); | 
|  | } | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table. | 
|  | // | 
|  | void UndefValue::destroyConstant() { | 
|  | UndefValueConstants->remove(this); | 
|  | destroyConstantImpl(); | 
|  | } | 
|  |  | 
|  |  | 
|  | //---- ConstantExpr::get() implementations... | 
|  | // | 
|  |  | 
|  | struct ExprMapKeyType { | 
|  | explicit ExprMapKeyType(unsigned opc, std::vector<Constant*> ops, | 
|  | unsigned short pred = 0) : opcode(opc), predicate(pred), operands(ops) { } | 
|  | uint16_t opcode; | 
|  | uint16_t predicate; | 
|  | std::vector<Constant*> operands; | 
|  | bool operator==(const ExprMapKeyType& that) const { | 
|  | return this->opcode == that.opcode && | 
|  | this->predicate == that.predicate && | 
|  | this->operands == that.operands; | 
|  | } | 
|  | bool operator<(const ExprMapKeyType & that) const { | 
|  | return this->opcode < that.opcode || | 
|  | (this->opcode == that.opcode && this->predicate < that.predicate) || | 
|  | (this->opcode == that.opcode && this->predicate == that.predicate && | 
|  | this->operands < that.operands); | 
|  | } | 
|  |  | 
|  | bool operator!=(const ExprMapKeyType& that) const { | 
|  | return !(*this == that); | 
|  | } | 
|  | }; | 
|  |  | 
|  | namespace llvm { | 
|  | template<> | 
|  | struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> { | 
|  | static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V, | 
|  | unsigned short pred = 0) { | 
|  | if (Instruction::isCast(V.opcode)) | 
|  | return new UnaryConstantExpr(V.opcode, V.operands[0], Ty); | 
|  | if ((V.opcode >= Instruction::BinaryOpsBegin && | 
|  | V.opcode < Instruction::BinaryOpsEnd)) | 
|  | return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]); | 
|  | if (V.opcode == Instruction::Select) | 
|  | return new SelectConstantExpr(V.operands[0], V.operands[1], | 
|  | V.operands[2]); | 
|  | if (V.opcode == Instruction::ExtractElement) | 
|  | return new ExtractElementConstantExpr(V.operands[0], V.operands[1]); | 
|  | if (V.opcode == Instruction::InsertElement) | 
|  | return new InsertElementConstantExpr(V.operands[0], V.operands[1], | 
|  | V.operands[2]); | 
|  | if (V.opcode == Instruction::ShuffleVector) | 
|  | return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1], | 
|  | V.operands[2]); | 
|  | if (V.opcode == Instruction::GetElementPtr) { | 
|  | std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end()); | 
|  | return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty); | 
|  | } | 
|  |  | 
|  | // The compare instructions are weird. We have to encode the predicate | 
|  | // value and it is combined with the instruction opcode by multiplying | 
|  | // the opcode by one hundred. We must decode this to get the predicate. | 
|  | if (V.opcode == Instruction::ICmp) | 
|  | return new CompareConstantExpr(Instruction::ICmp, V.predicate, | 
|  | V.operands[0], V.operands[1]); | 
|  | if (V.opcode == Instruction::FCmp) | 
|  | return new CompareConstantExpr(Instruction::FCmp, V.predicate, | 
|  | V.operands[0], V.operands[1]); | 
|  | assert(0 && "Invalid ConstantExpr!"); | 
|  | return 0; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<> | 
|  | struct ConvertConstantType<ConstantExpr, Type> { | 
|  | static void convert(ConstantExpr *OldC, const Type *NewTy) { | 
|  | Constant *New; | 
|  | switch (OldC->getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::PtrToInt: | 
|  | case Instruction::IntToPtr: | 
|  | case Instruction::BitCast: | 
|  | New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0), | 
|  | NewTy); | 
|  | break; | 
|  | case Instruction::Select: | 
|  | New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0), | 
|  | OldC->getOperand(1), | 
|  | OldC->getOperand(2)); | 
|  | break; | 
|  | default: | 
|  | assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin && | 
|  | OldC->getOpcode() <  Instruction::BinaryOpsEnd); | 
|  | New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0), | 
|  | OldC->getOperand(1)); | 
|  | break; | 
|  | case Instruction::GetElementPtr: | 
|  | // Make everyone now use a constant of the new type... | 
|  | std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end()); | 
|  | New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), | 
|  | &Idx[0], Idx.size()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(New != OldC && "Didn't replace constant??"); | 
|  | OldC->uncheckedReplaceAllUsesWith(New); | 
|  | OldC->destroyConstant();    // This constant is now dead, destroy it. | 
|  | } | 
|  | }; | 
|  | } // end namespace llvm | 
|  |  | 
|  |  | 
|  | static ExprMapKeyType getValType(ConstantExpr *CE) { | 
|  | std::vector<Constant*> Operands; | 
|  | Operands.reserve(CE->getNumOperands()); | 
|  | for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) | 
|  | Operands.push_back(cast<Constant>(CE->getOperand(i))); | 
|  | return ExprMapKeyType(CE->getOpcode(), Operands, | 
|  | CE->isCompare() ? CE->getPredicate() : 0); | 
|  | } | 
|  |  | 
|  | static ManagedStatic<ValueMap<ExprMapKeyType, Type, | 
|  | ConstantExpr> > ExprConstants; | 
|  |  | 
|  | /// This is a utility function to handle folding of casts and lookup of the | 
|  | /// cast in the ExprConstants map. It is used by the various get* methods below. | 
|  | static inline Constant *getFoldedCast( | 
|  | Instruction::CastOps opc, Constant *C, const Type *Ty) { | 
|  | assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); | 
|  | // Fold a few common cases | 
|  | if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) | 
|  | return FC; | 
|  |  | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | std::vector<Constant*> argVec(1, C); | 
|  | ExprMapKeyType Key(opc, argVec); | 
|  | return ExprConstants->getOrCreate(Ty, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) { | 
|  | Instruction::CastOps opc = Instruction::CastOps(oc); | 
|  | assert(Instruction::isCast(opc) && "opcode out of range"); | 
|  | assert(C && Ty && "Null arguments to getCast"); | 
|  | assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); | 
|  |  | 
|  | switch (opc) { | 
|  | default: | 
|  | assert(0 && "Invalid cast opcode"); | 
|  | break; | 
|  | case Instruction::Trunc:    return getTrunc(C, Ty); | 
|  | case Instruction::ZExt:     return getZExt(C, Ty); | 
|  | case Instruction::SExt:     return getSExt(C, Ty); | 
|  | case Instruction::FPTrunc:  return getFPTrunc(C, Ty); | 
|  | case Instruction::FPExt:    return getFPExtend(C, Ty); | 
|  | case Instruction::UIToFP:   return getUIToFP(C, Ty); | 
|  | case Instruction::SIToFP:   return getSIToFP(C, Ty); | 
|  | case Instruction::FPToUI:   return getFPToUI(C, Ty); | 
|  | case Instruction::FPToSI:   return getFPToSI(C, Ty); | 
|  | case Instruction::PtrToInt: return getPtrToInt(C, Ty); | 
|  | case Instruction::IntToPtr: return getIntToPtr(C, Ty); | 
|  | case Instruction::BitCast:  return getBitCast(C, Ty); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) { | 
|  | if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) | 
|  | return getCast(Instruction::BitCast, C, Ty); | 
|  | return getCast(Instruction::ZExt, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) { | 
|  | if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) | 
|  | return getCast(Instruction::BitCast, C, Ty); | 
|  | return getCast(Instruction::SExt, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) { | 
|  | if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) | 
|  | return getCast(Instruction::BitCast, C, Ty); | 
|  | return getCast(Instruction::Trunc, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) { | 
|  | assert(isa<PointerType>(S->getType()) && "Invalid cast"); | 
|  | assert((Ty->isInteger() || isa<PointerType>(Ty)) && "Invalid cast"); | 
|  |  | 
|  | if (Ty->isInteger()) | 
|  | return getCast(Instruction::PtrToInt, S, Ty); | 
|  | return getCast(Instruction::BitCast, S, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty, | 
|  | bool isSigned) { | 
|  | assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast"); | 
|  | unsigned SrcBits = C->getType()->getPrimitiveSizeInBits(); | 
|  | unsigned DstBits = Ty->getPrimitiveSizeInBits(); | 
|  | Instruction::CastOps opcode = | 
|  | (SrcBits == DstBits ? Instruction::BitCast : | 
|  | (SrcBits > DstBits ? Instruction::Trunc : | 
|  | (isSigned ? Instruction::SExt : Instruction::ZExt))); | 
|  | return getCast(opcode, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) { | 
|  | assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() && | 
|  | "Invalid cast"); | 
|  | unsigned SrcBits = C->getType()->getPrimitiveSizeInBits(); | 
|  | unsigned DstBits = Ty->getPrimitiveSizeInBits(); | 
|  | if (SrcBits == DstBits) | 
|  | return C; // Avoid a useless cast | 
|  | Instruction::CastOps opcode = | 
|  | (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); | 
|  | return getCast(opcode, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) { | 
|  | assert(C->getType()->isInteger() && "Trunc operand must be integer"); | 
|  | assert(Ty->isInteger() && "Trunc produces only integral"); | 
|  | assert(C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&& | 
|  | "SrcTy must be larger than DestTy for Trunc!"); | 
|  |  | 
|  | return getFoldedCast(Instruction::Trunc, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) { | 
|  | assert(C->getType()->isInteger() && "SEXt operand must be integral"); | 
|  | assert(Ty->isInteger() && "SExt produces only integer"); | 
|  | assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&& | 
|  | "SrcTy must be smaller than DestTy for SExt!"); | 
|  |  | 
|  | return getFoldedCast(Instruction::SExt, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) { | 
|  | assert(C->getType()->isInteger() && "ZEXt operand must be integral"); | 
|  | assert(Ty->isInteger() && "ZExt produces only integer"); | 
|  | assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&& | 
|  | "SrcTy must be smaller than DestTy for ZExt!"); | 
|  |  | 
|  | return getFoldedCast(Instruction::ZExt, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) { | 
|  | assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() && | 
|  | C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&& | 
|  | "This is an illegal floating point truncation!"); | 
|  | return getFoldedCast(Instruction::FPTrunc, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) { | 
|  | assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() && | 
|  | C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&& | 
|  | "This is an illegal floating point extension!"); | 
|  | return getFoldedCast(Instruction::FPExt, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) { | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() && | 
|  | "This is an illegal uint to floating point cast!"); | 
|  | return getFoldedCast(Instruction::UIToFP, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) { | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() && | 
|  | "This is an illegal sint to floating point cast!"); | 
|  | return getFoldedCast(Instruction::SIToFP, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) { | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() && | 
|  | "This is an illegal floating point to uint cast!"); | 
|  | return getFoldedCast(Instruction::FPToUI, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) { | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() && | 
|  | "This is an illegal floating point to sint cast!"); | 
|  | return getFoldedCast(Instruction::FPToSI, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) { | 
|  | assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer"); | 
|  | assert(DstTy->isInteger() && "PtrToInt destination must be integral"); | 
|  | return getFoldedCast(Instruction::PtrToInt, C, DstTy); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) { | 
|  | assert(C->getType()->isInteger() && "IntToPtr source must be integral"); | 
|  | assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer"); | 
|  | return getFoldedCast(Instruction::IntToPtr, C, DstTy); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) { | 
|  | // BitCast implies a no-op cast of type only. No bits change.  However, you | 
|  | // can't cast pointers to anything but pointers. | 
|  | const Type *SrcTy = C->getType(); | 
|  | assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) && | 
|  | "BitCast cannot cast pointer to non-pointer and vice versa"); | 
|  |  | 
|  | // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr | 
|  | // or nonptr->ptr). For all the other types, the cast is okay if source and | 
|  | // destination bit widths are identical. | 
|  | unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); | 
|  | unsigned DstBitSize = DstTy->getPrimitiveSizeInBits(); | 
|  | assert(SrcBitSize == DstBitSize && "BitCast requies types of same width"); | 
|  | return getFoldedCast(Instruction::BitCast, C, DstTy); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSizeOf(const Type *Ty) { | 
|  | // sizeof is implemented as: (i64) gep (Ty*)null, 1 | 
|  | Constant *GEPIdx = ConstantInt::get(Type::Int32Ty, 1); | 
|  | Constant *GEP = | 
|  | getGetElementPtr(getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1); | 
|  | return getCast(Instruction::PtrToInt, GEP, Type::Int64Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode, | 
|  | Constant *C1, Constant *C2) { | 
|  | // Check the operands for consistency first | 
|  | assert(Opcode >= Instruction::BinaryOpsBegin && | 
|  | Opcode <  Instruction::BinaryOpsEnd   && | 
|  | "Invalid opcode in binary constant expression"); | 
|  | assert(C1->getType() == C2->getType() && | 
|  | "Operand types in binary constant expression should match"); | 
|  |  | 
|  | if (ReqTy == C1->getType() || ReqTy == Type::Int1Ty) | 
|  | if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) | 
|  | return FC;          // Fold a few common cases... | 
|  |  | 
|  | std::vector<Constant*> argVec(1, C1); argVec.push_back(C2); | 
|  | ExprMapKeyType Key(Opcode, argVec); | 
|  | return ExprConstants->getOrCreate(ReqTy, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getCompareTy(unsigned short predicate, | 
|  | Constant *C1, Constant *C2) { | 
|  | switch (predicate) { | 
|  | default: assert(0 && "Invalid CmpInst predicate"); | 
|  | case FCmpInst::FCMP_FALSE: case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_OGT: | 
|  | case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OLE: | 
|  | case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_ORD: case FCmpInst::FCMP_UNO: | 
|  | case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UGT: case FCmpInst::FCMP_UGE: | 
|  | case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_ULE: case FCmpInst::FCMP_UNE: | 
|  | case FCmpInst::FCMP_TRUE: | 
|  | return getFCmp(predicate, C1, C2); | 
|  | case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_UGE: case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: | 
|  | case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: case ICmpInst::ICMP_SLT: | 
|  | case ICmpInst::ICMP_SLE: | 
|  | return getICmp(predicate, C1, C2); | 
|  | } | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) { | 
|  | #ifndef NDEBUG | 
|  | switch (Opcode) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert((C1->getType()->isInteger() || C1->getType()->isFloatingPoint() || | 
|  | isa<VectorType>(C1->getType())) && | 
|  | "Tried to create an arithmetic operation on a non-arithmetic type!"); | 
|  | break; | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert((C1->getType()->isInteger() || (isa<VectorType>(C1->getType()) && | 
|  | cast<VectorType>(C1->getType())->getElementType()->isInteger())) && | 
|  | "Tried to create an arithmetic operation on a non-arithmetic type!"); | 
|  | break; | 
|  | case Instruction::FDiv: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert((C1->getType()->isFloatingPoint() || (isa<VectorType>(C1->getType()) | 
|  | && cast<VectorType>(C1->getType())->getElementType()->isFloatingPoint())) | 
|  | && "Tried to create an arithmetic operation on a non-arithmetic type!"); | 
|  | break; | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert((C1->getType()->isInteger() || (isa<VectorType>(C1->getType()) && | 
|  | cast<VectorType>(C1->getType())->getElementType()->isInteger())) && | 
|  | "Tried to create an arithmetic operation on a non-arithmetic type!"); | 
|  | break; | 
|  | case Instruction::FRem: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert((C1->getType()->isFloatingPoint() || (isa<VectorType>(C1->getType()) | 
|  | && cast<VectorType>(C1->getType())->getElementType()->isFloatingPoint())) | 
|  | && "Tried to create an arithmetic operation on a non-arithmetic type!"); | 
|  | break; | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert((C1->getType()->isInteger() || isa<VectorType>(C1->getType())) && | 
|  | "Tried to create a logical operation on a non-integral type!"); | 
|  | break; | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert(C1->getType()->isInteger() && | 
|  | "Tried to create a shift operation on a non-integer type!"); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return getTy(C1->getType(), Opcode, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getCompare(unsigned short pred, | 
|  | Constant *C1, Constant *C2) { | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | return getCompareTy(pred, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C, | 
|  | Constant *V1, Constant *V2) { | 
|  | assert(C->getType() == Type::Int1Ty && "Select condition must be i1!"); | 
|  | assert(V1->getType() == V2->getType() && "Select value types must match!"); | 
|  | assert(V1->getType()->isFirstClassType() && "Cannot select aggregate type!"); | 
|  |  | 
|  | if (ReqTy == V1->getType()) | 
|  | if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) | 
|  | return SC;        // Fold common cases | 
|  |  | 
|  | std::vector<Constant*> argVec(3, C); | 
|  | argVec[1] = V1; | 
|  | argVec[2] = V2; | 
|  | ExprMapKeyType Key(Instruction::Select, argVec); | 
|  | return ExprConstants->getOrCreate(ReqTy, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C, | 
|  | Value* const *Idxs, | 
|  | unsigned NumIdx) { | 
|  | assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx, true) && | 
|  | "GEP indices invalid!"); | 
|  |  | 
|  | if (Constant *FC = ConstantFoldGetElementPtr(C, (Constant**)Idxs, NumIdx)) | 
|  | return FC;          // Fold a few common cases... | 
|  |  | 
|  | assert(isa<PointerType>(C->getType()) && | 
|  | "Non-pointer type for constant GetElementPtr expression"); | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | std::vector<Constant*> ArgVec; | 
|  | ArgVec.reserve(NumIdx+1); | 
|  | ArgVec.push_back(C); | 
|  | for (unsigned i = 0; i != NumIdx; ++i) | 
|  | ArgVec.push_back(cast<Constant>(Idxs[i])); | 
|  | const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec); | 
|  | return ExprConstants->getOrCreate(ReqTy, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs, | 
|  | unsigned NumIdx) { | 
|  | // Get the result type of the getelementptr! | 
|  | const Type *Ty = | 
|  | GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx, true); | 
|  | assert(Ty && "GEP indices invalid!"); | 
|  | unsigned As = cast<PointerType>(C->getType())->getAddressSpace(); | 
|  | return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs, | 
|  | unsigned NumIdx) { | 
|  | return getGetElementPtr(C, (Value* const *)Idxs, NumIdx); | 
|  | } | 
|  |  | 
|  |  | 
|  | Constant * | 
|  | ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) { | 
|  | assert(LHS->getType() == RHS->getType()); | 
|  | assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && | 
|  | pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); | 
|  |  | 
|  | if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) | 
|  | return FC;          // Fold a few common cases... | 
|  |  | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | std::vector<Constant*> ArgVec; | 
|  | ArgVec.push_back(LHS); | 
|  | ArgVec.push_back(RHS); | 
|  | // Get the key type with both the opcode and predicate | 
|  | const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); | 
|  | return ExprConstants->getOrCreate(Type::Int1Ty, Key); | 
|  | } | 
|  |  | 
|  | Constant * | 
|  | ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) { | 
|  | assert(LHS->getType() == RHS->getType()); | 
|  | assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); | 
|  |  | 
|  | if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) | 
|  | return FC;          // Fold a few common cases... | 
|  |  | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | std::vector<Constant*> ArgVec; | 
|  | ArgVec.push_back(LHS); | 
|  | ArgVec.push_back(RHS); | 
|  | // Get the key type with both the opcode and predicate | 
|  | const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); | 
|  | return ExprConstants->getOrCreate(Type::Int1Ty, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val, | 
|  | Constant *Idx) { | 
|  | if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) | 
|  | return FC;          // Fold a few common cases... | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | std::vector<Constant*> ArgVec(1, Val); | 
|  | ArgVec.push_back(Idx); | 
|  | const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec); | 
|  | return ExprConstants->getOrCreate(ReqTy, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { | 
|  | assert(isa<VectorType>(Val->getType()) && | 
|  | "Tried to create extractelement operation on non-vector type!"); | 
|  | assert(Idx->getType() == Type::Int32Ty && | 
|  | "Extractelement index must be i32 type!"); | 
|  | return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(), | 
|  | Val, Idx); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val, | 
|  | Constant *Elt, Constant *Idx) { | 
|  | if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) | 
|  | return FC;          // Fold a few common cases... | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | std::vector<Constant*> ArgVec(1, Val); | 
|  | ArgVec.push_back(Elt); | 
|  | ArgVec.push_back(Idx); | 
|  | const ExprMapKeyType Key(Instruction::InsertElement,ArgVec); | 
|  | return ExprConstants->getOrCreate(ReqTy, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, | 
|  | Constant *Idx) { | 
|  | assert(isa<VectorType>(Val->getType()) && | 
|  | "Tried to create insertelement operation on non-vector type!"); | 
|  | assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() | 
|  | && "Insertelement types must match!"); | 
|  | assert(Idx->getType() == Type::Int32Ty && | 
|  | "Insertelement index must be i32 type!"); | 
|  | return getInsertElementTy(cast<VectorType>(Val->getType())->getElementType(), | 
|  | Val, Elt, Idx); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1, | 
|  | Constant *V2, Constant *Mask) { | 
|  | if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) | 
|  | return FC;          // Fold a few common cases... | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | std::vector<Constant*> ArgVec(1, V1); | 
|  | ArgVec.push_back(V2); | 
|  | ArgVec.push_back(Mask); | 
|  | const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec); | 
|  | return ExprConstants->getOrCreate(ReqTy, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, | 
|  | Constant *Mask) { | 
|  | assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && | 
|  | "Invalid shuffle vector constant expr operands!"); | 
|  | return getShuffleVectorTy(V1->getType(), V1, V2, Mask); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getZeroValueForNegationExpr(const Type *Ty) { | 
|  | if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) | 
|  | if (PTy->getElementType()->isFloatingPoint()) { | 
|  | std::vector<Constant*> zeros(PTy->getNumElements(), | 
|  | ConstantFP::getNegativeZero(PTy->getElementType())); | 
|  | return ConstantVector::get(PTy, zeros); | 
|  | } | 
|  |  | 
|  | if (Ty->isFloatingPoint()) | 
|  | return ConstantFP::getNegativeZero(Ty); | 
|  |  | 
|  | return Constant::getNullValue(Ty); | 
|  | } | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table... | 
|  | // | 
|  | void ConstantExpr::destroyConstant() { | 
|  | ExprConstants->remove(this); | 
|  | destroyConstantImpl(); | 
|  | } | 
|  |  | 
|  | const char *ConstantExpr::getOpcodeName() const { | 
|  | return Instruction::getOpcodeName(getOpcode()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                replaceUsesOfWithOnConstant implementations | 
|  |  | 
|  | /// replaceUsesOfWithOnConstant - Update this constant array to change uses of | 
|  | /// 'From' to be uses of 'To'.  This must update the uniquing data structures | 
|  | /// etc. | 
|  | /// | 
|  | /// Note that we intentionally replace all uses of From with To here.  Consider | 
|  | /// a large array that uses 'From' 1000 times.  By handling this case all here, | 
|  | /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that | 
|  | /// single invocation handles all 1000 uses.  Handling them one at a time would | 
|  | /// work, but would be really slow because it would have to unique each updated | 
|  | /// array instance. | 
|  | void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, | 
|  | Use *U) { | 
|  | assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); | 
|  | Constant *ToC = cast<Constant>(To); | 
|  |  | 
|  | std::pair<ArrayConstantsTy::MapKey, Constant*> Lookup; | 
|  | Lookup.first.first = getType(); | 
|  | Lookup.second = this; | 
|  |  | 
|  | std::vector<Constant*> &Values = Lookup.first.second; | 
|  | Values.reserve(getNumOperands());  // Build replacement array. | 
|  |  | 
|  | // Fill values with the modified operands of the constant array.  Also, | 
|  | // compute whether this turns into an all-zeros array. | 
|  | bool isAllZeros = false; | 
|  | unsigned NumUpdated = 0; | 
|  | if (!ToC->isNullValue()) { | 
|  | for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { | 
|  | Constant *Val = cast<Constant>(O->get()); | 
|  | if (Val == From) { | 
|  | Val = ToC; | 
|  | ++NumUpdated; | 
|  | } | 
|  | Values.push_back(Val); | 
|  | } | 
|  | } else { | 
|  | isAllZeros = true; | 
|  | for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { | 
|  | Constant *Val = cast<Constant>(O->get()); | 
|  | if (Val == From) { | 
|  | Val = ToC; | 
|  | ++NumUpdated; | 
|  | } | 
|  | Values.push_back(Val); | 
|  | if (isAllZeros) isAllZeros = Val->isNullValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | Constant *Replacement = 0; | 
|  | if (isAllZeros) { | 
|  | Replacement = ConstantAggregateZero::get(getType()); | 
|  | } else { | 
|  | // Check to see if we have this array type already. | 
|  | bool Exists; | 
|  | ArrayConstantsTy::MapTy::iterator I = | 
|  | ArrayConstants->InsertOrGetItem(Lookup, Exists); | 
|  |  | 
|  | if (Exists) { | 
|  | Replacement = I->second; | 
|  | } else { | 
|  | // Okay, the new shape doesn't exist in the system yet.  Instead of | 
|  | // creating a new constant array, inserting it, replaceallusesof'ing the | 
|  | // old with the new, then deleting the old... just update the current one | 
|  | // in place! | 
|  | ArrayConstants->MoveConstantToNewSlot(this, I); | 
|  |  | 
|  | // Update to the new value.  Optimize for the case when we have a single | 
|  | // operand that we're changing, but handle bulk updates efficiently. | 
|  | if (NumUpdated == 1) { | 
|  | unsigned OperandToUpdate = U-OperandList; | 
|  | assert(getOperand(OperandToUpdate) == From && | 
|  | "ReplaceAllUsesWith broken!"); | 
|  | setOperand(OperandToUpdate, ToC); | 
|  | } else { | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) | 
|  | if (getOperand(i) == From) | 
|  | setOperand(i, ToC); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, I do need to replace this with an existing value. | 
|  | assert(Replacement != this && "I didn't contain From!"); | 
|  |  | 
|  | // Everyone using this now uses the replacement. | 
|  | uncheckedReplaceAllUsesWith(Replacement); | 
|  |  | 
|  | // Delete the old constant! | 
|  | destroyConstant(); | 
|  | } | 
|  |  | 
|  | void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, | 
|  | Use *U) { | 
|  | assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); | 
|  | Constant *ToC = cast<Constant>(To); | 
|  |  | 
|  | unsigned OperandToUpdate = U-OperandList; | 
|  | assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); | 
|  |  | 
|  | std::pair<StructConstantsTy::MapKey, Constant*> Lookup; | 
|  | Lookup.first.first = getType(); | 
|  | Lookup.second = this; | 
|  | std::vector<Constant*> &Values = Lookup.first.second; | 
|  | Values.reserve(getNumOperands());  // Build replacement struct. | 
|  |  | 
|  |  | 
|  | // Fill values with the modified operands of the constant struct.  Also, | 
|  | // compute whether this turns into an all-zeros struct. | 
|  | bool isAllZeros = false; | 
|  | if (!ToC->isNullValue()) { | 
|  | for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) | 
|  | Values.push_back(cast<Constant>(O->get())); | 
|  | } else { | 
|  | isAllZeros = true; | 
|  | for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { | 
|  | Constant *Val = cast<Constant>(O->get()); | 
|  | Values.push_back(Val); | 
|  | if (isAllZeros) isAllZeros = Val->isNullValue(); | 
|  | } | 
|  | } | 
|  | Values[OperandToUpdate] = ToC; | 
|  |  | 
|  | Constant *Replacement = 0; | 
|  | if (isAllZeros) { | 
|  | Replacement = ConstantAggregateZero::get(getType()); | 
|  | } else { | 
|  | // Check to see if we have this array type already. | 
|  | bool Exists; | 
|  | StructConstantsTy::MapTy::iterator I = | 
|  | StructConstants->InsertOrGetItem(Lookup, Exists); | 
|  |  | 
|  | if (Exists) { | 
|  | Replacement = I->second; | 
|  | } else { | 
|  | // Okay, the new shape doesn't exist in the system yet.  Instead of | 
|  | // creating a new constant struct, inserting it, replaceallusesof'ing the | 
|  | // old with the new, then deleting the old... just update the current one | 
|  | // in place! | 
|  | StructConstants->MoveConstantToNewSlot(this, I); | 
|  |  | 
|  | // Update to the new value. | 
|  | setOperand(OperandToUpdate, ToC); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(Replacement != this && "I didn't contain From!"); | 
|  |  | 
|  | // Everyone using this now uses the replacement. | 
|  | uncheckedReplaceAllUsesWith(Replacement); | 
|  |  | 
|  | // Delete the old constant! | 
|  | destroyConstant(); | 
|  | } | 
|  |  | 
|  | void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, | 
|  | Use *U) { | 
|  | assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); | 
|  |  | 
|  | std::vector<Constant*> Values; | 
|  | Values.reserve(getNumOperands());  // Build replacement array... | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | Constant *Val = getOperand(i); | 
|  | if (Val == From) Val = cast<Constant>(To); | 
|  | Values.push_back(Val); | 
|  | } | 
|  |  | 
|  | Constant *Replacement = ConstantVector::get(getType(), Values); | 
|  | assert(Replacement != this && "I didn't contain From!"); | 
|  |  | 
|  | // Everyone using this now uses the replacement. | 
|  | uncheckedReplaceAllUsesWith(Replacement); | 
|  |  | 
|  | // Delete the old constant! | 
|  | destroyConstant(); | 
|  | } | 
|  |  | 
|  | void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, | 
|  | Use *U) { | 
|  | assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); | 
|  | Constant *To = cast<Constant>(ToV); | 
|  |  | 
|  | Constant *Replacement = 0; | 
|  | if (getOpcode() == Instruction::GetElementPtr) { | 
|  | SmallVector<Constant*, 8> Indices; | 
|  | Constant *Pointer = getOperand(0); | 
|  | Indices.reserve(getNumOperands()-1); | 
|  | if (Pointer == From) Pointer = To; | 
|  |  | 
|  | for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { | 
|  | Constant *Val = getOperand(i); | 
|  | if (Val == From) Val = To; | 
|  | Indices.push_back(Val); | 
|  | } | 
|  | Replacement = ConstantExpr::getGetElementPtr(Pointer, | 
|  | &Indices[0], Indices.size()); | 
|  | } else if (isCast()) { | 
|  | assert(getOperand(0) == From && "Cast only has one use!"); | 
|  | Replacement = ConstantExpr::getCast(getOpcode(), To, getType()); | 
|  | } else if (getOpcode() == Instruction::Select) { | 
|  | Constant *C1 = getOperand(0); | 
|  | Constant *C2 = getOperand(1); | 
|  | Constant *C3 = getOperand(2); | 
|  | if (C1 == From) C1 = To; | 
|  | if (C2 == From) C2 = To; | 
|  | if (C3 == From) C3 = To; | 
|  | Replacement = ConstantExpr::getSelect(C1, C2, C3); | 
|  | } else if (getOpcode() == Instruction::ExtractElement) { | 
|  | Constant *C1 = getOperand(0); | 
|  | Constant *C2 = getOperand(1); | 
|  | if (C1 == From) C1 = To; | 
|  | if (C2 == From) C2 = To; | 
|  | Replacement = ConstantExpr::getExtractElement(C1, C2); | 
|  | } else if (getOpcode() == Instruction::InsertElement) { | 
|  | Constant *C1 = getOperand(0); | 
|  | Constant *C2 = getOperand(1); | 
|  | Constant *C3 = getOperand(1); | 
|  | if (C1 == From) C1 = To; | 
|  | if (C2 == From) C2 = To; | 
|  | if (C3 == From) C3 = To; | 
|  | Replacement = ConstantExpr::getInsertElement(C1, C2, C3); | 
|  | } else if (getOpcode() == Instruction::ShuffleVector) { | 
|  | Constant *C1 = getOperand(0); | 
|  | Constant *C2 = getOperand(1); | 
|  | Constant *C3 = getOperand(2); | 
|  | if (C1 == From) C1 = To; | 
|  | if (C2 == From) C2 = To; | 
|  | if (C3 == From) C3 = To; | 
|  | Replacement = ConstantExpr::getShuffleVector(C1, C2, C3); | 
|  | } else if (isCompare()) { | 
|  | Constant *C1 = getOperand(0); | 
|  | Constant *C2 = getOperand(1); | 
|  | if (C1 == From) C1 = To; | 
|  | if (C2 == From) C2 = To; | 
|  | if (getOpcode() == Instruction::ICmp) | 
|  | Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2); | 
|  | else | 
|  | Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2); | 
|  | } else if (getNumOperands() == 2) { | 
|  | Constant *C1 = getOperand(0); | 
|  | Constant *C2 = getOperand(1); | 
|  | if (C1 == From) C1 = To; | 
|  | if (C2 == From) C2 = To; | 
|  | Replacement = ConstantExpr::get(getOpcode(), C1, C2); | 
|  | } else { | 
|  | assert(0 && "Unknown ConstantExpr type!"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(Replacement != this && "I didn't contain From!"); | 
|  |  | 
|  | // Everyone using this now uses the replacement. | 
|  | uncheckedReplaceAllUsesWith(Replacement); | 
|  |  | 
|  | // Delete the old constant! | 
|  | destroyConstant(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getStringValue - Turn an LLVM constant pointer that eventually points to a | 
|  | /// global into a string value.  Return an empty string if we can't do it. | 
|  | /// Parameter Chop determines if the result is chopped at the first null | 
|  | /// terminator. | 
|  | /// | 
|  | std::string Constant::getStringValue(bool Chop, unsigned Offset) { | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(this)) { | 
|  | if (GV->hasInitializer() && isa<ConstantArray>(GV->getInitializer())) { | 
|  | ConstantArray *Init = cast<ConstantArray>(GV->getInitializer()); | 
|  | if (Init->isString()) { | 
|  | std::string Result = Init->getAsString(); | 
|  | if (Offset < Result.size()) { | 
|  | // If we are pointing INTO The string, erase the beginning... | 
|  | Result.erase(Result.begin(), Result.begin()+Offset); | 
|  |  | 
|  | // Take off the null terminator, and any string fragments after it. | 
|  | if (Chop) { | 
|  | std::string::size_type NullPos = Result.find_first_of((char)0); | 
|  | if (NullPos != std::string::npos) | 
|  | Result.erase(Result.begin()+NullPos, Result.end()); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) { | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr) { | 
|  | // Turn a gep into the specified offset. | 
|  | if (CE->getNumOperands() == 3 && | 
|  | cast<Constant>(CE->getOperand(1))->isNullValue() && | 
|  | isa<ConstantInt>(CE->getOperand(2))) { | 
|  | Offset += cast<ConstantInt>(CE->getOperand(2))->getZExtValue(); | 
|  | return CE->getOperand(0)->getStringValue(Chop, Offset); | 
|  | } | 
|  | } | 
|  | } | 
|  | return ""; | 
|  | } |