| //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the CodeGenDAGPatterns class, which is used to read and |
| // represent the patterns present in a .td file for instructions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenDAGPatterns.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/TableGen/Error.h" |
| #include "llvm/TableGen/Record.h" |
| #include <algorithm> |
| #include <cstdio> |
| #include <set> |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "dag-patterns" |
| |
| //===----------------------------------------------------------------------===// |
| // EEVT::TypeSet Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static inline bool isInteger(MVT::SimpleValueType VT) { |
| return MVT(VT).isInteger(); |
| } |
| static inline bool isFloatingPoint(MVT::SimpleValueType VT) { |
| return MVT(VT).isFloatingPoint(); |
| } |
| static inline bool isVector(MVT::SimpleValueType VT) { |
| return MVT(VT).isVector(); |
| } |
| static inline bool isScalar(MVT::SimpleValueType VT) { |
| return !MVT(VT).isVector(); |
| } |
| |
| EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { |
| if (VT == MVT::iAny) |
| EnforceInteger(TP); |
| else if (VT == MVT::fAny) |
| EnforceFloatingPoint(TP); |
| else if (VT == MVT::vAny) |
| EnforceVector(TP); |
| else { |
| assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || |
| VT == MVT::iPTRAny || VT == MVT::Any) && "Not a concrete type!"); |
| TypeVec.push_back(VT); |
| } |
| } |
| |
| |
| EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) { |
| assert(!VTList.empty() && "empty list?"); |
| TypeVec.append(VTList.begin(), VTList.end()); |
| |
| if (!VTList.empty()) |
| assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && |
| VTList[0] != MVT::fAny); |
| |
| // Verify no duplicates. |
| array_pod_sort(TypeVec.begin(), TypeVec.end()); |
| assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); |
| } |
| |
| /// FillWithPossibleTypes - Set to all legal types and return true, only valid |
| /// on completely unknown type sets. |
| bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, |
| bool (*Pred)(MVT::SimpleValueType), |
| const char *PredicateName) { |
| assert(isCompletelyUnknown()); |
| ArrayRef<MVT::SimpleValueType> LegalTypes = |
| TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); |
| |
| if (TP.hasError()) |
| return false; |
| |
| for (MVT::SimpleValueType VT : LegalTypes) |
| if (!Pred || Pred(VT)) |
| TypeVec.push_back(VT); |
| |
| // If we have nothing that matches the predicate, bail out. |
| if (TypeVec.empty()) { |
| TP.error("Type inference contradiction found, no " + |
| std::string(PredicateName) + " types found"); |
| return false; |
| } |
| // No need to sort with one element. |
| if (TypeVec.size() == 1) return true; |
| |
| // Remove duplicates. |
| array_pod_sort(TypeVec.begin(), TypeVec.end()); |
| TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); |
| |
| return true; |
| } |
| |
| /// hasIntegerTypes - Return true if this TypeSet contains iAny or an |
| /// integer value type. |
| bool EEVT::TypeSet::hasIntegerTypes() const { |
| return any_of(TypeVec, isInteger); |
| } |
| |
| /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or |
| /// a floating point value type. |
| bool EEVT::TypeSet::hasFloatingPointTypes() const { |
| return any_of(TypeVec, isFloatingPoint); |
| } |
| |
| /// hasScalarTypes - Return true if this TypeSet contains a scalar value type. |
| bool EEVT::TypeSet::hasScalarTypes() const { |
| return any_of(TypeVec, isScalar); |
| } |
| |
| /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector |
| /// value type. |
| bool EEVT::TypeSet::hasVectorTypes() const { |
| return any_of(TypeVec, isVector); |
| } |
| |
| |
| std::string EEVT::TypeSet::getName() const { |
| if (TypeVec.empty()) return "<empty>"; |
| |
| std::string Result; |
| |
| for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { |
| std::string VTName = llvm::getEnumName(TypeVec[i]); |
| // Strip off MVT:: prefix if present. |
| if (VTName.substr(0,5) == "MVT::") |
| VTName = VTName.substr(5); |
| if (i) Result += ':'; |
| Result += VTName; |
| } |
| |
| if (TypeVec.size() == 1) |
| return Result; |
| return "{" + Result + "}"; |
| } |
| |
| /// MergeInTypeInfo - This merges in type information from the specified |
| /// argument. If 'this' changes, it returns true. If the two types are |
| /// contradictory (e.g. merge f32 into i32) then this flags an error. |
| bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ |
| if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError()) |
| return false; |
| |
| if (isCompletelyUnknown()) { |
| *this = InVT; |
| return true; |
| } |
| |
| assert(!TypeVec.empty() && !InVT.TypeVec.empty() && "No unknowns"); |
| |
| // Handle the abstract cases, seeing if we can resolve them better. |
| switch (TypeVec[0]) { |
| default: break; |
| case MVT::iPTR: |
| case MVT::iPTRAny: |
| if (InVT.hasIntegerTypes()) { |
| EEVT::TypeSet InCopy(InVT); |
| InCopy.EnforceInteger(TP); |
| InCopy.EnforceScalar(TP); |
| |
| if (InCopy.isConcrete()) { |
| // If the RHS has one integer type, upgrade iPTR to i32. |
| TypeVec[0] = InVT.TypeVec[0]; |
| return true; |
| } |
| |
| // If the input has multiple scalar integers, this doesn't add any info. |
| if (!InCopy.isCompletelyUnknown()) |
| return false; |
| } |
| break; |
| } |
| |
| // If the input constraint is iAny/iPTR and this is an integer type list, |
| // remove non-integer types from the list. |
| if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && |
| hasIntegerTypes()) { |
| bool MadeChange = EnforceInteger(TP); |
| |
| // If we're merging in iPTR/iPTRAny and the node currently has a list of |
| // multiple different integer types, replace them with a single iPTR. |
| if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && |
| TypeVec.size() != 1) { |
| TypeVec.assign(1, InVT.TypeVec[0]); |
| MadeChange = true; |
| } |
| |
| return MadeChange; |
| } |
| |
| // If this is a type list and the RHS is a typelist as well, eliminate entries |
| // from this list that aren't in the other one. |
| TypeSet InputSet(*this); |
| |
| TypeVec.clear(); |
| std::set_intersection(InputSet.TypeVec.begin(), InputSet.TypeVec.end(), |
| InVT.TypeVec.begin(), InVT.TypeVec.end(), |
| std::back_inserter(TypeVec)); |
| |
| // If the intersection is the same size as the original set then we're done. |
| if (TypeVec.size() == InputSet.TypeVec.size()) |
| return false; |
| |
| // If we removed all of our types, we have a type contradiction. |
| if (!TypeVec.empty()) |
| return true; |
| |
| // FIXME: Really want an SMLoc here! |
| TP.error("Type inference contradiction found, merging '" + |
| InVT.getName() + "' into '" + InputSet.getName() + "'"); |
| return false; |
| } |
| |
| /// EnforceInteger - Remove all non-integer types from this set. |
| bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { |
| if (TP.hasError()) |
| return false; |
| // If we know nothing, then get the full set. |
| if (TypeVec.empty()) |
| return FillWithPossibleTypes(TP, isInteger, "integer"); |
| |
| if (!hasFloatingPointTypes()) |
| return false; |
| |
| TypeSet InputSet(*this); |
| |
| // Filter out all the fp types. |
| TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isInteger))), |
| TypeVec.end()); |
| |
| if (TypeVec.empty()) { |
| TP.error("Type inference contradiction found, '" + |
| InputSet.getName() + "' needs to be integer"); |
| return false; |
| } |
| return true; |
| } |
| |
| /// EnforceFloatingPoint - Remove all integer types from this set. |
| bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { |
| if (TP.hasError()) |
| return false; |
| // If we know nothing, then get the full set. |
| if (TypeVec.empty()) |
| return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); |
| |
| if (!hasIntegerTypes()) |
| return false; |
| |
| TypeSet InputSet(*this); |
| |
| // Filter out all the integer types. |
| TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isFloatingPoint))), |
| TypeVec.end()); |
| |
| if (TypeVec.empty()) { |
| TP.error("Type inference contradiction found, '" + |
| InputSet.getName() + "' needs to be floating point"); |
| return false; |
| } |
| return true; |
| } |
| |
| /// EnforceScalar - Remove all vector types from this. |
| bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { |
| if (TP.hasError()) |
| return false; |
| |
| // If we know nothing, then get the full set. |
| if (TypeVec.empty()) |
| return FillWithPossibleTypes(TP, isScalar, "scalar"); |
| |
| if (!hasVectorTypes()) |
| return false; |
| |
| TypeSet InputSet(*this); |
| |
| // Filter out all the vector types. |
| TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isScalar))), |
| TypeVec.end()); |
| |
| if (TypeVec.empty()) { |
| TP.error("Type inference contradiction found, '" + |
| InputSet.getName() + "' needs to be scalar"); |
| return false; |
| } |
| return true; |
| } |
| |
| /// EnforceVector - Remove all vector types from this. |
| bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { |
| if (TP.hasError()) |
| return false; |
| |
| // If we know nothing, then get the full set. |
| if (TypeVec.empty()) |
| return FillWithPossibleTypes(TP, isVector, "vector"); |
| |
| TypeSet InputSet(*this); |
| bool MadeChange = false; |
| |
| // Filter out all the scalar types. |
| TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isVector))), |
| TypeVec.end()); |
| |
| if (TypeVec.empty()) { |
| TP.error("Type inference contradiction found, '" + |
| InputSet.getName() + "' needs to be a vector"); |
| return false; |
| } |
| return MadeChange; |
| } |
| |
| |
| |
| /// EnforceSmallerThan - 'this' must be a smaller VT than Other. For vectors |
| /// this should be based on the element type. Update this and other based on |
| /// this information. |
| bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { |
| if (TP.hasError()) |
| return false; |
| |
| // Both operands must be integer or FP, but we don't care which. |
| bool MadeChange = false; |
| |
| if (isCompletelyUnknown()) |
| MadeChange = FillWithPossibleTypes(TP); |
| |
| if (Other.isCompletelyUnknown()) |
| MadeChange = Other.FillWithPossibleTypes(TP); |
| |
| // If one side is known to be integer or known to be FP but the other side has |
| // no information, get at least the type integrality info in there. |
| if (!hasFloatingPointTypes()) |
| MadeChange |= Other.EnforceInteger(TP); |
| else if (!hasIntegerTypes()) |
| MadeChange |= Other.EnforceFloatingPoint(TP); |
| if (!Other.hasFloatingPointTypes()) |
| MadeChange |= EnforceInteger(TP); |
| else if (!Other.hasIntegerTypes()) |
| MadeChange |= EnforceFloatingPoint(TP); |
| |
| assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && |
| "Should have a type list now"); |
| |
| // If one contains vectors but the other doesn't pull vectors out. |
| if (!hasVectorTypes()) |
| MadeChange |= Other.EnforceScalar(TP); |
| else if (!hasScalarTypes()) |
| MadeChange |= Other.EnforceVector(TP); |
| if (!Other.hasVectorTypes()) |
| MadeChange |= EnforceScalar(TP); |
| else if (!Other.hasScalarTypes()) |
| MadeChange |= EnforceVector(TP); |
| |
| // This code does not currently handle nodes which have multiple types, |
| // where some types are integer, and some are fp. Assert that this is not |
| // the case. |
| assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && |
| !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && |
| "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); |
| |
| if (TP.hasError()) |
| return false; |
| |
| // Okay, find the smallest type from current set and remove anything the |
| // same or smaller from the other set. We need to ensure that the scalar |
| // type size is smaller than the scalar size of the smallest type. For |
| // vectors, we also need to make sure that the total size is no larger than |
| // the size of the smallest type. |
| { |
| TypeSet InputSet(Other); |
| MVT Smallest = *std::min_element(TypeVec.begin(), TypeVec.end(), |
| [](MVT A, MVT B) { |
| return A.getScalarSizeInBits() < B.getScalarSizeInBits() || |
| (A.getScalarSizeInBits() == B.getScalarSizeInBits() && |
| A.getSizeInBits() < B.getSizeInBits()); |
| }); |
| |
| auto I = remove_if(Other.TypeVec, [Smallest](MVT OtherVT) { |
| // Don't compare vector and non-vector types. |
| if (OtherVT.isVector() != Smallest.isVector()) |
| return false; |
| // The getSizeInBits() check here is only needed for vectors, but is |
| // a subset of the scalar check for scalars so no need to qualify. |
| return OtherVT.getScalarSizeInBits() <= Smallest.getScalarSizeInBits() || |
| OtherVT.getSizeInBits() < Smallest.getSizeInBits(); |
| }); |
| MadeChange |= I != Other.TypeVec.end(); // If we're about to remove types. |
| Other.TypeVec.erase(I, Other.TypeVec.end()); |
| |
| if (Other.TypeVec.empty()) { |
| TP.error("Type inference contradiction found, '" + InputSet.getName() + |
| "' has nothing larger than '" + getName() +"'!"); |
| return false; |
| } |
| } |
| |
| // Okay, find the largest type from the other set and remove anything the |
| // same or smaller from the current set. We need to ensure that the scalar |
| // type size is larger than the scalar size of the largest type. For |
| // vectors, we also need to make sure that the total size is no smaller than |
| // the size of the largest type. |
| { |
| TypeSet InputSet(*this); |
| MVT Largest = *std::max_element(Other.TypeVec.begin(), Other.TypeVec.end(), |
| [](MVT A, MVT B) { |
| return A.getScalarSizeInBits() < B.getScalarSizeInBits() || |
| (A.getScalarSizeInBits() == B.getScalarSizeInBits() && |
| A.getSizeInBits() < B.getSizeInBits()); |
| }); |
| auto I = remove_if(TypeVec, [Largest](MVT OtherVT) { |
| // Don't compare vector and non-vector types. |
| if (OtherVT.isVector() != Largest.isVector()) |
| return false; |
| return OtherVT.getScalarSizeInBits() >= Largest.getScalarSizeInBits() || |
| OtherVT.getSizeInBits() > Largest.getSizeInBits(); |
| }); |
| MadeChange |= I != TypeVec.end(); // If we're about to remove types. |
| TypeVec.erase(I, TypeVec.end()); |
| |
| if (TypeVec.empty()) { |
| TP.error("Type inference contradiction found, '" + InputSet.getName() + |
| "' has nothing smaller than '" + Other.getName() +"'!"); |
| return false; |
| } |
| } |
| |
| return MadeChange; |
| } |
| |
| /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type |
| /// whose element is specified by VTOperand. |
| bool EEVT::TypeSet::EnforceVectorEltTypeIs(MVT::SimpleValueType VT, |
| TreePattern &TP) { |
| bool MadeChange = false; |
| |
| MadeChange |= EnforceVector(TP); |
| |
| TypeSet InputSet(*this); |
| |
| // Filter out all the types which don't have the right element type. |
| auto I = remove_if(TypeVec, [VT](MVT VVT) { |
| return VVT.getVectorElementType().SimpleTy != VT; |
| }); |
| MadeChange |= I != TypeVec.end(); |
| TypeVec.erase(I, TypeVec.end()); |
| |
| if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! |
| TP.error("Type inference contradiction found, forcing '" + |
| InputSet.getName() + "' to have a vector element of type " + |
| getEnumName(VT)); |
| return false; |
| } |
| |
| return MadeChange; |
| } |
| |
| /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type |
| /// whose element is specified by VTOperand. |
| bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, |
| TreePattern &TP) { |
| if (TP.hasError()) |
| return false; |
| |
| // "This" must be a vector and "VTOperand" must be a scalar. |
| bool MadeChange = false; |
| MadeChange |= EnforceVector(TP); |
| MadeChange |= VTOperand.EnforceScalar(TP); |
| |
| // If we know the vector type, it forces the scalar to agree. |
| if (isConcrete()) { |
| MVT IVT = getConcrete(); |
| IVT = IVT.getVectorElementType(); |
| return MadeChange || VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP); |
| } |
| |
| // If the scalar type is known, filter out vector types whose element types |
| // disagree. |
| if (!VTOperand.isConcrete()) |
| return MadeChange; |
| |
| MVT::SimpleValueType VT = VTOperand.getConcrete(); |
| |
| MadeChange |= EnforceVectorEltTypeIs(VT, TP); |
| |
| return MadeChange; |
| } |
| |
| /// EnforceVectorSubVectorTypeIs - 'this' is now constrained to be a |
| /// vector type specified by VTOperand. |
| bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, |
| TreePattern &TP) { |
| if (TP.hasError()) |
| return false; |
| |
| // "This" must be a vector and "VTOperand" must be a vector. |
| bool MadeChange = false; |
| MadeChange |= EnforceVector(TP); |
| MadeChange |= VTOperand.EnforceVector(TP); |
| |
| // If one side is known to be integer or known to be FP but the other side has |
| // no information, get at least the type integrality info in there. |
| if (!hasFloatingPointTypes()) |
| MadeChange |= VTOperand.EnforceInteger(TP); |
| else if (!hasIntegerTypes()) |
| MadeChange |= VTOperand.EnforceFloatingPoint(TP); |
| if (!VTOperand.hasFloatingPointTypes()) |
| MadeChange |= EnforceInteger(TP); |
| else if (!VTOperand.hasIntegerTypes()) |
| MadeChange |= EnforceFloatingPoint(TP); |
| |
| assert(!isCompletelyUnknown() && !VTOperand.isCompletelyUnknown() && |
| "Should have a type list now"); |
| |
| // If we know the vector type, it forces the scalar types to agree. |
| // Also force one vector to have more elements than the other. |
| if (isConcrete()) { |
| MVT IVT = getConcrete(); |
| unsigned NumElems = IVT.getVectorNumElements(); |
| IVT = IVT.getVectorElementType(); |
| |
| EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); |
| MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); |
| |
| // Only keep types that have less elements than VTOperand. |
| TypeSet InputSet(VTOperand); |
| |
| auto I = remove_if(VTOperand.TypeVec, [NumElems](MVT VVT) { |
| return VVT.getVectorNumElements() >= NumElems; |
| }); |
| MadeChange |= I != VTOperand.TypeVec.end(); |
| VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end()); |
| |
| if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! |
| TP.error("Type inference contradiction found, forcing '" + |
| InputSet.getName() + "' to have less vector elements than '" + |
| getName() + "'"); |
| return false; |
| } |
| } else if (VTOperand.isConcrete()) { |
| MVT IVT = VTOperand.getConcrete(); |
| unsigned NumElems = IVT.getVectorNumElements(); |
| IVT = IVT.getVectorElementType(); |
| |
| EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); |
| MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); |
| |
| // Only keep types that have more elements than 'this'. |
| TypeSet InputSet(*this); |
| |
| auto I = remove_if(TypeVec, [NumElems](MVT VVT) { |
| return VVT.getVectorNumElements() <= NumElems; |
| }); |
| MadeChange |= I != TypeVec.end(); |
| TypeVec.erase(I, TypeVec.end()); |
| |
| if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! |
| TP.error("Type inference contradiction found, forcing '" + |
| InputSet.getName() + "' to have more vector elements than '" + |
| VTOperand.getName() + "'"); |
| return false; |
| } |
| } |
| |
| return MadeChange; |
| } |
| |
| /// EnforceameNumElts - If VTOperand is a scalar, then 'this' is a scalar. If |
| /// VTOperand is a vector, then 'this' must have the same number of elements. |
| bool EEVT::TypeSet::EnforceSameNumElts(EEVT::TypeSet &VTOperand, |
| TreePattern &TP) { |
| if (TP.hasError()) |
| return false; |
| |
| bool MadeChange = false; |
| |
| if (isCompletelyUnknown()) |
| MadeChange = FillWithPossibleTypes(TP); |
| |
| if (VTOperand.isCompletelyUnknown()) |
| MadeChange = VTOperand.FillWithPossibleTypes(TP); |
| |
| // If one contains vectors but the other doesn't pull vectors out. |
| if (!hasVectorTypes()) |
| MadeChange |= VTOperand.EnforceScalar(TP); |
| else if (!hasScalarTypes()) |
| MadeChange |= VTOperand.EnforceVector(TP); |
| if (!VTOperand.hasVectorTypes()) |
| MadeChange |= EnforceScalar(TP); |
| else if (!VTOperand.hasScalarTypes()) |
| MadeChange |= EnforceVector(TP); |
| |
| // If one type is a vector, make sure the other has the same element count. |
| // If this a scalar, then we are already done with the above. |
| if (isConcrete()) { |
| MVT IVT = getConcrete(); |
| if (IVT.isVector()) { |
| unsigned NumElems = IVT.getVectorNumElements(); |
| |
| // Only keep types that have same elements as 'this'. |
| TypeSet InputSet(VTOperand); |
| |
| auto I = remove_if(VTOperand.TypeVec, [NumElems](MVT VVT) { |
| return VVT.getVectorNumElements() != NumElems; |
| }); |
| MadeChange |= I != VTOperand.TypeVec.end(); |
| VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end()); |
| |
| if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! |
| TP.error("Type inference contradiction found, forcing '" + |
| InputSet.getName() + "' to have same number elements as '" + |
| getName() + "'"); |
| return false; |
| } |
| } |
| } else if (VTOperand.isConcrete()) { |
| MVT IVT = VTOperand.getConcrete(); |
| if (IVT.isVector()) { |
| unsigned NumElems = IVT.getVectorNumElements(); |
| |
| // Only keep types that have same elements as VTOperand. |
| TypeSet InputSet(*this); |
| |
| auto I = remove_if(TypeVec, [NumElems](MVT VVT) { |
| return VVT.getVectorNumElements() != NumElems; |
| }); |
| MadeChange |= I != TypeVec.end(); |
| TypeVec.erase(I, TypeVec.end()); |
| |
| if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! |
| TP.error("Type inference contradiction found, forcing '" + |
| InputSet.getName() + "' to have same number elements than '" + |
| VTOperand.getName() + "'"); |
| return false; |
| } |
| } |
| } |
| |
| return MadeChange; |
| } |
| |
| /// EnforceSameSize - 'this' is now constrained to be same size as VTOperand. |
| bool EEVT::TypeSet::EnforceSameSize(EEVT::TypeSet &VTOperand, |
| TreePattern &TP) { |
| if (TP.hasError()) |
| return false; |
| |
| bool MadeChange = false; |
| |
| if (isCompletelyUnknown()) |
| MadeChange = FillWithPossibleTypes(TP); |
| |
| if (VTOperand.isCompletelyUnknown()) |
| MadeChange = VTOperand.FillWithPossibleTypes(TP); |
| |
| // If we know one of the types, it forces the other type agree. |
| if (isConcrete()) { |
| MVT IVT = getConcrete(); |
| unsigned Size = IVT.getSizeInBits(); |
| |
| // Only keep types that have the same size as 'this'. |
| TypeSet InputSet(VTOperand); |
| |
| auto I = remove_if(VTOperand.TypeVec, |
| [&](MVT VT) { return VT.getSizeInBits() != Size; }); |
| MadeChange |= I != VTOperand.TypeVec.end(); |
| VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end()); |
| |
| if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! |
| TP.error("Type inference contradiction found, forcing '" + |
| InputSet.getName() + "' to have same size as '" + |
| getName() + "'"); |
| return false; |
| } |
| } else if (VTOperand.isConcrete()) { |
| MVT IVT = VTOperand.getConcrete(); |
| unsigned Size = IVT.getSizeInBits(); |
| |
| // Only keep types that have the same size as VTOperand. |
| TypeSet InputSet(*this); |
| |
| auto I = |
| remove_if(TypeVec, [&](MVT VT) { return VT.getSizeInBits() != Size; }); |
| MadeChange |= I != TypeVec.end(); |
| TypeVec.erase(I, TypeVec.end()); |
| |
| if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! |
| TP.error("Type inference contradiction found, forcing '" + |
| InputSet.getName() + "' to have same size as '" + |
| VTOperand.getName() + "'"); |
| return false; |
| } |
| } |
| |
| return MadeChange; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helpers for working with extended types. |
| |
| /// Dependent variable map for CodeGenDAGPattern variant generation |
| typedef std::map<std::string, int> DepVarMap; |
| |
| static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { |
| if (N->isLeaf()) { |
| if (isa<DefInit>(N->getLeafValue())) |
| DepMap[N->getName()]++; |
| } else { |
| for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) |
| FindDepVarsOf(N->getChild(i), DepMap); |
| } |
| } |
| |
| /// Find dependent variables within child patterns |
| static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { |
| DepVarMap depcounts; |
| FindDepVarsOf(N, depcounts); |
| for (const std::pair<std::string, int> &Pair : depcounts) { |
| if (Pair.second > 1) |
| DepVars.insert(Pair.first); |
| } |
| } |
| |
| #ifndef NDEBUG |
| /// Dump the dependent variable set: |
| static void DumpDepVars(MultipleUseVarSet &DepVars) { |
| if (DepVars.empty()) { |
| DEBUG(errs() << "<empty set>"); |
| } else { |
| DEBUG(errs() << "[ "); |
| for (const std::string &DepVar : DepVars) { |
| DEBUG(errs() << DepVar << " "); |
| } |
| DEBUG(errs() << "]"); |
| } |
| } |
| #endif |
| |
| |
| //===----------------------------------------------------------------------===// |
| // TreePredicateFn Implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. |
| TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { |
| assert((getPredCode().empty() || getImmCode().empty()) && |
| ".td file corrupt: can't have a node predicate *and* an imm predicate"); |
| } |
| |
| std::string TreePredicateFn::getPredCode() const { |
| return PatFragRec->getRecord()->getValueAsString("PredicateCode"); |
| } |
| |
| std::string TreePredicateFn::getImmCode() const { |
| return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); |
| } |
| |
| |
| /// isAlwaysTrue - Return true if this is a noop predicate. |
| bool TreePredicateFn::isAlwaysTrue() const { |
| return getPredCode().empty() && getImmCode().empty(); |
| } |
| |
| /// Return the name to use in the generated code to reference this, this is |
| /// "Predicate_foo" if from a pattern fragment "foo". |
| std::string TreePredicateFn::getFnName() const { |
| return "Predicate_" + PatFragRec->getRecord()->getName().str(); |
| } |
| |
| /// getCodeToRunOnSDNode - Return the code for the function body that |
| /// evaluates this predicate. The argument is expected to be in "Node", |
| /// not N. This handles casting and conversion to a concrete node type as |
| /// appropriate. |
| std::string TreePredicateFn::getCodeToRunOnSDNode() const { |
| // Handle immediate predicates first. |
| std::string ImmCode = getImmCode(); |
| if (!ImmCode.empty()) { |
| std::string Result = |
| " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; |
| return Result + ImmCode; |
| } |
| |
| // Handle arbitrary node predicates. |
| assert(!getPredCode().empty() && "Don't have any predicate code!"); |
| std::string ClassName; |
| if (PatFragRec->getOnlyTree()->isLeaf()) |
| ClassName = "SDNode"; |
| else { |
| Record *Op = PatFragRec->getOnlyTree()->getOperator(); |
| ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); |
| } |
| std::string Result; |
| if (ClassName == "SDNode") |
| Result = " SDNode *N = Node;\n"; |
| else |
| Result = " auto *N = cast<" + ClassName + ">(Node);\n"; |
| |
| return Result + getPredCode(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PatternToMatch implementation |
| // |
| |
| |
| /// getPatternSize - Return the 'size' of this pattern. We want to match large |
| /// patterns before small ones. This is used to determine the size of a |
| /// pattern. |
| static unsigned getPatternSize(const TreePatternNode *P, |
| const CodeGenDAGPatterns &CGP) { |
| unsigned Size = 3; // The node itself. |
| // If the root node is a ConstantSDNode, increases its size. |
| // e.g. (set R32:$dst, 0). |
| if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) |
| Size += 2; |
| |
| const ComplexPattern *AM = P->getComplexPatternInfo(CGP); |
| if (AM) { |
| Size += AM->getComplexity(); |
| |
| // We don't want to count any children twice, so return early. |
| return Size; |
| } |
| |
| // If this node has some predicate function that must match, it adds to the |
| // complexity of this node. |
| if (!P->getPredicateFns().empty()) |
| ++Size; |
| |
| // Count children in the count if they are also nodes. |
| for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = P->getChild(i); |
| if (!Child->isLeaf() && Child->getNumTypes() && |
| Child->getType(0) != MVT::Other) |
| Size += getPatternSize(Child, CGP); |
| else if (Child->isLeaf()) { |
| if (isa<IntInit>(Child->getLeafValue())) |
| Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). |
| else if (Child->getComplexPatternInfo(CGP)) |
| Size += getPatternSize(Child, CGP); |
| else if (!Child->getPredicateFns().empty()) |
| ++Size; |
| } |
| } |
| |
| return Size; |
| } |
| |
| /// Compute the complexity metric for the input pattern. This roughly |
| /// corresponds to the number of nodes that are covered. |
| int PatternToMatch:: |
| getPatternComplexity(const CodeGenDAGPatterns &CGP) const { |
| return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); |
| } |
| |
| |
| /// getPredicateCheck - Return a single string containing all of this |
| /// pattern's predicates concatenated with "&&" operators. |
| /// |
| std::string PatternToMatch::getPredicateCheck() const { |
| SmallVector<Record *, 4> PredicateRecs; |
| for (Init *I : Predicates->getValues()) { |
| if (DefInit *Pred = dyn_cast<DefInit>(I)) { |
| Record *Def = Pred->getDef(); |
| if (!Def->isSubClassOf("Predicate")) { |
| #ifndef NDEBUG |
| Def->dump(); |
| #endif |
| llvm_unreachable("Unknown predicate type!"); |
| } |
| PredicateRecs.push_back(Def); |
| } |
| } |
| // Sort so that different orders get canonicalized to the same string. |
| std::sort(PredicateRecs.begin(), PredicateRecs.end(), LessRecord()); |
| |
| SmallString<128> PredicateCheck; |
| for (Record *Pred : PredicateRecs) { |
| if (!PredicateCheck.empty()) |
| PredicateCheck += " && "; |
| PredicateCheck += "("; |
| PredicateCheck += Pred->getValueAsString("CondString"); |
| PredicateCheck += ")"; |
| } |
| |
| return PredicateCheck.str(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SDTypeConstraint implementation |
| // |
| |
| SDTypeConstraint::SDTypeConstraint(Record *R) { |
| OperandNo = R->getValueAsInt("OperandNum"); |
| |
| if (R->isSubClassOf("SDTCisVT")) { |
| ConstraintType = SDTCisVT; |
| x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); |
| if (x.SDTCisVT_Info.VT == MVT::isVoid) |
| PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); |
| |
| } else if (R->isSubClassOf("SDTCisPtrTy")) { |
| ConstraintType = SDTCisPtrTy; |
| } else if (R->isSubClassOf("SDTCisInt")) { |
| ConstraintType = SDTCisInt; |
| } else if (R->isSubClassOf("SDTCisFP")) { |
| ConstraintType = SDTCisFP; |
| } else if (R->isSubClassOf("SDTCisVec")) { |
| ConstraintType = SDTCisVec; |
| } else if (R->isSubClassOf("SDTCisSameAs")) { |
| ConstraintType = SDTCisSameAs; |
| x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); |
| } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { |
| ConstraintType = SDTCisVTSmallerThanOp; |
| x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = |
| R->getValueAsInt("OtherOperandNum"); |
| } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { |
| ConstraintType = SDTCisOpSmallerThanOp; |
| x.SDTCisOpSmallerThanOp_Info.BigOperandNum = |
| R->getValueAsInt("BigOperandNum"); |
| } else if (R->isSubClassOf("SDTCisEltOfVec")) { |
| ConstraintType = SDTCisEltOfVec; |
| x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); |
| } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { |
| ConstraintType = SDTCisSubVecOfVec; |
| x.SDTCisSubVecOfVec_Info.OtherOperandNum = |
| R->getValueAsInt("OtherOpNum"); |
| } else if (R->isSubClassOf("SDTCVecEltisVT")) { |
| ConstraintType = SDTCVecEltisVT; |
| x.SDTCVecEltisVT_Info.VT = getValueType(R->getValueAsDef("VT")); |
| if (MVT(x.SDTCVecEltisVT_Info.VT).isVector()) |
| PrintFatalError(R->getLoc(), "Cannot use vector type as SDTCVecEltisVT"); |
| if (!MVT(x.SDTCVecEltisVT_Info.VT).isInteger() && |
| !MVT(x.SDTCVecEltisVT_Info.VT).isFloatingPoint()) |
| PrintFatalError(R->getLoc(), "Must use integer or floating point type " |
| "as SDTCVecEltisVT"); |
| } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { |
| ConstraintType = SDTCisSameNumEltsAs; |
| x.SDTCisSameNumEltsAs_Info.OtherOperandNum = |
| R->getValueAsInt("OtherOperandNum"); |
| } else if (R->isSubClassOf("SDTCisSameSizeAs")) { |
| ConstraintType = SDTCisSameSizeAs; |
| x.SDTCisSameSizeAs_Info.OtherOperandNum = |
| R->getValueAsInt("OtherOperandNum"); |
| } else { |
| PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); |
| } |
| } |
| |
| /// getOperandNum - Return the node corresponding to operand #OpNo in tree |
| /// N, and the result number in ResNo. |
| static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, |
| const SDNodeInfo &NodeInfo, |
| unsigned &ResNo) { |
| unsigned NumResults = NodeInfo.getNumResults(); |
| if (OpNo < NumResults) { |
| ResNo = OpNo; |
| return N; |
| } |
| |
| OpNo -= NumResults; |
| |
| if (OpNo >= N->getNumChildren()) { |
| std::string S; |
| raw_string_ostream OS(S); |
| OS << "Invalid operand number in type constraint " |
| << (OpNo+NumResults) << " "; |
| N->print(OS); |
| PrintFatalError(OS.str()); |
| } |
| |
| return N->getChild(OpNo); |
| } |
| |
| /// ApplyTypeConstraint - Given a node in a pattern, apply this type |
| /// constraint to the nodes operands. This returns true if it makes a |
| /// change, false otherwise. If a type contradiction is found, flag an error. |
| bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, |
| const SDNodeInfo &NodeInfo, |
| TreePattern &TP) const { |
| if (TP.hasError()) |
| return false; |
| |
| unsigned ResNo = 0; // The result number being referenced. |
| TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); |
| |
| switch (ConstraintType) { |
| case SDTCisVT: |
| // Operand must be a particular type. |
| return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); |
| case SDTCisPtrTy: |
| // Operand must be same as target pointer type. |
| return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); |
| case SDTCisInt: |
| // Require it to be one of the legal integer VTs. |
| return NodeToApply->getExtType(ResNo).EnforceInteger(TP); |
| case SDTCisFP: |
| // Require it to be one of the legal fp VTs. |
| return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); |
| case SDTCisVec: |
| // Require it to be one of the legal vector VTs. |
| return NodeToApply->getExtType(ResNo).EnforceVector(TP); |
| case SDTCisSameAs: { |
| unsigned OResNo = 0; |
| TreePatternNode *OtherNode = |
| getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); |
| return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| |
| OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); |
| } |
| case SDTCisVTSmallerThanOp: { |
| // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must |
| // have an integer type that is smaller than the VT. |
| if (!NodeToApply->isLeaf() || |
| !isa<DefInit>(NodeToApply->getLeafValue()) || |
| !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() |
| ->isSubClassOf("ValueType")) { |
| TP.error(N->getOperator()->getName() + " expects a VT operand!"); |
| return false; |
| } |
| MVT::SimpleValueType VT = |
| getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); |
| |
| EEVT::TypeSet TypeListTmp(VT, TP); |
| |
| unsigned OResNo = 0; |
| TreePatternNode *OtherNode = |
| getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, |
| OResNo); |
| |
| return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); |
| } |
| case SDTCisOpSmallerThanOp: { |
| unsigned BResNo = 0; |
| TreePatternNode *BigOperand = |
| getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, |
| BResNo); |
| return NodeToApply->getExtType(ResNo). |
| EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); |
| } |
| case SDTCisEltOfVec: { |
| unsigned VResNo = 0; |
| TreePatternNode *VecOperand = |
| getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, |
| VResNo); |
| |
| // Filter vector types out of VecOperand that don't have the right element |
| // type. |
| return VecOperand->getExtType(VResNo). |
| EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); |
| } |
| case SDTCisSubVecOfVec: { |
| unsigned VResNo = 0; |
| TreePatternNode *BigVecOperand = |
| getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, |
| VResNo); |
| |
| // Filter vector types out of BigVecOperand that don't have the |
| // right subvector type. |
| return BigVecOperand->getExtType(VResNo). |
| EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); |
| } |
| case SDTCVecEltisVT: { |
| return NodeToApply->getExtType(ResNo). |
| EnforceVectorEltTypeIs(x.SDTCVecEltisVT_Info.VT, TP); |
| } |
| case SDTCisSameNumEltsAs: { |
| unsigned OResNo = 0; |
| TreePatternNode *OtherNode = |
| getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, |
| N, NodeInfo, OResNo); |
| return OtherNode->getExtType(OResNo). |
| EnforceSameNumElts(NodeToApply->getExtType(ResNo), TP); |
| } |
| case SDTCisSameSizeAs: { |
| unsigned OResNo = 0; |
| TreePatternNode *OtherNode = |
| getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, |
| N, NodeInfo, OResNo); |
| return OtherNode->getExtType(OResNo). |
| EnforceSameSize(NodeToApply->getExtType(ResNo), TP); |
| } |
| } |
| llvm_unreachable("Invalid ConstraintType!"); |
| } |
| |
| // Update the node type to match an instruction operand or result as specified |
| // in the ins or outs lists on the instruction definition. Return true if the |
| // type was actually changed. |
| bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, |
| Record *Operand, |
| TreePattern &TP) { |
| // The 'unknown' operand indicates that types should be inferred from the |
| // context. |
| if (Operand->isSubClassOf("unknown_class")) |
| return false; |
| |
| // The Operand class specifies a type directly. |
| if (Operand->isSubClassOf("Operand")) |
| return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")), |
| TP); |
| |
| // PointerLikeRegClass has a type that is determined at runtime. |
| if (Operand->isSubClassOf("PointerLikeRegClass")) |
| return UpdateNodeType(ResNo, MVT::iPTR, TP); |
| |
| // Both RegisterClass and RegisterOperand operands derive their types from a |
| // register class def. |
| Record *RC = nullptr; |
| if (Operand->isSubClassOf("RegisterClass")) |
| RC = Operand; |
| else if (Operand->isSubClassOf("RegisterOperand")) |
| RC = Operand->getValueAsDef("RegClass"); |
| |
| assert(RC && "Unknown operand type"); |
| CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); |
| return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SDNodeInfo implementation |
| // |
| SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { |
| EnumName = R->getValueAsString("Opcode"); |
| SDClassName = R->getValueAsString("SDClass"); |
| Record *TypeProfile = R->getValueAsDef("TypeProfile"); |
| NumResults = TypeProfile->getValueAsInt("NumResults"); |
| NumOperands = TypeProfile->getValueAsInt("NumOperands"); |
| |
| // Parse the properties. |
| Properties = 0; |
| for (Record *Property : R->getValueAsListOfDefs("Properties")) { |
| if (Property->getName() == "SDNPCommutative") { |
| Properties |= 1 << SDNPCommutative; |
| } else if (Property->getName() == "SDNPAssociative") { |
| Properties |= 1 << SDNPAssociative; |
| } else if (Property->getName() == "SDNPHasChain") { |
| Properties |= 1 << SDNPHasChain; |
| } else if (Property->getName() == "SDNPOutGlue") { |
| Properties |= 1 << SDNPOutGlue; |
| } else if (Property->getName() == "SDNPInGlue") { |
| Properties |= 1 << SDNPInGlue; |
| } else if (Property->getName() == "SDNPOptInGlue") { |
| Properties |= 1 << SDNPOptInGlue; |
| } else if (Property->getName() == "SDNPMayStore") { |
| Properties |= 1 << SDNPMayStore; |
| } else if (Property->getName() == "SDNPMayLoad") { |
| Properties |= 1 << SDNPMayLoad; |
| } else if (Property->getName() == "SDNPSideEffect") { |
| Properties |= 1 << SDNPSideEffect; |
| } else if (Property->getName() == "SDNPMemOperand") { |
| Properties |= 1 << SDNPMemOperand; |
| } else if (Property->getName() == "SDNPVariadic") { |
| Properties |= 1 << SDNPVariadic; |
| } else { |
| PrintFatalError("Unknown SD Node property '" + |
| Property->getName() + "' on node '" + |
| R->getName() + "'!"); |
| } |
| } |
| |
| |
| // Parse the type constraints. |
| std::vector<Record*> ConstraintList = |
| TypeProfile->getValueAsListOfDefs("Constraints"); |
| TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); |
| } |
| |
| /// getKnownType - If the type constraints on this node imply a fixed type |
| /// (e.g. all stores return void, etc), then return it as an |
| /// MVT::SimpleValueType. Otherwise, return EEVT::Other. |
| MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { |
| unsigned NumResults = getNumResults(); |
| assert(NumResults <= 1 && |
| "We only work with nodes with zero or one result so far!"); |
| assert(ResNo == 0 && "Only handles single result nodes so far"); |
| |
| for (const SDTypeConstraint &Constraint : TypeConstraints) { |
| // Make sure that this applies to the correct node result. |
| if (Constraint.OperandNo >= NumResults) // FIXME: need value # |
| continue; |
| |
| switch (Constraint.ConstraintType) { |
| default: break; |
| case SDTypeConstraint::SDTCisVT: |
| return Constraint.x.SDTCisVT_Info.VT; |
| case SDTypeConstraint::SDTCisPtrTy: |
| return MVT::iPTR; |
| } |
| } |
| return MVT::Other; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TreePatternNode implementation |
| // |
| |
| TreePatternNode::~TreePatternNode() { |
| #if 0 // FIXME: implement refcounted tree nodes! |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| delete getChild(i); |
| #endif |
| } |
| |
| static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { |
| if (Operator->getName() == "set" || |
| Operator->getName() == "implicit") |
| return 0; // All return nothing. |
| |
| if (Operator->isSubClassOf("Intrinsic")) |
| return CDP.getIntrinsic(Operator).IS.RetVTs.size(); |
| |
| if (Operator->isSubClassOf("SDNode")) |
| return CDP.getSDNodeInfo(Operator).getNumResults(); |
| |
| if (Operator->isSubClassOf("PatFrag")) { |
| // If we've already parsed this pattern fragment, get it. Otherwise, handle |
| // the forward reference case where one pattern fragment references another |
| // before it is processed. |
| if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) |
| return PFRec->getOnlyTree()->getNumTypes(); |
| |
| // Get the result tree. |
| DagInit *Tree = Operator->getValueAsDag("Fragment"); |
| Record *Op = nullptr; |
| if (Tree) |
| if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator())) |
| Op = DI->getDef(); |
| assert(Op && "Invalid Fragment"); |
| return GetNumNodeResults(Op, CDP); |
| } |
| |
| if (Operator->isSubClassOf("Instruction")) { |
| CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); |
| |
| unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; |
| |
| // Subtract any defaulted outputs. |
| for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { |
| Record *OperandNode = InstInfo.Operands[i].Rec; |
| |
| if (OperandNode->isSubClassOf("OperandWithDefaultOps") && |
| !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) |
| --NumDefsToAdd; |
| } |
| |
| // Add on one implicit def if it has a resolvable type. |
| if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) |
| ++NumDefsToAdd; |
| return NumDefsToAdd; |
| } |
| |
| if (Operator->isSubClassOf("SDNodeXForm")) |
| return 1; // FIXME: Generalize SDNodeXForm |
| |
| if (Operator->isSubClassOf("ValueType")) |
| return 1; // A type-cast of one result. |
| |
| if (Operator->isSubClassOf("ComplexPattern")) |
| return 1; |
| |
| errs() << *Operator; |
| PrintFatalError("Unhandled node in GetNumNodeResults"); |
| } |
| |
| void TreePatternNode::print(raw_ostream &OS) const { |
| if (isLeaf()) |
| OS << *getLeafValue(); |
| else |
| OS << '(' << getOperator()->getName(); |
| |
| for (unsigned i = 0, e = Types.size(); i != e; ++i) |
| OS << ':' << getExtType(i).getName(); |
| |
| if (!isLeaf()) { |
| if (getNumChildren() != 0) { |
| OS << " "; |
| getChild(0)->print(OS); |
| for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { |
| OS << ", "; |
| getChild(i)->print(OS); |
| } |
| } |
| OS << ")"; |
| } |
| |
| for (const TreePredicateFn &Pred : PredicateFns) |
| OS << "<<P:" << Pred.getFnName() << ">>"; |
| if (TransformFn) |
| OS << "<<X:" << TransformFn->getName() << ">>"; |
| if (!getName().empty()) |
| OS << ":$" << getName(); |
| |
| } |
| void TreePatternNode::dump() const { |
| print(errs()); |
| } |
| |
| /// isIsomorphicTo - Return true if this node is recursively |
| /// isomorphic to the specified node. For this comparison, the node's |
| /// entire state is considered. The assigned name is ignored, since |
| /// nodes with differing names are considered isomorphic. However, if |
| /// the assigned name is present in the dependent variable set, then |
| /// the assigned name is considered significant and the node is |
| /// isomorphic if the names match. |
| bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, |
| const MultipleUseVarSet &DepVars) const { |
| if (N == this) return true; |
| if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || |
| getPredicateFns() != N->getPredicateFns() || |
| getTransformFn() != N->getTransformFn()) |
| return false; |
| |
| if (isLeaf()) { |
| if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { |
| if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { |
| return ((DI->getDef() == NDI->getDef()) |
| && (DepVars.find(getName()) == DepVars.end() |
| || getName() == N->getName())); |
| } |
| } |
| return getLeafValue() == N->getLeafValue(); |
| } |
| |
| if (N->getOperator() != getOperator() || |
| N->getNumChildren() != getNumChildren()) return false; |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) |
| return false; |
| return true; |
| } |
| |
| /// clone - Make a copy of this tree and all of its children. |
| /// |
| TreePatternNode *TreePatternNode::clone() const { |
| TreePatternNode *New; |
| if (isLeaf()) { |
| New = new TreePatternNode(getLeafValue(), getNumTypes()); |
| } else { |
| std::vector<TreePatternNode*> CChildren; |
| CChildren.reserve(Children.size()); |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| CChildren.push_back(getChild(i)->clone()); |
| New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); |
| } |
| New->setName(getName()); |
| New->Types = Types; |
| New->setPredicateFns(getPredicateFns()); |
| New->setTransformFn(getTransformFn()); |
| return New; |
| } |
| |
| /// RemoveAllTypes - Recursively strip all the types of this tree. |
| void TreePatternNode::RemoveAllTypes() { |
| // Reset to unknown type. |
| std::fill(Types.begin(), Types.end(), EEVT::TypeSet()); |
| if (isLeaf()) return; |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| getChild(i)->RemoveAllTypes(); |
| } |
| |
| |
| /// SubstituteFormalArguments - Replace the formal arguments in this tree |
| /// with actual values specified by ArgMap. |
| void TreePatternNode:: |
| SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { |
| if (isLeaf()) return; |
| |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = getChild(i); |
| if (Child->isLeaf()) { |
| Init *Val = Child->getLeafValue(); |
| // Note that, when substituting into an output pattern, Val might be an |
| // UnsetInit. |
| if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && |
| cast<DefInit>(Val)->getDef()->getName() == "node")) { |
| // We found a use of a formal argument, replace it with its value. |
| TreePatternNode *NewChild = ArgMap[Child->getName()]; |
| assert(NewChild && "Couldn't find formal argument!"); |
| assert((Child->getPredicateFns().empty() || |
| NewChild->getPredicateFns() == Child->getPredicateFns()) && |
| "Non-empty child predicate clobbered!"); |
| setChild(i, NewChild); |
| } |
| } else { |
| getChild(i)->SubstituteFormalArguments(ArgMap); |
| } |
| } |
| } |
| |
| |
| /// InlinePatternFragments - If this pattern refers to any pattern |
| /// fragments, inline them into place, giving us a pattern without any |
| /// PatFrag references. |
| TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { |
| if (TP.hasError()) |
| return nullptr; |
| |
| if (isLeaf()) |
| return this; // nothing to do. |
| Record *Op = getOperator(); |
| |
| if (!Op->isSubClassOf("PatFrag")) { |
| // Just recursively inline children nodes. |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = getChild(i); |
| TreePatternNode *NewChild = Child->InlinePatternFragments(TP); |
| |
| assert((Child->getPredicateFns().empty() || |
| NewChild->getPredicateFns() == Child->getPredicateFns()) && |
| "Non-empty child predicate clobbered!"); |
| |
| setChild(i, NewChild); |
| } |
| return this; |
| } |
| |
| // Otherwise, we found a reference to a fragment. First, look up its |
| // TreePattern record. |
| TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); |
| |
| // Verify that we are passing the right number of operands. |
| if (Frag->getNumArgs() != Children.size()) { |
| TP.error("'" + Op->getName() + "' fragment requires " + |
| utostr(Frag->getNumArgs()) + " operands!"); |
| return nullptr; |
| } |
| |
| TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); |
| |
| TreePredicateFn PredFn(Frag); |
| if (!PredFn.isAlwaysTrue()) |
| FragTree->addPredicateFn(PredFn); |
| |
| // Resolve formal arguments to their actual value. |
| if (Frag->getNumArgs()) { |
| // Compute the map of formal to actual arguments. |
| std::map<std::string, TreePatternNode*> ArgMap; |
| for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) |
| ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); |
| |
| FragTree->SubstituteFormalArguments(ArgMap); |
| } |
| |
| FragTree->setName(getName()); |
| for (unsigned i = 0, e = Types.size(); i != e; ++i) |
| FragTree->UpdateNodeType(i, getExtType(i), TP); |
| |
| // Transfer in the old predicates. |
| for (const TreePredicateFn &Pred : getPredicateFns()) |
| FragTree->addPredicateFn(Pred); |
| |
| // Get a new copy of this fragment to stitch into here. |
| //delete this; // FIXME: implement refcounting! |
| |
| // The fragment we inlined could have recursive inlining that is needed. See |
| // if there are any pattern fragments in it and inline them as needed. |
| return FragTree->InlinePatternFragments(TP); |
| } |
| |
| /// getImplicitType - Check to see if the specified record has an implicit |
| /// type which should be applied to it. This will infer the type of register |
| /// references from the register file information, for example. |
| /// |
| /// When Unnamed is set, return the type of a DAG operand with no name, such as |
| /// the F8RC register class argument in: |
| /// |
| /// (COPY_TO_REGCLASS GPR:$src, F8RC) |
| /// |
| /// When Unnamed is false, return the type of a named DAG operand such as the |
| /// GPR:$src operand above. |
| /// |
| static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, |
| bool NotRegisters, |
| bool Unnamed, |
| TreePattern &TP) { |
| // Check to see if this is a register operand. |
| if (R->isSubClassOf("RegisterOperand")) { |
| assert(ResNo == 0 && "Regoperand ref only has one result!"); |
| if (NotRegisters) |
| return EEVT::TypeSet(); // Unknown. |
| Record *RegClass = R->getValueAsDef("RegClass"); |
| const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); |
| return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes()); |
| } |
| |
| // Check to see if this is a register or a register class. |
| if (R->isSubClassOf("RegisterClass")) { |
| assert(ResNo == 0 && "Regclass ref only has one result!"); |
| // An unnamed register class represents itself as an i32 immediate, for |
| // example on a COPY_TO_REGCLASS instruction. |
| if (Unnamed) |
| return EEVT::TypeSet(MVT::i32, TP); |
| |
| // In a named operand, the register class provides the possible set of |
| // types. |
| if (NotRegisters) |
| return EEVT::TypeSet(); // Unknown. |
| const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); |
| return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); |
| } |
| |
| if (R->isSubClassOf("PatFrag")) { |
| assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); |
| // Pattern fragment types will be resolved when they are inlined. |
| return EEVT::TypeSet(); // Unknown. |
| } |
| |
| if (R->isSubClassOf("Register")) { |
| assert(ResNo == 0 && "Registers only produce one result!"); |
| if (NotRegisters) |
| return EEVT::TypeSet(); // Unknown. |
| const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); |
| return EEVT::TypeSet(T.getRegisterVTs(R)); |
| } |
| |
| if (R->isSubClassOf("SubRegIndex")) { |
| assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); |
| return EEVT::TypeSet(MVT::i32, TP); |
| } |
| |
| if (R->isSubClassOf("ValueType")) { |
| assert(ResNo == 0 && "This node only has one result!"); |
| // An unnamed VTSDNode represents itself as an MVT::Other immediate. |
| // |
| // (sext_inreg GPR:$src, i16) |
| // ~~~ |
| if (Unnamed) |
| return EEVT::TypeSet(MVT::Other, TP); |
| // With a name, the ValueType simply provides the type of the named |
| // variable. |
| // |
| // (sext_inreg i32:$src, i16) |
| // ~~~~~~~~ |
| if (NotRegisters) |
| return EEVT::TypeSet(); // Unknown. |
| return EEVT::TypeSet(getValueType(R), TP); |
| } |
| |
| if (R->isSubClassOf("CondCode")) { |
| assert(ResNo == 0 && "This node only has one result!"); |
| // Using a CondCodeSDNode. |
| return EEVT::TypeSet(MVT::Other, TP); |
| } |
| |
| if (R->isSubClassOf("ComplexPattern")) { |
| assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); |
| if (NotRegisters) |
| return EEVT::TypeSet(); // Unknown. |
| return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), |
| TP); |
| } |
| if (R->isSubClassOf("PointerLikeRegClass")) { |
| assert(ResNo == 0 && "Regclass can only have one result!"); |
| return EEVT::TypeSet(MVT::iPTR, TP); |
| } |
| |
| if (R->getName() == "node" || R->getName() == "srcvalue" || |
| R->getName() == "zero_reg") { |
| // Placeholder. |
| return EEVT::TypeSet(); // Unknown. |
| } |
| |
| if (R->isSubClassOf("Operand")) |
| return EEVT::TypeSet(getValueType(R->getValueAsDef("Type"))); |
| |
| TP.error("Unknown node flavor used in pattern: " + R->getName()); |
| return EEVT::TypeSet(MVT::Other, TP); |
| } |
| |
| |
| /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the |
| /// CodeGenIntrinsic information for it, otherwise return a null pointer. |
| const CodeGenIntrinsic *TreePatternNode:: |
| getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { |
| if (getOperator() != CDP.get_intrinsic_void_sdnode() && |
| getOperator() != CDP.get_intrinsic_w_chain_sdnode() && |
| getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) |
| return nullptr; |
| |
| unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); |
| return &CDP.getIntrinsicInfo(IID); |
| } |
| |
| /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, |
| /// return the ComplexPattern information, otherwise return null. |
| const ComplexPattern * |
| TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { |
| Record *Rec; |
| if (isLeaf()) { |
| DefInit *DI = dyn_cast<DefInit>(getLeafValue()); |
| if (!DI) |
| return nullptr; |
| Rec = DI->getDef(); |
| } else |
| Rec = getOperator(); |
| |
| if (!Rec->isSubClassOf("ComplexPattern")) |
| return nullptr; |
| return &CGP.getComplexPattern(Rec); |
| } |
| |
| unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { |
| // A ComplexPattern specifically declares how many results it fills in. |
| if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) |
| return CP->getNumOperands(); |
| |
| // If MIOperandInfo is specified, that gives the count. |
| if (isLeaf()) { |
| DefInit *DI = dyn_cast<DefInit>(getLeafValue()); |
| if (DI && DI->getDef()->isSubClassOf("Operand")) { |
| DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); |
| if (MIOps->getNumArgs()) |
| return MIOps->getNumArgs(); |
| } |
| } |
| |
| // Otherwise there is just one result. |
| return 1; |
| } |
| |
| /// NodeHasProperty - Return true if this node has the specified property. |
| bool TreePatternNode::NodeHasProperty(SDNP Property, |
| const CodeGenDAGPatterns &CGP) const { |
| if (isLeaf()) { |
| if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) |
| return CP->hasProperty(Property); |
| return false; |
| } |
| |
| Record *Operator = getOperator(); |
| if (!Operator->isSubClassOf("SDNode")) return false; |
| |
| return CGP.getSDNodeInfo(Operator).hasProperty(Property); |
| } |
| |
| |
| |
| |
| /// TreeHasProperty - Return true if any node in this tree has the specified |
| /// property. |
| bool TreePatternNode::TreeHasProperty(SDNP Property, |
| const CodeGenDAGPatterns &CGP) const { |
| if (NodeHasProperty(Property, CGP)) |
| return true; |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| if (getChild(i)->TreeHasProperty(Property, CGP)) |
| return true; |
| return false; |
| } |
| |
| /// isCommutativeIntrinsic - Return true if the node corresponds to a |
| /// commutative intrinsic. |
| bool |
| TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { |
| if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) |
| return Int->isCommutative; |
| return false; |
| } |
| |
| static bool isOperandClass(const TreePatternNode *N, StringRef Class) { |
| if (!N->isLeaf()) |
| return N->getOperator()->isSubClassOf(Class); |
| |
| DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); |
| if (DI && DI->getDef()->isSubClassOf(Class)) |
| return true; |
| |
| return false; |
| } |
| |
| static void emitTooManyOperandsError(TreePattern &TP, |
| StringRef InstName, |
| unsigned Expected, |
| unsigned Actual) { |
| TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + |
| " operands but expected only " + Twine(Expected) + "!"); |
| } |
| |
| static void emitTooFewOperandsError(TreePattern &TP, |
| StringRef InstName, |
| unsigned Actual) { |
| TP.error("Instruction '" + InstName + |
| "' expects more than the provided " + Twine(Actual) + " operands!"); |
| } |
| |
| /// ApplyTypeConstraints - Apply all of the type constraints relevant to |
| /// this node and its children in the tree. This returns true if it makes a |
| /// change, false otherwise. If a type contradiction is found, flag an error. |
| bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { |
| if (TP.hasError()) |
| return false; |
| |
| CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); |
| if (isLeaf()) { |
| if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { |
| // If it's a regclass or something else known, include the type. |
| bool MadeChange = false; |
| for (unsigned i = 0, e = Types.size(); i != e; ++i) |
| MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, |
| NotRegisters, |
| !hasName(), TP), TP); |
| return MadeChange; |
| } |
| |
| if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { |
| assert(Types.size() == 1 && "Invalid IntInit"); |
| |
| // Int inits are always integers. :) |
| bool MadeChange = Types[0].EnforceInteger(TP); |
| |
| if (!Types[0].isConcrete()) |
| return MadeChange; |
| |
| MVT::SimpleValueType VT = getType(0); |
| if (VT == MVT::iPTR || VT == MVT::iPTRAny) |
| return MadeChange; |
| |
| unsigned Size = MVT(VT).getSizeInBits(); |
| // Make sure that the value is representable for this type. |
| if (Size >= 32) return MadeChange; |
| |
| // Check that the value doesn't use more bits than we have. It must either |
| // be a sign- or zero-extended equivalent of the original. |
| int64_t SignBitAndAbove = II->getValue() >> (Size - 1); |
| if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1) |
| return MadeChange; |
| |
| TP.error("Integer value '" + itostr(II->getValue()) + |
| "' is out of range for type '" + getEnumName(getType(0)) + "'!"); |
| return false; |
| } |
| return false; |
| } |
| |
| // special handling for set, which isn't really an SDNode. |
| if (getOperator()->getName() == "set") { |
| assert(getNumTypes() == 0 && "Set doesn't produce a value"); |
| assert(getNumChildren() >= 2 && "Missing RHS of a set?"); |
| unsigned NC = getNumChildren(); |
| |
| TreePatternNode *SetVal = getChild(NC-1); |
| bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); |
| |
| for (unsigned i = 0; i < NC-1; ++i) { |
| TreePatternNode *Child = getChild(i); |
| MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); |
| |
| // Types of operands must match. |
| MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); |
| MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); |
| } |
| return MadeChange; |
| } |
| |
| if (getOperator()->getName() == "implicit") { |
| assert(getNumTypes() == 0 && "Node doesn't produce a value"); |
| |
| bool MadeChange = false; |
| for (unsigned i = 0; i < getNumChildren(); ++i) |
| MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| return MadeChange; |
| } |
| |
| if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { |
| bool MadeChange = false; |
| |
| // Apply the result type to the node. |
| unsigned NumRetVTs = Int->IS.RetVTs.size(); |
| unsigned NumParamVTs = Int->IS.ParamVTs.size(); |
| |
| for (unsigned i = 0, e = NumRetVTs; i != e; ++i) |
| MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); |
| |
| if (getNumChildren() != NumParamVTs + 1) { |
| TP.error("Intrinsic '" + Int->Name + "' expects " + |
| utostr(NumParamVTs) + " operands, not " + |
| utostr(getNumChildren() - 1) + " operands!"); |
| return false; |
| } |
| |
| // Apply type info to the intrinsic ID. |
| MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); |
| |
| for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { |
| MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); |
| |
| MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; |
| assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); |
| MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); |
| } |
| return MadeChange; |
| } |
| |
| if (getOperator()->isSubClassOf("SDNode")) { |
| const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); |
| |
| // Check that the number of operands is sane. Negative operands -> varargs. |
| if (NI.getNumOperands() >= 0 && |
| getNumChildren() != (unsigned)NI.getNumOperands()) { |
| TP.error(getOperator()->getName() + " node requires exactly " + |
| itostr(NI.getNumOperands()) + " operands!"); |
| return false; |
| } |
| |
| bool MadeChange = NI.ApplyTypeConstraints(this, TP); |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| return MadeChange; |
| } |
| |
| if (getOperator()->isSubClassOf("Instruction")) { |
| const DAGInstruction &Inst = CDP.getInstruction(getOperator()); |
| CodeGenInstruction &InstInfo = |
| CDP.getTargetInfo().getInstruction(getOperator()); |
| |
| bool MadeChange = false; |
| |
| // Apply the result types to the node, these come from the things in the |
| // (outs) list of the instruction. |
| unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, |
| Inst.getNumResults()); |
| for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) |
| MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); |
| |
| // If the instruction has implicit defs, we apply the first one as a result. |
| // FIXME: This sucks, it should apply all implicit defs. |
| if (!InstInfo.ImplicitDefs.empty()) { |
| unsigned ResNo = NumResultsToAdd; |
| |
| // FIXME: Generalize to multiple possible types and multiple possible |
| // ImplicitDefs. |
| MVT::SimpleValueType VT = |
| InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); |
| |
| if (VT != MVT::Other) |
| MadeChange |= UpdateNodeType(ResNo, VT, TP); |
| } |
| |
| // If this is an INSERT_SUBREG, constrain the source and destination VTs to |
| // be the same. |
| if (getOperator()->getName() == "INSERT_SUBREG") { |
| assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); |
| MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); |
| MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); |
| } else if (getOperator()->getName() == "REG_SEQUENCE") { |
| // We need to do extra, custom typechecking for REG_SEQUENCE since it is |
| // variadic. |
| |
| unsigned NChild = getNumChildren(); |
| if (NChild < 3) { |
| TP.error("REG_SEQUENCE requires at least 3 operands!"); |
| return false; |
| } |
| |
| if (NChild % 2 == 0) { |
| TP.error("REG_SEQUENCE requires an odd number of operands!"); |
| return false; |
| } |
| |
| if (!isOperandClass(getChild(0), "RegisterClass")) { |
| TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); |
| return false; |
| } |
| |
| for (unsigned I = 1; I < NChild; I += 2) { |
| TreePatternNode *SubIdxChild = getChild(I + 1); |
| if (!isOperandClass(SubIdxChild, "SubRegIndex")) { |
| TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + |
| itostr(I + 1) + "!"); |
| return false; |
| } |
| } |
| } |
| |
| unsigned ChildNo = 0; |
| for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { |
| Record *OperandNode = Inst.getOperand(i); |
| |
| // If the instruction expects a predicate or optional def operand, we |
| // codegen this by setting the operand to it's default value if it has a |
| // non-empty DefaultOps field. |
| if (OperandNode->isSubClassOf("OperandWithDefaultOps") && |
| !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) |
| continue; |
| |
| // Verify that we didn't run out of provided operands. |
| if (ChildNo >= getNumChildren()) { |
| emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); |
| return false; |
| } |
| |
| TreePatternNode *Child = getChild(ChildNo++); |
| unsigned ChildResNo = 0; // Instructions always use res #0 of their op. |
| |
| // If the operand has sub-operands, they may be provided by distinct |
| // child patterns, so attempt to match each sub-operand separately. |
| if (OperandNode->isSubClassOf("Operand")) { |
| DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); |
| if (unsigned NumArgs = MIOpInfo->getNumArgs()) { |
| // But don't do that if the whole operand is being provided by |
| // a single ComplexPattern-related Operand. |
| |
| if (Child->getNumMIResults(CDP) < NumArgs) { |
| // Match first sub-operand against the child we already have. |
| Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); |
| MadeChange |= |
| Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); |
| |
| // And the remaining sub-operands against subsequent children. |
| for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { |
| if (ChildNo >= getNumChildren()) { |
| emitTooFewOperandsError(TP, getOperator()->getName(), |
| getNumChildren()); |
| return false; |
| } |
| Child = getChild(ChildNo++); |
| |
| SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); |
| MadeChange |= |
| Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); |
| } |
| continue; |
| } |
| } |
| } |
| |
| // If we didn't match by pieces above, attempt to match the whole |
| // operand now. |
| MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); |
| } |
| |
| if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { |
| emitTooManyOperandsError(TP, getOperator()->getName(), |
| ChildNo, getNumChildren()); |
| return false; |
| } |
| |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| return MadeChange; |
| } |
| |
| if (getOperator()->isSubClassOf("ComplexPattern")) { |
| bool MadeChange = false; |
| |
| for (unsigned i = 0; i < getNumChildren(); ++i) |
| MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| |
| return MadeChange; |
| } |
| |
| assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); |
| |
| // Node transforms always take one operand. |
| if (getNumChildren() != 1) { |
| TP.error("Node transform '" + getOperator()->getName() + |
| "' requires one operand!"); |
| return false; |
| } |
| |
| bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); |
| |
| |
| // If either the output or input of the xform does not have exact |
| // type info. We assume they must be the same. Otherwise, it is perfectly |
| // legal to transform from one type to a completely different type. |
| #if 0 |
| if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { |
| bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); |
| MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); |
| return MadeChange; |
| } |
| #endif |
| return MadeChange; |
| } |
| |
| /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the |
| /// RHS of a commutative operation, not the on LHS. |
| static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { |
| if (!N->isLeaf() && N->getOperator()->getName() == "imm") |
| return true; |
| if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) |
| return true; |
| return false; |
| } |
| |
| |
| /// canPatternMatch - If it is impossible for this pattern to match on this |
| /// target, fill in Reason and return false. Otherwise, return true. This is |
| /// used as a sanity check for .td files (to prevent people from writing stuff |
| /// that can never possibly work), and to prevent the pattern permuter from |
| /// generating stuff that is useless. |
| bool TreePatternNode::canPatternMatch(std::string &Reason, |
| const CodeGenDAGPatterns &CDP) { |
| if (isLeaf()) return true; |
| |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| if (!getChild(i)->canPatternMatch(Reason, CDP)) |
| return false; |
| |
| // If this is an intrinsic, handle cases that would make it not match. For |
| // example, if an operand is required to be an immediate. |
| if (getOperator()->isSubClassOf("Intrinsic")) { |
| // TODO: |
| return true; |
| } |
| |
| if (getOperator()->isSubClassOf("ComplexPattern")) |
| return true; |
| |
| // If this node is a commutative operator, check that the LHS isn't an |
| // immediate. |
| const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); |
| bool isCommIntrinsic = isCommutativeIntrinsic(CDP); |
| if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { |
| // Scan all of the operands of the node and make sure that only the last one |
| // is a constant node, unless the RHS also is. |
| if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { |
| unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. |
| for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) |
| if (OnlyOnRHSOfCommutative(getChild(i))) { |
| Reason="Immediate value must be on the RHS of commutative operators!"; |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TreePattern implementation |
| // |
| |
| TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, |
| CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), |
| isInputPattern(isInput), HasError(false) { |
| for (Init *I : RawPat->getValues()) |
| Trees.push_back(ParseTreePattern(I, "")); |
| } |
| |
| TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, |
| CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), |
| isInputPattern(isInput), HasError(false) { |
| Trees.push_back(ParseTreePattern(Pat, "")); |
| } |
| |
| TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, |
| CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), |
| isInputPattern(isInput), HasError(false) { |
| Trees.push_back(Pat); |
| } |
| |
| void TreePattern::error(const Twine &Msg) { |
| if (HasError) |
| return; |
| dump(); |
| PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); |
| HasError = true; |
| } |
| |
| void TreePattern::ComputeNamedNodes() { |
| for (TreePatternNode *Tree : Trees) |
| ComputeNamedNodes(Tree); |
| } |
| |
| void TreePattern::ComputeNamedNodes(TreePatternNode *N) { |
| if (!N->getName().empty()) |
| NamedNodes[N->getName()].push_back(N); |
| |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) |
| ComputeNamedNodes(N->getChild(i)); |
| } |
| |
| |
| TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ |
| if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { |
| Record *R = DI->getDef(); |
| |
| // Direct reference to a leaf DagNode or PatFrag? Turn it into a |
| // TreePatternNode of its own. For example: |
| /// (foo GPR, imm) -> (foo GPR, (imm)) |
| if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) |
| return ParseTreePattern( |
| DagInit::get(DI, nullptr, |
| std::vector<std::pair<Init*, StringInit*> >()), |
| OpName); |
| |
| // Input argument? |
| TreePatternNode *Res = new TreePatternNode(DI, 1); |
| if (R->getName() == "node" && !OpName.empty()) { |
| if (OpName.empty()) |
| error("'node' argument requires a name to match with operand list"); |
| Args.push_back(OpName); |
| } |
| |
| Res->setName(OpName); |
| return Res; |
| } |
| |
| // ?:$name or just $name. |
| if (isa<UnsetInit>(TheInit)) { |
| if (OpName.empty()) |
| error("'?' argument requires a name to match with operand list"); |
| TreePatternNode *Res = new TreePatternNode(TheInit, 1); |
| Args.push_back(OpName); |
| Res->setName(OpName); |
| return Res; |
| } |
| |
| if (IntInit *II = dyn_cast<IntInit>(TheInit)) { |
| if (!OpName.empty()) |
| error("Constant int argument should not have a name!"); |
| return new TreePatternNode(II, 1); |
| } |
| |
| if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { |
| // Turn this into an IntInit. |
| Init *II = BI->convertInitializerTo(IntRecTy::get()); |
| if (!II || !isa<IntInit>(II)) |
| error("Bits value must be constants!"); |
| return ParseTreePattern(II, OpName); |
| } |
| |
| DagInit *Dag = dyn_cast<DagInit>(TheInit); |
| if (!Dag) { |
| TheInit->print(errs()); |
| error("Pattern has unexpected init kind!"); |
| } |
| DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); |
| if (!OpDef) error("Pattern has unexpected operator type!"); |
| Record *Operator = OpDef->getDef(); |
| |
| if (Operator->isSubClassOf("ValueType")) { |
| // If the operator is a ValueType, then this must be "type cast" of a leaf |
| // node. |
| if (Dag->getNumArgs() != 1) |
| error("Type cast only takes one operand!"); |
| |
| TreePatternNode *New = ParseTreePattern(Dag->getArg(0), |
| Dag->getArgNameStr(0)); |
| |
| // Apply the type cast. |
| assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); |
| New->UpdateNodeType(0, getValueType(Operator), *this); |
| |
| if (!OpName.empty()) |
| error("ValueType cast should not have a name!"); |
| return New; |
| } |
| |
| // Verify that this is something that makes sense for an operator. |
| if (!Operator->isSubClassOf("PatFrag") && |
| !Operator->isSubClassOf("SDNode") && |
| !Operator->isSubClassOf("Instruction") && |
| !Operator->isSubClassOf("SDNodeXForm") && |
| !Operator->isSubClassOf("Intrinsic") && |
| !Operator->isSubClassOf("ComplexPattern") && |
| Operator->getName() != "set" && |
| Operator->getName() != "implicit") |
| error("Unrecognized node '" + Operator->getName() + "'!"); |
| |
| // Check to see if this is something that is illegal in an input pattern. |
| if (isInputPattern) { |
| if (Operator->isSubClassOf("Instruction") || |
| Operator->isSubClassOf("SDNodeXForm")) |
| error("Cannot use '" + Operator->getName() + "' in an input pattern!"); |
| } else { |
| if (Operator->isSubClassOf("Intrinsic")) |
| error("Cannot use '" + Operator->getName() + "' in an output pattern!"); |
| |
| if (Operator->isSubClassOf("SDNode") && |
| Operator->getName() != "imm" && |
| Operator->getName() != "fpimm" && |
| Operator->getName() != "tglobaltlsaddr" && |
| Operator->getName() != "tconstpool" && |
| Operator->getName() != "tjumptable" && |
| Operator->getName() != "tframeindex" && |
| Operator->getName() != "texternalsym" && |
| Operator->getName() != "tblockaddress" && |
| Operator->getName() != "tglobaladdr" && |
| Operator->getName() != "bb" && |
| Operator->getName() != "vt" && |
| Operator->getName() != "mcsym") |
| error("Cannot use '" + Operator->getName() + "' in an output pattern!"); |
| } |
| |
| std::vector<TreePatternNode*> Children; |
| |
| // Parse all the operands. |
| for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) |
| Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); |
| |
| // If the operator is an intrinsic, then this is just syntactic sugar for for |
| // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and |
| // convert the intrinsic name to a number. |
| if (Operator->isSubClassOf("Intrinsic")) { |
| const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); |
| unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; |
| |
| // If this intrinsic returns void, it must have side-effects and thus a |
| // chain. |
| if (Int.IS.RetVTs.empty()) |
| Operator = getDAGPatterns().get_intrinsic_void_sdnode(); |
| else if (Int.ModRef != CodeGenIntrinsic::NoMem) |
| // Has side-effects, requires chain. |
| Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); |
| else // Otherwise, no chain. |
| Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); |
| |
| TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); |
| Children.insert(Children.begin(), IIDNode); |
| } |
| |
| if (Operator->isSubClassOf("ComplexPattern")) { |
| for (unsigned i = 0; i < Children.size(); ++i) { |
| TreePatternNode *Child = Children[i]; |
| |
| if (Child->getName().empty()) |
| error("All arguments to a ComplexPattern must be named"); |
| |
| // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" |
| // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; |
| // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". |
| auto OperandId = std::make_pair(Operator, i); |
| auto PrevOp = ComplexPatternOperands.find(Child->getName()); |
| if (PrevOp != ComplexPatternOperands.end()) { |
| if (PrevOp->getValue() != OperandId) |
| error("All ComplexPattern operands must appear consistently: " |
| "in the same order in just one ComplexPattern instance."); |
| } else |
| ComplexPatternOperands[Child->getName()] = OperandId; |
| } |
| } |
| |
| unsigned NumResults = GetNumNodeResults(Operator, CDP); |
| TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); |
| Result->setName(OpName); |
| |
| if (Dag->getName()) { |
| assert(Result->getName().empty()); |
| Result->setName(Dag->getNameStr()); |
| } |
| return Result; |
| } |
| |
| /// SimplifyTree - See if we can simplify this tree to eliminate something that |
| /// will never match in favor of something obvious that will. This is here |
| /// strictly as a convenience to target authors because it allows them to write |
| /// more type generic things and have useless type casts fold away. |
| /// |
| /// This returns true if any change is made. |
| static bool SimplifyTree(TreePatternNode *&N) { |
| if (N->isLeaf()) |
| return false; |
| |
| // If we have a bitconvert with a resolved type and if the source and |
| // destination types are the same, then the bitconvert is useless, remove it. |
| if (N->getOperator()->getName() == "bitconvert" && |
| N->getExtType(0).isConcrete() && |
| N->getExtType(0) == N->getChild(0)->getExtType(0) && |
| N->getName().empty()) { |
| N = N->getChild(0); |
| SimplifyTree(N); |
| return true; |
| } |
| |
| // Walk all children. |
| bool MadeChange = false; |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = N->getChild(i); |
| MadeChange |= SimplifyTree(Child); |
| N->setChild(i, Child); |
| } |
| return MadeChange; |
| } |
| |
| |
| |
| /// InferAllTypes - Infer/propagate as many types throughout the expression |
| /// patterns as possible. Return true if all types are inferred, false |
| /// otherwise. Flags an error if a type contradiction is found. |
| bool TreePattern:: |
| InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { |
| if (NamedNodes.empty()) |
| ComputeNamedNodes(); |
| |
| bool MadeChange = true; |
| while (MadeChange) { |
| MadeChange = false; |
| for (TreePatternNode *Tree : Trees) { |
| MadeChange |= Tree->ApplyTypeConstraints(*this, false); |
| MadeChange |= SimplifyTree(Tree); |
| } |
| |
| // If there are constraints on our named nodes, apply them. |
| for (auto &Entry : NamedNodes) { |
| SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; |
| |
| // If we have input named node types, propagate their types to the named |
| // values here. |
| if (InNamedTypes) { |
| if (!InNamedTypes->count(Entry.getKey())) { |
| error("Node '" + std::string(Entry.getKey()) + |
| "' in output pattern but not input pattern"); |
| return true; |
| } |
| |
| const SmallVectorImpl<TreePatternNode*> &InNodes = |
| InNamedTypes->find(Entry.getKey())->second; |
| |
| // The input types should be fully resolved by now. |
| for (TreePatternNode *Node : Nodes) { |
| // If this node is a register class, and it is the root of the pattern |
| // then we're mapping something onto an input register. We allow |
| // changing the type of the input register in this case. This allows |
| // us to match things like: |
| // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; |
| if (Node == Trees[0] && Node->isLeaf()) { |
| DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); |
| if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || |
| DI->getDef()->isSubClassOf("RegisterOperand"))) |
| continue; |
| } |
| |
| assert(Node->getNumTypes() == 1 && |
| InNodes[0]->getNumTypes() == 1 && |
| "FIXME: cannot name multiple result nodes yet"); |
| MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), |
| *this); |
| } |
| } |
| |
| // If there are multiple nodes with the same name, they must all have the |
| // same type. |
| if (Entry.second.size() > 1) { |
| for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { |
| TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; |
| assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && |
| "FIXME: cannot name multiple result nodes yet"); |
| |
| MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); |
| MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); |
| } |
| } |
| } |
| } |
| |
| bool HasUnresolvedTypes = false; |
| for (const TreePatternNode *Tree : Trees) |
| HasUnresolvedTypes |= Tree->ContainsUnresolvedType(); |
| return !HasUnresolvedTypes; |
| } |
| |
| void TreePattern::print(raw_ostream &OS) const { |
| OS << getRecord()->getName(); |
| if (!Args.empty()) { |
| OS << "(" << Args[0]; |
| for (unsigned i = 1, e = Args.size(); i != e; ++i) |
| OS << ", " << Args[i]; |
| OS << ")"; |
| } |
| OS << ": "; |
| |
| if (Trees.size() > 1) |
| OS << "[\n"; |
| for (const TreePatternNode *Tree : Trees) { |
| OS << "\t"; |
| Tree->print(OS); |
| OS << "\n"; |
| } |
| |
| if (Trees.size() > 1) |
| OS << "]\n"; |
| } |
| |
| void TreePattern::dump() const { print(errs()); } |
| |
| //===----------------------------------------------------------------------===// |
| // CodeGenDAGPatterns implementation |
| // |
| |
| CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : |
| Records(R), Target(R) { |
| |
| Intrinsics = CodeGenIntrinsicTable(Records, false); |
| TgtIntrinsics = CodeGenIntrinsicTable(Records, true); |
| ParseNodeInfo(); |
| ParseNodeTransforms(); |
| ParseComplexPatterns(); |
| ParsePatternFragments(); |
| ParseDefaultOperands(); |
| ParseInstructions(); |
| ParsePatternFragments(/*OutFrags*/true); |
| ParsePatterns(); |
| |
| // Generate variants. For example, commutative patterns can match |
| // multiple ways. Add them to PatternsToMatch as well. |
| GenerateVariants(); |
| |
| // Infer instruction flags. For example, we can detect loads, |
| // stores, and side effects in many cases by examining an |
| // instruction's pattern. |
| InferInstructionFlags(); |
| |
| // Verify that instruction flags match the patterns. |
| VerifyInstructionFlags(); |
| } |
| |
| Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { |
| Record *N = Records.getDef(Name); |
| if (!N || !N->isSubClassOf("SDNode")) |
| PrintFatalError("Error getting SDNode '" + Name + "'!"); |
| |
| return N; |
| } |
| |
| // Parse all of the SDNode definitions for the target, populating SDNodes. |
| void CodeGenDAGPatterns::ParseNodeInfo() { |
| std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); |
| while (!Nodes.empty()) { |
| SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); |
| Nodes.pop_ba
|