blob: d0f96a035ea19fb1f88dfbb29184f566661c0378 [file] [log] [blame]
//===- CodeGenRegisters.h - Register and RegisterClass Info -----*- C++ -*-===//
// The LLVM Compiler Infrastructure
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
// This file defines structures to encapsulate information gleaned from the
// target register and register class definitions.
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineValueType.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/SetTheory.h"
#include <cassert>
#include <cstdint>
#include <deque>
#include <list>
#include <map>
#include <string>
#include <utility>
#include <vector>
namespace llvm {
class CodeGenRegBank;
template <typename T, typename Vector, typename Set> class SetVector;
/// Used to encode a step in a register lane mask transformation.
/// Mask the bits specified in Mask, then rotate them Rol bits to the left
/// assuming a wraparound at 32bits.
struct MaskRolPair {
LaneBitmask Mask;
uint8_t RotateLeft;
bool operator==(const MaskRolPair Other) const {
return Mask == Other.Mask && RotateLeft == Other.RotateLeft;
bool operator!=(const MaskRolPair Other) const {
return Mask != Other.Mask || RotateLeft != Other.RotateLeft;
/// CodeGenSubRegIndex - Represents a sub-register index.
class CodeGenSubRegIndex {
Record *const TheDef;
std::string Name;
std::string Namespace;
uint16_t Size;
uint16_t Offset;
const unsigned EnumValue;
mutable LaneBitmask LaneMask;
mutable SmallVector<MaskRolPair,1> CompositionLaneMaskTransform;
// Are all super-registers containing this SubRegIndex covered by their
// sub-registers?
bool AllSuperRegsCovered;
CodeGenSubRegIndex(Record *R, unsigned Enum);
CodeGenSubRegIndex(StringRef N, StringRef Nspace, unsigned Enum);
const std::string &getName() const { return Name; }
const std::string &getNamespace() const { return Namespace; }
std::string getQualifiedName() const;
// Map of composite subreg indices.
typedef std::map<CodeGenSubRegIndex *, CodeGenSubRegIndex *,
deref<llvm::less>> CompMap;
// Returns the subreg index that results from composing this with Idx.
// Returns NULL if this and Idx don't compose.
CodeGenSubRegIndex *compose(CodeGenSubRegIndex *Idx) const {
CompMap::const_iterator I = Composed.find(Idx);
return I == Composed.end() ? nullptr : I->second;
// Add a composite subreg index: this+A = B.
// Return a conflicting composite, or NULL
CodeGenSubRegIndex *addComposite(CodeGenSubRegIndex *A,
CodeGenSubRegIndex *B) {
assert(A && B);
std::pair<CompMap::iterator, bool> Ins =
Composed.insert(std::make_pair(A, B));
// Synthetic subreg indices that aren't contiguous (for instance ARM
// register tuples) don't have a bit range, so it's OK to let
// B->Offset == -1. For the other cases, accumulate the offset and set
// the size here. Only do so if there is no offset yet though.
if ((Offset != (uint16_t)-1 && A->Offset != (uint16_t)-1) &&
(B->Offset == (uint16_t)-1)) {
B->Offset = Offset + A->Offset;
B->Size = A->Size;
return (Ins.second || Ins.first->second == B) ? nullptr
: Ins.first->second;
// Update the composite maps of components specified in 'ComposedOf'.
void updateComponents(CodeGenRegBank&);
// Return the map of composites.
const CompMap &getComposites() const { return Composed; }
// Compute LaneMask from Composed. Return LaneMask.
LaneBitmask computeLaneMask() const;
CompMap Composed;
inline bool operator<(const CodeGenSubRegIndex &A,
const CodeGenSubRegIndex &B) {
return A.EnumValue < B.EnumValue;
/// CodeGenRegister - Represents a register definition.
struct CodeGenRegister {
Record *TheDef;
unsigned EnumValue;
unsigned CostPerUse;
bool CoveredBySubRegs;
bool HasDisjunctSubRegs;
// Map SubRegIndex -> Register.
typedef std::map<CodeGenSubRegIndex *, CodeGenRegister *, deref<llvm::less>>
CodeGenRegister(Record *R, unsigned Enum);
const StringRef getName() const;
// Extract more information from TheDef. This is used to build an object
// graph after all CodeGenRegister objects have been created.
void buildObjectGraph(CodeGenRegBank&);
// Lazily compute a map of all sub-registers.
// This includes unique entries for all sub-sub-registers.
const SubRegMap &computeSubRegs(CodeGenRegBank&);
// Compute extra sub-registers by combining the existing sub-registers.
void computeSecondarySubRegs(CodeGenRegBank&);
// Add this as a super-register to all sub-registers after the sub-register
// graph has been built.
void computeSuperRegs(CodeGenRegBank&);
const SubRegMap &getSubRegs() const {
assert(SubRegsComplete && "Must precompute sub-registers");
return SubRegs;
// Add sub-registers to OSet following a pre-order defined by the .td file.
void addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
CodeGenRegBank&) const;
// Return the sub-register index naming Reg as a sub-register of this
// register. Returns NULL if Reg is not a sub-register.
CodeGenSubRegIndex *getSubRegIndex(const CodeGenRegister *Reg) const {
return SubReg2Idx.lookup(Reg);
typedef std::vector<const CodeGenRegister*> SuperRegList;
// Get the list of super-registers in topological order, small to large.
// This is valid after computeSubRegs visits all registers during RegBank
// construction.
const SuperRegList &getSuperRegs() const {
assert(SubRegsComplete && "Must precompute sub-registers");
return SuperRegs;
// Get the list of ad hoc aliases. The graph is symmetric, so the list
// contains all registers in 'Aliases', and all registers that mention this
// register in 'Aliases'.
ArrayRef<CodeGenRegister*> getExplicitAliases() const {
return ExplicitAliases;
// Get the topological signature of this register. This is a small integer
// less than RegBank.getNumTopoSigs(). Registers with the same TopoSig have
// identical sub-register structure. That is, they support the same set of
// sub-register indices mapping to the same kind of sub-registers
// (TopoSig-wise).
unsigned getTopoSig() const {
assert(SuperRegsComplete && "TopoSigs haven't been computed yet.");
return TopoSig;
// List of register units in ascending order.
typedef SparseBitVector<> RegUnitList;
typedef SmallVector<LaneBitmask, 16> RegUnitLaneMaskList;
// How many entries in RegUnitList are native?
RegUnitList NativeRegUnits;
// Get the list of register units.
// This is only valid after computeSubRegs() completes.
const RegUnitList &getRegUnits() const { return RegUnits; }
ArrayRef<LaneBitmask> getRegUnitLaneMasks() const {
return makeArrayRef(RegUnitLaneMasks).slice(0, NativeRegUnits.count());
// Get the native register units. This is a prefix of getRegUnits().
RegUnitList getNativeRegUnits() const {
return NativeRegUnits;
void setRegUnitLaneMasks(const RegUnitLaneMaskList &LaneMasks) {
RegUnitLaneMasks = LaneMasks;
// Inherit register units from subregisters.
// Return true if the RegUnits changed.
bool inheritRegUnits(CodeGenRegBank &RegBank);
// Adopt a register unit for pressure tracking.
// A unit is adopted iff its unit number is >= NativeRegUnits.count().
void adoptRegUnit(unsigned RUID) { RegUnits.set(RUID); }
// Get the sum of this register's register unit weights.
unsigned getWeight(const CodeGenRegBank &RegBank) const;
// Canonically ordered set.
typedef std::vector<const CodeGenRegister*> Vec;
bool SubRegsComplete;
bool SuperRegsComplete;
unsigned TopoSig;
// The sub-registers explicit in the .td file form a tree.
SmallVector<CodeGenSubRegIndex*, 8> ExplicitSubRegIndices;
SmallVector<CodeGenRegister*, 8> ExplicitSubRegs;
// Explicit ad hoc aliases, symmetrized to form an undirected graph.
SmallVector<CodeGenRegister*, 8> ExplicitAliases;
// Super-registers where this is the first explicit sub-register.
SuperRegList LeadingSuperRegs;
SubRegMap SubRegs;
SuperRegList SuperRegs;
DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*> SubReg2Idx;
RegUnitList RegUnits;
RegUnitLaneMaskList RegUnitLaneMasks;
inline bool operator<(const CodeGenRegister &A, const CodeGenRegister &B) {
return A.EnumValue < B.EnumValue;
inline bool operator==(const CodeGenRegister &A, const CodeGenRegister &B) {
return A.EnumValue == B.EnumValue;
class CodeGenRegisterClass {
CodeGenRegister::Vec Members;
// Allocation orders. Order[0] always contains all registers in Members.
std::vector<SmallVector<Record*, 16>> Orders;
// Bit mask of sub-classes including this, indexed by their EnumValue.
BitVector SubClasses;
// List of super-classes, topologocally ordered to have the larger classes
// first. This is the same as sorting by EnumValue.
SmallVector<CodeGenRegisterClass*, 4> SuperClasses;
Record *TheDef;
std::string Name;
// For a synthesized class, inherit missing properties from the nearest
// super-class.
void inheritProperties(CodeGenRegBank&);
// Map SubRegIndex -> sub-class. This is the largest sub-class where all
// registers have a SubRegIndex sub-register.
DenseMap<const CodeGenSubRegIndex *, CodeGenRegisterClass *>
// Map SubRegIndex -> set of super-reg classes. This is all register
// classes SuperRC such that:
// R:SubRegIndex in this RC for all R in SuperRC.
DenseMap<const CodeGenSubRegIndex *, SmallPtrSet<CodeGenRegisterClass *, 8>>
// Bit vector of TopoSigs for the registers in this class. This will be
// very sparse on regular architectures.
BitVector TopoSigs;
unsigned EnumValue;
StringRef Namespace;
SmallVector<MVT::SimpleValueType, 4> VTs;
unsigned SpillSize;
unsigned SpillAlignment;
int CopyCost;
bool Allocatable;
StringRef AltOrderSelect;
uint8_t AllocationPriority;
/// Contains the combination of the lane masks of all subregisters.
LaneBitmask LaneMask;
/// True if there are at least 2 subregisters which do not interfere.
bool HasDisjunctSubRegs;
bool CoveredBySubRegs;
// Return the Record that defined this class, or NULL if the class was
// created by TableGen.
Record *getDef() const { return TheDef; }
const std::string &getName() const { return Name; }
std::string getQualifiedName() const;
ArrayRef<MVT::SimpleValueType> getValueTypes() const {return VTs;}
bool hasValueType(MVT::SimpleValueType VT) const {
return std::find(VTs.begin(), VTs.end(), VT) != VTs.end();
unsigned getNumValueTypes() const { return VTs.size(); }
MVT::SimpleValueType getValueTypeNum(unsigned VTNum) const {
if (VTNum < VTs.size())
return VTs[VTNum];
llvm_unreachable("VTNum greater than number of ValueTypes in RegClass!");
// Return true if this this class contains the register.
bool contains(const CodeGenRegister*) const;
// Returns true if RC is a subclass.
// RC is a sub-class of this class if it is a valid replacement for any
// instruction operand where a register of this classis required. It must
// satisfy these conditions:
// 1. All RC registers are also in this.
// 2. The RC spill size must not be smaller than our spill size.
// 3. RC spill alignment must be compatible with ours.
bool hasSubClass(const CodeGenRegisterClass *RC) const {
return SubClasses.test(RC->EnumValue);
// getSubClassWithSubReg - Returns the largest sub-class where all
// registers have a SubIdx sub-register.
CodeGenRegisterClass *
getSubClassWithSubReg(const CodeGenSubRegIndex *SubIdx) const {
return SubClassWithSubReg.lookup(SubIdx);
/// Find largest subclass where all registers have SubIdx subregisters in
/// SubRegClass and the largest subregister class that contains those
/// subregisters without (as far as possible) also containing additional registers.
/// This can be used to find a suitable pair of classes for subregister copies.
/// \return std::pair<SubClass, SubRegClass> where SubClass is a SubClass is
/// a class where every register has SubIdx and SubRegClass is a class where
/// every register is covered by the SubIdx subregister of SubClass.
Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
getMatchingSubClassWithSubRegs(CodeGenRegBank &RegBank,
const CodeGenSubRegIndex *SubIdx) const;
void setSubClassWithSubReg(const CodeGenSubRegIndex *SubIdx,
CodeGenRegisterClass *SubRC) {
SubClassWithSubReg[SubIdx] = SubRC;
// getSuperRegClasses - Returns a bit vector of all register classes
// containing only SubIdx super-registers of this class.
void getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
BitVector &Out) const;
// addSuperRegClass - Add a class containing only SubIdx super-registers.
void addSuperRegClass(CodeGenSubRegIndex *SubIdx,
CodeGenRegisterClass *SuperRC) {
// getSubClasses - Returns a constant BitVector of subclasses indexed by
// EnumValue.
// The SubClasses vector includes an entry for this class.
const BitVector &getSubClasses() const { return SubClasses; }
// getSuperClasses - Returns a list of super classes ordered by EnumValue.
// The array does not include an entry for this class.
ArrayRef<CodeGenRegisterClass*> getSuperClasses() const {
return SuperClasses;
// Returns an ordered list of class members.
// The order of registers is the same as in the .td file.
// No = 0 is the default allocation order, No = 1 is the first alternative.
ArrayRef<Record*> getOrder(unsigned No = 0) const {
return Orders[No];
// Return the total number of allocation orders available.
unsigned getNumOrders() const { return Orders.size(); }
// Get the set of registers. This set contains the same registers as
// getOrder(0).
const CodeGenRegister::Vec &getMembers() const { return Members; }
// Get a bit vector of TopoSigs present in this register class.
const BitVector &getTopoSigs() const { return TopoSigs; }
// Populate a unique sorted list of units from a register set.
void buildRegUnitSet(std::vector<unsigned> &RegUnits) const;
CodeGenRegisterClass(CodeGenRegBank&, Record *R);
// A key representing the parts of a register class used for forming
// sub-classes. Note the ordering provided by this key is not the same as
// the topological order used for the EnumValues.
struct Key {
const CodeGenRegister::Vec *Members;
unsigned SpillSize;
unsigned SpillAlignment;
Key(const CodeGenRegister::Vec *M, unsigned S = 0, unsigned A = 0)
: Members(M), SpillSize(S), SpillAlignment(A) {}
Key(const CodeGenRegisterClass &RC)
: Members(&RC.getMembers()),
SpillAlignment(RC.SpillAlignment) {}
// Lexicographical order of (Members, SpillSize, SpillAlignment).
bool operator<(const Key&) const;
// Create a non-user defined register class.
CodeGenRegisterClass(CodeGenRegBank&, StringRef Name, Key Props);
// Called by CodeGenRegBank::CodeGenRegBank().
static void computeSubClasses(CodeGenRegBank&);
// Register units are used to model interference and register pressure.
// Every register is assigned one or more register units such that two
// registers overlap if and only if they have a register unit in common.
// Normally, one register unit is created per leaf register. Non-leaf
// registers inherit the units of their sub-registers.
struct RegUnit {
// Weight assigned to this RegUnit for estimating register pressure.
// This is useful when equalizing weights in register classes with mixed
// register topologies.
unsigned Weight;
// Each native RegUnit corresponds to one or two root registers. The full
// set of registers containing this unit can be computed as the union of
// these two registers and their super-registers.
const CodeGenRegister *Roots[2];
// Index into RegClassUnitSets where we can find the list of UnitSets that
// contain this unit.
unsigned RegClassUnitSetsIdx;
RegUnit() : Weight(0), RegClassUnitSetsIdx(0) {
Roots[0] = Roots[1] = nullptr;
ArrayRef<const CodeGenRegister*> getRoots() const {
assert(!(Roots[1] && !Roots[0]) && "Invalid roots array");
return makeArrayRef(Roots, !!Roots[0] + !!Roots[1]);
// Each RegUnitSet is a sorted vector with a name.
struct RegUnitSet {
typedef std::vector<unsigned>::const_iterator iterator;
std::string Name;
std::vector<unsigned> Units;
unsigned Weight = 0; // Cache the sum of all unit weights.
unsigned Order = 0; // Cache the sort key.
RegUnitSet() = default;
// Base vector for identifying TopoSigs. The contents uniquely identify a
// TopoSig, only computeSuperRegs needs to know how.
typedef SmallVector<unsigned, 16> TopoSigId;
// CodeGenRegBank - Represent a target's registers and the relations between
// them.
class CodeGenRegBank {
SetTheory Sets;
std::deque<CodeGenSubRegIndex> SubRegIndices;
DenseMap<Record*, CodeGenSubRegIndex*> Def2SubRegIdx;
CodeGenSubRegIndex *createSubRegIndex(StringRef Name, StringRef NameSpace);
typedef std::map<SmallVector<CodeGenSubRegIndex*, 8>,
CodeGenSubRegIndex*> ConcatIdxMap;
ConcatIdxMap ConcatIdx;
// Registers.
std::deque<CodeGenRegister> Registers;
StringMap<CodeGenRegister*> RegistersByName;
DenseMap<Record*, CodeGenRegister*> Def2Reg;
unsigned NumNativeRegUnits;
std::map<TopoSigId, unsigned> TopoSigs;
// Includes native (0..NumNativeRegUnits-1) and adopted register units.
SmallVector<RegUnit, 8> RegUnits;
// Register classes.
std::list<CodeGenRegisterClass> RegClasses;
DenseMap<Record*, CodeGenRegisterClass*> Def2RC;
typedef std::map<CodeGenRegisterClass::Key, CodeGenRegisterClass*> RCKeyMap;
RCKeyMap Key2RC;
// Remember each unique set of register units. Initially, this contains a
// unique set for each register class. Simliar sets are coalesced with
// pruneUnitSets and new supersets are inferred during computeRegUnitSets.
std::vector<RegUnitSet> RegUnitSets;
// Map RegisterClass index to the index of the RegUnitSet that contains the
// class's units and any inferred RegUnit supersets.
// NOTE: This could grow beyond the number of register classes when we map
// register units to lists of unit sets. If the list of unit sets does not
// already exist for a register class, we create a new entry in this vector.
std::vector<std::vector<unsigned>> RegClassUnitSets;
// Give each register unit set an order based on sorting criteria.
std::vector<unsigned> RegUnitSetOrder;
// Add RC to *2RC maps.
void addToMaps(CodeGenRegisterClass*);
// Create a synthetic sub-class if it is missing.
CodeGenRegisterClass *getOrCreateSubClass(const CodeGenRegisterClass *RC,
const CodeGenRegister::Vec *Membs,
StringRef Name);
// Infer missing register classes.
void computeInferredRegisterClasses();
void inferCommonSubClass(CodeGenRegisterClass *RC);
void inferSubClassWithSubReg(CodeGenRegisterClass *RC);
void inferMatchingSuperRegClass(CodeGenRegisterClass *RC) {
inferMatchingSuperRegClass(RC, RegClasses.begin());
void inferMatchingSuperRegClass(
CodeGenRegisterClass *RC,
std::list<CodeGenRegisterClass>::iterator FirstSubRegRC);
// Iteratively prune unit sets.
void pruneUnitSets();
// Compute a weight for each register unit created during getSubRegs.
void computeRegUnitWeights();
// Create a RegUnitSet for each RegClass and infer superclasses.
void computeRegUnitSets();
// Populate the Composite map from sub-register relationships.
void computeComposites();
// Compute a lane mask for each sub-register index.
void computeSubRegLaneMasks();
/// Computes a lane mask for each register unit enumerated by a physical
/// register.
void computeRegUnitLaneMasks();
SetTheory &getSets() { return Sets; }
// Sub-register indices. The first NumNamedIndices are defined by the user
// in the .td files. The rest are synthesized such that all sub-registers
// have a unique name.
const std::deque<CodeGenSubRegIndex> &getSubRegIndices() const {
return SubRegIndices;
// Find a SubRegIndex form its Record def.
CodeGenSubRegIndex *getSubRegIdx(Record*);
// Find or create a sub-register index representing the A+B composition.
CodeGenSubRegIndex *getCompositeSubRegIndex(CodeGenSubRegIndex *A,
CodeGenSubRegIndex *B);
// Find or create a sub-register index representing the concatenation of
// non-overlapping sibling indices.
CodeGenSubRegIndex *
getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8>&);
addConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts,
CodeGenSubRegIndex *Idx) {
ConcatIdx.insert(std::make_pair(Parts, Idx));
const std::deque<CodeGenRegister> &getRegisters() { return Registers; }
const StringMap<CodeGenRegister*> &getRegistersByName() {
return RegistersByName;
// Find a register from its Record def.
CodeGenRegister *getReg(Record*);
// Get a Register's index into the Registers array.
unsigned getRegIndex(const CodeGenRegister *Reg) const {
return Reg->EnumValue - 1;
// Return the number of allocated TopoSigs. The first TopoSig representing
// leaf registers is allocated number 0.
unsigned getNumTopoSigs() const {
return TopoSigs.size();
// Find or create a TopoSig for the given TopoSigId.
// This function is only for use by CodeGenRegister::computeSuperRegs().
// Others should simply use Reg->getTopoSig().
unsigned getTopoSig(const TopoSigId &Id) {
return TopoSigs.insert(std::make_pair(Id, TopoSigs.size())).first->second;
// Create a native register unit that is associated with one or two root
// registers.
unsigned newRegUnit(CodeGenRegister *R0, CodeGenRegister *R1 = nullptr) {
RegUnits.resize(RegUnits.size() + 1);
RegUnits.back().Roots[0] = R0;
RegUnits.back().Roots[1] = R1;
return RegUnits.size() - 1;
// Create a new non-native register unit that can be adopted by a register
// to increase its pressure. Note that NumNativeRegUnits is not increased.
unsigned newRegUnit(unsigned Weight) {
RegUnits.resize(RegUnits.size() + 1);
RegUnits.back().Weight = Weight;
return RegUnits.size() - 1;
// Native units are the singular unit of a leaf register. Register aliasing
// is completely characterized by native units. Adopted units exist to give
// register additional weight but don't affect aliasing.
bool isNativeUnit(unsigned RUID) {
return RUID < NumNativeRegUnits;
unsigned getNumNativeRegUnits() const {
return NumNativeRegUnits;
RegUnit &getRegUnit(unsigned RUID) { return RegUnits[RUID]; }
const RegUnit &getRegUnit(unsigned RUID) const { return RegUnits[RUID]; }
std::list<CodeGenRegisterClass> &getRegClasses() { return RegClasses; }
const std::list<CodeGenRegisterClass> &getRegClasses() const {
return RegClasses;
// Find a register class from its def.
CodeGenRegisterClass *getRegClass(Record*);
/// getRegisterClassForRegister - Find the register class that contains the
/// specified physical register. If the register is not in a register
/// class, return null. If the register is in multiple classes, and the
/// classes have a superset-subset relationship and the same set of types,
/// return the superclass. Otherwise return null.
const CodeGenRegisterClass* getRegClassForRegister(Record *R);
// Get the sum of unit weights.
unsigned getRegUnitSetWeight(const std::vector<unsigned> &Units) const {
unsigned Weight = 0;
for (std::vector<unsigned>::const_iterator
I = Units.begin(), E = Units.end(); I != E; ++I)
Weight += getRegUnit(*I).Weight;
return Weight;
unsigned getRegSetIDAt(unsigned Order) const {
return RegUnitSetOrder[Order];
const RegUnitSet &getRegSetAt(unsigned Order) const {
return RegUnitSets[RegUnitSetOrder[Order]];
// Increase a RegUnitWeight.
void increaseRegUnitWeight(unsigned RUID, unsigned Inc) {
getRegUnit(RUID).Weight += Inc;
// Get the number of register pressure dimensions.
unsigned getNumRegPressureSets() const { return RegUnitSets.size(); }
// Get a set of register unit IDs for a given dimension of pressure.
const RegUnitSet &getRegPressureSet(unsigned Idx) const {
return RegUnitSets[Idx];
// The number of pressure set lists may be larget than the number of
// register classes if some register units appeared in a list of sets that
// did not correspond to an existing register class.
unsigned getNumRegClassPressureSetLists() const {
return RegClassUnitSets.size();
// Get a list of pressure set IDs for a register class. Liveness of a
// register in this class impacts each pressure set in this list by the
// weight of the register. An exact solution requires all registers in a
// class to have the same class, but it is not strictly guaranteed.
ArrayRef<unsigned> getRCPressureSetIDs(unsigned RCIdx) const {
return RegClassUnitSets[RCIdx];
// Computed derived records such as missing sub-register indices.
void computeDerivedInfo();
// Compute the set of registers completely covered by the registers in Regs.
// The returned BitVector will have a bit set for each register in Regs,
// all sub-registers, and all super-registers that are covered by the
// registers in Regs.
// This is used to compute the mask of call-preserved registers from a list
// of callee-saves.
BitVector computeCoveredRegisters(ArrayRef<Record*> Regs);
// Bit mask of lanes that cover their registers. A sub-register index whose
// LaneMask is contained in CoveringLanes will be completely covered by
// another sub-register with the same or larger lane mask.
LaneBitmask CoveringLanes;
// Helper function for printing debug information. Handles artificial
// (non-native) reg units.
void printRegUnitName(unsigned Unit) const;
} // end namespace llvm