blob: f1968e55e86fa11fcf8410d5cfadff8c08a135a8 [file] [log] [blame]
//===- llvm/unittest/DebugInfo/PDB/HashTableTest.cpp ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/PDB/Native/HashTable.h"
#include "llvm/Support/BinaryByteStream.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/BinaryStreamWriter.h"
#include "llvm/Testing/Support/Error.h"
#include "gtest/gtest.h"
#include <vector>
using namespace llvm;
using namespace llvm::pdb;
using namespace llvm::support;
namespace {
class HashTableInternals : public HashTable {
public:
using HashTable::Buckets;
using HashTable::Present;
using HashTable::Deleted;
};
}
TEST(HashTableTest, TestSimple) {
HashTable Table;
EXPECT_EQ(0u, Table.size());
EXPECT_GT(Table.capacity(), 0u);
Table.set(3, 7);
EXPECT_EQ(1u, Table.size());
ASSERT_NE(Table.end(), Table.find(3));
EXPECT_EQ(7u, Table.get(3));
}
TEST(HashTableTest, TestCollision) {
HashTable Table;
EXPECT_EQ(0u, Table.size());
EXPECT_GT(Table.capacity(), 0u);
// We use knowledge of the hash table's implementation details to make sure
// to add another value that is the equivalent to the first value modulo the
// hash table's capacity.
uint32_t N1 = Table.capacity() + 1;
uint32_t N2 = 2 * N1;
Table.set(N1, 7);
Table.set(N2, 12);
EXPECT_EQ(2u, Table.size());
ASSERT_NE(Table.end(), Table.find(N1));
ASSERT_NE(Table.end(), Table.find(N2));
EXPECT_EQ(7u, Table.get(N1));
EXPECT_EQ(12u, Table.get(N2));
}
TEST(HashTableTest, TestRemove) {
HashTable Table;
EXPECT_EQ(0u, Table.size());
EXPECT_GT(Table.capacity(), 0u);
Table.set(1, 2);
Table.set(3, 4);
EXPECT_EQ(2u, Table.size());
ASSERT_NE(Table.end(), Table.find(1));
ASSERT_NE(Table.end(), Table.find(3));
EXPECT_EQ(2u, Table.get(1));
EXPECT_EQ(4u, Table.get(3));
Table.remove(1u);
EXPECT_EQ(1u, Table.size());
EXPECT_EQ(Table.end(), Table.find(1));
ASSERT_NE(Table.end(), Table.find(3));
EXPECT_EQ(4u, Table.get(3));
}
TEST(HashTableTest, TestCollisionAfterMultipleProbes) {
HashTable Table;
EXPECT_EQ(0u, Table.size());
EXPECT_GT(Table.capacity(), 0u);
// Probing looks for the first available slot. A slot may already be filled
// as a result of an item with a *different* hash value already being there.
// Test that when this happens, the probe still finds the value.
uint32_t N1 = Table.capacity() + 1;
uint32_t N2 = N1 + 1;
uint32_t N3 = 2 * N1;
Table.set(N1, 7);
Table.set(N2, 11);
Table.set(N3, 13);
EXPECT_EQ(3u, Table.size());
ASSERT_NE(Table.end(), Table.find(N1));
ASSERT_NE(Table.end(), Table.find(N2));
ASSERT_NE(Table.end(), Table.find(N3));
EXPECT_EQ(7u, Table.get(N1));
EXPECT_EQ(11u, Table.get(N2));
EXPECT_EQ(13u, Table.get(N3));
// Remove the one that had been filled in the middle, then insert another one
// with a collision. It should fill the newly emptied slot.
Table.remove(N2);
uint32_t N4 = N1 * 3;
Table.set(N4, 17);
EXPECT_EQ(3u, Table.size());
ASSERT_NE(Table.end(), Table.find(N1));
ASSERT_NE(Table.end(), Table.find(N3));
ASSERT_NE(Table.end(), Table.find(N4));
EXPECT_EQ(7u, Table.get(N1));
EXPECT_EQ(13u, Table.get(N3));
EXPECT_EQ(17u, Table.get(N4));
}
TEST(HashTableTest, Grow) {
// So that we are independent of the load factor, `capacity` items, which is
// guaranteed to trigger a grow. Then verify that the size is the same, the
// capacity is larger, and all the original items are still in the table.
HashTable Table;
uint32_t OldCapacity = Table.capacity();
for (uint32_t I = 0; I < OldCapacity; ++I) {
Table.set(OldCapacity + I * 2 + 1, I * 2 + 3);
}
EXPECT_EQ(OldCapacity, Table.size());
EXPECT_GT(Table.capacity(), OldCapacity);
for (uint32_t I = 0; I < OldCapacity; ++I) {
ASSERT_NE(Table.end(), Table.find(OldCapacity + I * 2 + 1));
EXPECT_EQ(I * 2 + 3, Table.get(OldCapacity + I * 2 + 1));
}
}
TEST(HashTableTest, Serialization) {
HashTableInternals Table;
uint32_t Cap = Table.capacity();
for (uint32_t I = 0; I < Cap; ++I) {
Table.set(Cap + I * 2 + 1, I * 2 + 3);
}
std::vector<uint8_t> Buffer(Table.calculateSerializedLength());
MutableBinaryByteStream Stream(Buffer, little);
BinaryStreamWriter Writer(Stream);
EXPECT_THAT_ERROR(Table.commit(Writer), Succeeded());
// We should have written precisely the number of bytes we calculated earlier.
EXPECT_EQ(Buffer.size(), Writer.getOffset());
HashTableInternals Table2;
BinaryStreamReader Reader(Stream);
EXPECT_THAT_ERROR(Table2.load(Reader), Succeeded());
// We should have read precisely the number of bytes we calculated earlier.
EXPECT_EQ(Buffer.size(), Reader.getOffset());
EXPECT_EQ(Table.size(), Table2.size());
EXPECT_EQ(Table.capacity(), Table2.capacity());
EXPECT_EQ(Table.Buckets, Table2.Buckets);
EXPECT_EQ(Table.Present, Table2.Present);
EXPECT_EQ(Table.Deleted, Table2.Deleted);
}